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Abstract
It is well known that the processing parameters of selective laser melting (SLM) highly influence mechanical and physical
properties of the manufactured parts. Also, the energy density is insufficient to detect the process window for producing
full dense components. In fact, parts produced with the same energy density but different combinations of parameters may
present different properties even under the microstructural viewpoint. In this context, the need to assess the influence of
the process parameters and to select the best parameters set able to optimize the final properties of SLM parts has been
capturing the attention of both academics and practitioners. In this paper different hybrid prediction-optimization approaches
for maximizing the relative density of Ti6Al4V SLM manufactured parts are proposed. An extended design of experiments
involving six process parameters has been configured for constructing two surrogate models based on response surface
methodology (RSM) and artificial neural network (ANN), respectively. The optimization phase has been performed by means
of evolutionary computations. To this end, three nature-inspired metaheuristic algorithms have been integrated with the
prediction modelling structures. A series of experimental tests has been carried out to validate the results from the proposed
hybrid optimization procedures. Also, a sensitivity analysis based on the results from the analysis of variance was executed
to evaluate the influence of the processing parameter and their reciprocal interactions on the part porosity.

Keywords Artificial neural network · Response surface methodology · Metaheuristic algorithms · Predictive model ·
Optimization

Introduction

Compared to conventional manufacturing techniques in
which the part is produced by subtractive and/or mass con-
serving process, Additive Manufacturing (AM) is a new way
to operate where the object is fabricated layer by layer from a
CADmodelwithout any geometry limitation, thus promoting
the production of complex part (Guo and Leo, 2013). More-
over, AM technology do not require additional resources
like coolants, cutting tool, fixtures, resulting in resource effi-
ciency and production flexibility. Another advantage is to
produce low waste and to have a low environmental impact.
All these factors make AM suitable for the fabrication of
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metal parts (Huang et al., 2013). The AM technologies for
metallic components can be divided into three main groups,
based onmaterial feedstock and its deliverymethod: (1) pow-
der bed systems, (2) powder feed systems, and (3) wire feed
systems (Frazier, 2014). In powder bed systems a powder bed
is deposited on the entireworking area bymeans of a rake and
only a selected zone ismelted by the energy source. Themost
popular Powder Bed Fusion (PBF) techniques are Selective
Laser Melting (SLM) and Electron Beam Melting (EBM)
where the powders are melted via laser and electron beam,
respectively (Murr et al., 2012). SLM is today a widespread
technology deployed by industries to produce metal compo-
nents due to the good compromise between quality of the
manufactured part and cost of the equipment. In particular,
SLM is broadly employed to produce Ti–6Al–4V part for
automotive, aerospace, and biomedical applications where
good mechanical properties are requested (Herzog et al.,
2016).

This paper focuses on the optimal selection of process
parameters for the density maximization in Ti–6Al–4V SLM
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additive manufacturing processes. A comprehensive design
of experiments has been configured and two distinct pre-
diction modelling approaches based on RSM and ANN have
been used for building themathematical relationship between
the density function and six process parameters. Then, in
order to maximize the density variable, several metaheuris-
tic algorithms have been implemented and compared in terms
of actual density value and relative percentage deviation of
the predicted value with respect to the actual one.

The rest of the paper is organized as follows. Section 2
deals with the literature review of the main contribu-
tions regarding the SLM process on Ti–6Al–4V alloy, also
including specific insights about the prediction-optimization
strategies. Section 3 describesmaterial and experimental pro-
cedure. Section 4 presents the process modelling. Section 5
discusses the numerical results. Section 6 illustrates the
results from the experimental analysis and the validation
of the proposed prediction-optimization strategies. Section 7
reports conclusions and future research.

Background of literature

The two following sub-sections deal with the literature back-
ground on the SLMadditivemanufacturing process. Notably,
contributions in which the porosity or the relative den-
sity is assumed as target function and the raw material is
Ti6Al4V titanium alloy are reviewed. The former section
focuses on the contributions that studied how a set of pro-
cessing parameters affects the porosity. The latter reviews
the prediction-optimization strategies employed in the SLM
research area, also mentioning the seminal additive man-
ufacturing studies in which hybrid optimization tools are
introduced.

Investigating density in SLM

The leading role of density in the quality assessment of addi-
tive manufactured products has been widely proved by the
literature. Maximizing part density is one of the principal
purposes due to the bad influence of pores on mechani-
cal properties (Kladovasilakis et al., 2021). Indeed, even a
porosity level of 1–5 vol.% can strongly affect tensile and
fatigue properties of the final part (Gong et al., 2015), being
lack of fusion and gas porosity the major common defects in
SLM that induce lowdensity (DebRoy et al., 2018).Although
in SLM manufacturing the melting pool instability may be
responsible of microstructural defects and porosity, it was
demonstrated that the density of SLM manufactured prod-
ucts is strictly depending on some major process parameters
and detrimental implications may occur if such parameters
are inaccurately set during an experimental analysis (Shipley
et al., 2018).

In their review work Shipley et al. (2018) identified the
state-of-the-art in SLM process optimization on Ti–6Al–4V
parts, also dedicating a specific section to the porosity
issue. They stated that density maximization is a primary
objective when selecting process parameters and the energy
density should be monitored to define a process window
for fully dense components. However, different combina-
tions of process parameters can be associated to the same
energy density, but different porosity values can be, in turn,
observed (Kasperovich et al., 2016). Many literary contribu-
tions analyzed the effect of scanning speed and laser power on
porosity,which have been varied in [100, 4500]mm/and from
40 to 400W, respectively. Gong et al. (2014) investigated the
influence of laser power and scan speed on porosity. They
established a process window that can be divided into four
zones. Only for zone I it was possible to produce fully-dense
parts, otherwise defects generation was observed. In detail,
when the energy density is too high, gas porosity takes place.
On the other hand, for insufficient energy input, a lack of
fusion defect occurs. To evaluate the porosity of the samples,
the density of each specimen was measured by Archimedes
method and then compared with the nominal density of Ti64.

Qiu et al. (2013) investigated the influence of laser power
and scan speed for two different build orientations and
four scanning strategies. They found that porosity generally
decreases when increasing laser power and laser scanning
speed, due to the reduction in energy input and lack of
fusion defect. Moreover, horizontally built samples showed
a lower density level than vertically built specimens. No evi-
dent effect of the scan strategy on the porosity emerged from
this study. Montalbano et al. (2021) varied both laser power
and scan speed to correlate defect generation with energy
density keeping constant hatch distance and layer thickness.
They found two types of porosity defect, lack of fusion and
keyhole. The former occurs when there is too low energy to
fully melt the metal powder bed, while keyhole takes place
when too high energy density is provided causing a fluid
dynamic instability in the melt pool.

The inadequacy in considering only scanning speed and
laser power to identify an optimal processing window clearly
emerged from the earlier studies on SLM. Hatch distance is
demonstrated to have a low impact on porosity (Han et al.,
2017), but the presence of pores at the boundary regions
has been observed when small hatch distances are set (e.g.,
≈ 60¯m). As for the layer thickness, many commercial addi-
tive manufacturing machines work by keeping constant this
parameter, thus it is a quite unexplored aspect under the opti-
mization viewpoint. However, Xu et al. (2015) observed that
layer thickness in the range [30, 90] mm is adequate for pro-
ducing samples with density greater than 99.5%, while Qiu
et al. (2015) asserted that an increase in the layer thickness
entails an increase in the overall porosity. Sun et a. (2013),
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studied the effect of layer thickness, energy density and hatch
distance on the density at a constant speed.

Porosity in parts manufactured by SLM is also influenced
by scanning strategies and build orientations. Khorasani et al.
(2019) studied the combined effect of laser power, scan
speed, hatch spacing, scanning pattern and heat treatment
temperature on the quality of Ti–6Al–4V parts keeping con-
stant layer thickness, for maximizing microhardness and
density. They observed that combining a high scan pattern
angle with a low laser power or, alternatively, with a high
scanning speed, would have a detrimental effect on the den-
sity. In terms of impact of the building orientation on the
density, not so many studies appeared in the literature so far.
However, vertical and horizontal orientations should lead to
slightly lower values than diagonal orientations for samples
in as-built conditions, i.e., with no post-process heat treat-
ment (Wauthle et al., 2015).

Prediction-optimization strategies in SLM

The studies mentioned in the previous section confirm how
a series of processing parameters have a strong influence
on the porosity of SLM manufactured components. Besides,
it emerges that a complex relationship exists between den-
sity and the interactions among such parameters. At the
same time, the inadequacy of the energy density in justify-
ing mechanical and physical properties of SLMed parts led
both academics and practitioners to study alternative ways to
select themost suitable process parameters in a cost-effective
manner. In the last decade, a few approaches for the optimal
selection of process parameters have been proposed by litera-
ture, based on both statistical methods and machine learning
techniques.

As for the statistical approach, Bartolomeu et al. (2016)
presented a study on the influence of several process param-
eters (such as laser power, scan speed and scan spacing)
on density, hardness and shear strength of Ti6Al4V parts
produced by SLM process. Particularly, they performed
an analysis of variance to investigate the main effect of
the aforementioned process parameters, also including their
interactions, on the mentioned response measures. Sun et al.
(2013) used a statistical design of experiment technique
based on Taguchi method to optimize the density of Ti6Al4V
samples manufactured by SLM at varying scanning speed,
powder thickness, hatching space and scanning strategy,
while keeping fixed the laser power. Kuo et al. (2017), used
the analysis of variance to investigate the impact of laser
power, exposure duration and layer thickness on the material
porosity and on the dimensional accuracy as well. The last
15 years have seen the widespread application of RSM to
optimize processes and product designs (Myers et al., 2004).
Li, Kucukkoc, et al. (2018), Li, Wang, et al. (2018)) adopted

a response surface methodology (RSM) approach for select-
ing the process parameters (i.e., laser power, scan speed and
hatch spacing) able to optimize the surface roughness of
selective laser molten Ti6Al4V parts. Zhuang et al. (2018)
applied the RSM to derive a regression model involving four
processing parameters (namely laser power, scanning speed,
preheating temperature and hatch distance) for predicting the
dimensions of the melt pool in SLM of Ti6Al4V.

ANOVA and RSM-based approaches are commonly used
for investigating the influence of some parameters individ-
ually or for drawing the squared or cubic prediction model
of the process under investigation. Beyond these methods,
machine learning (ML) approaches have captured a great
amount of attention from the literature in the last decade for
both prediction and optimization purposes.

Artificial Neural Networks (ANN) belong to the family
of Machine Learning (ML) algorithms, and emulate the bio-
logical neural networks to approximate non-linear regression
models of real-life phenomena,which in turn depend on com-
plex relationships between input and output variables (Du &
Swamy, 2013). ANN has been capturing the attention of both
academics and practitioners working on different research
areas, such as computer vision (Krizhevsky et al., 2012),
autonomous driving (Li, Kucukkoc, et al., 2018; Li, Wang,
et al., 2018), speaker and language recognition (Richardson
et al., 2015), intelligent manufacturing (Dagli, 2012) and
even additive manufacturing (Qi et al., 2019).

The remarkable impact of ML in the additive manufac-
turing research stream can be easily evaluated by two recent
review papers (Wand et al., 2020; Meng et al., 2020), but
some contributions consistent with the present papers are
worthy to be mentioned in the following. Park et al. (2021)
adopted a supervised learning deep neural network based
on the backpropagation algorithm to select the optimal input
parameters (laser power, scanning speed, layer thickness and
hatch distance) for a set of quality measures outputs (density
ratio and surface roughness) related to biomedical appli-
cations. The same machine learning technique along with
the same processing parameter have been used in another
research work in which a user-friendly module for pre-
processing SLM printing is presented (Nguyen et al., 2020).
An ANN model with a backpropagation (BP) algorithm was
employed to describe the stress–strain relationship of SLM-
manufactured Ti6Al4V in dynamic compression processes
(Tao et al., 2019).

A data-driven approach has been recently proposed to
investigate the influence of the major fabrication param-
eters in the laser-based additively manufactured Ti6Al4V
(Sharma et al., 2021). Particularly, four fabrication parame-
ters (scanning speed, laser power, hatch spacing, and powder
layer thickness) and three post-fabrication parameters (heat-
ing temperature, heating time, and hot isostatically pressed
or not) have been used as input variables and three static
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mechanical properties (i.e., yielding strength, ultimate ten-
sile strength, and elongation) as target variables. To identify
the behavior of the relationship between the input and
output parameters, an artificial neural network (ANN) back-
propagation model was developed using 100 trials.

Further worthy contributions in the field of ANN applied
to SLM manufacturing processes employing different mate-
rials are as follows. Tapia et al. (2016) used a Gaussian
process-based predictive model for the learning and predic-
tion of the porosity in 17–4 PH stainless steel parts produced
using selective laser melting AM process. Two input param-
eters are considered (laser power and scanning speed), while
the other parameters (hatch distance, layer thickness and
beam size) are kept constant. Some years later, Tapia et al.
(2018) applied the same surrogate modelling approach to
construct a process map depending on laser power and scan-
ning speed316Lstainless steel for predictingmelt pool depth.
Another interesting contribution regards the feed-forward
back-propagation neural networks used to predict porosity
and microhardness of bronze EOS DM20 laser sintering
molten parts as a function of laser power, scanning speed
and hatch distance (Singh et al., 2012).

A new trend in the optimization of manufacturing pro-
cesses focuses on hybrid optimization techniques, which
combine prediction modelling techniques (e.g., RSM or
ANN) and metaheuristic algorithms (e.g., genetic algo-
rithms) to select the best process parameters to mini-
mize/maximize a certain physical or mechanical perfor-
mance measure. In the additive manufacturing area, a few
contributions appeared in the literature so far, concerning
fused deposition modelling (FDM) technique (Deswal et al.,
2019; Deswal et al., 2020; Saad et al., 2021) Selective Laser
Sintering of polymers (Rong-Ji et al., 2009) and wire arc
additive manufacturing (Xia et al., 2021).

Contribution of the paper

In this paper different hybrid prediction-optimization meth-
ods to optimally select the process parameters of Ti6Al4V
parts manufactured by SLM process are proposed. To the
best of our knowledge, this paper represents the first attempt
of integration between machine learning and evolutionary
computation for prediction-optimization of SLM processes.
To make the present research robust and reliable, two pre-
diction modelling approaches have been considered, namely
response surface methodology (RSM) and Artificial Neu-
ral Network (ANN). Besides, three different metaheuristic
algorithms have been employed for processing parameters
optimization purposes, i.e., genetic algorithm (GA), parti-
cle swarm optimization (PSO) and self-adaptive harmony
search (SAHS). Another source of novelty regards the set of
processing parameters involved in the proposed prediction-
optimization analysis. In fact, a total of six independent

Fig. 1 SEM image of the utilized powder

parameters, i.e., laser power, scanning speed, hatch distance,
layer thickness, scanning strategy and building orientation
are considered as input variables to be selected with the aim
of maximizing the density. To the best of the authors’ knowl-
edge, hybrid optimization techniques involving so many
processing parameters and regarding Ti6Al4V SLM never
have been studied by the literature so far.

Due to the high number of processing parameters, a high
number of experimental trials should be required to make
robust and reliable prediction-optimization analysis. There-
fore, a dataset of 130 experimental tests has been exploited
for assuring the robustness of the prediction models and the
effectiveness of the optimization algorithms as well. In par-
ticular, a design of experiments of 61 trials has been used
for a customized RSM approach; also, to strengthen the
efficacy of the ANN model, 30 trials have been added to
the previous set. Subsequently, 39 samples have been con-
structed to validate and evaluate the effectiveness of the tested
prediction-optimization procedures.

Material and equipment

Ti6Al4V ELI (Grade 23) spherical powder provided by SLM
Solutions Group AG (Lübeck, Germany) was used for the
experimental analysis. The powder (Fig. 1) is character-
ized by particle size of 20–63 µm and a mass density of
4.43 g/cm3. In total, 130 rectangular samples were fabricated
using a SLM® 280HL machine with different process param-
eters. Figure 2a shows seven samples producedwith different
building orientation, while in Fig. 2b a sketch with dimen-
sions of the sample is presented. Each sample was built on
a Ti6Al4V solid substrate preheated at 200 °C and the build
chamber (280 × 280 × 365 mm) was filled with argon to
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Fig. 2 a Samples built with different building orientation for the RSM and ANN and b sketch with dimensions of the fabricated samples

EXPERIMENTAL DATASET
(DOE)

PROCESS MODELLING
(RSM or ANN)

METAHEURISTIC 
OPTIMIZATION

OPTIMAL PROCESSING 
PARAMETERS

Fig. 3 Prediction-optimization framework

reduce the oxygen level to 0.1%. After removing the speci-
men from the plate, the density measurement was carried out
using Archimedes method at room temperature according to
ASTM B962-08. All the samples were polished before den-
sity measurements with a Branson 2510 ultrasonic cleaner.
A Mettler Toledo™ balance with the accuracy of ± 0.1 mg
was used to measure the mass in air and in the fluid for each
specimen.

Researchmethodology

This section deals with a detailed description of the
prediction-optimization methodology used to select the most
suitable process parameters able to maximize the density of
the SML process at hand (See Fig. 3). First, the structure of
the experimental dataset is presented, i.e., the designof exper-
iments (DOE). Then, the predictive techniques that make use
of the experimental data to generate the surrogate model of
the SLM process (namely RSM and ANN) are introduced.
Finally, three distinctmetaheuristic algorithms exploiting the
process meta-models to maximize the relative density are
described. The output from the metaheuristic optimization

consists of the optimal processing parameters for density
maximization.

Design of experiments

The effect of several process parameters on the relative den-
sity has been investigated. Differently from other relevant
contributions on the same topic, in this paper six independent
factors are considered as follows: laser power P, scanning
speed v, hatch distance h, building orientation o, building
strategy s and layer thickness t. In particular, the scanning
strategy refers to the scanning pattern angle increment fol-
lowed by the energy beam when passing from one layer to
the next one. The range of variation of processing parameters
has been chosen on the basis of both preliminary experiments
and literature. As for example, Fig. 4a shows the unsuccess-
ful production of a sample characterized by P � 60 W, v �
2200 mm/s, h � 150 µm, o � 75°, s � 5° and t � 40 µm,
while Fig. 4b shows the unsuccessful production of a sample
characterized by P� 400W, v� 500 mm/s, h� 80 µm, o�
45°, s� 45° and t� 40µm. Additionally, according to Ship-
ley et al. (2018),more studies are required to fully understand
the density when laser power is above 190W. Table 1 reports
notation, unit of measure, type and bounds assumed for each
processing parameter. To arrange an appropriate design of
experiments, the first four process parameters (namely P, v,
h and o) have been handled as continuous variableswithin the
related domains [min, max], the scanning strategy was var-
ied through six discrete values (s ∈ {0, 15, 30, 45, 60, 90}),
while the layer thickness was run as a categorical variable at
two levels, i.e., 30 and 60 µm, respectively.

The energy density (Ev in Eq. 1) variable is commonly
used as a way to define a process window for full dense
components, even though the state of the art proved that the
same energy density may lead to different parts density. The
linear energy density (El in Eq. 2) is considered as a means
to control the balling phenomenon, which in turn may affect
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Fig. 4 Unsuccessful production
of samples fabricated with
a insufficient energy input and
b excess of energy input

Table 1 Information about
process parameters Id Process parameter notation u.m type min max

A Laser power P W cont 260 380

B Scanning speed v mm/s cont 1000 1700

C Hatch distance h µm cont 110 150

D Building orientation o deg cont 0 90

E Scanning strategy s deg discr 0 90

F Layer thickness t µm categ 30 60

the part density.

Ev � P

vht
(1)

El � P

v
(2)

According to the ranges reported in Table 1,
the linear energy density may assume values in[
Emin
L , Emax

L

] �[0.15, 0.38] while the volumetric energy
density in

[
Emin
V , Emax

V

] � [17.0, 115.2].

Process modelling

Response surface methodology (RSM)

Usually, a response surface methodology approach is used
to investigate the relationship between a response variable
and a set of independent variables, with the aim of select-
ing the sequence of factors capable of assuring an optimal
response. To relate the response variable with the provided
influencing factors, RSM exploits an appropriate design of
experiments to fit a polynomial regression model up to the
third power, which includes the cross-product terms of the
variables. The formalization of the model, which includes
the interactions among the provided independent variables,

is reported in Eq. 3.

(3)

y′ � β0 +
n∑

i�1

βi xi +
n∑

i�1

n∑

j�i+1

βi j xi x j

+
n∑

i�1

βi x
2
i +

n∑

i�1

n∑

j�i+1

βi i j x
2
i x j

+
n∑

i�1

n∑

j�i+1

βi j j xi x
2
j +

n∑

i�1

n∑

j�i+1

n∑

k� j+1

xi x j xk

where, y’ is the transformed predicted density depending on
the influencing factors xi , x j , xk , β0 is the constant coef-
ficient, βi are related to linear coefficients, βi refer to the
quadratic coefficients while βi j and βi jk are the interaction
coefficient, being n the number of independent variables.
By doing so, the actual predicted values in terms of den-
sity should be derived by using the inverse transformation
function.

To infer the significance of the prediction model as well
as the sensitivity of the response variable to the indepen-
dent variables, the analysis of variance (ANOVA) must be
studied. Two major assumptions have to be ascertained in
ANOVA: (i) the data are normally distributed; thus, they are
free to vary around the mean with no imposed limits, and
(ii) homogeneity of variance, i.e., the variance among the
groups should be approximately equal. Clearly the former
assumption cannot be true for percentages values, such as
the density, which cannot be neither lower than 0 nor greater
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than 100%. In this case, especially when such data are close
to either the lower or the upper limit, a transformation func-
tion is needed. A simple way of doing this is to convert the
percentage responses in the range [0,1] to logit or arcsin val-
ues and then to use the obtained results for the ANOVA. The
logit function is awell-known transformation associatedwith
the standard logistic distribution for linearizing sigmoid dis-
tributions of proportions (Stevens et al., 2016), widely used
in data analysis and machine learning. When a response y is
bounded between a lower and an upper limit the following
transformation equation holds:

y
′ � ln

(
y − lower

upper − y

)
(4)

The arcsine transformation (also called the arcsine square
root transformation, or the angular transformation) is com-
puted as two times the arcsine of the square root of the
response (Sokal & Rohlf, 1995). When a response y has the
form of a percentage or a proportion, the angular transfor-
mation equation is as follows:

y
′ � arcsin(

√
y) (5)

Once the transformation of the response has been carried
out, the obtained values are more suitable for being fitted
by a kind of regression model up to the third power and the
three fundamental steps ofRSM,namelyANOVA, regression
model and optimization can be performed.

Multilayer artificial neural network

In order to numerically replicate the behavior of the observed
AM process, i.e., to generate a robust regression model capa-
ble of mapping the dataset of inputs and targets arising from
the experimental runs, a multilayer artificial neural network
has been developed. Notably, in this paper a multilayer feed-
forward neural network (MFFNN) is chosen to estimate the
density performance indicator as a function of the six input
variables. In addition, the Levenberg–Marquardt Backprop-
agation algorithm is used with the performance function,
which in turn consists of a function of the ANN-based esti-
mation and the ground truth of density. A MFFNN involves
one input layer, at least one hidden layer and one output layer.
Figure 5 shows the structure of a MFFNN with two hidden
layers.

In brief, the basic structure of a MFFNN is the neuron,
which receives information from several inputs that are prop-
erly weighted by the elements of a specific matrix. Also,
every neuron has a bias to be summed with the weighted
inputs to generate the net input, which in turn is transformed
into a neuron output by means of a specific activation func-
tion. Particularly, activation functions play a twofold role,

i.e., they convert one or more input signals of a node into an
output and decide if a neuron in the neural network has to
be activated or not. In this study the log-sigmoidal activation
function (Eq. 6) (Narayan, 1997), which is one of the most
popular non-linear activation functions for neural network,
is employed and a backpropagation (BP) algorithm is used
to train the proposed MFFNN. In Eq. 6, variable x is the
weighted sum of the neuron inputs and f (x) is the output of
the activation function (in this case always between 0 and 1),
which in turns may serve as an input for the next layer.

f (x) � 1/(1 + e−x ) (6)

The BP algorithm makes use of the mean square error to
adjust the network parameters by: (i) propagating the inputs
forward through the network; (ii) propagating the network
sensitivity backward, from the last layer to the first one;
(iii) updating both weights and biases through an approxi-
mate descent procedure. As for the latter step, in machine
learning the training process aims at minimizing the cost
function of the neural network by varying the values of both
weights and biases. To this end, the gradient descent is con-
sidered as one of the most popular optimization algorithms
(Rumelhart et al., 1986), which is based on two distinct steps
iteratively performed through the training dataset. For the
sake of brevity, the rationale of such gradient descent algo-
rithm has been omitted in the present manuscript. Finally,
a common strategy to generate a robust and reliable predic-
tion model by ANN consists in avoiding or at least reducing
the model overfitting. In machine learning overfitting is the
situation in which the neural network tends to extremely
fit the training dataset, while a poor performance emerges
when the same neural network makes predictions for new
data, such as the testing related ones. To this end, the k-fold
cross-validation technique (Refaeilzadeh et al., 2009) can
be adopted. In brief, it consists of a statistical method that
divides the whole dataset into k equal-sized smaller datasets.
Then, (k-1) datasets are used for training the neural network,
while one of them is used as a validation dataset for testing
purposes.

Metaheuristic optimization

In general, traditional optimization methods may be clas-
sified in two groups: direct search methods and gradient
methods. The former methods, such as simplex algorithm,
exploit the relationship between objective function and
constraints to search for the optimal solution. Conversely,
gradient methods use the differentiation method to achieve
the optimal solution. Both of them suffer for some shortcom-
ings such as the computational slowness for the direct search
ones and the inability of solving discontinuous or nondiffer-
entiable functions for the gradientmethods. These drawbacks
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Fig. 5 Scheme of a multi-layer
ANN

gave rise to the development of population-basedmetaheuris-
tics algorithms that nowadays are constantly employed in
several areas of research. In this paper, three distinct meta-
heuristic algorithms (particle swarm optimization, harmony
search, genetic algorithms) are tested for selecting the best
SLM process parameters capable of maximizing the den-
sity response variable. The selection of these nature-inspired
techniqueswasmotivatedby their different algorithmic struc-
tures, which in turn may affect the search mechanism and
the quality of solutions as well (Yang, 2010). Each algorithm
makes use of a population of NP solutions. Each solution
can be denoted as xi � xi1, . . . , xi j , . . . , xiD(withi � 1,
. . . , N P; j � 1, . . . , D|D � 6) and evolves generation-
by-generation by means of one or more perturbation criteria,
with the aim of maximizing the density objective function,
whose mathematical expression can be given as follows:

y � ϕ(x) � ϕ(P , v, h, o, s, t) (7)

where ϕ represents either the RSM or the ANN predictive
function that yields y.

Notably, each variable xi j may vary within a specific
domain [xmin

j , xmax
j ] according to the bounds reported in

Table 1. The following subsections deal with a more detailed
description of eachmetaheuristic. For the sake of fairness, the
same maximum number of generations (Kmax � 100) have
been set for each metaheuristic. The rest of control parame-
ters of each algorithmhas been set at the values recommended
by the original authors. Finally, the following strategy has

been adopted with the aim of enhancing the exploration abil-
ity of the tested metaheuristics. Whenever a variable xi j , at
any generation, is lower than its lower domain limit (xmin

j )
or greater than its upper domain limit (xmax

j ), it is replaced

with a value randomly selected in [xmin
j , xmax

j ].

Particle swarm optimization

Particle swarm optimization (PSO) is an evolutionary algo-
rithm developed by Eberhart and Kennedy (1995), which
belongs to the class of bio-inspired algorithms as it emu-
lates the social behavior of birds and fish. It consists of a
computational method for optimization that makes use of a
population of particles, i.e., a swarm, which moves around in
the space of solution by varying both position and velocity
of each particle. Notably, each particle moves on the basis
of its local best-known position, but it is also influenced by
the global best-known solution, i.e., the position of the best
solution achieved so far. In words, PSO evolves by exploit-
ing both a communication and a learning mechanism; in
fact, every particle learns by its local best-known position
and communicates with the global best position generation-
by-generation. In this paper, a quasi-standard PSO has been
implemented for density optimization purposes. The control
parameters of the algorithm were set to the values suggested
by the reference literature (Poli et al., 2007). Besides, as the
inertia weight is a sensitive parameter controlling the bal-
ance between exploration and exploitation (Nickabadi et al.,
2011), a linear time-varying adaptation mechanism inspired
by the relevant literature (Eberhar and Shi, 2001) has been
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employed. Therefore, the population size (NP) has been set
to 40, the inertia coefficientw ranges in [0.3; 0.9], while both
acceleration coefficients, i.e., C1 and C2, are set to 2.

Self-adaptive harmony search

Harmony Search (HS) is a performing evolutionary algo-
rithm inspired by the approach of musicians when they
search for a better harmony (Geem et al., 2001) that has
been successfully applied to several intelligent manufactur-
ing applications (Yi et al., 2019). Similar to other bio-inspired
metaheuristics, the convergence performance of HS is sensi-
tive to control parameters; thus, a demanding tuning analysis
should be executed to choose the most suitable values of
such parameters. Particularly, two control parameters named
harmony memory consideration rate (HMCR) and pitch
adjustment rate (PAR) are responsible for convergence abil-
ity and quality of solutions of HS (Wang & Huang, 2010).
Recently, adaptive or self-adaptive HS variants, which auto-
matically tune the control parameters during the evolutionary
path, have been proposed by literature in many fields of
research, such as statistical quality control (Costa & Fichera,
2017), water flow control (M’zoughi et al., 2020), resource
leveling problem (Ponz-Tienda et al., 2017). In this paper, the
self-adaptive harmony search (SAHS) version proposed by
Costa and Fichera (2017) has been implemented to select the
best process parameters of the SLM process under investiga-
tion. For the sake of clarity, and conforming to the original
algorithm configuration, the following values have been con-
sidered for the control parameters: NP � 40, HMCR ∈ [0.7,
0.95], PAR ∈ [0.1, 0.5].

Genetic algorithm

Genetic algorithm (GA) is a metaheuristic that belongs to
the nature-inspired optimization algorithms and pursues the
survival of the fittest philosophy, which in turn is based on
the theory of evolution laid by Charles Darwin. Once the first
population of chromosomes (i.e., solutions) is generated, a
series of generations are carried out and the major genetic
operators (selection, crossover and mutation) are deployed
to drive the convergence towards the most effective near-
optimal solution. Although the earlier implementation of GA
made use of a binary encoding, further studies (Bianco et al.,
2001; Deep & Thakur, 2007) demonstrated the superiority
of the real-coded GA in solving continuous optimization
problems, under both the efficacy and the efficiency view-
point. In this paper, a standard real-coded genetic algorithm
employing an arithmetic crossover method and a heuristic
mutation operator (Michalewicz, 1996) has been used for
density optimization purposes. Precisely, if x1 and x2 are
the parent chromosomes, the arithmetic crossover generates
offspring y1 and and y2 as follows: y1 � αx1 + (1 − α)x2,

y2 � αx2 + (1 − α)x1, where α is a random number in
[γ , 1 + γ ]. Instead, the new chromosome obtained by the
heuristic mutation is y � xmin + r (xmax − xmin), being r a
random number from a uniform distribution U[0,1]. For the
sake of replicability, probability of crossover, probability of
mutation and γ have been respectively set to 0.9, 0.1 and 0.7
according to the indication from the source contribution.

Results and discussions

Response prediction from RSM

In light of both number and type of process parameters
described in Table 1, a flexible design of experiments has
been generated by Design Expert™ 11 to accommodate a
RSM custom model. It consists of 27 required points with
24 additional model points, 5 lack-of-fit points and 5 repli-
cate points. As a result, 61 total runs have been considered
for the proposed RSM custom design. Design Expert gen-
erated a completely randomized design to assure that all
experiments have the same chance to be assigned to any run
(Kirk, 2012). For the sake of clarity, Table 7 in Appendix A
shows the 61 experimental scenarios in terms of independent
variables. After a series of preliminary analyses, the arcsin-
square-root transformation on the response variable y has
been adopted. Several models such as linear, 2FI (two factor
interaction), quadratic and cubic can be selected by the fit
summary software interface, with exception of the aliased
ones, that cannot be accurately fit with the design and should
generally not be considered for analysis. Although the statis-
tical software automatically suggested the quadratic model,
being the relatedR2 value equal to 0.80, to improve themodel
fitting performance some influencing third-order terms were
introduced. Therefore, in this study a not aliased reduced
cubic regressionmodel considering the density response vari-
able as a function of six process parameters, i.e., (A) laser
power P, (B) scan speed v, (C) hatching distance h, (D) build
orientation o, (E) building strategy s and F) layer thickness
t, has been adopted.

To infer about the cause-effect relationships between the
independent variables, i.e., the process parameters, and the
dependent variable (namely the density), the statistical sig-
nificance of such interactions and the model itself have been
assessed by a proper analysis of variance. Table 2 reports the
numerical results from the ANOVA, in which P-values and
F-values reveal the significance of the obtained model and
associated factors. In other words, if theP-value is lower than
0.05 it means that such a factor or combinations of factors
influence the response variable in a statistically significant
manner. Conversely, the higher the F-value the greater is
the impact of a factor or a combination of factors on the
model and on the relative density aswell. Therefore,P-values
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Table 2 ANOVA
Source Sum

of Squares
df Mean

Square
F-value p-value result

Model 0.0850 32 0.0027 10.48 < 0.0001 significant

A-P 0.0013 1 0.0013 4.95 0.0344

B-v 0.0128 1 0.0128 50.61 < 0.0001

C-h 0.0107 1 0.0107 42.33 < 0.0001

D-o 0.0008 1 0.0008 3.30 0.0800

E-s 0.0037 1 0.0037 14.51 0.0007

F-t 0.0001 1 0.0001 0.2903 0.5943

AB 0.0054 1 0.0054 21.44 < 0.0001

AC 0.0017 1 0.0017 6.83 0.0143

AD 0.0013 1 0.0013 5.15 0.0311

AE 0.0001 1 0.0001 0.3462 0.5610

AF 0.0003 1 0.0003 1.36 0.2540

BC 0.0063 1 0.0063 24.98 < 0.0001

BD 0.0007 1 0.0007 2.69 0.1124

BE 0.0031 1 0.0031 12.36 0.0015

BF 0.0009 1 0.0009 3.62 0.0673

CD 0.0016 1 0.0016 6.19 0.0190

CE 0.0007 1 0.0007 2.64 0.1152

CF 3.775E-06 1 3.775E-06 0.0149 0.9038

DE 0.0030 1 0.0030 11.99 0.0017

DF 0.0003 1 0.0003 1.23 0.2775

EF 0.0015 1 0.0015 5.76 0.0233

A2 0.0003 1 0.0003 1.23 0.2762

B2 0.0006 1 0.0006 2.45 0.1290

C2 1.910E-06 1 1.910E-06 0.0075 0.9315

D2 0.0001 1 0.0001 0.2760 0.6035

E2 0.0025 1 0.0025 9.92 0.0039

BCD 0.0003 1 0.0003 1.02 0.3201

BCE 0.0019 1 0.0019 7.65 0.0099

BCF 0.0008 1 0.0008 3.23 0.0833

BDE 0.0011 1 0.0011 4.52 0.0424

BEF 0.0007 1 0.0007 2.92 0.0988

CEF 0.0007 1 0.0007 2.80 0.1051

Residual 0.0071 28 0.0003

Lack of Fit 0.0065 21 0.0003 3.71 0.0510 not significant

Pure Error 0.0006 7 0.0001

Cor Total 0.0921 60

Std.Dev 0.0159 R2 0.9029

Mean 1.51 Adjusted-R2 0.8348

C.V.% 1.06 Adeq precision 15.675

lower than 0.05 associated with higher F-values indicate the
most significant contributions to the density model, while
some insignificant terms (P-value > 0.05) have been delib-
erately removed from the model to enhance the statistical
significance of the model itself. Besides, the lack-of-fit in

the ANOVA table confirms that the model residual is not-
significant compared with the replicate error. However, the
statistical significance of the model is demonstrated by the
high R-squared and adjusted R-squared indicators, properly
combined with a very high Adeq. Precision measure (Zhang
et al., 2020).
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Fig. 6 Analysis of residuals: a normal plot of residuals, b residuals vs. run plot

To further assess themodel accuracy, the normal plot of the
studentized residuals for the target response and the model
residuals versus the runs are depicted in Fig. 6a and Fig. 6b,
respectively. As the reader can notice, in Fig. 6a the stu-
dentized residuals fits the straight line with small deviations
only for some out-layer points, while in Fig. 6b residuals are
independent with each other and no specific trend emerges,
thus excluding any influence of the test order on the den-
sity response variable. Once both robustness and significance
of the derived model is demonstrated, the cubic regression
model, which predicts the density response variable by com-
bining all input variables, can be used for sensitivity analysis
and optimization. Table 3 reports the coefficients pertaining
to the recued cubic model (See Eq. 3) in actual units. Of
course, being the layer thickness modelled as a categorical
variable at two levels (i.e., t � 30 and t � 60), two sets of
regression coefficients are indicated. Figure 7 allows com-
paring the deviation between predicted and actual density
over the provided 61 observations. A satisfying fitting can be
appreciated even though the prediction model is not able to
properly match the low-density trials.

Sensitivity analysis from RSM

In order to infer about the way each factor and any combina-
tion of two factors affect the model, a series of plots provided
by the statistical software deserve to be investigated. It is
worth pointing out that all plots in this section have been
generated by setting the other independent variables to the
average value of the ranges in Table 1. Particularly, starting

Fig. 7 Line-plot of predicted and target density related to RSM

with the findings from the ANOVA analysis (See Table 2),
this section deals with a sensitivity analysis focused only on
the significant (P-value < 0.05) one-way and two-ways inter-
actions. Figure 8 shows the main-effect plots on the density
response variable regarding the scanning speed (v), the hatch-
ing distance (h) and the building strategy (s), also indicated
as coded variables B, C, and E, respectively. Although the
ANOVA reveals that the thickness is not a statistically sig-
nificant influencing factor, being t a categorical value, two
sets of main-effect plots are reported in Fig. 8. Figure 8a and
8b show how the first-order contributions related to v and h
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Table 3 Actual regression
equation as the layer thickness
t changes

Coefficients t � 30 vars t � 60 vars

β0 1.44002 – 1.02053 –

β1 − 0.001044 P − 0.000934 P

β2 0.000345 v 0.000581 v

β3 0.001922 h 0.004892 h

β4 0.002851 o 0.002982 o

β5 0.003907 s 0.006202 s

β12 7.02E-07 P * v 7.02E-07 P * v

β13 .74E-06 P * h 7.74E-06 P * h

β14 3.25E-06 P * o 3.25E-06 P * o

β15 7.89E-07 P * s 7.89E-07 P * s

β23 − 3.79E-06 v * h − 5.58E-06 v * h

β24 − 1.72E-06 v * o − 1.72E-06 v * o

β25 − 3.28E-06 v * s − 3.96E-06 v * s

β34 − 0.000029 h * o − 0.000029 h * o

β35 − 0.000039 h * s − 0.000051 h * s

β45 0.000012 o * s 0.000012 o * s

β11 − 1.64E-06 P2 − 1.64E-06 P2

β22 − 6.44E-08 v2 − 6.44E-08 v2

β33 − 1.12E-06 h2 − 1.12E-06 h2

β44 − 1.28E-06 o2 − 1.28E-06 o2

β55 − 7.85E-06 s2 − 7.85E-06 s2

β234 1.52E-08 v * h * o 1.52E-08 v * h * o

β235 3.77E-08 v * h * s 3.77E-08 v * h * s

β245 − 1.34E-08 v * o * s − 1.34E-08 v * o * s

impact on the density when t is equal to 30µm. Clearly, both
of them are able to maximize the response variable when
they are set at the lowest value, i.e., 1000 mm/s and 110 µm,
respectively. Conversely, moderately high values of building
strategy allow enhancing the density, as depicted in Fig. 8c.
When the layer thickness is set to 60 µm (See Fig. 8d–f) the
way each process parameter influences the response vari-
able is not so dissimilar from the findings described above.
What emerges is that a higher layer thickness has a detri-
mental impact on the density when v and h are set to higher
values. Likewise, it seems that a layer thickness equal to
30 µm allows reaching a higher density than the one achiev-
able when t is set to 60. However, when t � 30 the density
is maximized by assigning the scanning strategy angle in
the rough range [60–75]; on the other hand, if t � 60 the
best performance requires a scanning strategy roughly rang-
ing in [35–55]. Following the same criterion, Fig. 9 reports
the contour-plots concerning solely the statistically signif-
icant (see P-value < 0.05 in the ANOVA table) two-way
interactions by distinguishing the graphs assuming t � 30
(Figs. 9a–d) from the ones related to t � 60 (Figs. 9e–f).
Again, with exception of the layer thickness, each contour

plot in Fig. 9 implies the other factors set to the average val-
ues conforming to the provided ranges of variation. Figure 9a
and e depict how the combination of laser power P and scan-
ning speed v affect the density when t is equal to 30 µm and
60 µm, respectively.

Clearly, no remarkable difference emerges under the
graphical viewpoint, thus confirming the weak role of the
layer thickness. However, the ranges of values in terms of P
and v able to maximize the density (i.e., medium–low values
for both of them) can be easily detected. As for the inter-
action contour plots involving the hatch distance and the
scanning speed no substantial difference appears because of
the layer thickness (See Fig. 9b and f). Also in this case,
medium–low values for both h and v should be the more
suitable for enhancing the response variable. Contour plots
related to the combined effect of building strategy (s) and
scanning speed (v) show a slight difference as the layer thick-
ness changes (See Fig. 9c and g). In fact, when t is equal
to 30, a density maximization would be expected when the
scanning speed is set in the range [1100–1400] m/min and
the building strategy in [40–70] deg. On the other hand, if
t is set to 60, the building strategy should vary in the range
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Fig. 8 Main effect plot: t � 30 (a, b, c) and t � 60 (d, e, f)

[20–60], while the scanning speed should assume a value
ranging between 1000 and 1200 m/min. Finally, the effect of
the layer thickness when investigating the combined effects
of both building orientation (o) and building strategy (s) on
the density response appears more interesting. If the layer
thickness is fixed to the lowest value, then a higher density
may be achieved by setting s at medium–high values, while
the building orientation should assume medium–low values.
Whether the layer thickness assumes the highest value, a
small surface portion confined between h varying in [20–40]
and o in [80–90] is useful for assuring the highest density.

Response prediction by ANN

Although a neural network with one hidden layer is capa-
ble of running most complex functions (Chen et al. 2018),
after a series of trial-and-error attempts as well as on the
basis of prior studies (Qi et al., 2019), two hidden layers,
each one holding a number of five neurons, were selected to
strengthen the neural network response. The number of neu-
rons for the hidden layers has to be set accurately as it may
cause either overfitting or underfitting problems in machine

learning (Xu & Chen, 2008). Notably, the neural network
architecture 6–5–5–1 has been selected (See Fig. 10a), where
the number of neurons in the input layer entails the six process
parameters and the single output node refers to the density
(Park et al., 2021). To prevent any risk of overfitting the K-
fold cross-validation by 10 folds has been performed (Jung&
Hu, 2015), similarly being done in other studies regarding the
additive manufacturing topic (Xia et al., 2021). The above-
describedmachine learning procedure has been implemented
on Matlab® R2020b software. In respect to the 10-folds
cross-validation, 80%, 10% and 10% of the dataset have
been designated to training, validation and testing, respec-
tively. The selected neural network regression model assures
a coefficient of determination (R2) for training, testing and
validation datasets equal to 0.98, 0.81 and 0.96, respectively.
Interestingly, the coefficient of determination of the whole
model is equal to 0.968.

Figure 10b shows theANNperformance in terms ofmean-
squared error for training, testing and validation. The training
procedure stops conforming to the adopted early stop crite-
rion. The best validation performance was achieved when
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Fig. 9 Two-order interaction contour plots: t � 30 (a, b, c, d) and t � 60 (e, f , g, h)

Fig. 10 ANN: a configuration data; b convergence plot; c coefficients of determination
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Fig. 11 Line-plot of predicted and target density related to ANN

MSE is about 9.5E-06 at epoch 10, and after six error repeti-
tions at epoch 16 the process ends as reported in the x-axis of
the plot. Such result in terms of validation performance sug-
gests that after epoch 10 the network attains its best learning
stage, as the MSE of both validation and testing increases
from that iteration on. Figure 10c shows the regression plots
for training, validation and testing data as well as a plot for
the combined regression. The dashed line represents the per-
fect condition when the predicted outputs equal the target
ones, i.e., a 45-deg line. Conversely, the solid line is the best
fit linear regression between outputs and targets. The R-value
(correlation coefficient) is a metric indicating the correlation
between the output values and the target ones, beingR� 1 the
exact relationship between them.According to theMATLAB
neural network toolbox, R-values should be greater than 0.9;
thus, the obtained values for the proposed neural network
model (namely 0.98885, 0.97954 and 0.89806 for training,
validation and testing, respectively) allow asserting that the
model presents very significant fitting performances for all
datasets, with enough degree of generalization and without
overfitting. The slight gap in theR-value regarding the testing
stage shows a lack of data for the network testing. Although
this gap does not significantly affect the overall neural net-
work performance, it highlights that a dataset larger than 15%
would have been preferable for the network testing.

To assess the ability of the ANN regression model in fit-
ting the experimental targets in terms of density, a line-plot
reporting both predicted and target values has been arranged
(Fig. 11). As the reader can notice, the proposed prediction
model is able to properly fit the main density falls, while
some observations highlight an evident deviation of the pre-
dicted responses over the target ones, thus confirming that
the model overfitting has been adequately prevented.

Although the accuracy of RSM and ANN prediction mod-
els have been already assessed in terms of coefficient of

determinationR2 (equal to 0.90 and 0.97, respectively), Table
4 compares the predictive performance of such surrogate
models in terms of three alternative performance metrics,
namely Mean Absolute Error (MAE), Mean Squared Error
(MSE) and Mean Absolute Percentage Error (MAPE). The
small values of MAE, MSE and MAPE near to zero, as well
as R2 close to 1, confirm that high predictive accuracy can
be obtained by both models, even though a slight advantage
emerges for the ANN modelling approach.

Processing parameters optimization

The following paragraphs deal with the performance
obtained by the proposed metaheuristic algorithms (namely
PSO, SAHS, GA) for maximizing the density objective func-
tion, also distinguishing between ANN and RSM prediction
models. Due to stochasticity of metaheuristic algorithms, 50
runs at different random seeds have been executed for each
metaheuristic configuration. All metaheuristics have been
implemented in MATLAB™ 2020b on an iMac equipped
with a i3 quad-core 3.6 GHz processor and 8 GB 2400 MHz
DDR4 RAM by the same code developer. In order to
infer both effectiveness and efficiency of the tested tech-
niques, several key performance indicators (KPIs) have been
adopted. Particularly, average density value (ave), standard
deviation (stdev), maximum (max) and minimum (min) den-
sity values and average computational times (ACT) over
the 50 replicates are reported in Table 5. It is noted that
two distinct analyses should be carried out on the numeri-
cal results, depending on the prediction model used for the
density optimization. In fact, as emerges from Table 5, the
density regression model provided by ANN allows reach-
ing density values greater than 100%, while the surrogate
model based on RSM never overcomes the 100% density
value, due to the adopted arcsin-square-root transformation
function. As for the ANN model, SAHS appears as the most
performing optimization approach (see bold values in Table
5) in terms of average density value. It also assures the small-
est variability due to stochasticity (i.e., standard deviation).
All metaheuristics achieve the samemaximum density (max)
for one run over 50 at least, while SAHS is able to guarantee
a density greater than 100% for all runs out of 50. Due to the
high complexity of the ANN prediction model, every meta-
heuristic takes about 30 s to converge after 100 generations,
while the RSM-based algorithms need less than one tenth of
a second. Looking at the results involving the RSM model,
SAHS again comes out as the most performing optimization
method under every KPI viewpoint. As a further insight to
motivate the difference of performance of the proposed algo-
rithms, the convergence graphs related to the first run of each
metaheuristic are reported in Fig. 12. It is worth noting that
every algorithm has been designed for the objective function
minimization; thus, the reciprocal of the density is indicated
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Table 4 Performance comparison
between the prediction models Model MAE MSE MAPE R2

RSM 1.560E-03 1.044E-05 0.160 0.90

ANN 2.578E-04 5.981E-06 0.108 0.97

Table 5 Performance of
metaheuristics KPI PSO_ANN SAHS_ANN GA_ANN PSO_RSM SAHS_RSM GA_RSM

ave 100.085 100.088 100.040 99.984 99.994 99.978

stdev 0.026 0.013 0.047 0.004 0.001 0.014

max 100.101 100.101 100.100 99.993 99.995 99.992

min 99.943 100.043 99.935 99.976 99.990 99.929

ACT(sec) 32.9 30.0 28.9 0.1 0.0 0.0

Fig. 12 Convergence graphs of metaheuristics

in the y-axis. As the reader can notice, GA assures a fast
convergence to the local optimumwhile the graphs related to
PSO and SAHS highlight a smoother solution improvement
through the generations, which in turn suggests a better bal-
ance between exploration and exploitation. To sum up, all the
tested metaheuristics demonstrate a comparable efficacy in
solving the optimization problemat hand, even thoughSAHS
appears as the most suitable alternative; also, the mentioned
graphs confirm that Kmax � 100 generations are enough to
assure any algorithm convergence.

Experimental analysis and validation

In order to evaluate the ability of the proposed hybrid
prediction-optimization tools, a set of experimental analy-
ses have been performed. Metaheuristic algorithms work on

the basis of a stochastic evolutionary criterion; thus, differ-
ent near-optimal solutions may arise from a set of runs, as
described in the previous section. Hence, two optimal solu-
tions (the former being the best one assuring the maximum
predicted density and the latter being the second-best one in
the remaining set) have been experimentally tested for each
algorithm. For each optimal solution to be tested, three dis-
tinct samples have been processed by the SLM machine. In
addition, the maximization of the desirability function (DF)
provided by the statistical software has been used as a further
optimizationmethod. Since two predictivemodels (ANNand
RSM), two solutions and four optimization methods (PSO,
SAHS, GA and DF only for RSM) have been considered in
the experimental analysis, a number of 39 samples has been
produced by SLM and tested in terms of density. Table 6
reports the process parameters for each solution pertaining
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Table 6 Metaheuristics and experimental analysis

Run Method P
(W)

v
(mm/s)

h
(μm)

o
(deg)

s
(deg)

t
(μm)

Ev
(J/mm3)

El
(J/mm)

Pred
(%)

Act
(%)

RPD
(%)

ARPD
(%)

1 PSO-ANN(1) 260.7 1002.4 141.7 90.0 1.4 60 30.60 0.260 100.101 99.801 0.30

2 PSO-ANN(2) 268.5 1057.0 126.9 89.4 56.2 60 33.35 0.254 100.057 99.715 0.34 0.32

3 SAHS-ANN(1) 262.1 1000.0 140.9 89.9 3.2 60 31.01 0.262 100.101 99.836 0.27

4 SAHS-ANN(2) 267.1 1045.8 131.7 83.3 35.2 60 32.33 0.255 100.069 99.889 0.18 0.22

5 GA-ANN(1) 263.8 1000.0 139.6 90.0 6.2 60 31.48 0.264 100.099 99.967 0.13

6 GA-ANN(2) 264.2 1000.0 139.3 55.1 20.5 60 31.61 0.264 100.058 99.835 0.22 0.18

7 PSO-RSM(1) 301.5 1057.5 110.1 88.3 51.8 60 43.17 0.285 99.987 99.719 0.27

8 PSO-RSM(2) 325.7 1220.4 110.3 84.6 42.3 60 40.31 0.267 99.979 99.759 0.22 0.24

9 SAHS-RSM(1) 260.0 1000.4 110.2 90.0 41.8 30 78.66 0.260 99.995 99.787 0.21

10 SAHS-RSM(2) 292.5 1002.3 110.0 90.0 56.2 60 44.21 0.292 99.990 99.882 0.11 0.16

11 GA-RSM(1) 380.0 1700.0 110.0 90.0 15.2 60 33.87 0.224 99.989 99.644 0.35

12 GA-RSM(2) 287.6 1009.8 110.0 89.7 58.7 30 86.30 0.285 99.988 99.877 0.12 0.23

13 DF 260.0 1053.7 111.0 83.6 55.9 60 37.06 0.247 99.975 99.708 0.27 0.27

Bold values indicate the best performance for each of the considered approaches (i.e. ANN, RSM)

Fig. 13 Plots at 95% confidence interval: a Prediction models; b ANN algorithms; c RSM algorithms

to a given optimization method. Both volumetric density and
linear density dependent variables are also indicated. Then,
the optimal predicted density (Pred) and the actual one (Act)
obtained as the mean value over the three experimental repli-
cates can be compared for each optimization scenario. The
Relative Percentage Deviation (RPD) of the predicted den-
sity over the actual one can be used to assess the reliability of
the optimal solutions. In addition, the average RDP (ARPD)
is considered as an aggregate measure of robustness. Regard-
less of the specific optimization algorithm, the ANN model
appears the most appropriate means to emulate the behavior
of the SLM process under investigation and to maximize the
density response variable as well. Such finding can be fur-
ther evaluated by the interval plot at 95% confidence level
in Fig. 13a. Each interval plot gathers six experimental data,
namely the density values of the three replicates for each
optimal solution. Motivated by the slight overlap between
the interval plots in Fig. 13a, RSM remains a valid alterna-
tive to model the SLM process at hand.

Looking at the ANN-related optimal solutions in Table
6, GA-ANN appears the most promising optimization
approach, because of the highestmeandensity value achieved

by GA-ANN(1) (Act � 99.967%), though PSO-ANN and
SAHS-ANNprovide higher values in terms of predicted den-
sity. In this regard, GA-ANN emerges as the most reliable
algorithm as it provides the lowest ARPD. Indeed, SAHS-
ANN is not far from the performance of GA-ANN. In fact,
Fig. 13b shows that the mean density obtained by GA is
higher than the one assured by SAHS-ANN, but the related
confidence interval is remarkably larger; thus, we may assert
that SAHS ismore robust thanGA in providing optimal solu-
tions for density maximization. Conversely, the combination
between ANN and PSO seems to be slightly worse than the
other algorithm configurations (see the lowermean value and
the larger interval plot relate to PSO-ANN in Fig. 13b).

Whether the RSM prediction model is considered, SAHS
emerges as the best optimization approach. In fact, the sec-
ond run of SAHS (See SAHS-RSM(2) in Table 6) is able to
assure an actual density value equal to 99.882%, with a small
relative deviation (RPD� 0.11%) from the actual value. The
ability of SAHS-RSM in fitting the actual density is further
confirmed by the aggregatemetric ARPD equal to 0.16%.On
the other hand, PSO-RSM and GA-RSM are slightly dom-
inated by SAHS-RSM and appear quite similar with each
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other in terms of ARPD. Such remarks can be confirmed by
observing Fig. 13c, where the SAHS interval plot is higher
and tighter than the ones related to PSO and GA.

To sum up, although no statistically significant difference
from the interval plots, ANN is the recommended approach
to predict the density response variable. In this context, test-
ing three metaheuristic algorithms, which in turns present
different evolutionary structures, allowed validating the pro-
posed prediction-optimization approach. Particularly, GA
and SAHS appear the most suitable metaheuristic techniques
for selecting the process parameters able to maximize the
density. However, SAHS assures a higher robustness in find-
ing optimal solutions in terms of density (also in terms of
predicted solutions, as described in Sec. 5.4) and the self-
adaptive mechanism that avoid any parameter calibration
may represent a further adding-value.

Interestingly, Table 6 shows that the best solutions
obtained by adopting ANN entail lower Ev values, on the
average, than the ones related to the RSM approach. Con-
versely, no significant difference comes out in terms of El.
Besides, it is worth noting that only two solutions out of 13
hold a layer thickness equal to 30 µm, as it has no influence
on the density, as confirmed by the sensitivity analysis in Sec.
5.2.

Beyond the numerical analysis concerning the ability of
the proposed prediction-optimization approaches in maxi-
mizing the predicted/actual density, the diverse processing
parameters found by the different algorithms (see Table 6)
deserve a further investigation. First, it is worth pointing out
that such diversity can be considered as physiological as two
sources of uncertainty affect such a prediction-optimization
approach, namely: (i) any prediction model (ANN or RSM)
basically consists of regression models with a degree of
deviation on the actual response; (ii) as mentioned earlier,
metaheuristics are subjected to stochasticity (i.e., different
runs may yield slightly different optimal solutions). How-
ever, despite these aspects, a quantitative analysis on the
optimal solutions can be supported by Fig. 14, which refers
only to the ANN-based approaches. Figure 14 allows assess-
ing the relative percentage deviation between the processing
parameters related a given solution and the ones pertaining
to the best solution. As for example, as GA-ANN(1) is the
best solution, the RPD on the laser power in PSO-ANN(1)

is equal to 100x(260.7–263.8)/263.8 � -1.18. Notably, since
large deviations emerge from the scanning strategy parame-
ter, the related bars in Fig. 14 ignore the percentage value. In
addition, since all optimal solutions take on the same layer
thickness (i.e., 60 µm), it has been omitted in the bar chart.
Although, in general, it is hard assessing the effect ofmultiple
parameter interactions on a response variable, the following
insights can be extracted by observing Fig. 14. The second-
best solution (i.e., SAHS-ANN (2)) and the worst one (PSO-
ANN (2)) are very similar in terms of parameter percentage

deviation (PPD), the only difference being that SAHS-ANN
(2) make use of a lower building orientation (o). Hence, such
parameter should have amoderate impact on the density, even
if a non-negligible difference emerges also in terms of scan-
ning hatching distance (h) and scanning pattern angle (s).

The set of optimal parameters for SAHS-ANN (1) are quite
the same of the best solutions (small PPDvalues only forP, h,
s), so it would justify the quality of the SAHS-ANN (1) solu-
tion in terms of density (99.84%). The quality of both SAHS
solutions and, at the same time, the diversity of parameters
they adopt, confirm that there exist different parameter com-
binations able to assure high density values. In brief, we may
assert that the density function is a complex function whose
domain presents different areas at maximum density. The
same remarks could be extended to the worst solutions. In
fact, both PSO solutions present a high diversity on the pro-
cessing parameters. Interestingly, the PSO-ANN (1) solution
is very similar to SAHS-ANN (1) but, some non-negligible
differences in terms of building orientation and scanning
strategy (see also Table 6) are likely responsible for the gap
of quality. The influence of building orientation and scan-
ning strategy is also confirmed by the GA-ANN (2) solution.
Figure 14 reveals that GA-ANN (2) is very similar to the best
solution (GA-ANN (1)), with exception of o (55.1 Vs 90) and
s (20.5Vs 6.2). Looking at the bars related to SAHS-ANN (2),
PSO-ANN (2) and marginally GA-ANN (2), it seems that the
tendency to overheating due to higher value of P and lower
value of h can be prevented by simultaneously increasing v
and s, and by decreasing the building orientation o as well.

For the sake of brevity, no bar chart for the PPD analysis of
the RSM optimal solutions is reported. However, Table 6 is
enough to feed the following remarks. The two best solutions
(SAHS-ANN (2) and GA-ANN (2)) are quite similar in terms
of process parameters, the only difference being on the layer
thickness. It confirms that t does not impact on the density
optimization. Then, regardless of t, themain differences exist
only in terms of P, v and partially under the scanning pattern
angle viewpoint. However, it is clear from Table 6 that the
best parameter combinations are quite consistent with the
finding obtained by the sensitivity analysis in Sec. 5.4.

Regardless of the specific optimization algorithm, inter-
esting insights comeout by comparing theoptimal processing
parameters achieved by the two prediction models. Specif-
ically, it is clear that optimal ANN-based solutions take on
smaller P values, higher h values and smaller s values than
the RSM-based parameter configurations. Interestingly, the
parameters of the DF solution based on RSM are quite sim-
ilar to those achieved by the ANN-based approaches (See
Table 6), with exception of v and h, thus confirming that the
higher accuracy of the ANN model is strategic in finding
better parameter configurations.

To associate these last findings to the process physics
underlying SLM, it is worth noting that high values of P
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and Ev can lead to gas porosity due to excessive energy pro-
vided to the powder (Larimian et al., 2020). As regards the
hatch spacing, choosing higher values seem counterintuitive
with respect to the results from the sensitivity analysis in
Sec. 5.3. However, a too small or a too big hatching dis-
tance may lead to an excess or a lack of fusion, respectively,
which in turns may be responsible for porosity (Khorasani
et al., 2019). Moreover, low values of the scan angle rotation
between consecutive layers may result in a more heteroge-
neous distribution of the vectors, thus favoring the density
improvement (Robinson et al., 2019).

Conclusions

In this paper the optimal selection of processing parame-
ters for the density in TI6Al4V parts manufactured by SLM
additive process is investigated by means of a series of
hybrid prediction-optimization techniques. To this end, an
extended design of experiments involving six leading pro-
cessing parameters has been arranged and both response
surfacemethodology and artificial neural networks have been
adopted for regression purposes. Specifically, an adequate
angular transformation function has been used in the RSM
to match predictions with the actual relative density values.
Then, the regression models have been powered by a meta-
heuristic algorithm for the optimal selection of processing
parameters. Three distinct evolutionary algorithms (namely
PSO, GA and SAHS) from the relevant literature have been
tested under the prediction ability and the actual response
viewpoint.

From the obtained results the following main conclusions
can be drawn:

– ANN is the most suitable technique to build the surrogate
model of the SLM process sunder investigation. However,
RSM remains a valid approach to be used.

– The sensitivity analysis performed on the basis of the
results from the ANOVA, which in turn is attached to the
RSM, revealed that scanning speed, hatch distance and
scanning pattern angle are significant influencing factors.
Also, it exhibits that the best combination of scanning and
building strategies strongly depends on the selected layer
thickness level, though this latter is not a statistically influ-
encing parameter among the first-order terms.

– The numerical results in terms of predicted and actual den-
sity values confirm that the self-adaptive harmony search is
an appropriate optimization technique also assuring a high
robustness of results, regardless of the specific regression
model adopted. However, the genetic algorithm is even
strong in finding local optima when the ANN model is
considered. On the other hand, particle swarm optimiza-
tion appears more dependent on stochasticity and, as a
result, the weakest in finding high density parameter con-
figurations.

– The analysis of the processing parameters pertaining to the
optimal solutions allowed to yield further insights on the
Ti6Al4V SLM process at hand. The optimal ANN-based
solutions take on smaller laser power values, higher hatch-
ing values and smaller scanning pattern angles than the
RSM-based parameter configurations. Finally, if the ANN
surrogate model is considered, a non-negligible impact of
the building orientation emerges.

Future research should be oriented to investigate the
efficacy of the same techniques on the optimal selection
of processing parameters for strength maximization and/or
surface roughness optimization. Further efforts can be per-
formed on the machine learning side by testing alternative
AI techniques.
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Appendix A

See Table 7.

Table 7 Design of experiments
RSM run P v h o s t

1 320 1350 130 45 40 60

2 380 1177.74 150 0 0 60

3 320 1350 130 45 40 60

4 380 1000 150 90 45 30

5 320 1350 130 45 40 60

6 318.8 1000 150 90 0 60

7 320 1000 110 0 90 30

8 380 1000 126.4 90 0 30

9 341.6 1700 126.6 0 30 30

10 380 1700 150 46.8 0 30

11 321.8 1700 150 90 90 30

12 260 1644 130 18.8284 60 60

13 260 1700 110 0 45 30

14 380 1000 122.4 0 60 60

15 264.2 1112 120.6 2.7 45 30

16 380 1427 150 90 90 60

17 380 1000 110 48.0073 0 60

18 260 1000 129 90 90 30

19 302 1000 110 90 45 60

20 380 1700 110 90 45 30

21 320 1350 130 45 40 30

22 260 1248.5 110 0 90 60

23 320 1350 130 45 40 60

24 320 1350 130 45 40 60

25 260 1000 150 0 45 30

26 380 1700 129.8 90 0 60

27 260 1000 129 90 90 30

28 260 1406 150 0 90 30

29 320 1000 110 0 90 30

30 320 1350 130 45 40 30

31 260 1332.5 110 90 0 60

32 260 1469 126 19.8 0 30

33 325.26 1700 110 0 0 60

34 290 1700 150 0 0 30

35 320 1350 130 45 40 30

36 331.19 1000 135.2 0 0 30
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Table 7 (continued)
run P v h o s t

37 380 1245 110 90 90 30

38 260 1175 150 42.3 15 60

39 320 1350 130 45 40 30

40 380 1700 150 0 45 60

41 320 1350 130 45 40 30

42 260 1000 150 46.8 90 60

43 260 1000 110 45 0 30

44 325.26 1700 110 0 0 60

45 305 1700 150 0 90 60

46 380 1000 122.4 0 60 60

47 380 1700 130.8 0 90 30

48 293 1700 110 90 0 30

49 320 1350 130 45 40 30

50 380 1000 130 90 90 60

51 260 1700 110 90 90 60

52 380 1385 110 0 0 30

53 260 1700 144.6 31.05 0 60

54 260 1000 128 0 0 60

55 260 1339.5 150 90 0 30

56 320 1350 130 45 40 60

57 380 1700 110 39.7351 90 60

58 380 1700 129.8 90 0 60

59 260 1700 119.675 49.5 90 30

60 260 1700 150 90 45 60

61 380 1000 150 27 90 30
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