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Abstract. The transport properties of quantum dots with up to N = 7 electrons
ranging from a weak to a strong interacting regime are investigated via the
projected Hartree–Fock technique. As interactions increase radial order develops
in the dot, with the formation of ring and centred-ring structures. Subsequently,
angular correlations appear, signalling the formation of a Wigner molecule state.

We show striking signatures of the emergence of Wigner molecules, detected
in transport. In the linear regime, conductance is exponentially suppressed as the
interaction strength grows. A further suppression is observed when centred-ring
structures develop, or peculiar spin textures appear. In the nonlinear regime, the
formation of molecular states may even lead to a conductance enhancement.
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1. Introduction

Semiconductor quantum dots (QDs), frequently referred to as artificial atoms, are nanometre-
sized structures whose conduction electrons are confined in all three spatial dimensions [1]–[3].
In these systems, a two-dimensional (2D) electron gas, formed at the interface of a
heterojunction, is depleted by chemical etching or electrostatic potentials in order to form an
isolated region, connected to external reservoirs by tunnel barriers. For a small number of
particles N , the potential can often be considered as harmonic [1]–[3].

In analogy to atomic systems, QDs can be probed optically by studying their absorption or
emission spectrum [4]. Additionally, the study of transport properties is a source of information
for QDs embedded into an electronic circuit [1]. The current flow proceeds by tunnelling events
once a bias voltage is applied to the external reservoirs and the presence of an external gate
voltage allows us to tune the number of excess electrons in the dot with respect to a neutral
configuration.

Theoretically, the study of correlated QD states is a challenging many-body problem:
even the fairly simple case of N = 2 can be solved exactly only in specific regimes [5],
whereas in general one has to resort to semi-analytic methods [6] or approximate wavefunctions
(WFs) [7]. For N > 2, several numerical methods have been employed. In increasing order
of computational complexity they range from unrestricted Hartree–Fock methods [8]–[11]
and density functional theory [12]–[16], to projected Hartree–Fock (PHF) [9], [17]–[23],
random phase approximation [24, 25], quantum Monte Carlo [16], [26]–[29], and exact
diagonalization [30]–[39]. Recently, PHF techniques have been used by our group for the study
of correlated QDs. While retaining the flexibility of an unrestricted Hartree–Fock approach,
PHF allows us to overcome the limitations caused by symmetry broken solutions, and to
efficiently obtain dot WFs with the correct spin and angular momentum, showing correlations
beyond the mean field level [21, 22].
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Circular 2D systems realized (e.g. by pillar QDs) display interesting features depending
on the ratio λ between the strength of the typical interaction and the strength of the confining
potential—see section 2.1 for a precise definition of λ. When λ is small, atomic-like effects
due to quantum mechanical confinement, such as the formation of shell structures, have been
observed [40]–[42] and explained at the mean-field level [1, 43]. For increasing λ, several
numerical investigations have shown the emergence of correlated electron states and the
occurrence of Wigner molecular states [8, 10, 12, 18, 19], [26]–[29], [32]–[39], [44]–[58], the
finite-size analogue of Wigner crystals [59, 60], characterized by correlations beyond the mean
field.

The transition towards a molecular state occurs smoothly [12], [26]–[29], [47, 58]. As
interactions increase, the dot WFs cross over from weakly correlated states at small λ to Wigner
molecular states, characterized by strong correlations. The transition occurs in two phases:

• At small λ, correlations begin to develop and ring-like structures develop in the dot WF.
For N > 6, centred structures with one or more electrons in the dot centre may form.

• For higher λ, angular correlations begin to appear as the dot enters the incipient Wigner
molecule regime [27, 28]. Increasing λ further, the dot WF represents a rotating Wigner
molecule [45] and the electrons localize around the equilibrium positions of a classical
Coulomb molecule [44, 49].

Correlations are particularly relevant also in one-dimensional (1D) systems which display an
analogous transition towards the Wigner molecule [61]–[65].

The experimental observation of strongly correlated states in quantum dots has attracted
considerable interest. In pillar QDs, inelastic light scattering experiments have shown signatures
of correlated quantum states [57, 66]. Scanning tunnelling spectroscopy experiments for the
imaging of correlated QD WFs were recently performed and theoretically analysed [55, 56, 67].
Also, transport properties can yield information about correlated states. In 1D, the influence
of correlations on the transport properties is predicted to be particularly important [68]–[70].
Recently, experimental evidence of the formation of few-electron Wigner molecules has been
reported in carbon nanotubes [71].

Spin correlations can also heavily influence the transport properties of QDs, even in the
absence of an applied magnetic field. In QDs with asymmetric tunnel barriers, the degeneracy
of spin multiplets may lead to asymmetric current–voltage characteristics [72]. Another notable
example is the type-II spin blockade [73, 74], which occurs in the linear transport regime when
the absolute value of the difference between the total spin of initial and final dot states exceeds
1/2 and leads to zero sequential current through the dot.

In this paper, we investigate the transport properties of QDs in the presence of
strong correlations. In such a regime, a mean-field treatment in the spirit of the so-called
‘constant interaction model’ [40, 75] is clearly not viable. Indeed, one has to resort to more
precise techniques to obtain the spectrum and the WFs. Numerical studies of the transport
properties, similar to the one proposed here, have been performed in the past employing exact
diagonalizations for N 6 3 electrons in circular QDs [76]–[78] and N 6 4 electrons in 1D
QDs [79]. These works, however, were not focused on the signatures due to Wigner molecules
in the transport properties.

In the present work, we numerically investigate the transport properties of pillar QDs
beyond the constant interaction model. Our model is that of N interacting electrons confined
to a 2D plane and further subject to an in-plane harmonic potential. More refined models,
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including effects due to a finite thickness of the dot and to heavy doping in the reservoirs,
have been recently proposed [80]. In this work, we will neglect such effects, addressing systems
in which the screening is moderate (a strong screening may hinder the formation of Wigner
molecules [61, 81]). We use the PHF method in order to estimate the correlated dot WFs for
46 N 6 7 in a range of λ, which allows us to observe the transition between liquid-like and
molecular electron states. Sequential tunnelling rates are numerically evaluated and the dot
conductance is obtained using a rate equation.

Our task is to understand whether or not peculiar signatures in the transport properties may
be detected as a consequence of the transition towards the Wigner molecule. According to the
results presented in this paper, the answer is affirmative.

In the linear transport regime, qualitative modifications of the dot ground state (GS)
WFs induce a peculiar suppression of the conductance. Such qualitative modifications may be
induced either by the formation of centred ring-like structures or by the emergence of peculiar
spin patterns in the dot WF. Both cases are presented in this paper.

Signatures of the transition can also be seen in the nonlinear transport regime. We have
found that the tunnelling rate through an excited state of the dot may be increased strongly by
the formation of a Wigner molecule.

The features described above are genuine hallmarks of the formation of Wigner molecules
in the dot and can be expected to be observable in experiments.

The outline of the paper is as follows. In section 2, we introduce the model and the PHF
method, and we discuss the tunnelling Hamiltonian and the rate equation for calculating the
current. Results are presented in section 3. Here, after discussing in detail the occurrence of
Wigner molecules, we show results for conductance in both the linear and nonlinear regimes.
Conclusions are presented in section 4. Appendix A contains the derivation of the tunnelling
Hamiltonian, while the dot tunnelling rates are discussed in appendix B.

2. Model and methods

2.1. Quantum Dots (QDs)

In a pillar QD [40]–[43] electrons are confined to a thin disc of semiconducting material,
represented by the red region in figure 1. The dot is embedded between tunnel barriers located
around z = zE, zC, with z being the axial direction. The tunnel barriers couple the dot to the
external emitter and collector contacts [2]. A metallic gate is assumed to surround the dot region
(not shown in figure 1) and this allows us to shift the dot energy levels as a suitable gate voltage
Vg is applied to it. Due to the strong confinement along z, the motion of electrons is essentially
restricted to the (x, y) plane. Electrons are further subject to a lateral confining potential with
rotational symmetry around the z-axis, as is appropriate for the cylindrical QDs studied in
this paper. For small dots, containing few electrons, this potential is well approximated by a
parabolic one [2]. The Hamiltonian for N interacting electrons is Ĥ D = Ĥ (0)

D + Ĥ (1)
D with (h̄ = 1,

boldface denotes vectors)

Ĥ (0)
D =

N∑
i=1

[
1

2m∗
P̂

2

i +
m∗ω2

2
R̂2

i

]
− eN Vg, Ĥ (1)

D =
e2

4πε0εr

N−1∑
i=1

N∑
j=i+1

1

|R̂i − R̂ j |
, (1)

where R̂i = (x̂i , ŷi) is the i th electron coordinate and P̂i its momentum. Here, −e and m∗ are the
electron charge and effective mass, respectively. Furthermore, ω is the confinement energy, and
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Figure 1. Schematic representation of a pillar QD. The red thin disc is the
QD (D), connected via tunnelling barriers at z ≈ zE, zC (yellow parts) to emitter
(E) and collector (C) leads, represented in blue.

ε0 (εr) the vacuum (relative) dielectric constant. We will consider a bare Coulomb potential for
the interaction term Ĥ (1)

D , neglecting both finite-thickness effects and screening due to heavily
doped contacts. Such effects modify the interaction potential, producing deviations from the r−1

behaviour for both short and long inter-electron distances r [80]. Finite thickness effects would
also produce a renormalization of the gate voltage Vg [80]. Our calculations are therefore valid
for systems characterized by weak screening.

Expressing lengths in units of `0 = (m∗ω)−1/2 and energies in units ω, the Hamiltonian
becomes

Ĥ (0)
D =

N∑
i=1

[
p̂2

i

2
+

r̂2
i

2

]
−

eVg

ω0
N , Ĥ (1)

D = λ

N−1∑
i=1

N∑
j=i+1

1

|r̂i − r̂ j |
, (2)

with r̂i = R̂i/`0 and p̂i = P̂i`0. The dimensionless parameter

λ=
e2

4πε0εr`0ω
=
`0

a∗

B

(3)

measures the Coulomb interaction strength. It is the ratio between the effective length scale `0

and the effective Bohr radius a∗

B = 4πε0εr/m∗e2. Experimentally, the interaction strength λ can
be modified by tuning the confinement strength ω via electrostatic gates.

In the rest of the paper, we will concentrate on GaAs QDs, where εr = 12.4 and
m∗

= 0.067me with me = 9.1 × 10−31 kg. In this case, expressing ω in meV, one has
λ≈ 3.46

√
meV/

√
ω. Weak (strong) interactions occur for λ. 1 (λ > 1). In the absence of

interactions (λ= 0), the problem can be solved exactly [82]. The eigenstates of Ĥ (0)
D are

Fock–Darwin (FD) states labelled by a principal quantum number n > 0, by the electron
angular momentum (z component) l ∈ Z and by the electron spin z component sz = ±1/2.
The corresponding WFs are denoted by fn,l,sz(r) and the spin degenerate energy spectrum is
given by En,l,sz = ω(2n + |l| + 1). In the presence of interactions, the problem cannot be tackled
analytically if N > 2 and one has to use numerical techniques. It is important to notice the
symmetries of Ĥ D: it commutes with the total angular momentum (z component) L̂ , the total
spin Ŝ and the total spin z component Ŝz. As a consequence, their eigenvalues can be used to
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label the dot energy spectrum and WFs. These are obtained by means of the PHF technique
which has been extensively described in [21, 22]. Here, we briefly outline the procedure.
For a given particle number N and each value of −N/26 Sz 6 N/2, the dot WFs are first
approximated as single Slater determinants |N , Sz〉 made up of an N↑ (N↓) orbital with spin
sz = 1/2 (sz = −1/2), where Sz = (N↑ − N↓)/2 and N = N↑ + N↓. Orbitals are variationally
optimized with the spin and the spatially unrestricted Hartree–Fock method [8] which produces
several stationary states |N , Sz〉i , in general neither eigenstates of L̂ , nor of Ŝ2. Projection
operators P̂L ,S are subsequently applied to |N , Sz〉i to restore the symmetries broken due to
the single Slater determinant ansatz. As a result, correlated WFs

|N , L , S, Sz〉i = P̂L ,S|N , Sz〉i (4)

are obtained. The state in (4) cannot be represented as a single Slater determinant and contains
correlations beyond mean field. The dot GS is obtained as the state that minimizes the energy,

EN ,L0,S0,Sz0 = min
L ,S,Sz,i

{
i〈N , Sz|Ĥ P̂ L ,S|N , Sz〉i

i〈N , Sz|P̂ L ,S|N , Sz〉i

}
. (5)

Here, L0, S0, Sz0 is the set of quantum numbers, which minimize (5) and label the dot GS for
N electrons, with WF |N , L0, S0, Sz0〉. In a similar fashion one defines excited states within the
PHF method. For instance, the first excited state is given by

EN ,L1,S1,Sz1 = min
L ,S,Sz,i

{
i〈N , Sz|Ĥ P̂ L ,S|N , Sz〉i

i〈N , Sz|P̂ L ,S|N , Sz〉i

> EN ,L0,S0,Sz0

}
, (6)

with L1, S1 and Sz1 determined by the minimization procedure. As a consequence of the
correlations introduced by the projection technique, energies lower than those obtained by the
unrestricted Hartree–Fock method are achieved [21, 22].

2.2. Tunnelling rates

As shown in appendix A, assuming cylindrical symmetry about the z-axis and separability of
longitudinal and transverse motions, the tunnelling Hamiltonian between the QD and the leads
is [83]

Ĥ t =

∑
α=E,C

∑
ξα,η

τ
(α)
ξα,η

ĉ†
α,ξα

d̂η + h.c., (7)

where α = E (α = C) for the emitter (collector), ξα and η collectively denote a set of single
particle quantum numbers for the lead α and the dot, respectively, and τ (α)ξα,η

is the tunnelling
amplitude. In the following, we will choose the FD states η = {n(D)η , l(D)η , s(D)zη } as a basis of
single particle states for the dot. In the case of a pillar QD, one obtains τξα,η ≈ t (α)δνα,η, see
equation (A.7). The choice of FD states is not restrictive; every orthonormal and complete basis
for the single particle states of the dot produces identical results, as shown in appendix C. The
fermionic operator for the lead α is ĉα,ξα , while d̂η is the one for the dot. Leads are treated as
non-interacting Fermi gases with the Hamiltonian

Ĥα =

∑
ξα

Eα(ξα)c
†
α,ξα

cα,ξα , (8)

with energy spectrum Eα(ξα).
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Our task is to evaluate the sequential tunnelling rates between initial (|ID〉) and final (|FD〉)
dot states with energies EID and EFD , respectively. As shown in appendix B, the rates are
obtained by tracing out the degrees of freedom of the leads, and have the general form

0ID→FD =

∑
α=E,C

∑
p=±1

0
(α),p
ID→FD

, (9)

where p = +1 (p = −1) represents tunnelling into (out from) the dot via lead α. They are

0
(α),p
ID→FD

= 0(α)
∣∣Op

∣∣2
f p(µD −µα), (10)

where 0(α) = 2πDα|t (α)|2 is the bare tunnelling rate with Dα the density of states of lead α
and f p(E)= p f (E)+ (1 − p)/2, where f (E)= [1 + exp(βE)]−1 is the Fermi distribution at
inverse temperature β = 1/kBT (kB is the Boltzmann constant). The chemical potential of the
dot is µD = EFD − EID and those for the leads are µα = µ0 + δµα. Here, δµα is a shift due to
the presence of a bias voltage V . In the following, symmetric voltage drops will be assumed at
the barriers, with δµE = eV /2 and δµC = −eV /2.

Interaction effects are embodied into the term

O1 =

∑
η

〈FD|d̂†
η|ID〉, O−1 =

∑
η

〈FD|d̂η|ID〉, (11)

which can be evaluated numerically once the initial and the final dot states have been obtained
by means of PHF. For λ= 0, one can only have |Op|

2
= 0, 1 depending on the initial and final

dot states. For λ > 0, on the other hand, |Op|
2 is not limited to these two extreme cases. Note

that |Op|
2 contains interference effects between different FD orbitals.

2.3. Rate equation

Using the tunnelling rates one can set up a rate equation for the occupation probabilities PI of
the dot states |I〉 (in this section, we omit the subscript D for simplicity),

∂PI
∂t

=

∑
J

MIJ PJ . (12)

The rate equation is a powerful and standard tool to study the transport properties of QDs,
especially in the sequential regime [75].

The transition matrix MIJ is defined as

MIJ = 0J→I
(
1 − δNI ,NJ

)
+ WJ→IδNI ,NJ , if I 6= J ,

MII = −

∑
I ′ 6=I

MI ′I,

with 0J→I given in (9). In order to take into account dissipation effects on the excited states,
we introduced a phenomenological relaxation rate,

WI→J = W, if EJ < EI,

WI→J = W e−β(EJ−EI ), if EJ > EI .
(13)

In the stationary regime, the left-hand side of (12) vanishes and the rate equation reduces
to a standard linear system of equations for the stationary occupation probabilities of dot states
P̄I , which can be easily solved by means of singular value decomposition since det(MIJ )= 0.
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The solution is uniquely determined by imposing the normalization condition
∑
I P̄I = 1. Once

the dot occupation probabilities are obtained, the stationary current I (α) through barrier α can
be calculated with the aid of the barrier-resolved tunnelling rates (10) as

I (α) = e
∑
I

∑
J 6=I

∑
p=±1

pP̄I0
(α),p
I→J . (14)

In the stationary regime, I (E) = −I (C) = I . The differential conductance is defined as G =

∂ I/∂V .

2.4. Quasi-particle wavefunction (QPWF)

Useful information about the dot states can also be extracted from the QPWF [56],

ϕ(r)=

∑
sz=±1/2

〈FD|ψ̂†
sz
(r)|ID〉, (15)

where

ψ̂†
sz
(r)=

∑
n>0,l

f ∗

n,l,sz
(r)d̂

†

n,l,sz
(16)

is the dot field operator, with fn,l,sz(r) the FD WFs, and the final dot state |FD〉 has one extra
electron with respect to the initial one |ID〉. The squared modulus |ϕ(r)|2 is proportional to the
probability density of tunnelling into the dot at position r.

The QPWF is the analogue of the single particle WF of a tunnelling electron for the case
of an interacting QD: for λ= 0, it simply reduces to the WF of the FD orbital occupied by the
tunnelling electron.

For a transition from the state |N , L , S, Sz〉 to |N + 1, L ′, S′, S′

z〉, the QPWF has the general
form in polar coordinates r → (r, θ) [56]

ϕ(r, θ)= eiθ1L
|ϕ(r)|, (17)

where 1L = L ′
− L . Furthermore, |ϕ(r)| ∝ r |1L| if r → 0 and |ϕ(r)| → 0 for r → ∞.

3. Results

In this section, we present results for a GaAs-based QD with 46 N 6 7, with parameters
εr = 12.4 and m∗

= 0.067me, where me = 9.1 × 10−31 kg.
For the PHF calculations, we use a truncated basis consisting of 75 FD states per spin

direction. Projection operators are numerically implemented with a fast Fourier transform over
256 samples. For further details, see [22]. The GS and the first few excited states are obtained
for interaction strengths in the range 16 λ6 2.8.

3.1. Molecular states of electrons

In table 1, the quantum numbers of the many-body GSs of the dot for increasing values of λ are
shown as derived from the PHF procedure. Dot states consist of multiplets, degenerate on Sz

and on L = ±L0. Dot quantum numbers are constant throughout the whole range of interaction
strengths 16 λ6 2.8 considered in this paper. They agree with the results of more refined exact
diagonalizations [39].
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Table 1. Quantum numbers of the dot GSs as a function of N in the range
16 λ6 2.8.

N L S Sz

4 0 1 0,±1
5 ±1 1/2 ±1/2
6 0 0 0
7 ±2 1/2 ±1/2

As the interaction strength increases, the dot GS WFs undergo profound modification,
crossing over from weakly correlated states at small λ to Wigner molecular states, characterized
by strong correlations among electrons, for higher λ [12], [26]–[29], [47, 58]. The crossover is
smooth and occurs through two phases [27]–[29].

First, radial correlations begin to develop. As a result, ring-like structures are formed. In
addition, for N > 6 centred structures appear, with the localization of one or more electrons in
the centre.

As λ is increased, angular correlations begin to develop entering the incipient Wigner
molecule regime [27, 28]. Eventually, for strong interactions, the dot WF becomes a rotating
Wigner molecule, with electrons localized around positions corresponding to those of classical
charged particles parabolically confined [44, 49]. Such states are the analogue of the Wigner
crystal [59], but with a finite size. Angular correlations cannot be resolved in a rotationally
invariant system, but can be characterized by studying two-body angular correlation functions,
which show an oscillatory behaviour [27]–[29].

The WFs calculated with PHF show a behaviour in qualitative agreement to the above
results. Let us begin to introduce the spin-resolved one-body electron density ρsz

1 (r), defined for
a normalized dot state |N , L , S, Sz〉 as

ρ
sz
1 (r)= 〈N , L , S, Sz|ψ̂

†
sz
(r)ψ̂sz(r)|N , L , S, Sz〉 (18)

and ψ̂sz(r) defined in (16). In this section, we want to illustrate the most relevant aspects of the
transition towards the Wigner molecule and will not enter into details about the spin structure
of such states. Therefore, we only need to consider the total charge density, summed over
the spin:

ρ1(r)=

∑
sz=±1/2

ρ
sz
1 (r). (19)

Since the dot WFs are eigenstates of the angular momentum, introducing polar coordinates
r → (r, θ) one has ρ1(r)≡ ρ1(r). A plot of ρ1(r) for different values of λ is represented in
figure 2. For N = 4 and 5, with increasing interactions the density is depleted in the core
of the dot and a sharp ridge is formed at its edge, suggesting the formation of a ring-like
structure. The position of this ridge moves outwards as the interaction strength increases. For
N = 6, 7 a ridge also develops at the edge and moves outwards for increasing λ. Additionally,
for N = 6 (N = 7) the density develops a bump for r ≈ 0 when λ& 2 (λ& 1.8). This behaviour
is consistent with the formation of a centred ring structure. As we shall see in the next section,
this latter rearrangement of the WF produces detectable signatures in the transport properties.
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Figure 2. One-body density ρ1(r) (units: `−2
0 ) of the dot GS as a function

of the distance from the dot centre r for different interaction strengths λ
(shown in the inset) and particle numbers N : (a) N = 4; (b) N = 5; (c) N = 6;
(d) N = 7. For dot parameters, see the text. As discussed in section 2.1, here and
in the following r is normalized to `0.

All these findings show that, for increasing λ, radial correlations among electrons become more
pronounced.

In order to investigate the development of angular correlations and the emergence of a
Wigner molecular state, one can introduce the two-body correlation function

ρ
sz,s′

z
2 (r, r′)= 〈N , L , S, Sz|ψ̂

†
sz
(r)ψ̂†

s′
z
(r′)ψ̂s′

z
(r′)ψ̂sz(r)|N , L , S, Sz〉, (20)

connected to the pair distribution function gsz,s′
z
(r, r′) by ρ

sz,s′
z

2 (r; r′)= ρ
sz
1 (r)ρ

s′
z

1 (r
′)gsz,s′

z
(r, r′)

[60]. It is proportional to the conditional probability of finding one electron with spin sz at r,
provided that another electron with spin s ′

z is at r′. For the qualitative discussion in this section,
we consider the total two-body correlation function

ρ2(r, r′)=

∑
sz=±1/2

∑
s′

z=±1/2

ρ
sz,s′

z
2 (r, r′). (21)

An example of the spin structure of the Wigner molecules will be discussed by employing

ρ
sz,s′

z
2 (r) in section 3.2.1, in connection with transport results. A natural choice for studying
ρ2(r, r′) is to fix r′ at one point on the ridge of the one-body density: |r′

| = r0(N , λ) and θ ′
= 0,

where r0(N , λ) denotes the position of the off-centre maximum of ρ1(r) for N electrons at
interaction strength λ.

Figure 3 shows ρ2(θ)= ρ2(r0(N , λ), θ, r0(N , λ), 0) as a function of θ for different values
of λ. For weak interactions (λ≈ 1, red and green curves), the correlation function is almost flat
except for the ‘Fermi hole’ at θ = 0, 2π , essentially induced by the Pauli exclusion principle.
This confirms that correlations among the electrons within the ring are weak. For increasing λ,
the depletion at θ = 0, 2π becomes more pronounced, signalling the increased importance of
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Figure 3. Angular dependence of the two-body density functions ρ2(θ)=

ρ2(r0(N , λ), θ, r0(N , λ), 0) (units: `−4
0 ) for the dot GSs for different values of λ

and (a) N = 4; (b) N = 5; (c) N = 6; (d) N = 7. Colour codes for λ are the same
as in figure 2.

dynamical correlations. Even more importantly, at the highest values of λ considered, ρ2(θ)

develops an oscillating structure, consisting of N − 1 maxima for states with N = 4, 5 and with
N − 2 maxima for N = 6, 7 electrons. This is consistent with the discussion above, namely that
angular correlations ‘lag behind’ and appear for values of λ higher than those at which radial
correlations become sizeable. Combining the information gathered from the electron density
and the two-body angular correlation function, one can expect that for strong interactions the
dot WFs for N = 4 and 5 have the structure of a square and a pentagon, respectively. For N = 6
and 7, they resemble a centred pentagon and a centred hexagon.

This is confirmed by figure 4, which shows a density plot of ρ2(r, r′) for the dot GSs as a
function of r in the (x, y) plane. The white cross denotes the position of r′, which is the same
as in figure 3. Around r′, the presence of the Fermi hole is clear. Strong radial and angular
correlations are observed, confirming the structures for N = 4 (square), N = 5 (pentagon), N =

6 (centred pentagon) and N = 7 (centred hexagon). For comparison, density plots for λ= 1.2
are shown in figure 5. For this smaller interaction, radial and angular correlations beyond the
Fermi hole are undetectable. The situation is more reminiscent of liquid-like behaviour.

Even though discussion has been focused on the dot GS, the WFs for the excited states also
behave in a similar manner.

The above results confirm that PHF is able to capture at the qualitative level all the relevant
correlations of the dot WFs, and to produce Wigner molecular states. In this respect, we note
that the onset in λ for the development of strong radial and angular correlations in the WFs
predicted by the PHF method seems to be smaller than the one found with other techniques. As
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Figure 4. Density plot of the two-body density ρ2(r, r′) (arbitrary units,
topographic colour-scale: red high and blue low values) for the dot GS with
(a) N = 4, (b) N = 5, (c) N = 6, (d) N = 7 and λ= 2.8. The coordinate r′ of
the probe electron is chosen on the external ridge of ρ1(r) and is marked with a
white cross in each panel. See the text for other physical parameters.

an example, for N = 6, both exact diagonalization [56] and density functional [12] calculations
predict the localization of one electron in the dot centre for λ≈ 8, while from the PHF
calculations one would obtain λ≈ 2. A similar tendency to underestimate the crossover in λ
for the transition between different dot GSs has already been observed in earlier studies of
PHF [22]. Since the qualitative changes of the dot WF are correctly captured by PHF, we expect
that the transport results described below will be at least qualitatively correct.

3.2. Transport properties

In this section, we will show how modifications of the WF, occurring in the transition from a
liquid to a molecular character, can be detected in the transport properties. In the rest of the
paper, we assume symmetric tunnelling barriers, with 0(E) = 0(C) = 00 in (10). Typical values
for 00 are of the order of some MHz.

3.2.1. Linear transport. We start considering the linear regime (V → 0), which provides
information on the dot GS. A plot of the linear conductance G as a function of Vg, calculated by
solving numerically (12) in the stationary regime is shown in figure 6(a). It has been calculated
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Figure 5. Same as in figure 4 but with λ= 1.2 in all panels.

for λ= 1.2. The conductance exhibits the well-known Coulomb oscillations: conductance peaks
are separated by regions where the dot is in the Coulomb blockade regime and transport
is forbidden [1, 75]. Peaks occur when the chemical potential of the dot is aligned with
the electrochemical potential of the leads µD = µ0, which is satisfied for a given transition
N ↔ N + 1 by suitably tuning Vg. Since µ0 simply induces a constant shift of the position of
the linear conductance peaks in Vg, we assume µ0 = 0. Turning to stronger interactions λ= 2.4,
figure 6(b), the linear conductance decreases. The observed suppression of G as λ is increased
can be interpreted as being due to the increased difficulty of tunneling into (or out from)
an electronic system with strong Coulomb repulsion. However, the conductance peaks for
the transitions 5 ↔ 6 and 6 ↔ 7 have been suppressed much more than those corresponding
to 4 ↔ 5.

In order to investigate this behaviour more systematically, the heights of the conductance
peaks are shown in logarithmic scale as a function of λ in figures 6(c) and (d). For the
transition 4 ↔ 5 (circles), a single slope is observed, signalling an exponential suppression of
the conductance as λ increases. On the other hand, for 5 ↔ 6 (squares) a bimodal behaviour
occurs, with a slope for λ6 2 that is very similar to the one found for 4 ↔ 5. A steeper slope
is found for λ > 2. The conductance peak for the transition 6 ↔ 7, see figure 6(d), shows a
behaviour similar to 5 ↔ 6: a smaller slope for λ6 1.6 and a steeper one for λ> 2.

In order to interpret these behaviours, we can deduce more precise information about the
tunnelling of electrons from the QPWF, see equation (15). Figure 7 shows its modulus |ϕ(r)|
for the transition between dot GSs N → N + 1 with N = 4 (a), N = 5 (b) and N = 6 (c) and
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Figure 6. (a) Plot of the linear conductance G as a function of Vg (units mV) for
T = 500 mK and λ= 1.2. (b) The same as in (a) but for λ= 2.4. (c) Plot of the
conductance maxima (log scale) as a function of the interaction strength λ for
the transition 4 ↔ 5 (circles) and 5 ↔ 6 (squares). Lines are a guide for the eye.
(d) Same as in (c) but for the transition 6 ↔ 7. The insets in panels (c,d) represent
the structure of the dot GS WF in the strongly correlated regime. Conductance
unit G0 = 1.6 × 10−700 s/G�.

increasing values of λ. Since all these transitions have |1L| 6= 0 (see table 1), the QPWF exhibits
an off-centre maximum and is small around the origin, hence tunnelling is strongly suppressed
in the centre, while it is enhanced at the edge of the dot. The above transport results are now
explained by considering both the shape of the QPWF and the structure of the WF of the dot
GS for each N , discussed in section 3.1.

On the one hand, by comparing the WFs for two subsequent dot GSs one can estimate
where the tunnelling electron should enter in order to provide an optimal matching between
the dot states and obtain a good transmission through the dot. On the other hand, the most
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Figure 7. Radial behaviour of the modulus of the QPWF |ϕ(r)| – see (15) –
for λ= 1.2 (red), λ= 1.8 (green) and λ= 2.4 (blue) and different transitions
between dot GSs: (a) 4 ↔ 5, (b) 5 ↔ 6 and (c) 6 ↔ 7. At the top of the panels,
|1L| for the given transition is quoted; see table 1.

likely position of the tunnelling electron is essentially dictated by |1L|, as the QPWF shows.
As a result, a higher conductance is obtained in situations where the QPWF is peaked so as to
provide a maximal overlap of the dot WFs. With these considerations, let us now re-examine
figures 6(c) and (d).

For the transition 4 ↔ 5, as λ increases, the dot WFs build up radial and subsequently
angular correlations, ending eventually in a molecular state with a square (N = 4) or pentagon
(N = 5) symmetry, always with a ring-like structure. As such, maximum overlap is achieved
when the tunnelling electron jumps to the edge of the dot. This is the case, in agreement with
the results of the QPWF, as confirmed by figure 7(a).

The transition 5 ↔ 6 displays a more interesting double-slope feature. For small λ, both
the dot GS WFs for N = 5 and N = 6 display weak correlations and have a ring-like structure.
Similar to the case discussed above, the tunnelling electron, entering at the edge of the dot,
provides an optimal overlap of the dot WFs. Therefore, a slope similar to the one observed for
4 ↔ 5 is obtained for small λ. On the other hand, for λ& 2 one electron is shifted towards the
center of the dot. Eventually, the WF for N = 6 acquires the shape of a centred pentagon; see
the inset in figure 6(c). The optimal overlap would be achieved with the tunnelling electron
jumping to the centre of the dot. This, however, is not allowed for dynamical reasons, as shown
by the QPWF in figure 7(b): the tunnelling electron needs to enter into the dot edge. Therefore,
an additional suppression of the conductance occurs, which is detected in the sharp change of
slope of G shown in figure 6(c).

In the case of 6 ↔ 7, for λ < 1.8 correlations in both the WFs are weak and the latter
exhibits a ring-like shape as in all the low-λ regimes already discussed. For λ≈ 1.8, the GS
with N = 7 begins to shift one electron towards the centre of the dot, while the GS of N = 6
remains annular. Since the QPWF is peaked at the edge of the dot, this corresponds to a slight,
yet noticeable, suppression of G visible in figure 6(d) for λ= 1.8. For λ> 2 also, the GS for
N = 6 has one electron in the centre of the dot. The optimum overlap is again achieved for
tunnelling at the dot edge and therefore one could expect the return of a power law similar to
the one observed for λ6 1.6. On the contrary, one observes a steeper slope. In order to explain
this phenomenon, we need to consider in detail the spin structure of the dot GSs.
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Figure 8. Angular dependence of the spin-resolved two-body density functions

ρ
sz,s′

z
2 (θ)= ρ

sz,s′
z

2 (r0(N , λ), θ, r0(N , λ), 0) (units: `−4
0 ) with s ′

z = −1/2 and
sz = −1/2 (red line) or sz = +1/2 (green line) for the dot states (a) |6, 0, 0, 0〉;
(b) |7, 2, 1/2, 1/2〉. Here, λ= 2.4.

We consider here the two states |N , L , S, Sz〉 = |6, 0, 0, 0〉 and |7, 2, 1/2, 1/2〉. Figure 8

shows the spin-resolved two-body correlation function ρ
sz,s′

z
2 (r, r′) in (20), calculated along

the outer ring of the QD GSs for N = 6, 7, and a representative value λ= 2.4. One electron
with spin down is assumed to lie at r ′

= r0(N , λ) and θ ′
= 0. Starting with N = 6, panel (a),

one can see that the probability of finding another spin-down electron (ρ↓,↓

2 (θ)) peaks around
θ ≈ 4π/5 and θ ≈ 6π/5, while for an electron with spin up (ρ↑,↓

2 (θ)) it is highest at θ = 2π/5
and θ = 8π/5, although two relative maxima for this probability are observed also for θ = 4π/5
and θ = 6π/5. For N = 7, one finds that the probability of finding another spin-down electron
(ρ↓,↓

2 (θ)) is greatest at θ = 2π/3 and θ = 4π/3, while spin-up electrons are maximally likely at
θ = π/3, π, 5π/3.

In the Wigner molecule regime, only a few different spin configurations may contribute to
the dot WF. In the case of N = 6, once the spin direction for the electron at the centre of the
dot is chosen, only two possible spin arrangements are possible for the pentagon at the edge.
These are shown in figures 9(a) and (b) for the case of a spin up in the dot centre. Since the WF
for N = 6 is a spin singlet, the two other configurations, obtained flipping all spins in panels (a)
and (b), are also possible (not shown). Since the correlation function in figure 8(a) for parallel
spin-down electrons is more peaked around θ = 4π/5 and θ = 6π/5, one can anticipate that the
configuration represented in panel (b) contributes more than the one in panel (a). Also for N = 7
several spin configurations for the dot edge exist, once the spin in the centre of the dot has been
fixed. However, the clear peak structure of figure 8(b) strongly suggests a well-defined texture of
alternating spins in the outer ring of the molecule with a corresponding spin-up electron in the
centre of the dot, consistent with Sz = 1/2. Therefore, we can infer that the dot WF for N = 7
has the spin structure shown in figure 8(c). Note that the discussion for the other states of the
multiplet for N = 7 is identical, provided that one flips all spins for the states with Sz = −1/2.

Let us go back to the transport properties of the dot. Among all the possible spin
configurations for N = 6, the ones with a spin down at the dot centre, obtained by flipping
the spins of those shown in figures 9(a) and (b), provide a very poor overlap with the state with
N = 7 and therefore can be neglected. The configuration shown in figure 9(a) also provides a
negligible overlap; there is no position around the edge for the tunnelling electron so that the

New Journal of Physics 11 (2009) 123004 (http://www.njp.org/)

http://www.njp.org/


17

Figure 9. The possible spin patterns most relevant for linear transport,
contributing to the GS WF for λ= 2.4 and (a,b) N = 6; (c) N = 7. The probe
electron lies at θ = 0 and the white dot denotes the preferred site for tunnelling.

final state has the same spin pattern shown in figure 9(c). Concerning the situation shown in
figure 9(b), the tunnelling electron can only jump in the proximity of θ = π (white dot in the
figure) since all other positions would lead to a wrong spin pattern on the edge. This results in
a suppression of the tunnelling amplitude as compared to the case of small λ < 1.8, when the
tunnelling electron is free to delocalize around the ring due to the negligible correlations of the
dot WF.

It is important to note that the situation described before does not occur either for 4 ↔ 5,
whose conductance is featureless, or for 5 ↔ 6, whose change of slope is mainly related to the
localization of one electron in the centre of the dot.

From the above discussions one can conclude that the transition towards the Wigner
molecule, accompanied by qualitative rearrangements of the charge or spin textures of the dot
WF, may be detectable in the linear transport properties. This seems particularly relevant when
transport involves states with higher numbers of electrons and intricate spin patterns, such as
N = 6, 7, due to the complex internal structure. Simpler configurations such as the ones for the
transition 4 ↔ 5 discussed above may not cause any signature in transport. It is worth noting
that the spin effects discussed above are subtler than the more common type-II spin blockade
[73, 74]. In the latter, the current flow is blocked due to the impossibility of fulfilling total
spin conservation by tunnelling events. In the Wigner molecule regime, on the other hand,
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Figure 10. (a) Nonlinear conductance G (unit G0 as in figure 6) as a function
of applied voltage V (units mV) and gate voltage Vg (units mV) for λ=

1.4, T = 750 mK and W = 5000. (b) Scheme of the transitions involving
the GSs for N = 5, 6 and the lowest lying excited states for N = 6. The
dashed line represents a spin-blockaded transition not visible in the sequential
regime.

Table 2. States and corresponding quantum numbers involved in transport
dynamics for the range of V and Vg considered in figure 10.

State N L S Sz

|A〉 5 ±1 1/2 ±1/2
|B〉 6 0 0 0
|C〉 6 ±1 1 0,±1
|D〉 6 0 2 0,±1,±2

even if spin conservation is satisfied an additional suppression of the current as λ increases
occurs, due to the peculiar internal spin structure of the dot WFs.

3.2.2. Nonlinear transport. In the nonlinear regime, transport also triggers the population of
excited states of the QD. In this section, we discuss one particular case to show signatures of
the transition towards the Wigner molecule. To be specific, we will concentrate on the regime
where only states with N = 5, 6 electrons in the dot are involved. Furthermore, we assume
strong relaxation: W � 00, see equation (13).

The numerically evaluated G as a function of V and Vg is shown in figure 10(a)
for λ= 1.4. It exhibits conductance lines corresponding to transitions between the dot
GSs or between GS and lowest-lying excited states. The scheme of the expected lines is shown
in figure 10(b) for the voltages region considered here. The transitions corresponding to each
line are shown, with their quantum numbers given in table 2. The blue lines represent transitions
between the dot GSs for N = 5 (|A〉) and N = 6 (|B〉). The red lines represent channels
involving the GS of N = 5 (|A〉) and one of the first two excited multiplets of N = 6; the
lowest one is denoted as |C〉, while the next-to-lowest is |D〉. Since calculations are performed
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Figure 11. Nonlinear conductance as a function of the applied voltage V (units
mV) near the transition 5 ↔ 6 for (a) λ= 1.4, Vg = 39.3 mV, T = 750 mK;
(b) λ= 1.8, Vg = 27.3 mV, T = 150 mK; (c) λ= 2.2, Vg = 20.2 mV, T =

150 mK; (d) λ= 2.6, Vg = 15.9 mV, T = 100 mK. In all plots, W = 5000, and
the conductance unit G0 is the same as in figure 6.

for temperatures smaller than the average level spacing between the dot multiplets, in the
strong relaxation regime transitions among the excited states of the dot cannot occur. Each of
these transition lines corresponds to the opening of the specific transport channel involving an
excited state of the dot with N = 6. Note that transitions involving excited states for N = 5
are not present in the considered range of V and Vg, since they lie at higher energies. A
comparison between the scheme of figure 10(b) and the calculated conductance, figure 10(a),
shows that only the first transition line (red solid), corresponding to |A〉 → |C〉, is observed,
while the one corresponding to the second excited multiplet of N = 6 (red dashed) is absent. By
inspecting table 2, one notes that the transition |A〉 → |D〉 involves |1S|> 1/2 and therefore is
forbidden [73, 74], leading to a vanishing conductance.

Figure 11 shows plots of G as a function of the applied voltage for different values of λ.
In all panels, the value of Vg has been chosen to lie between the green square and the green
dot in figure 10(b). The peak at lower V in figures 11(a)–(d) corresponds to the GS to GS
transition |A〉 → |B〉, and the second one to the transition |A〉 → |C〉. As is visible from the
voltage ranges of the plots, the dot level spacing (corresponding to the distance between the
nonlinear conductance peaks) gets narrower as λ is increased. In order to be able to resolve both
conductance peaks, calculations for higher λ have been performed at lower temperatures than
those at smaller λ.

Comparing the panels (a) and (b) for λ < 2 with panels at λ > 2 (c) and (d), a qualitative
difference in the behaviour is easily observed; for weaker interaction strengths, the first peak is
always higher than the second one, while for λ > 2 the situation reverses drastically.

Such a behaviour cannot be attributed to the difference in temperature between different
calculations. Indeed, calculations for λ= 1.4 and λ= 1.8 performed at lower temperatures
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Figure 12. (a) Scheme of the transitions involved in the first conductance peak
shown in figure 11. (b) Same as in (a) but for the second conductance peak.

display narrower conductance peaks but still have almost the same height. Increasing T for
λ= 2.2 and λ= 2.6 always suppresses the conductance for the GS to GS peak with respect to
the transition towards the excited state in all the temperature range in which the two peaks are
resolved.

The behaviour of the nonlinear conductance can be related to qualitative changes in the
WFs of the excited states for N = 6. Figure 12 shows the states involved in the transport
dynamics of the two conductance peaks discussed above. The height of each peak is determined
by the available transport channels and by the transition rates connecting the dot states. As
the interaction strength is increased the first conductance peak involving only transitions
between GSs—see figure 12(a)—behaves exactly as the linear conductance peak discussed
in section 3.2.1. The height of the second peak is on the other hand determined by two
families of transport channels connecting the GS with N = 5 to the excited multiplet of
N = 6; as shown in figure 12(b), channels with either 1L = 0 or |1L| = 2 are possible. The
corresponding transition amplitudes are shown in figure 13(a) as a function of λ. Transition
rates are proportional to these amplitudes; see equation (10). One can see that for λ < 2 the
transition channel with 1L = 0 is strongly suppressed, while the one with |1L| = 2 is larger
and decaying with λ. For λ > 2, a sudden decrease of the transition amplitude for the channel
with |1L| = 2 is found, while the one for the channel with 1L = 0 jumps to a very large
value.

This peculiar behaviour can again be explained using the QPWFs. Figure 14 shows the
QPWF for the transition with 1L = 0 (panel a) and for the one with 1L = 2 (panel b). When
λ < 2, the case of1L = 0 has nonzero amplitude near the center of the dot, and consequently a
very small overlap between the configurations for N = 5 and 6, which have a ring-like character.
This results in a very small transition amplitude. On the other hand, the case of |1L| = 2 has a
large QPWF near the edge of the dot and therefore provides a much better overlap between
the dot configurations. The situation reverses dramatically for λ > 2: the developing radial
correlations induce a qualitative change in the dot WF for N = 6 and one electron moves near
the centre of the dot, in analogy to the case of the GS. In this case, a much better overlap occurs
for1L = 0, since the extra electron preferably sits in the center of the dot; see the right insets in
figure 13(a). The transition with |1L| = 2 is strongly suppressed since the corresponding QPWF
is ∝ r 2 and thus negligible near the dot center.
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Figure 13. (a) Squared modulus of the transition amplitude |O1|
2—see

equation (11)—for the processes |5,±1, 1/2,±1/2〉 → |6,∓1, 1,±1〉 with
|1L| = 2 (circles) and |5,±1, 1/2,±1/2〉 → |6,±1, 1,±1〉 with 1L = 0
(squares) shown in figure 12(b). The insets show the character of the dot
WF for high values of λ. (b) Same as in (a) but for the GS to GS
transition |5,±1, 1/2,±1/2〉 → |6, 0, 0, 0〉 shown in figure 12(a). Amplitudes
for transitions involving triplet states with Sz = 0 are proportional to the ones
shown here, the proportionality constant being a Clebsch–Gordan factor 1/

√
2.

Amplitudes for transitions with |1Sz|> 1/2 are zero.

Figure 14. Radial behaviour of the modulus of the QPWF |ϕ(r)| for λ= 1.2 (red)
λ= 1.8 (green) and λ= 2.4 (blue) and different processes: (a) 5 ↔ 6 GS to first
excited with1L = 0, i.e. |5,±1, 1/2,±1/2〉 ↔ |6,±1, 1,±1〉; (b) 5 ↔ 6 GS to
first excited with |1L| = 2, i.e. |5,±1, 1/2,±1/2〉 ↔ |6,∓1, 1,±1〉. Note that
in (a), the red and green curves for λ= 1.2 and λ= 1.8 have been magnified by
a factor 20.

Therefore, for λ < 2, transport through the excited state occurs essentially via the channel
with |1L| = 2, whose amplitude is similar to the one for the GS to GS transition; see
figure 13(b). This explains why, for λ < 2, the two conductance peaks in figures 11(a) and (b)
have almost equal height. For λ > 2, the channel with 1L = 0 clearly dominates, due to the
peculiar rearrangement of the dot WF for N = 6 moving towards the Wigner molecule.
The amplitude for this channel is larger than the one for the GS to GS transition and therefore
the conductance peak for the transition involving the excited state is higher than the one for the
GS to GS transition as shown in figures 11(c) and (d).

New Journal of Physics 11 (2009) 123004 (http://www.njp.org/)

http://www.njp.org/


22

4. Conclusions

In this paper, we have investigated correlation effects in a quantum dot via linear and nonlinear
transport, employing the PHF technique. For increasing interaction strength, the ground and
excited dot states have been analysed for 46 N 6 7. As the strength of the Coulomb interactions
increases, the dot WFs build up radial and angular correlations, smoothly crossing over from
a liquid-like regime to Wigner molecular states. Most strikingly, we have demonstrated that
signatures of such a crossover may appear both in the linear and in the nonlinear transport
properties. These signatures have been interpreted with the systematic study of both two-body
correlation functions and QPWFs.

In the linear regime, we have observed an exponential suppression of the conductance as
the transition towards the Wigner molecule takes place. In cases when the latter is accompanied
by strong qualitative rearrangements of the dot WFs, strong mismatches of the dot WFs involved
in the transport process may occur. This leads to a stronger suppression of the conductance, as
observed for the case 5 ↔ 6. A mismatch of the dot WFs due to the emergence of a particular
spin structure of the dot states may also occur, as exemplified by the case of 6 ↔ 7. Also this
fact leads to an increased suppression of the linear conductance.

In the nonlinear regime, the conductance may even be enhanced by the formation of a
Wigner molecule within the dot, as shown by the study of the transport dynamics of the lowest-
lying excited states for N = 6.

The effects described above are due to the qualitative rearrangements of the charge or
spin patterns of the dot states, occurring during the transition towards the Wigner molecule
regime. As a possible extension of this investigation, it would be interesting to devise a method
to investigate the internal spin structure of the Wigner molecule, e.g. by analysing the effects
of spin-dependent tunnel barriers. Effects due to Wigner molecules should have a profound
impact in coherent regimes and could lead to strong signatures detected by analysing e.g. the
co-tunnelling regime. Finally, it would be interesting to consider the effects of applied magnetic
fields, which are known to strongly modify the properties of Wigner molecules.

We expect that results similar to the ones shown in this paper hold also for planar QDs and
that they could be, in principle, observed experimentally.
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Appendix A. The tunnelling Hamiltonian

In this appendix, we derive Ĥ t for a QD connected to two external emitter or collector leads
via tunnelling barriers located around z = zα (α = E,C); see figure 1. Our starting point is the
Bardeen tunnelling Hamiltonian [83]

Ĥ t =
i

2m∗

∑
α=E,C

∫
dR dz δ(z − zα)

[
9̂†(R, z)

∂9̂(R, z)

∂z
− h.c.

]
. (A.1)
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Here, R = (x, y) and zα is a point within the tunnelling barrier between the lead α and the
dot. Furthermore, 9̂(R, z) is the system field operator expanded into emitter, dot and collector
contributions as 9̂(R, z)= 9̂D(R, z)+

∑
α=E,C 9̂α(R, z) with

9̂α(R, z)=

∑
ξα

8
(α)
ξα
(R, z)ĉα,ξα , (A.2)

9̂D(R, z)=

∑
η

8(D)
η (R, z)d̂η. (A.3)

Here, 8(α)
ξα
(R, z) and 8(D)

η (R, z) are a set of single particle eigenfunctions for leads and dot,
respectively. Note that these sets may be complete but leads and dot states need not be
orthogonal. In the following, we assume that the longitudinal (z) and transverse (x, y) motions
are decoupled, which allows the factorizations of the single particle WFs. Furthermore, we
will concentrate on a system with cylindrical symmetry. For the leads one has 8(α)

ξα
(R, z)=

φνα(R)χkα(z), where kα is the momentum along the z-direction and να is a set of quantum
numbers describing the transverse motion. For the QD, we choose 8(D)

η (R, z)= φη(R)χD(z),
where η = {n(D)η , l(D)η , s(D)zη } collectively denotes the FD quantum numbers. Choosing the basis
of FD states is not restrictive: as shown in appendix C, every orthonormal and complete basis
for the single particle states of the dot is equivalent. We assume a sufficiently tight confinement
in the z-direction so that longitudinal motion of electrons in the dot is effectively frozen into
the lowest subband with WF χD(z). The longitudinal dot WF χD(z) is evanescent within both
tunnelling barriers. For the leads, χkE(z) (χkC(z)) is evanescent under the tunnelling barrier near
the emitter (collector), and essentially zero near the collector (emitter). Substituting the explicit
expressions of the field operators into (A.1), and taking into account the form of the single
particle WFs, one obtains Ĥ t = Ĥ (0)

t + Ĥ (1)
t with

Ĥ (0)
t =

∑
α=E,C

∑
ξα,ξ ′

α

1
(α)

ξα,ξ ′
α
ĉ†
α,ξα

ĉα,ξ ′
α

+1(D)
∑
η

d̂†
ηd̂η, (A.4)

Ĥ (1)
t =

∑
α=E,C

∑
ξα,η

τ
(α)
ξα,η

ĉ†
α,ξα

d̂η + h.c., (A.5)

where

1
(α)

ξα,ξ ′
α

=
i

2m∗
δνα,ν′

α

[
χ∗

kα
(zα)

∂χk′
α
(z)

∂z

∣∣∣∣
zα

−χk′
α
(zα)

∂χ∗

k′
α
(z)

∂z

∣∣∣∣
zα

]
,

1(D) =
i

2m∗

∑
α=E,C

[
χ∗

D(zα)
∂χD(z)

∂z

∣∣∣∣
zα

−χD(zα)
∂χ∗

D(z)

∂z

∣∣∣∣
zα

]
,

τ
(α)
ξα,η

=
i

2m∗

[
χ∗

kα
(zα)

∂χD(z)

∂z

∣∣∣∣
zα

−χD(zα)
∂χ∗

kα
(z)

∂z

∣∣∣∣
zα

] ∫
dR φ∗

να
(R)φη(R).

(A.6)

The first term in Ĥ (0)
t produces a weak, one-body scattering within the leads, while the second

term gives rise to a small uniform shift of the dot energy levels. Both effects can be safely
neglected. The relevant term is Ĥ (1)

t , which produces scattering of electrons between the leads
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and the dot. For a pillar QD, assuming harmonic confinement of electrons in the emitter and
collector, with frequency ωα, the WFs φνα(R) are FD states. We consider the case ωα ≈ ω.
Equation (A.6) yields essentially

τξα,η = t (α)kα δνα,η ≈ t (α)δνα,η, (A.7)

where in the last equality we have neglected the weak dependence of the tunnelling matrix
element on kα. Finally, the tunnelling Hamiltonian assumes the form

Ĥ t =

∑
α

t (α)
∑
ξα,η

ĉ†
α,ξα

d̂η + h.c. (A.8)

Appendix B. Tunnelling rates

In the sequential regime, tunnelling rates between the initial |I〉 and final |F〉 states of the system
are obtained via Fermi’s golden rule [84],

0I→F = 2π
∣∣∣〈F |Ĥ t|I〉

∣∣∣2
δ(EF − EI), (B.1)

where EI (EF ) is the total energy of the system in the initial (final) state and

|I〉 = |IE〉 ⊗ |IC〉 ⊗ |ID〉, |F〉 = |FE〉 ⊗ |FC〉 ⊗ |FD〉,

where |Iα〉 (|Fα〉) is the initial (final) state for lead α, while |ID〉 (|FD〉) is the dot initial (final)
state, with electron number NID (NFD) and energy EID (EFD). Note that dot states can be either
ground or excited. In order to have a non-vanishing contribution in the sequential regime,
|NFD − NID| = 1 must hold. This implies that (B.1) is diagonal in the barrier index α and that
sequential tunnelling events through the barriers are independent. The tunnelling rate has the
general structure

0I→F =

∑
α=E,C

∑
p=±1

0
(α),p
I→F ,

where the contribution with p = +1 (p = −1) represents tunnelling into (out from) the dot via
lead α.

Since we are interested in the dot dynamics only, we perform a thermal average over |Iα〉
and a summation over |Fα〉 obtaining transition rates among dot states only

0ID→FD =

∑
α=E,C

∑
p=±1

0
(α),p
ID→FD

. (B.2)

The leads are assumed to be in equilibrium with respect to their electrochemical potentials
µα = µ0 + δµα, where δµα is a shift due to the presence of an applied bias voltage V . In the
case of a pillar dot (see equation (A.8)) one obtains

0
(α),p
ID→FD

= 0(α)
∣∣Op

∣∣2
f p(µD −µα) , (B.3)

where Op:

O1 =

∑
η

〈FD|d̂†
η|ID〉; O−1 =

∑
η

〈FD|d̂η|ID〉, (B.4)

and f p(E)= p f (E)+ (1 − p)/2, with f (E)= [1 + exp(βE)]−1 the Fermi distribution at
inverse temperature β = 1/kBT (kB is the Boltzmann constant) and µD = EFD − EID .
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Appendix C. Equivalence of different bases

In this appendix, we will show the equivalence of different single particle bases of the dot for
the definition of the tunnelling Hamiltonian. Consider two orthonormal and complete bases of
single particle dot states labelled by {η} and {µ}, with corresponding orbitals φη(R), φ̄µ(R) and
Fermi operators dη, d̄µ (in this section, we omit overhats from the operators to simplify the
notation). They are connected by a unitary matrix Mηµ

φη(R)=

∑
µ

Mηµφ̄µ(R), dη =

∑
µ

M†
ηµd̄µ. (C.1)

The tunnelling Hamiltonian, expressed on the basis {µ} reads

H (1)
t =

∑
α=E,C

∑
ξα,µ

τ̄
(α)
ξα,µ

c†
α,ξα

d̄µ + h.c., (C.2)

with

τ̄
(α)
ξα,µ

=
i

2m∗

[
χ∗

kα
(zα)

∂χD(z)

∂z

∣∣∣∣
zα

−χD(zα)
∂χ∗

kα
(z)

∂z

∣∣∣∣
zα

] ∫
dRφ∗

να
(R)φ̄µ(R), (C.3)

see (A.6). Inverting (C.1) for d̄µ and plugging into (C.2) one obtains

H (1)
t =

∑
α=E,C

∑
ξα,η

[∑
µ

Mηµτ̄
(α)
ξα,µ

]
c†
α,ξα

dη + h.c. (C.4)

By virtue of (C.1), one can easily see that∑
µ

Mηµτ̄
(α)
ξα,µ

≡ τ
(α)
ξα,η
, (C.5)

which shows that (C.2) is identical to (A.5). This implies that all results are independent of the
choice of the single particle states for the dot.
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