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ABSTRACT: We show that the energetics and lifetimes of resonances of finite systems
under an external electric field can be captured by Kohn−Sham density functional theory
(DFT) within the formalism of uniform complex scaling. Properties of resonances are
calculated self-consistently in terms of complex densities, potentials, and wave functions
using adapted versions of the known algorithms from DFT. We illustrate this new
formalism by calculating ionization rates using the complex-scaled local density
approximation and exact exchange. We consider a variety of atoms (H, He, Li, and
Be) as well as the H2 molecule. Extensions are briefly discussed.

SECTION: Spectroscopy, Photochemistry, and Excited States

The description of metastable compounds has been elusive
to first-principles calculations due to the lack of a

variational principle. The concepts of metastability and long-
lived resonances (or tunneling processes) are closely related,
and in the end, we are facing the description of the lifetime of a
given open quantum system. One approach to such calculations
is the complex-scaling method, pioneered by Aguilar, Balslev,
and Combes.1,2 Within this formalism, resonances appear as the
result of a complex scaling r → reiθ of the real-space
coordinates in the Hamiltonian. The method has been used
to calculate resonance energies and lifetimes of negative ions of
atoms,3 as well as resonances induced by static electric fields.4,5

Applications have however generally been limited to small
systems or systems with reduced dimensionality due to the
computational difficulty of solving many-particle problems. A
different approach must be taken to accommodate realistic
systems with many electrons. Recently, it has been proven that
the low-lying metastable states of a given system can be
described within a density functional framework once we allow
for complex densities.6 An analogue of the Hohenberg−Kohn
theorem then allows for the calculation of the lowest-energy
resonance of a system. On the basis of this, the first Kohn−
Sham (KS) density functional resonance theory (DFRT)
calculations have since been published, although limited to
1D systems with one or two electrons.7,8

A notable ongoing development, termed complex DFT
(CODFT), is based on complex absorbing potentials.9,10 This
method relies on the definition of an absorption zone outside of
the system boundary to calculate lifetimes based on how wave
functions extend into the absorbing region. Another method is

exterior complex scaling, where a complex coordinate scaling is
applied outside of a certain radius.11

The method presented in this Letter is based on uniform
complex scaling, where all regions of space are treated equally.
We present first-principles DFRT calculations of Stark
resonance states and lifetimes in real 3D systems within exact
exchange (EXX) and the local density approximation (LDA).
We consider the H, He, Li, and Be atoms and the H2 molecule
within strong electric fields, extending the method beyond the
model systems for which it has been demonstrated
previously.7,8 The implementation is open source and part of
the DFT code Octopus.12,13 Wave functions are represented on
real-space grids, and atoms are represented by pseudopoten-
tials. Atomic units are used throughout this Letter.
We describe first how complex scaling is incorporated within

DFT and then present the major algorithmic steps involved.
Finally, we discuss the results.
The complex-scaling transformation r → reiθ changes the

Hamiltonian of a system into a non-Hermitian operator Ĥθ,
affecting bound and unbound eigenstates differently. The
energy of any bound state is conserved, while that of a non-
normalizable, unbound state changes. As θ is increased from 0,
resonances can be uncovered from among the continuum as
localized eigenstates of Ĥθ. From the corresponding complex
eigenvalues ϵ = ϵres − iΓ/2, the ionization rate is given by Γ;
see, for example, the review by Reinhardt.14
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Standard KS DFT is formulated as the minimization of an
energy functional over a set of auxiliary single-particle states.
Correspondingly, we take the complex-valued KS energy
functional8 to be
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where Eres is the resonance energy and Γ the ionization rate
inverse lifetime. Γ represents a total over all metastable single-
electron states in the system. Above, we have introduced
complex-scaled KS states ψn

θ(r), the density nθ(r), and operators
Ôθ(r) (such as vext

θ (r) and the kinetic operator), which are
analytic continuations

ψ ψ=θ θ θr r( ) e ( e )i3 /2 i
(2)

∑ ψ= =θ θ θ θn nr r r( ) [ ( )] e ( e )
n

n
2 i3 i

(3)

̂ = ̂θ θO Or r( ) ( e )i (4)

of their unscaled equivalents. We have used that bra states are
not conjugated15 and that left and right eigenstates are equal
because the complex-scaled Hamiltonian of a finite system is
complex-symmetric. This is always the case when the initial,
unscaled Hamiltonian contains only real terms. These
definitions ensure that integrals such as matrix elements are
unaffected by the scaling angle θ under appropriate
conditions.14 Thus, eq 1 reduces to the ordinary KS energy
functional if the system is bound.
For unbound systems, the energy functional is complex and

therefore does not possess a minimum. However, the lowest
resonance can still be obtained by requiring the functional to be
stationary.6 Taking the derivative with respect to the wave
functions ψn

θ(r) yields a set of KS equations

ψ ψ ψ̂ = − ∇ + = ϵθ θ θ θ θ θ−⎡
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where the effective potential vθ(r) is the sum of the complex-
scaled Hartree, XC, and external potentials,8 vθ(r) = vH

θ (r) +
vxc
θ (r) + vext

θ (r). A self-consistency loop is then formulated from
these quantities. For each calculation, a fixed value of θ is
chosen. θ should be large enough for the resonant states to
emerge but can otherwise be chosen to optimize the
numerics.16,17 In the DFRT calculations presented here, θ is
chosen by testing different values with different grid spacings to
find a combination with good numerical precision. This is
similar to the convergence checks performed in standard DFT,
but more important, because the numerical error must be made
smaller than the imaginary part of the energy, which can be
quite close to zero. For this reason, a fine grid is required to
calculate low ionization rates.
XC functionals Exc

θ [nθ] can be derived by analytic
continuation consistently with eqs 2−4. Consider, for example,
spin-paired LDA. The XC energy is complex-scaled by rotating
the integration contour from the real axis into the complex
plane,

∫ ∫= ϵ = ϵθ θ θE n n n n nr r r r r r[ ] ( ) ( ( )) d ( e ) ( ( e )) d exc
i i i3

(6)

which is also a functional Exc
θ of nθ(r) by eq 3. The potential

follows as vxc
θ (r) = δExc

θ [nθ]/δnθ(r). Thus, the exchange part of
the potential becomes

π
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as in eq 4. Due to the complex cube root, the exchange
potential is three-valued. However, the potential is the complex
continuation of a corresponding real potential for θ = 0 and
therefore must remain continuous. Further, because the
complex scaling operation leaves the origin r = 0 unaffected,
vx
θ(0) must be real and independent of θ. Starting at r = 0, we
therefore evaluate vx

θ(r) as the principal branch of the cube root
of the density. For some r, the density may approach a branch
point; therefore, the function becomes discontinuous. This
situation is illustrated in Figure 1, where the three branches,

evaluated from a Gaussian density with θ = 0.5, have different
colors. At a branch point, one can always choose another
branch such that the resulting, stitched potential becomes
continuous and yields the correct energy Ex

θ[nθ], which does
not depend on θ.
Consider next the Perdew−Wang parametrization of

correlation.18 The correlation potential is expressed in terms
of the Wigner−Seitz radius [rs(r)]1/2 ∼ [n(r)]−1/6 and takes the
form
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Here A, α1, and β1−4 are real constants. This expression is
straightforward to complex-scale using the stitching method
already presented. We first evaluate (rs)

1/2 at each point on the

Figure 1. Real and imaginary parts of the three branches v1, v2, and v3
of the LDA exchange potential generated by a complex-scaled
Gaussian density. The branches are stitched together to form one
continuous exchange potential, indicated by the shaded bands. Arrows
indicate the branch points.
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real-space grid by stitching [nθ(r)]−1/6. Then, the complex
logarithm ln(1 + 1 /Q 1(rs)) is stitched to obtain ϵc(rs). Other
local or semilocal (GGA) functionals can be similarly complex-
scaled.
One of the challenges in KS DFRT is to reliably determine

which states should be occupied, as the complex eigenvalues
have no natural ordering. Consider independent particles in 1D
near an atom represented by a soft Coulomb potential with
charge Z in a uniform electric field of strength F. This system
has the external potential Fxeiθ − Z/(x2ei2θ + α2)1/2. Figure 2

shows (a) the complex-scaled potential, (b) wave functions,
and (c) eigenvalues for F = 4, Z = 4, α = 0.15, and θ = 0.4 in a
simulation box of size 10. In the spectrum in Figure 2c, the
dashed line arg Z = θ divides the complex plane in two parts.
On the upper left side, there are two eigenvalues that
correspond to physical resonances. These states would have
been bound if no electric field had been applied to the system
but are now situated just below the real axis. Below the dashed
line arg Z = θ, the spectrum forms a system of lines. It has been
demonstrated by Cerjan and co-workers16,19 that the numerical
range (the set of values (ψθ |Hstark

θ |ψθ) for all normalized states
ψθ) of the complex-scaled Stark Hamiltonian, and thus its entire
continuous spectrum, falls within this region. The discrete
eigenvalues above the line arg Z = θ can therefore be identified
as originating from bound states in the isolated atom and can
now be assigned occupations in order of the increasing real (or
negative imaginary) part of the energy while the remaining
states are left unoccupied. In practical calculations using
iterative eigensolvers, particularly when far away from self-
consistency, eigenvalues originating from the continuum may
appear above the line arg Z = θ. As these states should not be
occupied, we use a simple rule to identify them. They are
occupied in ascending order of Re ϵ + α(Im ϵ)2, where α is a

tunable parameter. The value α = 2/sin θ generally works for
the atoms considered here.
Like in standard DFT calculations, it is the outermost

(valence) electrons that determine most properties of a system.
Nuclear point charges cause numerical difficulties due to their
central singularity. Pseudopotentials solve this problem by
replacing the point charges by smooth charge distributions,
while making sure to account properly for the core−valence
interaction. Here, we use the normconserving Hartwigsen−
Goedecker−Hutter (HGH) pseudopotentials.24 They can be
explicitly complex-scaled because they are parametrized as
polynomials and Gaussians. In the calculations below, we use
the potentials that include all electrons as valence electrons
while only smoothening the nuclear potential (Li and Be have
three and four valence electrons, respectively). With this choice,
the approach is demonstrated on systems with more than one
occupied KS state. The approach is also compatible with
standard frozen-core pseudopotentials.
Figure 3a shows the ionization rate for He as a function of

electric field strength calculated using various methods. The

reference results are based on direct solution of the complex-
scaled two-particle Schrödinger equation and thus represent the
closest to an exact calculation.21 The DFRT rates Γ for LDA
and EXX are obtained directly from eq 1 after solving eq 5 self-
consistently for the complex density using θ = 0.35. A value of θ
is suitable if it is large enough to localize the resonant KS states
and if the results converge rapidly with grid spacing. A very fine
grid spacing of 0.08 a.u. is still needed to converge the lowest
rates. The LDA substantially overestimates the ionization rate,
particularly for small fields, while EXX is in very good
agreement with the reference. EXX results are obtained by

Figure 2. (a) Real and imaginary parts of the complex-scaled potential.
(b) Real and imaginary parts of the lowest resonance wave functions.
(c) The spectrum. The dashed line arg Z = θ separates the two real
resonances (red) with imaginary parts of −2.6 × 10−3 and −0.17 from
the remaining eigenstates (blue), which are artifacts of the simulation
box or continuum.

Figure 3. Ionization rates (1 a.u. ≈ 4.13 × 1016 s−1) of (a) He and (b)
H, Li, and Be as a function of electric field strength (1 a.u. ≈ 5.14 ×
1011 V/m). Rates are calculated using DFRT (LDA or EXX) and the
Ammosov−Delone−Krainov (ADK) method.20 Rates of H are also
calculated by solving the complex-scaled Schrödinger equation.
Accurate reference rates from first-principles methods are shown for
He,21 Li,22 and Be.23.
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setting the exchange energy to minus half of the Hartree
energy, which is exact for two-electron systems.
Also shown are results from the Ammosov−Delone−Krainov

(ADK) method.20 This is a simple approximation for ionization
rates in atoms, based on the atomic ionization potential. ADK is
accurate for low fields because the ionization rate is strongly
linked to the ionization potential in this limit. However, it
greatly overestimates rates for large fields. We attribute the
inaccuracy of LDA for low fields to its well-known under-
estimation of ionization potentials, taken as minus the energy of
the highest occupied KS orbital (0.57 hartree from LDA versus
0.92 from EXX and 0.90 from experiment). This error of LDA
is ultimately linked to the exponential rather than Coulomb-like
decay of the potential.25 Note that more accurate ionization
potentials can be calculated by subtracting the total energy of
the charged and the neutral system. Ionization rates based on
this method have been presented with CODFT.9

Similarly calculated ionization rates with LDA and ADK are
shown for H, Li, and Be in Figure 3b along with reference
values for H from ordinary one-particle calculations and for Li22

and Be.23 Generally, the atoms with lower atomization
potentials have higher ionization rates, and again, a large
discrepancy shows between ADK and LDA for low fields.
Figure 4 shows ionization rates for the H2 molecule as a

function of internuclear distance calculated for different field

strengths with LDA and EXX. The molecular axis is parallel to
the electric field. The nuclei are described as fixed point
particles; therefore, only the static electron ionization yield is
calculated. The reference calculations by Saenz26 correspond to
an accurate solution of the two-particle complex-scaled
Schrödinger equation.
H2 in the dissociation limit is a pathological case in DFT as

the system is dominated by strong static correlations that most
functionals fail to capture. In this limit, the system consists of
two isolated, charge-neutral atoms. A static calculation with an
electric field will produce a different solution where both
electrons reside on the atom favored by the field, although the
situation at intermediate distances as here is more complicated.
LDA again overestimates ionization rates, particularly for

short bond lengths. For large field strength and short bond
lengths, the agreement between EXX and the reference is
almost perfect. However, ionization rates on the order of 10−5

au lose accuracy due to the numerical dependence of energy on
θ. This error can be eliminated by optimizing the choice of θ

and using a finer grid spacing16 (0.1 Bohr with θ = 0.22 for the
data points in question). We attribute most of the disagreement
at short bond lengths between EXX and the reference to this
error.
At large bond lengths and large field strength, the EXX

agrees well with the reference. This corresponds to the case
where both electrons reside mostly on the same atom. For
smaller field strengths, the system corresponds more closely to
the strongly correlated case, and the error is larger.
The accuracy of the XC approximation is clearly a

determining factor for the quantitative success of DFRT. We
have here considered very simple functionals, and, in particular,
LDA exhibits large errors. Phenomena of excited states depend
intricately on the decay properties of the potential far from the
system, which are difficult to describe with semilocal func-
tionals. A promising method to solve this problem is to
introduce a fictitious “XC density”, which defines a correction
to the XC potential, giving it a Coulomb-like decay.27 This can
greatly improve the accuracy of ionization rates. We expect the
derivation of improved XC functionals for DFRT to be one of
the next major steps in the development of this method.
The presented calculations demonstrate the reliability and

performance of DRFT for realistic atoms and dimers. The
extension to other molecular systems and nanostructures is
straightforward, opening the path toward a systematic study of
the electronic and structural properties of metastable
complexes. Furthermore, DFRT has implications for the
discussion and analysis of resonances in molecular electronics
as well as to the description of intermediates in surface−
molecule interactions as the method introduces decay processes
in a natural way into the widely used first-principles density
functional framework.
A future goal is to enable DFRT calculations for time-

dependent systems, where time propagation can be started
from statically determined resonant states. This paves the road
to tackle dynamical processes through metastable intermedi-
ates, as seen in the recently available ultrafast and ultraintense
laser probes that allow one to extract temporal and spatial
information of electron and ion dynamics28 as well as
imaging.29,30
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