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Abstract
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Doctor of Philosophy

An Original Convolution Model to analyze Graph Network Distribution
Features

by Giuseppe GIACOPELLI

Modern Graph Theory is a newly emerging field that involves all of those approaches
that study graphs differently from Classic Graph Theory. The main difference be-
tween Classic and Modern Graph Theory regards the analysis and the use of graph’s
structures (micro/macro). The former aims to solve tasks hosted on graph nodes,
most of the time with no insight into the global graph structure, the latter aims to
analyze and discover the most salient features characterizing a whole network of
each graph, like degree distributions, hubs, clustering coefficient and network mo-
tifs. The activities carried out during the PhD period concerned, after a careful pre-
liminary study on the applications of the Modern Graph Theory, the development
of an innovative Convolutional Model to model brain connections at the cellular level
capable of combining exponential models and power law models. This new theo-
retical framework has been introduced in the first instance with an aspatial graph
formulation and then proposed a spatial graph model with Convolutive connec-
tivity able to fit the degree distributions of data driven Connectome reconstructions.
In order to evaluate the qualities of the Convolutional Model, theoretical graphical
models capable of characterizing brain activity were taken into consideration. In
the specific case, the model examined characterizes the epileptic activity through a
simple Hindmarsh-Rose model system of point neurons and reproduces the func-
tional characteristics observed in the data driven model. Such a model provides in-
sight into the deep impact of micro connectivity in macro-scale brain activity. Other
evaluations have been done in different applications, in the field of image cell seg-
mentation with Explainable Artificial Intelligence’s neuronal agents in which has
been used a methodology that is not only explainable but also resistant to adversar-
ial noise and also in the field of modelling Covid-19 outbreak in gaining insight on
vaccines and role of our habits as individuals in the pandemic spread. Therefore,
the core of the thesis is to introduce Modern Graph Theory with a new competi-
tive Convolutive Model and then expose some applications to real-world problems
like a characterization of Brain networks, simulation and analysis of Brain dynam-
ics with a particular focus on Epilepsy, Immunofluorescence images segmentation
with neuronal based agents and modelling of Covid-19 Epidemic spread with a spe-
cific interest in human social networks. All this takes continuously into account the
whole dialogue between Graph Theory and its applications.
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http://department.university.com
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1

Introduction

1.1 What are networks and why have to be studied

A simple network form is a set of points (vertices) paired by lines (edges); such defi-
nition is reported by Newman in (Newman, 2010) (see figure 1.1). This simple data
structure can model various experimental scenarios in biology, computer science,
epidemiology, sociology, etc. For example, at the beginning of the graph theory, the
vertices of the graphs were geographical locations and the edges paths through the
city of Konigsberg (Euler, 1736). This geographical interpretation of the network is
still studied to model traffic flow in cities (Easley and Kleinberg, 2010), where the
vertices of the graph are key locations of the city, and the edges are the routes be-
tween these locations.

Vertex

Edge

FIGURE 1.1: Simple representation of a graph.

Network analysis divides into two main branches (Steen, 2010): Classic Graph
Theory and Modern Graph Theory. The example of the traffic networks is a perfect
example of the Classic Graph Theory (CGT since now) approach. CGT bases its
study on the idea of the graph as it is; therefore, the primary assumption of CGT
is that is known and wholly determined the full connectivity of the network represented.
However, this simple assumption could not be valid in every experimental setting;
for example, it is the case of Connectome.

Define a Connectome as an ensemble of all connections in the brain (Jirsa and
McIntosh, 2007), and it can be described in terms of networks at several scales (Bull-
more and Sporns, 2009).

One of the most commonly used approaches is to assign to the graph nodes
whole cerebral areas (Farahani, Karwowski, and Lighthall, 2019); where the func-
tional connectivity of the subject is reconstructed by using correlations or model-
based inferences, and also the synchronous activation of two regions determines
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the functional connection of two brain regions after a given stimulus (Bullmore and
Sporns, 2009). In the fMRI case, the brain is first of all subdivided in small areas
and for each volume is calculated the mean activity (Farahani, Karwowski, and
Lighthall, 2019) extracting the average activity. Then on these averaged signals are
estimated the strength of connections using analysis like Principal Component Anal-
ysis, Transfer Entropy or Cross Correlation (Farahani, Karwowski, and Lighthall,
2019).

However, recently, the improvements of the resolution of microscopy have in-
troduced the possibility to reconstruct the Connectome at cellular scales (Markram
et al., 2015), and this has created new opportunities for the analysis of this new kind
of data (Gal et al., 2017) and its modelling (Giacopelli et al., 2021). One of the main
features of the connectivity data is that they are a sort of fingerprint of the individ-
ual, which means that there are no two individuals with the same Connectome. In
addition, the very massive number of neurons in the brain has limited the complete
reconstruction of the Connectome of each individual. This lack of knowledge about
the whole network connectivity of Connectome and its uniqueness for each indi-
vidual requires a new approach in studying graphs, this change of pass in Graph
Theory can be called the Modern Graph Theory (Barrat, Barthélemy, and Vespignani,
2008; Steen, 2010).

The concept of Modern Graph Theory (since now MGT) for a long time has been
subjected to fierce debate because many people have argued MGT as nothing of
new concerning CGT (Barrat, Barthélemy, and Vespignani, 2008). However, some
authors (Steen, 2010; Barrat, Barthélemy, and Vespignani, 2008) identify the change
of MGT in a transformation of methodological processes of network analysis. The
key difference between CGT e MGT is that CGT usually solves given problems in
an opaque way; in contrast, one of the main goals of MGT is the concept of network
analysis. To clarify the differences between the two approaches, let’s start with an
example: defining a computer network as a graph in which each vertex is a computer
and the edges the connection among computers. A stereotypical problem of CGT is
to determine the minimum path between two given machines inside the networks
(Steen, 2010), and CGT has developed several algorithms (for example, Dijkstra’s al-
gorithm and Bellman-Ford algorithm (Steen, 2010)) able to solve this task. However,
even after solving this task, we do not know what is inside the network of computers
that we are analysing.

The MGT approach is quite different, indeed given a network of computers, it
can be:

• calculated how many incoming connections and outgoing connections occur
(Barabási and Albert, 1999);

• discovered their power law behavior of distributions (Barabási and Albert,
1999);

• calculated the average of its path lengths (Dorogovtsev and Mendes, 2003);

• calculated the clustering coefficient (Steen, 2010) etc.

All of these quantities are not directly linked to the solution of a specific task
(like in CGT) but they give an insight of how the network is connected. The degree
distributions show if there are over connected nodes in the network (the so called
hubs (Newman, 2010)) giving a sort of ranking to nodes in terms of centrality (Page
et al., 1999), the average path length quantify the degree of separation between two
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general nodes (Easley and Kleinberg, 2010) and the clustering coefficient gives an in-
sight on how much the nodes are interconnected between their selves (Steen, 2010).

The evolution of MGT made possible a change of paradigm where the target of
our knowledge is not anymore the problem to solve but the network itself, intro-
ducing a series of approaches able to give a qualitative description of networks with
billions of nodes (Barabási and Albert, 1999) like the internet. Then, the simplifica-
tion of the theory (made sometimes at the cost of some approximations) has led to a
clearer and more direct explanation of the results, bringing a deeper comprehension
of the modelled phenomena.

One of the main actors of this “new science of networks” is the unseen com-
putational power of our days (Barrat, Barthélemy, and Vespignani, 2008). It has
led to the abandonment of a strict formalism for more sketched approaches, which
become more powerful when coupled with numerical simulations, based on statis-
tical physics and mathematical physics (Dorogovtsev and Mendes, 2003; Giacopelli,
Migliore, and Tegolo, 2020). For this reason, the used theoretical frameworks will be
discussed and given an insight into the computer science realization of the models
described.

All of these advances in Graph Theory have improved the understanding of ex-
perimental networks. Key examples that will be discussed are neuronal networks,
and their modelling (Markram et al., 2015; Giacopelli et al., 2021) in which has been
proved a convolutive behavior (Giacopelli, Migliore, and Tegolo, 2020) for many re-
constructed neuronal networks. Another example is computer science where it has
been proved that most of the computer networks (like the internet) have a power
law behavior (Barrat, Barthélemy, and Vespignani, 2008) leading to the understand-
ing of the importance of hubs for their functionality. A contemporary example is
COVID-19 pandemic where the methods of network-based computational epidemi-
ology (Barrat, Barthélemy, and Vespignani, 2008; Giacopelli, 2021) have been exten-
sively used to predict the epidemic spread and to better weight decisions for this
pandemic.

In the following will be made a brief introduction to Classic Graph Theory, then
an introduction to Modern Graph Theory and finally will be explored the concept
of Convolutive model (Giacopelli, Migliore, and Tegolo, 2020; Giacopelli et al., 2021;
Giacopelli, Migliore, and Tegolo, 2020) with its applications.

1.2 The graph

A graph is the formalization of the concept of a network. To define a graph G, a
set of vertices V must be defined; thus, the vertices will be labelled with an integer
number. Then, a set of edges between nodes E ⊆ V × V will be defined. Each
connection is a couple (i, j) ∈ V ×V where i is called starting node of the connection
and j ending node of the connection.

Defining V = V(G) and E = E(G), the designed graph is a graph G = (V(G), E(G))
(Newman, 2010). More formally

Definition 1.2.1 A graph G = (V(G), E(G)) is an object where V(G) ⊆ N is the set of
nodes of G and E(G) ⊆ V(G)× V(G) is the set of edges of G.

An example of graph is in figure 1.2 where the vertices are the somas of the
neurons (in our case the node number will range from 1 to 6) and the edges are the
synaptic connections (in this case is E = {(1, 2), (3, 2), (4, 2), (4, 6), (5, 4), (5, 3), (6, 5)}).
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FIGURE 1.2: Graph theoretical representation of Connectome.

Another kind of representation of a graph is in terms of adjacency matrix (New-
man, 2010). The Adjacency matrix AG is defined as the binary matrix where the
element (AG)ij is 1 if there is a connection starting from node i and arriving to node
j, and 0 otherwise. In this example the adjacency matrix is:

AG =



0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 0


More formally:

Definition 1.2.2 For a given graph G = (V(G), E(G)), the adjacency matrix AG is de-
fined as

(AG)ij =

{
1, if (i, j) ∈ E(G)

0, otherwise

Moreover, each node can be assigned a position xi, and because the graph is planar,
it will be a two-dimensional coordinate on the plane.

1.3 Brief introduction to probability

Since now will be widely used the concept of probability, but what is probability?
This question can appear simple, but it is not so because there are many definitions
of probability. The two main currents of thoughts are:

1. Frequentist approach (Neyman, 1937);

2. Bayesian approach (Regazzini, 1987).

The first approach is based on empirical frequency; instead, the second approach is
based on rationality. The first approach will be the one used since now.

In Frequentist probability theory, the fundamental concepts are the random vari-
ables and the events.
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Definition 1.3.1 A random variable is an abstract entity able to make non predictable choices
inside a set of possible outcomes.

For example a dice is a random variable D6 and the set {1, 2, 3, 4, 5, 6} is its set of
outcomes.

Definition 1.3.2 An event is a proposition involving one or more random variables.

Example of propositions are D6 = 1 (the dice result is face one) or D6 > 3 (the face
number is greater than 3) or D6 = 1 ∨ D6 > 4 (the face is one or greater than four) or
D6 < 5 ∧ D6 ∈ {2, 4, 6} (the face is smaller than 5 and must be in the set {2, 4, 6}).

Given a proposition E and executing Ns independent tests involving E, and using
the Frequentist probability approach, the probability P(E) is defined as:

P(E) =
number of cases in which E is true

Ns
∈ [0, 1].

Given an integer random variable I (random variables with integer values), the
distribution of the random variable is defined as the following sequence:

ιj = P(I = j), for j = −∞, ...,+∞

and the expected value E(I) is defined as

E(I) =
+∞

∑
j=−∞

jP(I = j).

In order to simplify the notation since now will be possible to compute the expected
value of a distribution ιj as

E(ιj) =
+∞

∑
j=−∞

jιj

where this notation can be explained saying that was computed the expected value
of some random variable with distribution ιj. In conclusion another important con-
cept is the similarity between random variables. Defined I1 and I2 they are similar
(in symbols I1 ∼ I2) if they have the same distributions, more precisely

P(I1 = j) = P(I2 = j), for j = −∞, ...,+∞.

1.4 The degree

The degree is the number of connections incoming or outgoing to a node. In particu-
lar, the indegree is the number of incoming connections of a node, and the outdegree
is the number of outgoing connections of a node. For example, on the network of
figure 1.2 can be computed graphically the indegree that is 0 for node 1, 3 for node
2, 1 for node 3, 1 for node 4, 1 for node 5 and 1 for node 6. So we have as a set of
indegrees {0, 3, 1, 1, 1, 1}. Many authors (Steen, 2010) used such a method to reorder
the set of the degrees creating the degree sequence, but will not be adopted this
strategy. On the other hand, it can be computed the outdegree set as {1, 0, 1, 2, 2, 1}.
Therefore:

Definition 1.4.1 For a given node i ∈ V(G) the indegree DI
G(i) can be defined as

DI
G(i) = ∑

j∈V(G)

(AG)ji
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and the outdegree DO
G(i) as

DO
G(i) = ∑

j∈V(G)

(AG)ij

therefore the indegree is the sum on columns of adjacency matrix and the outde-
gree the sum on rows of adjacency matrix.

Given the degree sets can be computed the probability that a node has indegree
0 (that is 1

6 ) or indegree 1 (that is 4
6 ). For this reason we define a random variable DI

G
such as

P(DI
G = k) =

number of nodes with indegree k
number of nodes of the graph

since now the number of nodes of the graph G will be NG. Simmetrically

P(DO
G = k) =

number of nodes with outdegree k
NG

The probability distribution P(DI
G = k) is called indegree distribution of the

graph G, and the probability distribution P(DO
G = k) is called the outdegree distri-

bution of the graph G.
Anyway we could be interested in calculating degrees in some particular subsets

of nodes (for example HG = {1, 2, 3}) or regions of space (for example the region Ω1
G

of figure 1.3).

1

2

3

4

5
6

Ω1
G

Ω2
G

FIGURE 1.3: Example of spatial regions.

Definition 1.4.2 For a given HG ⊆ V(G) can be defined the subset constrained degrees
DI

G(i, HG) as:
DI

G(i, HG) = ∑
j∈HG

(AG)ji

and simmetrically DO
G(i, HG) is defined as

DO
G(i, HG) = ∑

j∈HG

(AG)ij
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Definition 1.4.3 For a given region ΩG ⊆ R2 can be defined the region constrained degrees
DI

G(i, ΩG) as:
DI

G(i, ΩG) = ∑
j|xj∈ΩG

(AG)ji

and DO
G(i, ΩG) is defined as

DO
G(i, ΩG) = ∑

j|xj∈ΩG

(AG)ij.

In a straight forward way these concepts can be generalized to their degree dis-
tributions. In particular given H1

G, H2
G ⊆ V(G) are defined P(DI

G(H1
G, H2

G) = k) and
P(DO

G(H1
G, H2

G) = k), and then, defined Ω1
G, Ω2

G ⊆ R2 are defined P(DI
G(Ω

1
G, Ω2

G) =
k) and P(DO

G(Ω
1
G, Ω2

G) = k).

1.5 Clustering Coefficient

The concept of Clustering Coefficient is based on the idea that similar nodes are
more connected among them (Easley and Kleinberg, 2010). These clusters of nodes
are usually called communities, and finding them in the network analysis can have
a crucial role in many fields (Easley and Kleinberg, 2010; Barrat, Barthélemy, and
Vespignani, 2008; Steen, 2010). The key idea in finding clusters is that take triplets
of nodes with at least two edges if many of these triplets have three edges, so the
node is strongly clusterized with its neighborhood (Steen, 2010). This feature is rep-
resented by a quantity called clustering coefficient, defined for a node i as

Cci =
number of triplets with all the nodes connected involving the node i

number of triplets with two nodes connected with i involving i

More formally can be defined as (Wang et al., 2017)

Definition 1.5.1 For a node i (with two or more connections) can be defined the clustering
coefficient Cci as

Cci =
∑j,k∈V(G) (AS

G)ij(AS
G)jk(AS

G)ki

∑j∈V(G) (AS
G)ij

((
∑j∈V(G) (AS

G)ij

)
− 1
)

where

(AS
G)ij =

{
1, if (i, j) ∈ E(G) ∨ (j, i) ∈ E(G)

0, otherwise

With this definition can be computed for example the clustering coefficient of
figure 1.2 obtaining that node 1 has just one connection and then is not possible
calculate clustering coefficient, for the other nodes Cc2 = 0, Cc3 = 0, Cc4 = 1

3 ,
Cc5 = 1

3 and Cc6 = 1. This result reflects the fact that nodes 4, 5 and 6 create a
large cluster that is in contrast with the sparsity of the connections of the nodes 1, 2
and 3. From these local clustering coefficients can be calculated a global clustering
coefficient averaging on the valid coefficients.

The clustering coefficient has a crucial role in many fields of MGT; however, this
quantity will not be used extensively for two main reasons:

• There are results suggesting that mean field activity of a large-scale neuronal
network can be approximated in terms of mean fields only by knowing its
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degree distributions (Nykamp et al., 2017). For this reason, the analysis of
the degree distributions will be preferred to the calculation of the clustering
coefficient.

• The calculation of clustering coefficient (acting on triples) can be computation-
ally expensive for large scale networks.

1.6 Network motifs

The idea behind network motifs is that exist recursive patterns inside real world
networks able to model whole network activity (Gal et al., 2017). In particular, the
2-motifs are all the patterns composed of two nodes (then two nodes disconnected,
two nodes connected and two nodes with a double connection) and the 3-motifs all
the patterns composed by a set of three nodes (that are in total 13 (Milo et al., 2002)).
However, even if in many fields of Graph Theory they have proved to be an essential
quantity to take into account, they will not be taken into account for the following
reasons:

• For large-scale networks has been proved that, under certain conditions of in-
dependence of the degree distributions(Nykamp et al., 2017), their number
of occurrences can be approximated from degree distributions; therefore, the
study of degree distributions will be preferred.

• Their counting (particularly the 3-motifs that act on triples) can be computa-
tionally expensive for large-scale networks.

1.7 Path measures

The path concept is one of the key concepts of classic graph theory and, in general,
one of the more natural concepts of graph theory. Given a graph G an observer could
ideally be placed in a general node i. This observer is able to walk on the edges (con-
sidering as only possible direction of crossing from starting node to ending node)
and then is asked to the observer to reach the node j through the graph. For exam-
ple, the observer could be placed in node 4 of the graph of figure 1.2 and the task
could be to reach node 2. Then observer could follow the path 4 → 2, but another
possible path is 4 → 6 → 5 → 3 → 2.

Definition 1.7.1 A path starting from node i and ending to node j can be defined as tuple

(k0 = i, k1, k2, ..., kl−1, kl = j)

such as for each i = 0, ..., l − 1 holds (ki, ki+1) ∈ E(G). Moreover the number l is called
length of the path.

Then the paths (4, 2) and (4, 6, 5, 3, 2) are valid paths from 4 to 2, but the first path
has length 1 and the second path has length 4, then the first path is shorter than the
first. In general, it is possible to define the shortest length between two nodes as the
length of the shortest path possible between two nodes. If a path between two nodes
does not exist, this value is supposed to be +∞. Then can be defined (Dorogovtsev
and Mendes, 2003)

Definition 1.7.2 The Average path length is the average of the finite shortest paths length
(so < +∞) between the nodes of a network.
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The average path length is helpful to determine the small-worldness of a net-
work (Easley and Kleinberg, 2010) that is, the capacity of a network to connect many
nodes with short paths. However, to compute the shortest path between two nodes
is a problem solved by ad hoc algorithms (for example, Dijkstra’s algorithm and
Bellman-Ford algorithm (Steen, 2010)); however, they can be computationally ex-
pensive for large networks.

Moreover, they require the full connectivity of the network to be computed be-
cause, taking into account or not some nodes can significantly affect the length of the
paths. In fact, if there are just two disjoint paths from the node i to the node j, when
just a node is not available from the shorter path then the shortest path becomes the
longer path. In real world networks is rare to have a perfect and complete knowl-
edge of the network. For these reasons in Modern Graph Theory, the estimation of
the small-worldness of the network is made by analyzing the tail of the degree dis-
tributions in search of highly connected nodes (the hubs (Barabási and Albert, 1999)).
The underlying idea is that if there are many hubs then is likely that two random
nodes are connected by a short path passing through highly connected nodes.

1.8 Eigenvectors centrality

The idea behind Eigenvectors centrality is that defining z0 the column vector such
as (z0)i = 1, for i = 1, ..., NG and

(AS
G)ij =

{
1, if (i, j) ∈ E(G) ∨ (j, i) ∈ E(G)

0, otherwise

can be defined the product
z1 = AS

G z0

and in general

zn = AS
G zn−1 = (AS

G)
2 zn−2 = ... =

(
AS

G

)n−1
z1 =

(
AS

G

)n
z0

for n > 0. The property of this product is that, for large values of n, the more
is connected the node i the more the component i-th of the vector (that is (zn)i) is
bigger in relation to the other components (Newman, 2010).

Being AS
G symmetric and in virtue of spectral theorem (Axler, 1997) hold the

following:

• the matrix AS
G is diagonalizable;

• all Eigenvalues are all real;

• exists an eigenvector basis;

Then can be defined λ(G)j, for j = 1, ..., NG, the eigenvalues of AS
G such as

|λ(G)1| ≥ |λ(G)1| ≥ ... ≥ |λ(G)NG−1| ≥ |λ(G)NG |.

Supposing v(G)i the eigenvector related to the eigenvalue λ(G)i, then must exist
νi such as z0 = ∑NG

i=1 νiv(G)i.
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Then can be written

z1 = AS
G z0 =

NG

∑
i=1

νi AS
Gv(G)i =

NG

∑
i=1

νiλ(G)iv(G)i = λ(G)1

NG

∑
i=1

νi

(
λ(G)i

λ(G)1

)
v(G)i

more in general

zn = λ(G)n
1

NG

∑
i=1

νi

(
λ(G)i

λ(G)1

)n

v(G)i.

Most of applications holds the empirical assumption (Easley and Kleinberg, 2010;
Newman, 2010)

|λ(G)1| > |λ(G)2| > ... > |λ(G)NG−1| > |λ(G)NG |.

and observing that limn→+∞

(
λ(G)i
λ(G)1

)n
= 0, for λ(G)i

λ(G)1
< 1, then

z+∞ = lim
n→+∞

zn // v(G)1

therefore the vectors z+∞ and v(G)1 are proportional.
In conclusion z+∞ is the solution of the equation

AS
G z+∞ = λ(G)1 z+∞.

In literature have been presented many variations of this equation, the most rep-
resentative (Newman, 2010) are Katz equation, that is

AS
G z+∞ = αKatzλ(G)1 z+∞ + βKatz1.

where αKatz, βKatz ∈ R and 1 is a column vector of all ones, and another version
is PageRank equation

AG z+∞ = αPRD−1
PRλ(G)1 z+∞ + βPR1.

where αPR, βPR ∈ R, 1 is a column vector of all ones and DPR is the diagonal
matrix with diagonal elements (DPR)ii = max

(
DO

G(i), 1
)
. In particular the PageRank

equation is used in the search engine Google (Page et al., 1999).
However Eigenvalues decomposition can be computationally expensive for a

general large-scale network (Pan, Chen, and Zheng, 1998), in fact in search engines
this task is solved computing zn until it reaches the convergence (Page et al., 1999).
For these reasons to the Eigenvalues analysis (the so called spectral analysis) will be
preferred the tail analysis of the degree distributions of the networks (Barabási and
Albert, 1999).

1.9 Spatial quantities

Since now has been mostly discussed, quantities can be calculated taking into ac-
count just the Adjacency matrix. Each node i has precise spatial information xi,
where the vector position has a fixed dimension dG that will be called graph spatial
dimension. For example in the graph in figure 1.2 dG = 2.

One of the most used spatial invariants is the Euclidean distance induced by
Euclidean norm:
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Definition 1.9.1 Given a vector z =
(
(z)1, ..., (z)dG

)
∈ RdG the Euclidean norm of the

vector z is defined as

∥z∥ =

√√√√ dG

∑
d=0

((z)d)
2

Definition 1.9.2 The Euclidean distance between the two nodes i and j is defined as

d(i, j) =
∥∥∥xi − xj

∥∥∥
However this concept can be generalized. For example suppose the function

Lij = L(i, j) =
∥∥∥xi − xj

∥∥∥2
that is a general function defined on spatial positions of

nodes. In general

Definition 1.9.3 Given fL : RdG × RdG → R can be defined the spatial function L on
nodes of G as

Lij = L(i, j) = fL

(
xi, xj

)
It can be noted that the simplest invariant involving distance is the Connection

Lengths Distribution.

Definition 1.9.4 The Connection Lengths Distribution is the distribution of the random
variable CL such as for each d, ϵ > 0

P (d ≤ CL ≤ d + ϵ) = probability of picking a connection of G with length in range [d, d+ ϵ]

Another used measure is the probability of connection dependent from the distance
(Potjans and Diesmann, 2012)

Definition 1.9.5 The Probability of Connection dependent from distance is a function such
as for each d > 0

PC(d) = probability that two general nodes at distance d are connected

1.10 Software implementation

Network analysis is a continuously expanding field of Graph Theory, and most of
the time nowadays is performed using computers. There are two main approaches
in network analysis (Finotelli, 2015):

• Visual approach: the graph is plotted and is performed visual inspection to
find the key features of the network. This approach is particularly suitable for
small networks that are easy to draw. Programs that perform this task are, for
example, Gephi and Cytoscape;

• Quantitative approach: the graph is analyzed through quantitative measures
(like degree distributions, connection length distribution, etc.) able to depict
network connectivity without drawing the whole graph. That approach will
be preferred because it is very suitable for large-scale networks. Software that
performs this task are the Matlab toolboxes Brain Connectivity Toolbox and Net-
work Analysis package and the program igraph.
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However, previous software are thought for macro connectivity Connectomes
(Bullmore and Sporns, 2009), networks that (representing connectivity between brain
areas) are made up by order of hundreds of nodes (Farahani, Karwowski, and Lighthall,
2019). In contrast, this contribution will analyze networks with more than 30 thou-
sand nodes (Markram et al., 2015), and this will require software highly optimized
to tackle these problems, and in many cases, this software will be written in Python
(Python Language Reference, version 3.6 2016), or Matlab (MATLAB v. 2021b 2021).

1.11 Computational representation of networks

In the previous section has been shown that graph connectivity is entirely deter-
mined by adjacency matrix and then has been calculated the adjacency matrix for
the graph in figure 1.2. Then could be a good idea to store this matrix as an array. In
the case of figure 1.2 it will be an array with shape 6 × 6 of binary values. Because
in most of the programming language binary values are not represented by 1 bit but
from 1 byte (= 8 bit) or more to be stored, the size of memory allocated by the graph
of figure 1.2 will be at least 62 = 36 bytes. In general

Theorem 1.11.1 For a general graph G the memory required to allocate its adjacency matrix
is proportional to (NG)

2.

However, to save in memory the adjacency matrix, even if it is the simplest way
to store graph connectivity, it is not always the best choice. Suppose to add 4 nodes
(then nodes 7,8,9 and 10) with no connections to graph in figure 1.2 creating the
graph G′. Then its adjacency matrix will become

AG′ =



0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


.

It is clear that all the connections are concentrated in the first 6 rows and columns
(being outside this submatrix each element 0). However, the memory allocated to
store this new adjacency matrix is more significant than before and proportional to
(N′

G)
2 = 102 = 100. Therefore, the matrix presented is a sparse matrix.

Definition 1.11.1 A sparse matrix is a matrix with few non-zero elements.

Most of the experimental large-scale networks have an adjacency matrix sparse
(Markram et al., 2015; Barabási and Albert, 1999). If a graph has an adjacency ma-
trix sparse (it has few connection between nodes) then the optimal strategy is to
construct the connection list

Definition 1.11.2 Given a graph G = (V(G), E(G)) and the number |E(G)| the number
of its edges, the Connections List is the matrix EL(G) with shape |E(G)| × 2 where the rows
are the edges in E(G).
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For example

EL(G) =



1 2
3 2
4 2
4 6
5 3
5 4
6 5


but holds also

EL(G′) =



1 2
3 2
4 2
4 6
5 3
5 4
6 5


because the nodes added have no connections. The Connection lists then can be
stored in an integer array of size 2 × 7 = 14. In general

Theorem 1.11.2 For a general graph G the memory allocated to store its Connections List
is proportional to 2 |E(G)|.

Then in case of figure 1.2 even if the memory used to allocate an integer is 2 bytes
the memory used to allocate the Connections List is 28 bytes for both graphs G and
G′ less than the scenario of A(G) (36 bytes) and of A(G′) (100 bytes).

However the advantage of storing Connections List is more visible at large scales.
First of all

Definition 1.11.3 The sparsity of a general graph G is defined as

σs(G) = 1 − |E(G)|
(NG)

2 ∈ [0, 1]

In particular σs(G) = 1 − 7
36 ≈ 0.81 and σs(G′) = 1 − 7

100 ≈ 0.93. In general
more σs is closer to 1 more the matrix is sparse. For experimental Connectome re-
constructions this quantity range from 1 − 0.1 = 0.9 (Potjans and Diesmann, 2012)
to 1 − 0.01 = 0.99 (Markram et al., 2015).

Theorem 1.11.3 The memory to allocate the Connections List for a large-scale network is
proportional to 2 |E(G)| = 2 (1 − σs(G)) (NG)

2.

This means that for (1 − σs(G)) very small and large NG then 2 (1 − σs(G)) (NG)
2 <<

(NG)
2, showing the advantage of allocating the Connections List instead of adja-

cency matrix.

1.12 Degree calculation and degree distributions

Calculating the degree (indegree or outdegree) will have a crucial role in the pro-
posed analysis. For this reason, it is debated about the degrees defined for the inde-
gree

DI
G(i) = ∑

j∈V(G)

(AG)ji
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and for the outdegree
DO

G(i) = ∑
j∈V(G)

(AG)ij

it can be observed that the indegree is the sum of the elements on columns of adja-
cency matrix and the outdegree is the sum of the elements on rows of the adjacency
matrix. This means that the number of sums to calculate degree with this approach
is NG − 1 for each row/column for the NG columns/rows, then NG (NG − 1).

However the number of sums NG (NG − 1) means that the number of sums (and
then the amount of time) used to calculate the degree of a fully connected graph is
the same of a graph with no connection. Being real world large-scale networks most
of times sparse, it is not a good approach. Instead calculating degree distributions
from connections list has the cost of |E(G)|, because it is sufficient to count the oc-
curencies of nodes in first column for the outdegree and in second column for the
indegree. We have already observed that

|E(G)| = (1 − σs(G)) (NG)
2 << NG (NG − 1)

for sparseness σs(G) → 1 and large numbers of nodes NG, concluding that the con-
nections list structure for graph storing it is not only efficient in terms of memory
used, but has an efficient algorithm for calculating degrees. For this reason will be
widely used in large-scale networks analysis.

Calculated the degree set, it is possible to calculate the degree distributions, that
are the distributions P(DI

G = k) and P(DO
G = k). The easiest way to calculate it is

counting the number of nodes for each possible degree and then to calculate each
probability. More formally

Definition 1.12.1 Defined the indegree frequency function
(

FI
G
)

k as the function defined as(
FI

G

)
k
= number of nodes with indegree k

the empirical indegree distribution can be calculated as

P̂E(DI
G = k) =

(
FI

G
)

k
NG

.

Simetrically empirical outdegree distribution is

P̂E(DO
G = k) =

(
FO

G
)

k
NG

.

However this definition has some problems when applied to real-world net-
works. Indeed some experimental networks can have significant oscillation in their
degree by degree distributions, for example in figure 1.4 is shown the indegree dis-
tribution from (Markram et al., 2015). In order to avoid these oscillations, is defined
the probability density function degree distribution.

Definition 1.12.2 The probability density function indegree distribution is calculated start-
ing from a bin β ∈ N with the formula

P̂β(DI
G = k) =

∑
mβ−1
q=(m−1)β

(
FI

G
)

q

βNG
, if k ∈ [(m − 1)β, mβ[ for some m ∈ N+.
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Simmetrically the probability density function outdegree distribution is

P̂β(DO
G = k) =

∑
mβ−1
q=(m−1)β

(
FO

G
)

q

βNG
, if k ∈ [(m − 1)β, mβ[ for some m ∈ N+.

From the previous definition can be observed that the empirical indegree distri-
bution is a particular case when the bin value β = 1 (then P̂E = P̂1). This generaliza-
tion can be quite important because most of the theory proposed here will result in
quite smooth distributions, in contrast to what is observed in experimental findings
(Markram et al., 2015). Therefore, to smooth the degree distributions found, most of
the time, the values of β > 1. In fact as can be seen in figure 1.4 Top-Left panel, if
β = 1 the degree distribution is noisy. If β = 5 (Top-Right) or β = 25 (Bottom-Left)
the histogram is smooth enough. However, if β = 300 (Bottom-Right), the histogram
is over averaged and most of the degree distribution information is lost. This simple
example makes evident the key role of bin size β in calculating degree distributions
for real-world networks. Put in evidence that, in general, there is no standard strat-
egy to choose the right value of β, because if β is too low the distribution is noisy,
instead if it is too high most of the detail can be lost. Since now, it will be assumed
that for each degree distribution shown in a figure, a reasonable value of β has been
chosen.

FIGURE 1.4: Indegree distribution from Neocortical model (Markram
et al., 2015) with bins respectively 1, 5, 25 and 300. Can be observed
that for the bin size 1 the histogram is noisy. For bins sizes 5 and 25
the histogram is correctly smoothed. For bin size 300 the histogram is

too averaged.

1.13 Introduction to Modern Graph Theory

The first step in the direction of Modern Graph Theory was the ER (Erdös and Rényi,
1959).

Definition 1.13.1 The ER model with N(ER) = NER nodes and probability pER is a graph
constructed connecting every couple of nodes independently with a probability pER.

This simple model has an incredible property, if pER ∈]0, 1[, every graph with NER
nodes is the possible outcome of an ER model with NER nodes and probability pER.
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Then it is legit to think that the ER model is a universal graph generator and the
solution to every problem in Graph Theory. In order to understand that is not the
case, suppose pER = 10−1 and NER = 4, then the probability of obtaining a fully
connected graph (a graph with all the values in adjacency matrix ones, except the
diagonal) from such ER model is pER raised to the number of possible edges (that is
NER(NER − 1) = 12), and then it is

pNER(NER−1)
ER = 10−12.

In order to comprehend this probability should be noted that the probability to win
the multi millionaire jackpot at the Mega Millions lottery is order of 10−9 (How to Play
Mega Millions Lottery 2021). This simple example makes clear why a new approach
is required, in order to avoid situations where buying a lottery ticket is a better idea
than trying to fit experimental data with the wrong model. This new approach is the
Modern Graph Theory.

1.14 ER Model

The ER model defined above was the first random graph model (Erdös and Rényi,
1959), a model able to generates graphs randomly with the same algorithm. This
model can be expressed in terms of random variables (M Evans and Peacock, 2000),
but will be required some definition:

Definition 1.14.1 A Bernoulli random variable Xp with probability p ∈ [0, 1] is a random
variable with distribution χp(k) defined as

χp(k) =


(1 − p), if k = 0
p, if k = 1
0, otherwise

The Bernoulli random variable describes the act to flip a coin that gives the value
1 with probability p and 0 with probability 1 − p. Then in order to construct the ER
model ER with NER nodes and probability pER, the adjacency matrix will be defined
as

(AER)ij ∼ XpER .

For a general node i holds

DI
ER(i) = ∑

j∈V(ER)
(AER)ji ∼ ∑

j∈V(ER)|i ̸=j
XpER ∼ B (NER − 1, pER)

where the random variable is the Binomial random variable (M Evans and Peacock,
2000) defined as

Definition 1.14.2 Given a number N and a probability p ∈ [0, 1] the Binomial random
variable BN

p (k) is the random variable with distribution B (N, p) defined as

BN
p (k) =

(
N
k

)
pk(1 − p)N−k.

Then holds
P
(

DI
ER = k

)
= BNER−1

pER
(k).
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Symmetrically can be proved that

P
(

DO
ER = k

)
= BNER−1

pER
(k).

This simple fact shows as even if the ER model could have as outcome any possi-
ble graph with NER nodes and consequently any possible degree distribution, there
is just one likely degree distribution that it can assume and it is a Binomial bell. This
simple fact in the applications implies that the degree distributions of an ER model
is assumed to be always a Binomial bell even if there is the infinitesimal probability
to obtain a fully connected graph (see figure 1.5).
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FIGURE 1.5: ER models with NER = 104 and pER respectively (from
left to right) 0.01, 0.1, 0.25, 0.5, 0.75, 0.9 and 0.99.

This model is composed by two independent parameters NER and pER, however
in the applications the number of nodes is fixed by experimental constrains, then the
only free parameter is the probability pER. In order to fit this general probability pER
must be calculated the expected number of edges

E (|EER|) = E

 ∑
i,j∈V(ER)|i ̸=j

(AER)ij

 = E (B(NER (NER − 1), pER)) = NER(NER − 1)pER

then in general holds

pER =
E (|EER|)

NER(NER − 1)
.

From a general experimental network G than can be computed the quantity

ρG =
|EG|

NG(NG − 1)

defined as the probability of connection of the graph G and the best ER model ER to fit
the graph G has parameters NER = NG and pER = ρG.
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1.15 The ER mixed model

The key idea behind the ER mixed model is the concept of an inhomogeneous net-
work. An inhomogeneous network is a network where there are significant differ-
ences between nodes. In particular, the central hypothesis of ER mixed model is that
exist many distinct populations with a different constant probability of connections
between themselves (Potjans and Diesmann, 2012). The result (will be proved when
will be introduced the convolutive approach) is that the ER mixed distributions are
a convex combination of Binomial bells like distributions (Giacopelli, Migliore, and
Tegolo, 2020). In practice, ER mixed models appear with distributions with several
peaks less equal than the number of populations. This model is viral because to fit
it is sufficient to estimate the probability of connections between populations as de-
scribed in the previous section. This model is involved in the theory that claims to
compute the probability of connection between populations is enough to reconstruct
a network fully. However, in the sections below, it will be shown that it is not the
case in general.

1.16 Power Law models

In 1999 has been introduced a new model in MGT: the Barabasi-Albert (Barabási and
Albert, 1999) (since now BA). This model starts from the assumption that in social
networks (Easley and Kleinberg, 2010) and in computer networks (Barabási and Al-
bert, 1999) can be observed that the more a node is connected more is likely that this
node will create new connections. This simple concept has been applied for example
in search engine Google (Page et al., 1999), where a node with a large number of in-
coming connections (hyperlinks pointing the web page) is called an authority of the
network. In fact the principle is that if many pages points to a specific page there is
in high probability that this page has a superior probability to be safe, trustfully and
it is more probable that the Google user is looking for this page. Barabasi and Albert
have observed that such dynamics can be observed in a general computer network
(Barabási and Albert, 1999) and in particular in such networks the degree distribu-
tions exhibit a power law tail (Giacopelli, Migliore, and Tegolo, 2020). They have
also proposed a model able to produce such networks that is the BA model, and
(following (Newman, 2010)) first of all will be introduced the concept of growing
network and preferential attachment:

Definition 1.16.1 A growing network {G(0), G(1), ..., G(t), ...} is a sequence of graphs
where each graph G(i + 1) is created adding a node to the network G(i).

Definition 1.16.2 A growing network {G(0), G(1), ..., G(t), ...} is constructed using the
preferential attachment if for each new node i added at the network Gt the new node has a
probability to be connected to an old node j ∈ V(G(t))

DI
G(t)(j) + a

∑v∈V(G(t))

(
DI

G(t)(v) + a
)

with a > 0 a constant.

Definition 1.16.3 A BA model is a preferential attachment growing network with parame-
ter a > 0 and where every new node is connected to c old nodes.
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FIGURE 1.6: The process of growing network with preferential attach-
ment in BA model (a = 1 and c = 2). A) The network at time t has the
connectivity G(t) (black nodes). The red node is the new node. For
every black node is calculated the indegree (black numbers). B) For
each black node is computed the probability of connection using the
formula of preferential attachment (blue numbers). C) Following the
probabilities of connection are chosen c old nodes and they are con-
nected to the new node (green arrows). D) The new graph created is
now called G(t + 1) and the routine can be repeated until the desired

number of nodes has been reached.
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In figure 1.6 is shown a schematics of the construction process. Dorogostev et al.
(Dorogovtsev and Mendes, 2003) have proved, in an elegant way, that a BA model
has a distribution with a power law tail. We will follow the proof in (Newman, 2010)
that simplify the exposition:

Theorem 1.16.1 A BA model with parameters a and c follows asymptotically the expression

lim
t→+∞

P(DI
G(t) = k) ≈ k−2+ a

c

Proof: Defining pk(t) = P(DI
G(t) = k), ki(t) = DI

G(t)(i) and n(t) = NG(t). Then the
preferential attachment can be rewritten as

ki(t) + a
∑i(ki(t) + a)

=
ki(t) + a

n(t)E(k(t)) + n(t)a
=

ki(t) + a
n(t)(c + a)

where c = E(k(t)) is true because the expected value of indegree and outdegree are
equal. The number of nodes with indegree k is n(t)pk(t) then the expected number
of new edges is

n(t)pk(t) c
k + a

n(t)(c + a)

When a new node is added to G(t), the nodes with indegree k increases by one
each node of indegree k − 1 that receives a new connection, this node becomes a
node of indegree k

c(k − 1 + a)
c + a

pk−1(t)

similary will be lost one node of degree k every time that it becomes of degree
k + 1

c(k + a)
c + a

pk(t)

then can be written the master equation

n(t+ 1)pk(t+ 1) = (n(t)+ 1)pk(t+ 1) = n(t)pk(t)+
c(k − 1 + a)

c + a
pk−1(t)−

c(k + a)
c + a

pk(t).

However the previous equation holds for k > 0. k = 0 is a special case, because
there is not a node that can become of degree 0 (Newman, 2010)

(n(t) + 1)p0(t + 1) = n(t)p0(t) + 1 − ca
c + a

p0(t).

The hypothesis of master equation is that exists and it is finite the limit

lim
t→+∞

pk(t) = pk(∞) = pk.

Then the previous equations become for k > 0

pk =
c

c + a
[(k − 1 + a)pk−1 − (k + a)pk]

and for k = 0
p0 = 1 − ca

c + a
p0.
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The equation for k = 0 can be rearranged

p0 =
1 + a/c

a + 1 + a/c

and for k > 0

pk =
k + a − 1

k + a + 1 + a/c
pk−1.

Solving the recursive equations can be derived the solution

pk =
B(k + a, 2 + a/c)

B(a, 1 + a/c)

where B(x, y) is the Beta function (Olver et al., 2010). In (Newman, 2010) is observed
how is valid the asymptotic form

pk =
B(k + a, 2 + a/c)

B(a, 1 + a/c)
≈ k−2+ a

c .

□

However the BA model proposed has the feature that the outdegree of each new
node added is constant and equal to c. For this reason has been introduced the Price
model

Definition 1.16.4 The Price model is preferential attachment growing network with pa-
rameter a > 0 where for each iteration t is added a node with ct connections with the old
nodes.

In (Newman, 2010) is observed that doing computational simulations still holds
the identity

lim
t→+∞

P(DI
G(t) = k) ≈ k−2+ a

c

where c = E(ct). Often instead of defining the ct sequence of the Price model, is
defined a random variable Γ such that E(Γ) = c and then the ct are defined as
possible outcomes of Γ. In figure 1.7 can be seen an example of two Price models
with different Γ distributions. The advantage of the last approach is shown in the
following theorem

Theorem 1.16.2 Given a Price model with parameter a > 0 and random variable Γ, the
outdegree distribution can be approximated by the distribution of Γ.

Proof: Because Γ controls the number of edges added when a new node is added,
most of the nodes outdegree of the network are occurencies of Γ. Then the the out-
degree distribution almost follows the Γ probability distribution. □

This property has a key role in the usability of the Price model because a possi-
ble fitting procedure is to assign the target outdegree distribution to Γ and tune the
a parameter to fit at best the indegree distribution. Since now will not be made the
difference between the Price model and the BA model, using these two interchange-
ably terms to refer to the actual Price model. This choice is motivated because even
if the actual name of this model is the Price model, most of the power law models
are usually called the BA model because it was the first of this kind, and it is the
most known power law model.
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FIGURE 1.7: Degree distributions of two Price models of 2500 nodes
with different Γ distributions but same c = 40 and a = c. A) The
Γ distribution follows the distribution P(Γ = k) = 7.6226

k2+150 . B) The
Γ distribution is a Gaussian distribution with mean 40 and standard

deviation 7 (Olver et al., 2010).

1.17 Small-World networks and Small-Communities

An experiment in 1960 (Easley and Kleinberg, 2010; Newman, 2010) made by Stanley
Milgram has shown that real-world social networks exhibit a small average shortest
path length. The experiment gave 96 packets to 96 voluntaries with an address and a
name with the instruction to not send directly by mail the load but to send this packet
to a friend who had a better chance to bring this packet to destination until the packet
reaches the destination. Of 96 packets, just 18 arrived at the destination, but these
packets made just 5.9 steps to arrive. This experiment is often cited as six degrees of
separations and has given the input to a series of experiments to quantify the shortest
path length between nodes in social networks (in the case of this experiment was
about 6). Networks as the BA model and the ER model are small-world (Newman,
2010).

However, another feature in social networks is the creation of small communi-
ties, which is manifested in terms of networks analysis by the clustering coefficient.
For example (Easley and Kleinberg, 2010) explores of the clustering coefficient can
be a relevant measure to separate social groups in a school. In general, for models
like ER and BA the clustering coefficient is low (Newman, 2010). For this reasons,
it has been introduced the Watts-Strogatz model (Watts and Strogatz, 1998). This
model starts from a circular lattice which can achieve a clustering coefficient of 3/4.
The downside of this configuration is that the average path length increases. For this
reason, a random rewiring with a given probability p is applied to make the config-
uration converge to the ER model, decreasing the average path length (at the cost of
decreasing the clustering coefficient). The substantial downside of this model is that,
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because of its regularity, it does not produce realistic degree distributions (Newman,
2010); in fact, the regularity of the starting lattice produces a spiky behavior in the
degree distributions because many nodes have almost the same degree. However,
the previous issue can be avoided by increasing the probability p, but this makes to
converge the network to an ER-like configuration that will prove unsuitable for the
Connectome. Last assertations have a determinant role in discarding it in our appli-
cations because exist contributions (Nykamp et al., 2017) that show the key role of
degree distributions in neuronal activity modelling.

1.18 Spatial graphs models

The previous models are aspatial graphs; however, real-world networks are rarely
aspatial. The spatial graphs, which will be introduced, follow a common thread: the
wiring cost minimization principle.

Definition 1.18.1 The wiring cost minimization principle states that a real-world network
is built trying to minimize the connections length.

This simple principle translates in graph theory that near nodes are more likely to
be connected.

One of the models that implements this principle is the ER distance model (Billeh
et al., 2020)

Definition 1.18.2 An ER distance model is a random graph model where given two nodes i
and j, they are connected with a probability dependent from the distance

pij = ρd

(
∥xi − xj∥

)
where ρd : [0,+∞[→ [0, 1] is a smooth function.

These kind of models often exhibit an exponential decay in ρd and can be combined
with other geometric dependencies (Billeh et al., 2020). Will be shown with the con-
volutive framework that (under certain hypothesis) these models have an exponen-
tial tail.

Another spatial model is the spatial BA model (Fabrikant, Koutsoupias, and Pa-
padimitriou, 2002). This model is constructed through the minimization of a cost
function between nodes

Cij = δdij + hj

where dij is the spatial cost of the model (that can be the euclidean distance between
nodes or its square for example) and hj is a centrality measure respect to the first
node of the network. This model will be fundamental for a truly spatial connec-
tivity model. In (Fabrikant, Koutsoupias, and Papadimitriou, 2002) is proved that
these kinds of models exhibit a power law behaviour and this theorem has also been
proved numerically (Giacopelli, Migliore, and Tegolo, 2020).
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Convolutive models

2.1 Observations and reflections about the neurons degree
distributions

The brain Connectome is the ensemble of all the connections in the human brain.
In particular, the Connectome can be described as a graph by constructing a graph
whose nodes are the neurons’ soma, and arches are the synaptic connections. The
first experimental reconstructions of Connectome have been made through the prin-
ciple wire together, fire together (Bonifazi et al., 2009). This principle states that if
two neurons are connected when the pre-synaptic neuron fires, there is a reason-
able probability that the post-synaptic will. In virtue of this principle, if an electric
current stimulates a neuron, it will start to fire, making fire (and then revealing)
all its post-synaptic neurons. However, this simple technique used for a long time
is costly in terms of person-hours used to reconstruct the connectivity because all
the neurons must be stimulated one by one (Bonifazi et al., 2009). The advances of
electron microscopy have made possible a different approach where the connectiv-
ity is reconstructed from high-resolution scans of the neurons’ cells, making possible
reconstructions with more than a thousand neurons (Takemura et al., 2013). The pre-
viously proposed models are the connectivity of an actual brain region of a subject.
However, relaxing this hypothesis is possible to construct more extensive networks
from small sparse connectivity samples, thus using stochastic inference is possible
to reach more than 30,000 neurons (Markram et al., 2015).

What can be observed is that experimental networks’ degree distributions (shown
in figure 2.1) do not follow the ER behavior (Erdös and Rényi, 1959) and either the
Power Law behavior (Barabási and Albert, 1999). In particular the experimental dis-
tributions exhibit a growing behavior for low degrees (not predicted by BA model)
and an heavy tail behavior for high degrees (not predicted by ER model). The sit-
uation is schematized in figure 2.1H, where can be seen how ER model is a good
approximation of experimental findings for low degrees and the power law model
is able to fit the tail of the experimental findings for high degrees. For this reason
has been introduced a new theoretical model able to exhibit a growing behavior for
low degrees (like in the ER model) and an heavy tail behavior for high degrees (like
in Power Law models), this model is the Convolutive model (Giacopelli, Migliore, and
Tegolo, 2020; Giacopelli, Migliore, and Tegolo, 2020; Giacopelli et al., 2021).

2.2 Convolution and Convolutive equations

The idea behind the Convolutive model is simple. Supposing two independent ran-
dom variables R1 and R2. In order to compute the probability P((R1 + R2) = k)
there is a theorem able to compute this quantity, but will need a definition first
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D) Songbird Basal Ganglia 
     (226 nodes, 4396 links)
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C) Mouse Visual Cortex 
     (83 nodes, 842 links)
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FIGURE 2.1: Degree distributions of experimental brain reconstruc-
tions. (A) 546 neurons of the C. elegans (Cook et al., 2019); (B) from
a dense reconstruction of 1090 neurons from a mouse retina (Helm-
staedter et al., 2013); (C) from electron microscopy data on L2/3
mouse primary visual corte (Turner et al., 2020); (D) 226 neurons from
a Songbird basal ganglia (Dorkenwald et al., 2017); (E) 89 neurons
from a slice from a rodent hippocampus (Bonifazi et al., 2009) (cour-
tesy of Paolo Bonifazi); (F) mouse thalamus (Morgan et al. (Morgan
and Lichtman, 2020)); (G) from electron microscopy data contain-
ing 1761 body ID’s from a Drosophila (Takemura et al., 2013); (H)
Schematic representation of degree distribution for diferent model
networks: Power Law (blue), exponential (red) and stereotypical ex-
perimentally observed distribution (black). The inset shows a log–log
plot with a (purple) line representing the Power Law tail; note how
the power law tail line fails to reproduce the low degree connectivity.
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Definition 2.2.1 Given two discrete distributions uk and vk the convolution [uq ∗ vq]k be-
tween them is defined as

[uq ∗ vq]k =
+∞

∑
q=−∞

uq vk−q

Then can be stated the Theorem

Theorem 2.2.1 Supposing R1 and R2 two independent random variables then holds

P((R1 + R2) = k) = [P(R1 = q) ∗ P(R2 = q)]k

Proof: The event (R1 + R2) = k is equal to the union of the disjoint events (R1 =
q) ∧ (R2 = (k − q)) for k ∈ Z. Then can be written

((R1 + R2) = k) =
+∞∨

q=−∞
(R1 = q) ∧ (R2 = (k − q))

Switching to the probabilities

P ((R1 + R2) = k) = P

(
+∞∨

q=−∞
(R1 = q) ∧ (R2 = (k − q))

)
=

using the additivity of probability for disjoint events (Olver et al., 2010)

=
+∞

∑
q=−∞

P ((R1 = q) ∧ (R2 = (k − q))) =

using the independence of the random variables

=
+∞

∑
q=−∞

P (R1 = q) P (R2 = (k − q)) = [P(R1 = q) ∗ P(R2 = q)]k .

□
Probability theory suggests that

E(R1 + R2) = E(R1) + E(R2)

an equivalent result can be proved for convolution:

Theorem 2.2.2 Given two distributions uk and vk holds

E(
[
uq ∗ vq

]
k) = E(uk) + E(vk)

Proof:

E(
[
(r1)q ∗ (r2)q

]
k) =

+∞

∑
k=−∞

k
+∞

∑
q=−∞

uqvk−q =
+∞

∑
k=−∞

+∞

∑
q=−∞

(q + (k − q))uqvk−q =

substituting r = k − q

=
+∞

∑
r=−∞

+∞

∑
q=−∞

(q + r)uqvr =
+∞

∑
r=−∞

+∞

∑
q=−∞

q uqvr +
+∞

∑
r=−∞

+∞

∑
q=−∞

r uqvr =



28 Chapter 2. Convolutive models

=
+∞

∑
q=−∞

q uq

+∞

∑
r=−∞

vr +
+∞

∑
r=−∞

r vr

+∞

∑
q=−∞

uq =

observing that ∑+∞
q=−∞ uq = 1 and ∑+∞

r=−∞ vr = 1, then

=
+∞

∑
q=−∞

q uq +
+∞

∑
r=−∞

r vr = E(uk) + E(vk)

□

The convolution has several important properties

Theorem 2.2.3 The convolution is bilinear, so that given three distributions uk, vk and wk
and two real numbers λ, µ ∈ R hold[

uq ∗ (λvq + µwq)
]

k = λ
[
uq ∗ vq

]
k + µ

[
uq ∗ wq

]
k

and [
(λvq + µwq) ∗ uq

]
k = λ

[
vq ∗ uq

]
k + µ

[
wq ∗ uq

]
k

Proof: Will be proved the linearity on the right component

[
uq ∗ (λvq + µwq)

]
k =

+∞

∑
q=−∞

uq (λvk−q + µwk−q) =
+∞

∑
q=−∞

(
λuqvk−q + µuqwk−q

)
=

=
+∞

∑
q=−∞

(
λuqvk−q

)
+

+∞

∑
q=−∞

(
µuqwk−q

)
= λ

+∞

∑
q=−∞

uqvk−q + µ
+∞

∑
q=−∞

uqwk−q =

= λ
[
uq ∗ vq

]
k + µ

[
uq ∗ wq

]
k

Simmetrically can be proved the linearity on the left component. □

Theorem 2.2.4 The convolution is commutative, so that given two distributions uk and vk
holds [

uq ∗ vq
]

k =
[
vq ∗ uq

]
k

Proof: [
uq ∗ vq

]
k =

+∞

∑
q=−∞

uq vk−q =

defining r = k − q then q = k − r and the previous can be rewritten

=
+∞

∑
r=−∞

uk−r vr =
+∞

∑
r=−∞

vr uk−r = [vr ∗ ur]k =

the variable q is an ausiliary variable as r then can be written

=
[
vq ∗ uq

]
k .

□
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Theorem 2.2.5 The convolution is associative, so that given three distributions uk, vk and
wk holds [

uq ∗ [vr ∗ wr]q

]
k
=
[
[ur ∗ vr]q ∗ wq

]
k

Proof: [
uq ∗ [vr ∗ wr]q

]
k
=
[
uq ∗ [wr ∗ vr]q

]
k
=

+∞

∑
q=−∞

uq

+∞

∑
r=−∞

wrvk−q−r =

that can be rewritten

=
+∞

∑
r=−∞

wr

+∞

∑
q=−∞

uqvk−q−r =
[
wr ∗

[
uq ∗ vq

]
r

]
k =

[[
uq ∗ vq

]
r ∗ wr

]
k =

[
[ur ∗ vr]q ∗ wq

]
k

□

For these reasons can be written the expression[
uq ∗ vq ∗ wq

]
k

because wherever will be placed the parenthesis the result will be the same. Infact[
uq ∗ vq ∗ wq

]
k =

[
[ur ∗ vr]q ∗ wq

]
k
=
[
uq ∗ [vr ∗ wr]q

]
k

.

More in general can be defined for n distributions (u1)k, (u2)k, ..., (un)k the convolu-
tion [

∗n
i=1(ui)q

]
k =

[
(u1)q ∗ (u2)q ∗ ... ∗ (un)q

]
k

without ambiguity.
In general for n independent random variables holds the Theorem

Theorem 2.2.6 Given R1, R2, ..., Rn some n independent random variables. Then holds

P

((
n

∑
i=1

Ri

)
= k

)
= [∗n

i=1P(Ri = q)]k

Proof: The proof is done by induction. For n = 2 has been already proved in
theorem 2.2.1.

Supposing that is valid for n − 1 will be proved for n. If it is valid for n − 1 then
holds

P

((
n−1

∑
i=1

Ri

)
= k

)
=
[
∗n−1

i=1 P(Ri = q)
]

k
.

Then can be observed that

P

((
n

∑
i=1

Ri

)
= k

)
= P

((
Rn +

n−1

∑
i=1

Ri

)
= k

)
=

The value ∑n−1
i=1 Ri as a random variable itself then

=

[
P(Rn = q) ∗ P

((
n−1

∑
i=1

Ri

)
= q

)]
k

=
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for the inductive hypothesis

=
[

P(Rn = q) ∗
(
∗n−1

i=1 P(Ri = q)
)]

k
= [∗n

i=1P(Ri = q)]k

□

Another important property is about delta random variable (Giacopelli, Migliore,
and Tegolo, 2020)

Definition 2.2.2 The delta random variable ∆d is the random variable with sure outcome
d ∈ Z. This random variable has as distribution the delta distribution δd(k) defined as

δd(k) =

{
1, if k = d
0, otherwise

Theorem 2.2.7 If fk is a distribution then[
fq ∗ δd(q)

]
k = fk−d

Proof: [
fq ∗ δd(q)

]
k =

+∞

∑
q=−∞

fqδd(k − q) =

then fqδd(k − q) ̸= 0 if and only if k − q = d, then

= fk−dδd(d) = fk−d

□
We observe that if d = 0 [

fq ∗ δ0(q)
]

k = fk.

Since now all the distributions will be assumed natural values:

Definition 2.2.3 A natural values distribution fk is a distribution such that

fk = 0, ∀k < 0

Theorem 2.2.8 The convolution of two natural values distributions uk and vk can be rewrit-
ten as [

uq ∗ vq
]

k =
k

∑
q=0

uqvk−q

Proof: [
uq ∗ vq

]
k =

+∞

∑
q=−∞

uqvk−q =

but can be observed that if q < 0 then uq = 0 and if q > k then vk−q = 0. In
conclusion

=
k

∑
q=0

uqvk−q

□

Being the convolution a binary operator is meaningful to define equations on the
convolution
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Definition 2.2.4 Given two distributions fk and hk can be defined the convolutive equation
as [

fq ∗ gq
]

k = hk, ∀k ≥ 0

where the distribution gk (if exists) is called solution of the convolutive equation.

However, the first step will be the truncated convolutive equation, which is a con-
volutive equation where is imposed 0 ≤ k ≤ ks More formally:

Definition 2.2.5 Given two distributions fk and hk and an integer ks > 0, can be defined
the truncated convolutive equation as[

fq ∗ gq
]

k = hk, ∀k | 0 ≤ k ≤ ks

where the distribution gk (if exists) is called solution of the truncated convolutive equation.

There is a useful theorem about truncated convolutive equations (Giacopelli,
Migliore, and Tegolo, 2020)

Theorem 2.2.9 If f0 ̸= 0 then the solution gk of the truncated convolutive equation[
fq ∗ gq

]
k = hk, ∀k | 0 ≤ k ≤ ks

exists and it is unique for every ks > 0.

Proof: The convolutive equation can be rearranged in the system
f0g0 = h0

f1g0 + g1 f0 = h1

...
fks g0 + fks−1g1 + ... + f1gks−1 + f0gks = hks

that can be rewritten in matricial form
f0 0 ... 0 0
f1 f0 ... 0 0
... ... ... ... ...
fks fks−1 ... f1 f0




g0
g1
...

gks−1
gks

 =


h0
h1
...

hks−1
hks


Can be seen that if f0 ̸= 0 the matrix determinant is not null and the system is
Kramerian, then the solution exists and it is unique. □

However the previous theorem can be generalized at infinity

Theorem 2.2.10 If f0 ̸= 0 then the solution gk of the convolutive equation[
fq ∗ gq

]
k = hk, ∀k ≥ 0

exists and it is unique.

Proof: Supposing that exist two distinct solutions, then taking k̄ the smallest value
of k such that the distributions differ, then the two distinct solutions should be two
distinct solutions of the problem[

fq ∗ gq
]

k = hk, ∀k | 0 ≤ k ≤ k̄
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that is a contradiction. Then the solution if exists must be unique.
In order to extend truncated solutions can be observed that for any given k̂ > 0

the value gk̂ can be computed as
gk̂ = wk̂

where the distribution wk is the solution of the problem[
fq ∗ wq

]
k = hk, ∀k | 0 ≤ k ≤ k̂

that must exist unique in virtue of previous theorem. □

However, the condition f0 ̸= 0 in real-world applications is often not satisfied.
These cases can happen that will be required some additional condition on hk to
solve the equation. For example:

Theorem 2.2.11 The equation
[
δd(q) ∗ gq

]
k = hk (with d > 0) has solution if and only if

h0 = ... = hd−1 = 0.

Proof: The system associated to the equation is
δd(0)g0 = 0 = h0

δd(1)g0 + δd(0)g1 = 0 = h1

...
δd(d − 1)g0 + δd(d − 2)g1 + ... + δd(1)gd−2 + δd(0)gd−1 = 0 = hd−1

remebering that δd(q) = 0 if q ≤ d − 1. This imply that must be h0 = ... = hd−1 = 0.
□

However if the previous conditions holds can be observed that[
δd(q) ∗ gq

]
k = gk−d = hk

then the solution is
gk = hk+d.

This solution is still valid for k ≥ d even if is not true h0 = ... = hd−1 = 0. For
this reason, this particular function will be taken as an approximate solution to the
problem.

Supposing now to take an ε ∈]0, 1[ and to define the convolutive equation[
(ε(δ0(q)) + (1 − ε)(δd(q))) ∗ (gε)q

]
k = hk.

Now the solution of this problem exists and it is unique for every ε ∈]0, 1[, being
(ε(δ0(0)) + (1 − ε)(δd(0))) = ε ̸= 0. The solution is the distribution

(gε)k =

{
hk
ε , if 0 ≤ k ≤ d − 1

hk
ε − (1−ε)hk−d

ε2 , if k ≥ d

and can be observed that for ε → 0 then (gε)k diverges to infinity. This simple
example makes evident how small perturbations in the arguments of deconvolution
can cause big changes in its result.
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2.3 Convolutive model

The idea behind the convolutive model is that if the graph has a block structure
with connections independent from block to block the degree will be the sum of
these independent contributions that will result in a convolution switching to degree
distributions. More formally:

Definition 2.3.1 A Generalized Convolutive model with B blocks is a graph C where defined
a partitions of nodes with B disjoint sets C1, ..., CB ⊆ V(C) such that C1 ∪ ... ∪ CB =
V(C) and the connectivity between every couple of sets Ci and Cj (i and j can be equal) is
independent from the connectivity between the other couples.

The terms blocks and subpopulations will be used interchangeably since now.
The simpler Generalized Convolutive model (since now GCM) is the convolutive
model with two blocks. For a GCM with two blocks holds the theorem

Theorem 2.3.1 Given C a GCM with two subpopulations C1 and C2, the degree distribu-
tions are

P(DI
C = k) =

|C1|
|C1|+ |C2|

[
P(DI

C(C1, C1) = q) ∗ P(DI
C(C1, C2) = q)

]
k
+

+
|C2|

|C1|+ |C2|

[
P(DI

C(C2, C1) = q) ∗ P(DI
C(C2, C2) = q)

]
k

and

P(DO
C = k) =

|C1|
|C1|+ |C2|

[
P(DO

C (C1, C1) = q) ∗ P(DO
C (C1, C2) = q)

]
k
+

+
|C2|

|C1|+ |C2|

[
P(DO

C (C2, C1) = q) ∗ P(DO
C (C2, C2) = q)

]
k

Proof: The proof will be done for the indegree, but extends symmetrically to the
outdegree. First of all must be observed that can be used the Conditional probability
theorem (Olver et al., 2010)

P(DI
C = k) = P(V ∈ C1)P((DI

C = k)|(V ∈ C1)) + P(V ∈ C2)P((DI
C = k)|(V ∈ C2))

where V ∈ Ci is the event the vertex is in the set Ci. Observing that P(V ∈ Ci) =
|Ci |

|C1|+|C2| and the event ((DI
C = k)|(V ∈ Ci)) is equal to DI

C(Ci, C) = k then

=
|C1|

|C1|+ |C2|
P(DI

C(C1, C) = k) +
|C2|

|C1|+ |C2|
P(DI

C(C2, C) = k).

In general can be said that the degree of a node j is the sum of the contributions of
the populations, formally

DI
C(j, C) = DI

C(j, C1 ∪ C2) = DI
C(j, C1) + DI

C(j, C2)

then switching to the random variables can be said

DI
C(Ci, C) = DI

C(Ci, C1) + DI
C(Ci, C2).
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Being DI
C(Ci, C1) and DI

C(Ci, C2) independent then can be applied the convolution
theorem 2.2.1

P(DI
C(Ci, C) = k) = P((DI

C(Ci, C1) + DI
C(Ci, C2)) = k) =

=
[

P(DI
C(Ci, C1) = q) ∗ P(DI

C(Ci, C2) = q)
]

k
.

In conclusion

P(DI
C = k) =

|C1|
|C1|+ |C2|

[
P(DI

C(C1, C1) = q) ∗ P(DI
C(C1, C2) = q)

]
k
+

+
|C2|

|C1|+ |C2|

[
P(DI

C(C2, C1) = q) ∗ P(DI
C(C2, C2) = q)

]
k

and symmetrically holds

P(DO
C = k) =

|C1|
|C1|+ |C2|

[
P(DO

C (C1, C1) = q) ∗ P(DO
C (C1, C2) = q)

]
k
+

+
|C2|

|C1|+ |C2|

[
P(DO

C (C2, C1) = q) ∗ P(DO
C (C2, C2) = q)

]
k

□

The previous theorem can be generalized for a general GCM with B ≥ 2 blocks

Theorem 2.3.2 Given C a GCM with subpopulations C1, C2, ..., CB and B ≥ 2, the degree
distributions are

P(DI
C = k) =

B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
∗B

i=1P(DI
C(Cj, Ci) = q)

]
k

and

P(DO
C = k) =

B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
∗B

i=1P(DO
C (Cj, Ci) = q)

]
k

Proof: As in the theorem 2.3.1

P(DI
C = k) =

B

∑
j=1

P(V ∈ Cj)P((DI
C = k)|(V ∈ Cj)) =

B

∑
j=1

|Cj|
∑B

l=1 |Cl |
P(DI

C(Cj, C) = k) =

and applying the convolution theorem 2.2.6 (being DI
C(Cj, C) = ∑B

i=1 DI
C(Cj, Ci) as

in the previous proof of theorem 2.3.1)

=
B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
∗B

i=1P(DI
C(Cj, Ci) = q)

]
k
.

Symmetrically holds for the outdegree

P(DO
C = k) =

B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
∗B

i=1P(DO
C (Cj, Ci) = q)

]
k
.
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□

2.4 Derivation of the degree distributions of an ER mixed
model

The more straightforward of GCMs is the ER mixed model (Potjans and Diesmann,
2012), even if this model hasn’t been introduced with this formalism. In fact the
ER mixed model is the natural extension of ER model where a set of populations
P1, ..., PB are connected with fixed probabilities depending on the arriving and out-
going neuron types. In GCM formalism

Definition 2.4.1 An ER mixed model M is a GCM with subpopulations P1, ..., PB such that
every couple of nodes of Pi × Pj is independently connected with a probability (PM)ij ∈ [0, 1].
The matrix PM is called probability of connection matrix.

Can be observed that the connectivity between each couple of populations is ER
(Erdös and Rényi, 1959). Using theorem 2.3.2 can be proved

Theorem 2.4.1 An ER mixed model M with subpopulations P1, ..., PB has degree distribu-
tions

P(DI
M = k) =

B

∑
j=1

|Pj|
∑B

l=1 |Pl |

[
B
|Pj|−1
(PM)jj

(q) ∗
(
∗B

i=1
i ̸=j

B|Pi |
(PM)ij

(q)
)]

k

and

P(DO
M = k) =

B

∑
j=1

|Pj|
∑B

l=1 |Pl |

[
B
|Pj|−1
(PM)jj

(q) ∗
(
∗B

i=1
i ̸=j

B|Pi |
(PM)ji

(q)
)]

k

Proof: Using theorem 2.3.2

P(DI
M = k) =

B

∑
j=1

|Pj|
∑B

l=1 |Pl |

[
∗B

i=1P(DI
M(Pj, Pi) = q)

]
k
.

Can be observed that for i = j

P(DI
M(Pj, Pi) = q) = B

|Pj|−1
(PM)jj

(q)

being an ER model subgraph.
For i ̸= j can be thought as the sum of |Pi| Bernoulli random variables, that is the

binomial
P(DI

M(Pj, Pi) = q) = B|Pi |
(PM)ij

(q).

Substituting in the formula

P(DI
M = k) =

B

∑
j=1

|Pj|
∑B

l=1 |Pl |

[
B
|Pj|−1
(PM)jj

(q) ∗
(
∗B

i=1
i ̸=j

B|Pi |
(PM)ij

(q)
)]

k
.

Symmetrically holds for the outdegree

P(DO
M = k) =

B

∑
j=1

|Pj|
∑B

l=1 |Pl |

[
B
|Pj|−1
(PM)jj

(q) ∗
(
∗B

i=1
i ̸=j

B|Pi |
(PM)ji

(q)
)]

k
.
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□

Observing that the Binomial distribution can be approximated by a Gaussian
curve (Feller, 1945), the convolution of Gaussian distributions is still a Gaussian dis-
tribution (Bromiley, 2003). A Gaussian bell can still approximate the convolution of
Binomial distributions (as can be seen in the schematic in figure 2.2).

FIGURE 2.2: Schematics of convolution between Gaussian distribu-
tions (Bromiley, 2003).

The ER mixed is the convex linear combination of B like Gaussian distributions,
and it is the cause of its peculiar structure of multi-modal distributions (as can be
seen in figure 2.3). In general, the degree distributions of the ER mixed have at most
B distinct peaks. However, this multi-peaks behavior, in general, is not present in ex-
perimental neuronal networks (Giacopelli et al., 2021) for this reason will be needed
a Generalized Convolutive Model able to explain experimental findings (Giacopelli,
Migliore, and Tegolo, 2020).
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FIGURE 2.3: Degree distributions from an ER mixed model with 8
subpopulations (4 of excitatory neurons and 4 of inhibitory neurons)
fitting Neocortical area connectivity (Potjans and Diesmann, 2012).

2.5 Real-world Convolutive models

As observed in the previous sections, the experimental networks (Giacopelli et al.,
2021) in general does not follow the behavior of ER mixed model. For this reason,
in (Giacopelli, Migliore, and Tegolo, 2020) has been introduced a simple GCM with
a power-law connectivity (Barabási and Albert, 1999) inside the blocks and ER-like
connectivity between blocks. Since now, the term Convolutive model will refer to this
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type of connectivity. It classifies GCM like the ER mixed as Exponential models
rather than to Convolutive models. The classification is sketched in figure 2.4.

Generalized Convolutive Models

Convolutive Models

Experimental 
Networks

ER mixed

ER 

FIGURE 2.4: GCM classification, where the term Experimental Net-
works refers to the networks analyzed in (Giacopelli et al., 2021).

The first Convolutive model was the aspatial bi-population model (Giacopelli,
Migliore, and Tegolo, 2020)

Definition 2.5.1 A Convolutive aspatial bi-population model C is a convolutive model with
two populations C1 and C2 with the same number of nodes, where the connectivity inside the
blocks is a Price model (Newman, 2010) and the connectivity between the blocks is an ER-like
connectivity with parameters the integer l and the probabilities ϕU , ϕD, p ∈ [0, 1].

In particular each subpopulation C1 and C2 is subdivided in a partition with M = |Cr |
l

sets (with r = 1, 2) C1
r , C2

r , ..., CM
r ⊆ Cr. Then to each couple of sets Ci

1 and Cj
2 is assigned

a random variable βij ∼ Xp. For each node s ∈ Ci
1 and t ∈ Cj

2 can be defined two random
variables νst ∼ XϕD and ηst ∼ XϕU . In conclusion they are connected with a connection
starting from s to t if the random variable

ηstβij + νst(1 − βij)

is equal to one.
Simmetrically, defining β′

ji ∼ Xp, ν′ts ∼ XϕD and η′
ts ∼ XϕU , then exists a connection

from t to s if the random variable

η′
tsβ′

ji + ν′ts(1 − β′
ji)

is equal to one.

The ER-like connectivity used in the previous definition is a generalization of the
ER model used to expand the standard deviation of the degree distributions. Can be
proved that
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Theorem 2.5.1 For a Convolutive aspatial bi-population model C can be proved that

P(DI
C = k) =

[
f I
q ∗
(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗M
]

k

and

P(DO
C = k) =

[
f O
q ∗

(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗M
]

k

Proof: As usual will be proved for the indegree and for the outdegree will be de-
duced by symmetry. Theorem 2.3.1 states that

P(DI
C = k) =

|C1|
|C1|+ |C2|

[
P(DI

C(C1, C1) = q) ∗ P(DI
C(C1, C2) = q)

]
k
+

+
|C2|

|C1|+ |C2|

[
P(DI

C(C2, C1) = q) ∗ P(DI
C(C2, C2) = q)

]
k
=

but |C1| = |C2| by construction and P(DI
C(C1, C1) = k) = P(DI

C(C2, C2) = k) = f I
k ,

then
=

1
2

[
f I
q ∗ P(DI

C(C1, C2) = q)
]

k
+

1
2

[
f I
q ∗ P(DI

C(C2, C1) = q)
]

k
=

=

[
f I
q ∗
(

1
2

P(DI
C(C1, C2) = q) +

1
2

P(DI
C(C2, C1) = q)

)]
k

.

Recalling the ER-like connectivity between blocks

DI
C(C2, C1) ∼

M

∑
j=1

∑
s∈Cj

1

(
ηstβij + νst(1 − βij)

)
=

M

∑
j=1

βij ∑
s∈Cj

1

ηst + (1 − βij) ∑
s∈Cj

1

νst

.

Now can be observed that if Z ∼ Xπ and W are two random variables, then

P(ZW = k) =

{
P(Z = 0) + P(Z = 1)P(W = 0) = (1 − π) + πP(W = 0), if k = 0
P(Z = 1)P(W = k) = πP(W = k). otherwise

that can be rewritten P(WZ = k) = (1 − π)δ0(k) + P(W = k). Then

P

 M

∑
j=1

βij ∑
s∈Cj

1

ηst + (1 − βij) ∑
s∈Cj

1

νst

 =

∗M
j=1P

βij ∑
s∈Cj

1

ηst + (1 − βij) ∑
s∈Cj

1

νst

 = q


k

=

=

∗M
j=1

P

βij ∑
s∈Cj

1

ηst = q

 ∗ P

(1 − βij) ∑
s∈Cj

1

νst = q


k

=

=

∗M
j=1

 (1 − p)δ0(q) + p P

 ∑
s∈Cj

1

ηst = q

 ∗

pδ0(q) + (1 − p) P

 ∑
s∈Cj

1

νst = q

 
k

=

observing that ∑s∈Cj
1

νst ∼ B(l, ϕD) and ∑s∈Cj
1

ηst ∼ B(l, ϕU)

=
[
∗M

j=1

((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))]
k
=
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observing that the arguments of convolution are now independent from j can be
expressed in terms of convolution power

=

[((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k
.

Then

P(DI
C(C2, C1) = k) =

[((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k

by symmetry DI
C(C2, C1) = DI

C(C1, C2) and then

P(DI
C(C1, C2) = k) =

[((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k
.

In conclusion

P(DI
C = k) =

[
f I
q ∗
((

(1 − p)δ0(q) + p Bl
ϕU (q)

)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k
.

Symmetrically can be proved

P(DO
C = k) =

[
f O
q ∗

((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k
.

□

The previous convolutive model has degree distributions of the form

P(DI
C = k) =

[
f I
q ∗ K I

q

]
k

and
P(DO

C = k) =
[

f O
q ∗ KO

q

]
k

where the distributions K I
k and KO

k are called convolutive kernels. For construction
the distributions f I

k and f O
k are power law and the distributions K I

k and KO
k are ex-

ponential. Then the shape of the convolution between them is sketched in figure
2.5. Can be observed that the result has a growing behavior for low degrees and an
heavy tail behavior for high degree. However in order to mathematically prove that
the result of this convolution is still power law can be proved the theorem

Theorem 2.5.2 Consider two probability distributions uk and vk such that:

• limk→+∞
uk−s
uk

= 1, ∀s ≥ 0;

• ∃T ≥ 0|∀t > T ⇒ vt = 0

If it is defined ck =
[
uq ∗ vq

]
k then holds

lim
k→+∞

ck

uk
= 1

Proof:
ck

uk
=

[
uq ∗ vq

]
k

uk
=

∑k
q=0 uqvk−q

uk
=

k

∑
q=k−T

uq

uk
vk−q =

T

∑
j=0

uk−j

uk
vj
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since limk→+∞
uk−j
uk

= 1 is one of the hypothesis, then

lim
k→+∞

ck

uk
= lim

k→+∞

T

∑
j=0

uk−j

uk
vj =

T

∑
j=0

(
lim

k→+∞

uk−j

uk

)
vj =

T

∑
j=0

vj = 1.

□

Can be observed that the hyphothesis of vk are often satisfied by the kernels Kk
being exponential. The hypothesis of uk are often satisfied by a power law distribu-
tion fk, because if it is power law exists γ > 0 such as

lim
k→+∞

fk

k−γ
= φ ∈ R \ {0}.

Suppposing s ≥ 0 and being limk→+∞
(k−s)−γ

k−γ = limk→+∞

(
k−s

k

)−γ
= 1

lim
k→+∞

fk−s

fk
= lim

k→+∞

fk−s

fk

k−γ

(k − s)−γ
= lim

k→+∞

fk−s

(k − s)−γ

k−γ

fk
=

φ

φ
= 1.

Then the Convolutive model has the same heavy tail behavior of the distributions
f I
k and f O

k inside the blocks.

FIGURE 2.5: Convolutive Model representation from (Giacopelli,
Migliore, and Tegolo, 2020).

In order to study a fitting procedure we state the theorem

Theorem 2.5.3 Assigning the parameters m0, ρ and l is possible to find a configuration of
Convolutive Model such as

P(DI
C = k) ≈ vI

k

where vI
k is the experimental network indegree distribution.

Proof: Supposing that C1 and C2 are graph with N nodes and Price connectivity
(Newman, 2010). Then using theorem 2.5.1 can be stated that

P(DI
C = k) =

[
f I
q ∗ K I

q

]
k

.
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From (Newman, 2010) can be derived that the indegree of a Price model is

f I
k =

N − m0

N
γk +

m0

N
Bm0−1

ρ (k)

where N is the number of nodes, the Price model starts with a seed graph with m0
nodes connected with ER connectivity with probability ρ ∈ [0, 1] and the Price model
has a Γ random variable with distribution γk. The aim is to solve the convolutive
equation [(

N − m0

N
γq +

m0

N
Bm0−1

ρ (q)
)
∗ K I

q

]
k
= vI

k.

The equation can be approximated by the equation[(
N − m0

N
γq +

m0

N
Bm0−1

ρ (q)
)
∗ δd(q)

]
k
= vI

k

now the problem is to find the parameters γk, d and p to solve (at least in an approx-
imate way) the equation. Can be observed that

E(
[

f I
q ∗ K I

q

]
k
) = E( f I

k ) + E(K I
k) = E(vI

k)

if EK = E(K I
k) and EV = E(vI

k) then

E( f I
k ) + EK = EV

and then
E( f I

k ) = EV − EK.

Being valid the formula [
f I
q ∗ δd(q)

]
k
= vI

k,

in previous sections has been pointed out that a possible solution is

f I
k =

vk+d

∑+∞
s=d vI

s

then the expected value is

E( f I
k ) =

+∞

∑
k=0

k f I
k =

+∞

∑
k=0

k
vI

k+d

∑+∞
s=d vI

s
=

∑+∞
k=0 kvI

k+d

∑+∞
s=d vI

s
=

∑+∞
s=d (s − d)vI

s

∑+∞
s=d vI

s
=

=
∑+∞

s=d svI
s − d ∑+∞

s=d vI
s

∑+∞
s=d vI

s
=

EV − ∑d−1
j=0 vI

j − d
(

1 − ∑d−1
j=0 vI

j

)
1 − ∑d−1

j=0 vI
j

Then γk can be computed from the systemE(γk) =
EV−∑d−1

j=0 vI
j−d

(
1−∑d−1

j=0 vI
j

)
1−∑d−1

j=0 vI
j

= ψ(d, vI
k)

E(γk) = EV − EK.
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Defining k̂ the biggest integer such as vI
k > 0, can be found

d = arg min
d∈{0,...,k̂}

|(EV − EK)− ψ(d, vI
k)|.

Then determined d, then can be found f I
k as

f I
k =

vk+d

∑+∞
s=d vI

s

and observing that

f I
k =

N − m0

N
γk +

m0

N
Bm0−1

ρ (k)

then
γk =

N
N − m0

f I
k −

m0

N − m0
Bm0−1

ρ (k).

The a value of the Price model will be set to a = E(Γ) in order to obtain a power law
model with decay of k−3.

In order to compute p

E

(((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
)
=

= ME
((

(1 − p)δ0(q) + p Bl
ϕU (q)

)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))
=

= M
(

E
(
(1 − p)δ0(q) + p Bl

ϕU (q)
)
+ E

(
pδ0(q) + (1 − p) Bl

ϕD(q)
))

=

= M(plϕU + (1 − p)lϕD) = N(pϕU + (1 − p)ϕD)

that solved for p returns

p =
EK
N − ϕD

ϕU − ϕD ≈ EK

N

for ϕU ≈ 1 and ϕD ≈ 0. in conclusion substituting

P(DI
C = k) =

[
f I
k ∗
((

(1 − p)δ0(q) + p Bl
ϕU (q)

)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k
≈ vI

k

and

P(DO
C = k) =

[
B
(

k+a,2+ a
E(Γ)

)
B
(

a,1+ a
E(Γ)

) ∗
((

(1 − p)δ0(q) + p Bl
ϕU (q)

)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗M
]

k

□

2.6 Applications

The first use case is about the network reconstruction of about ten CA1 hippocam-
pal regions of rodent (Bonifazi et al., 2009). This reconstruction has been performed
with the fire together, wire together technique, and this justifies the small number of
neurons per slice (about one hundred). The data is the adjacency matrix of these
slice networks. It can be observed that the degree distributions of these networks
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have a great range of variability however has been found the parameters to recon-
struct three stereotypical cases with the Convolutive Model (Giacopelli, Migliore,
and Tegolo, 2020) as depicted in figure 2.6B in terms of survival function that is de-
fined for the indegree as

S f (DI
G, k) = ∑

j≥k
P(DI

G = j)

and for the outdegree as

S f (DO
G , k) = ∑

j≥k
P(DO

G = j).

These slices have many nodes not connected, and it can be conjectured that this
assertive heavy tail behavior is the result of the cutting procedure of the slice, that
cutting the connections between neurons changes significantly overall connectivity
of the network.
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FIGURE 2.6: Result of fitting from (Giacopelli, Migliore, and Tegolo,
2020). A) The comparison between the survival functions of one of
the Neocortical column (Markram et al., 2015) datasets (solid lines)
and the proposed model (dotted lines). B) three representative exper-
imental slices (solid lines) and three similar networks (dotted lines)
extracted from the 5000 nodes network generated with the proposed

algorithm.

The second use case is about the neocortical column reconstruction performed in
(Markram et al., 2015). This stochastic model starts from small samples of neocorti-
cal area connectivity and using a data-driven algorithm (involving touch detection
and pruning), generates a random network with highly accurate information about
neurons’ type, connectivity and displacement in the space of about 30000 neurons.
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In (Giacopelli, Migliore, and Tegolo, 2020), the neurons have been divided in excita-
tory and inhibitory and for each population has been used a Convolutive model
connectivity scheme. The result is shown in figure 2.6A, where can be seen the
accordance between the model prediction and the experimental data. It must be
pointed out that the information provided by the Neocortical model in (Markram
et al., 2015) comprehends the neurons’ type and spatial information. However, on
the other hand, the model proposed in (Giacopelli, Migliore, and Tegolo, 2020), with
a single-core implementation, runs in about one minute (then 1 core × minutes ≈
0.017 core × hours), against the 16 core × hours required for a general touch detec-
tion model (Hjorth et al., 2020). Then we are in front of a trade-off between the
specificity of networks characterization and the time required to build the networks.
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Spatial models

3.1 Why spatial graphs have to be studied

Since now have been studied just the graph’s adjacency matrix (and in particular
the degree distributions). However, most experimental networks contain the infor-
mation of soma position (the nucleus of the neuron). The question now is how the
spatial information in network analysis can be relevant. In order to clarify the fun-
damental role of spatial information in connectivity comprehension, let us start with
the example in figure 3.1.
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FIGURE 3.1: The graphs in figure have the same adjacency matrix. A)
The position of the nodes are arranged to make a lattice structure. B)

The position of the nodes does not follow any particular scheme.
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In figure 3.1A and 3.1B are plotted two graphs that seems two completely differ-
ent graphs. However the adjacency matrix in both cases is

0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


then the two graphs have the same aspatial connectivity. In the first case the regular-
ity is evident and then if the task is to generalize and model the graph in figure 3.1A
taking a decision based on the graph appearance, probably the best model would be
a regular lattice (Newman, 2010). In the second case, as can be seen in figure 3.1B,
the positions of the nodes are so mixed that no scheme is evident and at first glance
probably the best generalization would be an ER model (Erdös and Rényi, 1959).

Then the spatial position of the nodes not only is important to experimentally
characterize the network in order to make more realistic simulations (as will be seen
in the following sections) but also gives an insight into real world networks connec-
tivity schemes.

3.2 Spatial Poisson processes

In random graphs, the positions (as connectivity) can be randomly generated. The
most common way to generate random positions is through an Inhomogeneous
Poisson Process (Møller and Waagepetersen, 2007). Suppose the graph G a

FIGURE 3.2: Schematics of Inhomogeneous Poisson processes (Møller
and Waagepetersen, 2007).

dG−dimensional spatial graphs. Then for each region Ω ⊆ RdG can be defined the
random variable NG(Ω) that represents the number of nodes inside the region Ω. If
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the density of nodes is constant then the expected number of nodes inside Ω is

E(NG(Ω)) = ρ0|Ω| = ρ0

∫
Ω

dx =
∫

Ω
ρ0dx

for some constant ρ0 > 0. However in real world networks the density is rarely
constant and usually is a regular enough function ρG(x) ≥ 0, dependent from the
position x ∈ RdG . Observing (as shown in figure 3.2) that in these cases for small
regions dΩ holds

E(NG(dΩ)) ≈ ρG(c)|dΩ|

where c ∈ dΩ, can be defined

Definition 3.2.1 The positions of a graph G are generated by an Inhomogeneous Poisson
process (Møller and Waagepetersen, 2007) if exists a function ρG(x) ≥ 0 such that

E(NG(Ω)) =
∫

Ω
ρG(x)dx.

Since now all the positions of the Random graphs taken into account (if not speci-
fied the contrary) will be generated by some Inhomogeneous Poisson process. A par-
ticular case of the Inhomogeneous Poisson Process will be the Region-constrained
process

Definition 3.2.2 The positions of the graph G are generated by a Region-contrained process
on Ωconstr ⊆ RdG if

ρG(x) = 0, ∀x /∈ Ωconstr

This process will be very common because is the formal representation of the
concept the positions of the graph are all inside the region Ωconstr.

3.3 ER spatial models

The ER spatial models are the generalizations of the ER model (Erdös and Rényi,
1959). In general an ER spatial model is:

Definition 3.3.1 Given a function ϕES : RdG × RdG → [0, 1], an ER spatial model is
a graph ES with position generated from some Inhomogeneous Poisson process and each
couple of nodes i and j is independently connected with a probability ϕES(xi, xj) dependent
from the positions xi and xj.

This is the most general formulation for an ER spatial model, however since now
will be made the following assumptions

1. The model has a constant density ρ0;

2. Holds ϕES(xi, xj) = pES(
∥∥∥xi − xj

∥∥∥) (Billeh et al., 2020), where the function
pES(d) is called probability dependent from the distance (Giacopelli, Migliore,
and Tegolo, 2020), with d ≥ 0;

3. The space is 3D, then dES = 3.

This particular ER spatial model is the ER distance model (Giacopelli, Migliore,
and Tegolo, 2020). The following theorem will approximate the degree distributions
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of the ER distance model, with a graph that approximate the original graph. It is
made through a step function computed on a partition of [0,+∞[, like in the Rie-
mann integration. Using this step function is equivalent to subdivide the space in
disjoint spherical sectors centered in the node that we are considering. If the width
of the steps of the approximating probability tends to zero then the step function
will tend to the actual value of probability dependent from the distance, confirming
the approximation of the degree distributions.

Theorem 3.3.1 Supposing ES an ER distance model and R = {r0 = 0, r1, ..., rn, ...} a gen-
eral partition of [0,+∞[ with ∆r = supi∈N |ri+1 − ri| < +∞. Then in R3 hold the limits

lim
∆r→0

[
∗+∞

i=0 BNi
pi
(q)
]

k
= P(DI

ES = k)

and
lim

∆r→0

[
∗+∞

i=0 BNi
pi
(q)
]

k
= P(DO

ES = k)

where pi = pES(ri) and

Ni =

{
⌊ρ0

4π
3 r3

1⌋ − 1, i = 0
⌊ρ0

4π
3

(
r3

i+1 − r3
i

)
⌋, i > 0

.

Proof: Will be created a new graph ES′ with degree distributions that approximate
the ES distributions. First of all will be approximated the function pES(d) with the
step function

pES′(d) = pES(ri), ∀d ∈ [ri, ri+1[.

If pES(d) is smooth, the differences (ri+1 − ri) → 0 and then pES′(d) → pES(d). Fixed
a node j ∈ V(ES′), can be observed that the region of the space

Ωi =
{

z ∈ R3|ri ≤
∥∥∥z − xj

∥∥∥ < ri+1

}
which has measure |Ωi| = 4π

3

(
r3

i+1 − r3
i

)
, and the set of {Ωi}+∞

i=0 is a partition of R3.
Then can be stated

DI
ES′(j) = DI

ES′(j, R3) =

=
+∞

∑
i=0

DI
ES′ (j, Ωi)

then using theorem 2.2.6

P(DI
ES′(j) = k) =

[
∗+∞

i=0 P
(

DI
ES′ (j, Ωi) = q

)]
k

.

Inside Ωi the graph is ER with probability pi = pES(ri) and expected number of
nodes

E (NES (Ωi)) = ρ0|Ωi| = ρ0
4π

3
(
r3

i+1 − r3
i
)

In other to round this number to an integer has been used the floor function

Ni =

{
⌊E (N (Ω0))⌋ − 1 = ⌊ρ0

4π
3 r3

1⌋ − 1, i = 0
⌊E (N (Ωi))⌋ = ⌊ρ0

4π
3

(
r3

i+1 − r3
i

)
⌋, i > 0
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Then can be written

P
(

DI
ES′ (j, Ωi) = k

)
= BNi

pi
(k).

Then substituting in the formula

P
(

DI
ES′(j) = k

)
=
[
∗+∞

i=0 BNi
pi
(q)
]

k

because of the homogeneous network can be assumed that the nodes are all equiva-
lent, then by symmetry

P
(

DI
ES′ = k

)
=
[
∗+∞

i=0 BNi
pi
(q)
]

k
.

Symmetrically can be proved that

P
(

DO
ES′ = k

)
=
[
∗+∞

i=0 BNi
pi
(q)
]

k
.

□

However an infinite convolution is hard compute. For this reason will be intro-
duced a sort of truncation theorem

Theorem 3.3.2 If pES(d) is such that

lim
d→+∞

d3+η pER(d) = 0

for some 0 < η < 1.
Then the previous theorem 3.3.1 can be truncated, losing at most ϵ expected connections

for each node, for every ϵ > 0.

Proof: Fixing a node j ∈ V(ES) and a region

Ωδ =
{

z ∈ R3|δ ≤
∥∥∥z − xj

∥∥∥ < (δ + ∆δ)
}
⊆ R3

dependent δ that is the distance from the node j. The number of nodes in Ωd is

E (NES (Ωδ)) = ρ0|Ωδ| =

= ρ0
4π

3
(
(δ + ∆δ)3 − δ3) ≈ (ρ0

4π

3
3∆δ

)
δ2 =

= (4πρ0∆δ) δ2.

Then can be stated

E (NES (Ωδ)) pES(δ) ≈ (4πρ0∆δ) δ2 pES(δ)

Using an infinitesimal approach (∆δ → 0), the number of connections lost in trunca-
tion at δ0 for each node is ∫ +∞

δ0

4πρ0δ2 pES(δ)dδ
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For the hypothesis exists a M > 0 such that for every δ0 > M can be written

pES(d) < d−(3+η), ∀d ≥ δ0

which implies ∫ +∞

δ0

4πρ0δ2 pES(δ)dδ <
∫ +∞

δ0

4πρ0δ2δ−(3+η)dδ =

=
∫ +∞

δ0

4πρ0δ−(1+η)dδ =
4πρ0

ηδ
η
0

In conclusion, observing that

lim
δ0→+∞

4πρ0

ηδ
η
0

= 0

then can be chosen d̂ > M such that 4πρ0

ηd̂η < ϵ.
Then

P(DI
ES = k) ≈

[
∗ι

i=0BNi
pi
(q)
]

k

and
P(DO

ES = k) ≈
[
∗ι

i=0BNi
pi
(q)
]

k

where ι is the smallest integer such as rι ≥ d̂. In this truncation have been lost at
most ϵ connection in average for each node. □

In conclusion the condition on pES(d) holds because in literature is often sup-
posed to have an exponential decay (Billeh et al., 2020). Then can be proved that
such ER distance model can be approximated by a finite convolution of binomials
and this implies that (as observed in ER mixed section) its degree distributions are
exponential. In general an exponential distribution does not fit experimental find-
ings (Giacopelli et al., 2021).

3.4 Price spatial model

Since now has been introduced, just exponential spatial models. One of the first
Power Law spatial models was the one introduced in (Fabrikant, Koutsoupias, and
Papadimitriou, 2002). This model has been created to explain computer networks
connectivity. The idea is quite simple: if the network administrator wants to connect
a group of machines (s)he will try to minimize the wire required. Then done this
premises can be defined the Fabrikant model

Definition 3.4.1 The Fabrikant model is a growing spatial model such that every new node
i is connected with the old node j that minimizes the cost function

Cij = δ
∥∥∥xi − xj

∥∥∥+ hj

where hj is the shortest path length from the first node of the network (called seed node) and
δ is a parameter of the model.

In (Fabrikant, Koutsoupias, and Papadimitriou, 2002) has been proved that δ has
a key role in network topology. In fact as can be seen in figure 3.3 for high values of
δ the indegree of the network is exponential, for low values of δ is Power Law but
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for δ < 1 the network becomes a star network, a tree graph with one central point
(the root) and many chains propagating from the center (the leaves).
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FIGURE 3.3: Schematics of Fabrikant model states (Fabrikant, Kout-
soupias, and Papadimitriou, 2002)

However the outdgree of Fabrikant model (as the original BA model) is trivial,
because every node added has just one outgoing connection that is created when the
node is added to the network. For this reason has been introduced the Price spatial
model (Giacopelli, Migliore, and Tegolo, 2020)

Definition 3.4.2 A Price spatial model is a Fabrikant model where the network is initialized
with a seed network (as in classic Price model) and every new node is connected to c old
nodes, where c is the outcome of a random variable Γ (as in Price model), that minimize the
cost function

Cij = δ
(∥∥∥xi − xj

∥∥∥+ η rj

)
+ hj

where rj ∈ [0, 1] is a random number and η > 0 a parameter.

The Price spatial model combines the cost minimization of the Fabrikant model
with the fact that the outdegree follows the distribution of Γ. Since now, the adja-
cency matrix will be transposed (equivalently, all the connections will be inverted)
such that indegree follows the distribution of Γ and the outdegree is Power Law.

3.5 Spatial Convolutive model

The natural evolution of aspatial Convolutive model is to assign to each subpopula-
tion a spatial region of the space. Then can be defined

Definition 3.5.1 Given a set of regions Ω1, ..., ΩB ⊆ R3 then a Spatial convolutive model is
a Generalized Convolutive Model C with B blocks such that the positions of the nodes of each
sub population Ci are inside the region Ωi. The connectivity of a Spatial Convolutive model
is a spatial Price model inside the blocks and the ER-like connectivity scheme of aspatial
Convolutive model between blocks.

The key idea of the spatial Convolutive model (since now SCM) is that the low
range connectivity is Power Law and computed through cost minimization. Instead,
long range connections are exponential and not space-dependent. So for a general
SCM can be a theorem equivalent to theorem 2.5.1.
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Theorem 3.5.1 For a Spatial Convolutive Model C with B blocks can be proved that

P(DI
C = k) =

[
f I
q ∗
(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗(B−1)M
]

k

and

P(DO
C = k) =

[
f O
q ∗

(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗(B−1)M
]

k

Proof: For theorem 2.3.2 can be written

P(DI
C = k) =

B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
∗B

i=1P(DI
C(Cj, Ci) = q)

]
k
=

=
B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
P(DI

C(Cj, Cj) = q) ∗
(
∗B

i=1
j ̸=i

P(DI
C(Cj, Ci) = q)

)]
k
=

being the connectivity inside the block the same spatial Price model with distribu-
tions f I

k and f O
k can be rewritten

=
B

∑
j=1

|Cj|
∑B

l=1 |Cl |

[
f I
q ∗
(
∗B

i=1
j ̸=i

P(DI
C(Cj, Ci) = q)

)]
k
=

using bilinearity on second component

=

[
f I
q ∗

B

∑
j=1

|Cj|
∑B

l=1 |Cl |

(
∗B

i=1
j ̸=i

P(DI
C(Cj, Ci) = q)

)]
k

=

can be observed that the terms ∗B
i=1
j ̸=i

P(DI
C(Cj, Ci) = q) are all equal for every j =

1, ..., B by symmetry, then

=

[
f I
q ∗
(
∗B

i=1
j ̸=i

P(DI
C(Cj, Ci) = q)

)]
k
=

as in theorem 2.5.1 the connectivty between blocks is

P(DI
C(Cj, Ci) = k) =

[(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗M
]

k

then substituting

=

[
f I
q ∗
(
∗B−1

i=1

(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗M
)]

k
=

=

[
f I
q ∗
((

((1 − p)δ0(q) + pBl
ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl

ϕD(q))
)∗M

)∗(B−1)
]

k

=

=

[
f I
q ∗
(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗M(B−1)
]

k
.
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In conclusion

P(DI
C = k) =

[
f I
q ∗
(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗(B−1)M
]

k
.

Symmetrically can be proved for the outdegree that

P(DO
C = k) =

[
f O
q ∗

(
((1 − p)δ0(q) + pBl

ϕU (q)) ∗ (pδ0(q) + (1 − p)Bl
ϕD(q))

)∗(B−1)M
]

k
.

□

Can be observed that the theorem 2.5.1 has the result of theorem 3.5.1 when B =
2. The fitting procedure is equivalent to the one exposed in theorem 2.5.3

Theorem 3.5.2 Assigning the parameters m0, ρ, l, B and the parameters of spatial Price
model δ and η is possible to find a configuration of Spatial Convolutive Model such as

P(DI
C = k) ≈ vI

k

where vI
k is the experimental network indegree distribution.

Proof: The proof is the same of theorem 2.5.3 except for p calculation

E

(((
(1 − p)δ0(q) + p Bl

ϕU (q)
)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))∗(B−1)M
)
=

= M(B − 1)E
((

(1 − p)δ0(q) + p Bl
ϕU (q)

)
∗
(

pδ0(q) + (1 − p) Bl
ϕD(q)

))
=

= M(B − 1)
(

E
(
(1 − p)δ0(q) + p Bl

ϕU (q)
)
+ E

(
pδ0(q) + (1 − p) Bl

ϕD(q)
))

=

= (B − 1)M(plϕU + (1 − p)lϕD) = N(B − 1)(pϕU + (1 − p)ϕD)

that solved for p returns

p =

EK
N(B−1) − ϕD

ϕU − ϕD ≈ EK

N(B − 1)

for ϕU ≈ 1 and ϕD ≈ 0.
□

Then is possible to fit the SCM to an arbitrary experimental indegree distribution.
In next section will be exposed some examples.

3.6 Applications

Giacopelli et al. in (Giacopelli et al., 2021) introduce how to test the SCM effective-
ness in just real world networks, and four fittings have been performed:

1. A C. Elegans (Cook et al., 2019) connectome reconstruction that has been re-
produced using a two block SCM with δ = 1.5 ± 0.5, Ek = 1 ± 0.5, L = 1,
η = 3 ± 0.25, ϕu = 1 and ϕd = 0 ± 0.00001.
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2. A slice of Rat Hyppocampus (Bonifazi et al., 2009) reproduced with a SCM
with two blocks with unbalanced populations with parameters δ = 0± 2, Ek =
0.1 ± 0.05, L = 1, η = 3 ± 0.25, ϕu = 0.75 and ϕd = 0 ± 0.001.

3. A mouse retina reconstruction (Helmstaedter et al., 2013) reproduced with a
two blocks SCM (one block with connections inverted) with δ = 0 ± 0.5, Ek =
70 ± 0.05, L = 3 ± 0.75, η = 3 ± 0.25, ϕu = 1 and ϕd = 0 ± 0.001.

4. A stochastic reconstruction of a neocortical column (Markram et al., 2015) re-
produced by a 6-layers with 9 blocks (in 3x3 scheme) for each layer model re-
producing separately Excitatory and Inhibitory populations. In particular the
connectivity Excitatory-Excitatory, Excitatory-Inhibitory, Inhibitory-Excitatory
and Inhibitory-Inhibitory have been modeled by Spatial Convolutive models
with parameters: (Excitatory-Excitatory) δ = 3 ± 0.5, Ek = 100 ± 0.5, L =
100 ± 0.5, η = 3 ± 0.25, ϕu = 1 and ϕd = 0.0001 ± 0.00001; (Excitatory-
Inhibitory) δ = 4.52 ± 1, Ek = 6.8 ± 0.5, L = 6 ± 1, η = 2.56 ± 0.5, ϕu = 1
and ϕd = 0.0003 ± 0.00025; (Inhibitory-Inhibitory) δ = 1 ± 0.5, Ek = 3 ± 0.5,
L = 4 ± 1, η = 3 ± 0.25, ϕu = 1 and ϕd = 0.0001 ± 0.00001; (Inhibitory-
Excitatory) δ = 3.27 ± 1, Ek = 7.05 ± 0.5, L = 5 ± 1, η = 3.66 ± 0.5, ϕu = 1 and
ϕd = 0.0006 ± 0.00025.

Figure 3.4 shows the results. It can be seen that the model proposed using the
SCM can fit the degree distributions for the full degree range of variability. The SCM
(by construction) supports parallel computing because a different worker can com-
pute the connectivity of each block. Using this feature is possible to fully reconstruct
the Neocortical model (Markram et al., 2015) in about 7 minutes on Desktop PC with
16 workers, having a computation time of 2 core × hours against the 16 core × hours
required for a general touch detection based model (Hjorth et al., 2020).
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A)  C. Elegans (Exp)

C)  Mouse Retina (Exp)

B)  Rodent Hippocampus (Exp)

D)  CM-MR (Mod)
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FIGURE 3.4: Applications of the Spatial Convolutive model in exper-
imental networks fittings (Giacopelli et al., 2021).
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Network dynamics

4.1 Introduction to network dynamics

Since now has been analyzed the topology of neuronal networks. However, the cru-
cial role of neuronal electric activity in brain cognitive processes is well known. For
these reasons will be important not only to describe the neuronal networks in terms
of graph theory but also to determine how a network of neurons wired behaves.
Then the first step is to determine a neuron model able to simulate neuronal electric
activity. There are many neuronal models, but the most accurate is the Hodgking-
Huxley model (Hodgkin, Huxley, and Eccles, 1952). However this model is made
up by several ODE (Ordinary Differential Equations) and some PDE (Partial Differ-
ential Equations). Because of its complexity to the Hodgking-Huxley model in the
applications are preferred models less accurate but simpler. A popular model in the
applications is the Leaky, Integrate and Fire model (Dutta et al., 2017) (since now LIF).
In figure 4.1 can be seen the RC circuit that composes the LIF. It is a voltage gener-
ator connected in pipeline with a resistor and a capacitor with an external source of
current.
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FIGURE 4.1: LIF circuit plot. (source
https://neuronaldynamics.epfl.ch/online/Ch1.S3.html)

The main equation of LIF model is

I(t) = IR + IC
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where I(t) is the external current, IR is the resistor current and IC the capacitor cur-
rent. Then can be observed that defining V the membrane potential, then IC = C dV

dt
and IR = ∆V

R = V−Vrest
R . Then holds

I(t) =
V − Vrest

R
+ C

dV
dt

and then
C

dV
dt

= −V − Vrest

R
+ I(t)

multiplying by R

RC
dV
dt

= τ
dV
dt

= −(V − Vrest) + RI(t)

where τ = RC is the membrane time constant. Observing that dV
dt = d(V−Vrest)

dt = d ∆V
dt

often the previous equation takes the form

τ
d ∆V

dt
= −∆V + RI(t)

for this reason can be assumed Vrest = 0 since now (even if experimental findings
suggest that is not the case).

However, this differential equation alone cannot model neuronal activity because
it is observed that if the neurons reach a threshold potential, they "fire", which means
that they come back to the resting potential Vrest. Moreover, they keep this value
for an interval of time called refractory time. For this reason, we add to the ODE
model the condition that if V reaches the value Vthr then V is reset to Vrest and keeps
this value for a refractory time τr. Since now, it seems that neurons connectivity
has no role in the network activity, but this is not the case because the term I(t) is
still unknown. This term usually includes the synaptic connections; for example, in
(Brunel, 1999) given a neuron i this term takes the form

Ii(t) = τ
N

∑
j=1

Jji ∑
k

δ(t − tk
j + D)

where Jji is not zero if there is a connection starting from the neuron j and arriving
to neuron i and in particular Jji > 0 if the connection is excitatory and Jji < 0 if
the connection is inhibitory. The term δ(t − tk

j + D) says that if the neuron j fire
at the time tk

j then it generates a reaction that is a delta distribution. In conclusion
supposing G the connectome of the network, Jhj = 0 if and only if (AG)ji = 0. Then
is clear the key role of connectivity of network dynamics.

4.2 Spectral analysis for physiological signals

The idea behind the spectral analysis is the concept of continuous Fourier Transform

Definition 4.2.1 Given a signal x(t) the Continuous Fourier transform of the signal is the
variable x̂(ω) defined as

x̂(ω) =
∫ +∞

−∞
e2πiωτx(τ) dτ

In general the variable x̂(ω) is called spectrum of x(t) and it is dependent from
the frequency ω. However can be seen that the Fourier transform is an integral
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dependent from every value of x(t) for every time t. In the applications this could
be undesired because in some cases could be not interesting to take in account times
very far from experiment time. For these reasons, the concept of the Short Time
Fourier Transform (since now STFT) is prevalent in applications

Definition 4.2.2 The Short Time Fourier Transform of the signal x(t), centered in the time
instant t0 and with time window T is the function x̂(ω, t0) defined as

x̂(ω, t0) =
∫ t0+

T
2

t0− T
2

e2πiωτx(τ) dτ

Usually the signal of a neuron h of LIF model can be expressed as

xh(t) = ∑
k

δ(t − tk
h)

where the times tk
h are usually the firing times of the neuron h. Then the STFT of the

signal is

x̂h(ω, t0) =
∫ t0+

T
2

t0− T
2

e2πiωτxh(τ) dτ = ∑
k||tk

h−t0|< T
2

e2πiωtk
h .

Can be observed that x̂h(ω, t0) ∈ C, defined the conjugate of a complex number
z as z, then it is defined as in (Dummer, Wieland, and Lindner, 2014) the modulus
inside the time window

Sh(ω, t0) =

√
x̂h(ω, t0) x̂h(ω, t0)

T
.

However, the previous measures are dependent from the neuron h, in order to define
an ensemble measure will be defined the measure

L(ω, t0) =
∑NG

h=1 log10

(
max

(
Sh(ω, t0), 10−4))

NG
.

4.3 A study case on Neocortex

Up to now there are two main models of the Neocortical area:

1. An ER mixed model (Potjans and Diesmann, 2012) (since now PD) that fits the
probability of connection observed between neuronal populations of Neocor-
tex (figure 4.2A). The original network has about 80,000 neurons, however in
our experiments will be used the same ER mixed model with the same proba-
bilities, but with about 30,000 neurons.

2. A stochastic data-driven model (Markram et al., 2015) (since now MR) based
on techniques of touch detection and pruning (figure 4.2B) made up by 30,000
neurons.

The model exposed in (Brunel, 1999) (since now BR) has been taken into account
to investigate such two models. It is based on an ER model for connectivity and a
LIF for neuronal activity. The connectivity of neuronal network of BR is independent
from the LIF neuronal activity model. Then has been used the neuronal activity
model of (Brunel, 1999) to simulate the activity of the networks PD and MR. These
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simulations will be called since now now background activity of the network. Then
has been added a sinusoidal current generator to each neuron i, making the Ii(t)
equation of LIF model

Ii(t) = τ
N

∑
j=1

Jji ∑
k

δ(t − tk
j + D) + A sin(2π f t)

Where A is called amplitude and f is called frequency of the generator.
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FIGURE 4.2: Two data driven models of Neocortex. A) This model is
an aspatial ER mixed model with about 80,000 neurons (Potjans and
Diesmann, 2012). B) This model is a touch detection based model

composed by about 30,000 neurons (Markram et al., 2015).

Then has been computed (on 150 randomly chosen neurons) the measure L(ω, t0)
in different conditions. The first condition is when the generator is off (Background
activity) and will be defined as LB(ω, t0). The second condition is when the gener-
ator is on with amplitudes A ranging from 0 to 100 pA and frequencies f ranging
from 0 to 80 Hz and it will be defined as L( f ,A)

S (ω, t0).
Then for each couple ( f , A) has been computed the quantity

∆( f ,A)
S (ω, t0) = L( f ,A)

S (ω, t0)− LB(ω, t0)

that represents how much the perturbed network deviates from the background ac-
tivity and then this quantity has been mediated on time defining

D( f ,A)
S (ω) =

〈
∆( f ,A)

S (ω, t0)
〉

t0

where the brackets ⟨ · ⟩t0 represent the average on the variable t0. Using Parseval’s
Theorem the power of the response has been calculated as

R( f ,A)
S =

∫ W

0
102D( f ,A)

S (ω) dω

where W is the highest harmonic considered (in our case 250 Hz). The aim of this
measure is to quantify the strength of the reaction of the network to the generator.
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The results of this analysis are in figure 4.3. For example, in figure 4.3A can be
seen how BR model is very reactive in the ranges δ to θ and in low γ but it has
not significant reactions in the remaining frequencies. Similarly, in figure 4.3B can
be seen how PD Excitatory neurons are reactive just for low frequencies, and they
do not react to higher frequencies. In contrast, the MR model has a broad range of
reactivity that is coherent to what is observed experimentally (Buzsáki and Draguhn,
2004). In fact, it is rare to see a neuronal network tune in small ranges of frequencies.
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FIGURE 4.3: Power spectra as a function of external stimulation am-
plitude and frequency. (Left) Excitatory neurons, (Right) Inhibitory
neurons. A) The network proposed in (Brunel, 1999) with about
12,500 neurons. B) The network connected as in (Potjans and Dies-
mann, 2012) with 30,000 neurons. C) The network connected as in
(Markram et al., 2015) with 30,000 neurons. Major brain rhythms fre-
quency range (from (Buzsáki and Draguhn, 2004)) are shown below

the stimulation frequency axis

Another interesting measure is the periodicity of the response that is computed
starting from a partition of the interval in Q bands. Every band has subdivided in
S points creating the numbers

{
wp

k

}
k=1,...,S for every p = 1, ..., Q. Then for every

couple (p, p + 1) has been computed a measure given by
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and averaged over p to compute the Average Cosine Distance

C( f ,A) =
∑Q−1

p=1 C( f ,A)
p

Q − 1
.

The last measure quantify the periodicity of the neuronal activity, measuring how
much the network follows the generator signal frequency.

The results are shown in figure 4.4. In figure 4.4A can be seen that the BR net-
work is more resonant for β range and high γ. In 4.4B is shown that the PD model is
resonant for every frequency, and it is not a good feature because it is experimentally
observed (Buzsáki and Draguhn, 2004) that exist in brain key frequencies represent-
ing different brain states. In 4.4C is shown that the excitatory population is more
resonant for low frequencies; instead, the inhibitory population is resonant for low
frequencies and high γ range.
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FIGURE 4.4: Periodicity as a function of external stimulation ampli-
tude and frequency. (Left) Excitatory neurons, (Right) Inhibitory neu-
rons. A) The network proposed in (Brunel, 1999) with about 12,500
neurons. B) The network connected as in (Potjans and Diesmann,
2012) with 30,000 neurons. C) The network connected as in (Markram
et al., 2015) with 30,000 neurons. Major brain rhythms frequency
range (from (Buzsáki and Draguhn, 2004)) are shown below the stim-

ulation frequency axis

In conclusion has been performed the same tests on the SCM in figure 3.4D. The
results of these analysis are shown in figure 4.5. In figure 4.5A can be seen how
the SCM proposed is able to reproduce the Power Spectra of MR model (figure 4.3C)
and in figure 4.5B how is able to reproduce the periodicity measure plot of MR model
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(figure 4.4C). In conclusion, not only the SCM is able to reproduce the degree dis-
tributions experimentally observed, but in in this tests it was also able to reproduce
the neuronal activity of a realistic network.
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FIGURE 4.5: Network activity using the Convolutive Model connec-
tivity. A) Power spectra as a function of external stimulation ampli-
tude and frequency of Excitatory (Left) and Inhibitory (Right) neu-
rons for the Convolutive model (Giacopelli et al., 2021; Giacopelli,
2021) fitting the MR network (Markram et al., 2015); B) Periodic-
ity measure as a function of external stimulation amplitude and fre-
quency of Excitatory (Left) and Inhibitory (Right) neurons for the
Convolutive model (Giacopelli et al., 2021; Giacopelli, 2021) fitting

the MR network (Markram et al., 2015).

4.4 Hindamarsh and Rose model

As been pointed out in the previous sections, even if since now the Hodgkin-Huxley
model (Hodgkin, Huxley, and Eccles, 1952) is the most realistic model to simulate
neuron behavior, in the applications are preferred simpler models. One of the most
popular ODE based model is Hindamarsh-Rose model (since now HR model) (Hind-
marsh and Rose, 1984). This model is able to explain the spkining activity through
the non-linearity of the differential equations. In particular will be adopted the
model exposed in (Stefanescu and Jirsa, 2008) that is composed by a set of equa-
tions able to model Excitatory and Inhibitory neurons. The equations of a general
Excitatory neuron i are

τ dxEi
dt = νyEi − a x3

Ei
ν2 + b x2

Ei
ν − νzEi + K ∑

NE
k=1 AEE

ik (xEk−xEi)
NE

− nK ∑
NI
k=1 AEI

ik (xIk−xEi)
NI

+ σI(t, m) + ω(t)

τ
dyEi

dt
= c − d

x2
Ei

ν2 − yEi

τ
dzEi

dt
= r

(
s

xEi − x0

ν
− zEi

)
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Analogously the equations for a general Inhibitory neuron j are

τ
dxI j

dt
= νyI j − a

x3
I j

ν2 + b
x2

I j

ν
− νzI j + K

∑NE
k=1 AIE

jk (xEk − xI j)

NE
+ σI(t, m) + ω(t)

τ
dyI j

dt
= c − d

x2
I j

ν2 − yI j

τ
dzI j

dt
= r

(
s

xI j − x0

ν
− zI j

)
Where NE and NI are respectively the numbers of Excitatory and Inhibitory neu-

rons. The parameters are a = 1, b = 3, d = 5, s = 4, r = 0.003, x0 = −1.6, K = 150
and ω(t) is a white noise. The matrices AEE, AEI and AIE are the adjacency matri-
ces for every type of connections (Excitatory-Excitatory, Excitatory-Inhibitory and
Inhibitory-Excitatory; Inhibitory-Inhibitory connections were ignored, as in (Ste-
fanescu and Jirsa, 2008)). The terms I(m, t) and n will be discussed in the next sec-
tions.

The HR model introduced in (Stefanescu and Jirsa, 2008) has been successfully
used to construct a mean field model (the Epileptor) that is used to treat drug resis-
tant Epilepsy. However, the Epileptor does not consider the micro-circuit connectiv-
ity, ignoring the role of connectivity in Epileptic activity.

4.5 Network connectivity and Simulation framework

In order to establish the role of network connectivity in Epileptic activity, two case
studies have been considered:

1. In the Thick case (figure 4.6A) has been taken in account a network with the
degree distributions of the C: Elegans (Cook et al., 2019) and the spatial distri-
bution of neocortical column of (Markram et al., 2015), that is a parallelepiped
with dimensions 500 × 500 × 2000 µm.

2. In the Thin case (figure 4.6B) has been taken in account the hyppocamapal
slice network of (Bonifazi et al., 2009) with a slice spatial distribution in a par-
allelpiped with dimensions 400 × 300 × 10 µm.

These two case studies have been chosen because they represent two physiological
and widely analyzed case studies in literature (Markram et al., 2015; Bonifazi et al.,
2009; Cook et al., 2019; Potjans and Diesmann, 2012; Stefanescu and Jirsa, 2008).

For each case study has been created an ER model (Erdös and Rényi, 1959) (figure
4.6, red line), an ER spatial (Giacopelli, Migliore, and Tegolo, 2020) (figure 4.6, blue
line) and a Convolutive model (Giacopelli et al., 2021) (figure 4.6, green line) fitting
the experimental degree distributions (figure 4.6, black line).

In particular the parameters of the models are for the Thick volume case three
kinds of connectivity

1. following an ER model, ignoring the distance among neurons, and with a fixed
connection probability of p = 0.026, corresponding to the average connection
probability of a C. Elegans brain (figure 4.6A red traces)

2. following an ER model but with a connection probability depending on the
distance between neurons as p(d) = Ae−Bd (as in (Billeh et al., 2020)), where d
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A

B

FIGURE 4.6: A) Indegree distribution (left), outdegree distribution
(middle) and connection length distribution (right) for networks of
Epileptors connected as an ER model (red), ER with distance (blue)
and using a convolutive model (green) fitted to experimental C. el-
egans data (black, connection length was not available). B) Inde-
gree distribution (left), outdegree distribution (middle) and connec-
tion length distribution (right) for networks of Epileptors connected
as an ER model (red), ER with distance (blue), and using a convolu-
tive model (green), connected as observed in an experimental hip-
pocampal slice (black, (Bonifazi et al., 2009)), implemented with 4
blocks and 2 sub-blocks containing 1% and 99% of the neurons, re-

spectively, and with parameters δ = 0.25, Ek = 0.1 and η = 3.
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is the distance between two nodes, A = 0.2, and B = 0.004 (figure 4.6A blue
traces)

3. using a convolutive model fitting a C. Elegans degree distributions (Cook et al.,
2019), with two blocks and parameters, δ = 1.5, Ek = 1 and η = 3 (Giacopelli,
Tegolo, and Migliore, 2021) (figure 4.6A, green traces)

for the Thin volume case other three kinds of connectivity

1. following an ER model, ignoring the distance among neurons, and with a fixed
connection probability of p = 0.0438, cconsistent with that observed in a hip-
pocampal slice (figure 4.6B red traces)

2. following an ER model but with a connection probability depending on the
distance between neurons as p(d) = Ae−Bd (as in (Billeh et al., 2020)), where
d is the distance between two nodes, A = 0.7 and B = 0.025 (figure 4.6B blue
traces)

3. using a convolutive model fitting a slice hippocampus network degree distri-
butions (Bonifazi et al., 2009), with two blocks with respectively th 1% and 99%
of neurons and parameters, δ = 0.25, Ek = 0.1 and η = 3 (Giacopelli, Tegolo,
and Migliore, 2021)(figure 4.6B, green traces)

The idea of the proposed model is to add to every neuron a space dependent
current Ii(m, t), where m = (mx, my, mz) is the position of the neuron i, of the form

Ii(t, m) = S(t)

Imaxe
−

m2
x+m2

y+m2
z

2σ2
xyz + IGND

+ ζi

where Imax = {1.5nA, 2.5nA, 5nA}, IGND = 1nA, S(t) is a time-dependent com-
ponent of the current, with values in [0, 1], σxyz is 600 µm for Thick case and 120 µm
for the Thin case, and ζi is a random normal vector with amplitude 0.1 nA.

4.6 Epileptiform activity and Mean Amplitude

The parameter n is called inhibitory strength (Stefanescu and Jirsa, 2008) and it has
the key role of modulating the Inhibitory response in the network. In figure 4.7 can
be seen a set of simulated tracks with low inhibition (n = 0.1).

Figure 4.7A shows how the intensity of current I(t, m) is applied to the networks.
In particular, at the beginning of the simulations, a low current is applied to make
networks reach a steady state (that since now will be called background activity).
After this, at second 5, the intensity of current increases reaching its maximum at
second 9. Then the current is left steady until the gradual descent in the second 12.

In addition, has been performed a quantitative analysis to estimate the impact of
inhibitory strength n on the Epileptiform activity. In particular, the mean amplitude
of the signal has been taken into account (Ma, Zheng, and Peng, 2021). This feature
has a key role in Epilepsy detection because one of the most common symptoms of
an Epileptic seizure is the appearance of high amplitude oscillations in the EEG pa-
tient’s track (Devinsky et al., 2018). In order to perform an exhaustive quantitative
analysis has been chosen the values 1.5 nA, 2 nA and 5 nA of Imax as representative
of a small, medium and strong stimulation. Then for each value of intensity of stimu-
lation has been computed 5 independent simulations for each value of the inhibitory
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FIGURE 4.7: A) Maximum input current, in the center of the net-
work, as a function of time; B) Simulation of epileptiform activity
in networks in the Thick case study with low inhibitory interaction

(n = 0.1). C) Same as in B) but in the Thin case study.
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strength n in the values 0.05, 0.1 ,0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5 and 2.0. The re-
sults are shown in figure 4.8. In the first row, there are the plots referred to the Thick
network, and in the second row, there are the plots referred to the Thin network. It
can be noted that in both cases, the ER model (red line of figure 4.8) shows bigger
amplitudes for low inhibition. The ER distance shows amplitudes comparable to the
ER model for 1.5 nA and 2 nA. However, it shows weaker mean amplitude values
for 5 nA. In contrast the SCM proposed for each value of n and Imax are always
below the threshold of 20 µV that has been considered as Epileptic threshold.

FIGURE 4.8: Average mean amplitude of the different models calcu-
lated, as a function of the inhibition strength, over the 10 sec duration
of an external input of different maximum strengths, Imax. For any
given value of Imax and n, symbols represent the average membrane
potential obtained from five network instances. Lines represent their

average value.

4.7 Spike-wave complexes

In literature have been observed during the EEG recordings 3Hz frequency dis-
charges with variable amplitudes (Saggio et al., 2020), these discharges are often
called Spike-Wave Complexes (Noachtar and Rémi, 2009). The underlying idea is
that exists a mechanism of dynamic inhibition (Destexhe, Contreras, and Steriade,
2001) able to increase the inhibitory strength n when the overall activity of the net-
work becomes too intense. In formula this mechanism can be described by two
differential equations

τ
dn
dt

= ρ (θ − θ0) (n0 − n)n

τ
dθ

dt
= ρθ

(
X(t)

ν
− θ

)
Where τ = 0.0167s, ν = 20µV, n0 = 2, ρ = 0.05, ρθ = 0.15 and θ0 is −0.9 for the

Thick case and -1 for the Thin case. The first equation is a logistic equation tuned by
the variable θ. If θ > θ0 then n converges to n0 = 2 with a logistic growth. This mean
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that if the variable θ (that follows the mean potential X) is over the threshold, then
the network increases the inhibition to reduce the mean activity. If θ < θ0 the value
decreases to 0, then if the network activity is below the threshold then the network
comes back to the minimum inhibition. The second equation rules the behavior of θ

making it converge to the value X(t)
ν so slowly to start a delay dynamics, creating the

spike-wave behavior observed in simulations. The idea behind this mechanism is
to simulate the reaction of the network increasing the inhibitory strength n for high
values of X(t). This model is able to reproduce the behavior observed in the exper-
imental findings (Noachtar and Rémi, 2009) in the cases of Exponential topology,
in contrast the results obtained for convolutive topology are slightly affected by the
phenomenon.
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A

nA

Stimulation

nA

FIGURE 4.9: A) Experimental EEG traces showing a Spike-Wave oc-
currence during the recording (Noachtar and Rémi, 2009) B) maxi-
mum input current used in simulation in function of time; C) Most
representative traces in a set of 25 simulation per topology case. (left)
Filtered membrane potential track. (middle) plot of n in function of
time (solid line) and of (θ − θ0) in function of time (dashed line).
(right) Plot of all the 25 simulations in the plane with x axis mean
amplitude and y axis the quantity

∫ 13
9 X2

lowdt, where Xlow(t) is a low
pass filtering of the average potential X(t). D) Same as in (C) but for

neurons distributed in a thin volume
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4.8 The role of topology in brain activity

In conclusion, it has been proved in (Giacopelli et al., 2021) that brain connectiv-
ity has a central role in brain activity. In fact, a change of network topology can
cause a significant variation in the resonance frequencies of the connectome. In (Gi-
acopelli, Tegolo, and Migliore, 2021) it is also proved that network topology has a
crucial role in Epileptic seizure occurrence, leading to further reflections on current
Epilepsy treatment. Current anti-epileptic drugs are based on reduction of inhibitory
response (Rogawski and Löscher, 2004), which may lead to several adverse collat-
eral effects (St Louis, 2009). However, simulations suggest that better results can be
achieved by increasing inhibition selectively when needed. Furthermore, some ex-
perimental findings suggest that it could be possible that synapsin can regulate the
GABA release (Song and Augustine, 2016), which is a neurotransmitter involved in
the short-time plasticity of synapses. Also, anti-epileptic drugs can alter short-time
plasticity (Gholmieh, Chen, and Courellis, 2007). Another promising field of study
is to apply optogenetics and designer receptor technologies (Krook-Magnuson and
Soltesz, 2015) showing promising results in avoiding seizure onset.
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Segmentation Methods for Immunofluores-
cence images

5.1 Immunofluorescence images

One of modern automatic image analysis objectives is to identify predictive and
prognostic elements useful for highlighting possible pathologies. The images an-
alyzed can usually be fMRI, PET or Immunofluorescence images. The following
section will focus on the last kind of image. Immunofluorescence (IF) is a technique
to highlight a portion of tissue using specific antibodies that create luminescence (Im
et al., 2019). The result of IF is a microscopy image that shows the area affected by
the antibody brighter than the regions not affected by the antibody. Most of the al-
gorithms used to process these images work at the grayscale level. Such images are
into the dataset introduced in (Kromp et al., 2020), but that hypothesis is not valid
for every dataset; for example, some datasets are RGB, and they have most of the
information contained in the green channel (Nigam et al., 2015) or even on the blue
channel (Gunesli, Sokmensuer, and Gunduz-Demir, 2020). For these reasons, in the
proposed analysis will be implied that the starting point will be a grayscale version
of every dataset containing as much information as possible.

5.2 Segmentation task and evaluation metrics

The segmentation of an image is the task to subdivide the area of an image into sub-
regions. A classic example of segmentation is semantic segmentation, which is the
task of marking the surface occupied by a particular object in an image. In the case
of interest, the objects will be the cells of IF images. There are two main approaches
for this task:

1. The binary approach returns a binary image where every pixel inside a cell
is marked with white color otherwise it is marked with black. This approach
considers all of the cells as a single object because each pixel has not the cell
information that contains it.

2. The cell-by-cell approach assigns a different color to every cell. As a result,
the cells are distinguishable and, in general, will be numbered with natural
numbers.

Since now will be evaluated just the binary segmentations of the methods dis-
cussed, even if some of them return a cell-by-cell segmentation. In general, a bit of
a binary cell segmentation can be said Positive if the segmentation says there is a
cell on it or Negative otherwise. There are many metrics with slightly different in-
terpretations, but every metric proposed is based on four sets: True Positives (TP),
True Negatives (TN), False Positives (FP) and False Negatives (FN). The TP set is the
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set of the pixels Positive for the ground truth and the prediction. Similarly, the TN
set is the set of the pixels Negative for the ground truth and the prediction. The FP
set is the set of the pixels Positive for the prediction and Negative for the ground
truth. Analogously, the FN set is the set of the pixels Negative for the prediction and
Positive for the ground truth. Often some metrics are used to estimate how much a
prediction is close to the ground truth. The most common are:

1. Intersection over Union (IoU): is defined as TP
TP+FP+FN and it is one of the most

balanced metrics.

2. F1-score: is defined as 2 TP
2 TP+FP+FN and can be proved being almost propor-

tional to the IoU.

3. Accuracy: is defined as TP+TN
TP+FP+TN+FN and is one of the most popular metrics

of Machine Learning. However, in cell segmentation tasks this metric can be
biased in cases of sparse little cells, in these cases the number of Negative pixels
can be very greater than the number of Positives pixels. This means that even
if the prediction is fully Negative (every pixel is negative), if the ground truth
ratio P/N tends to 0 then the Accuracy tends to 1.

4. Sensitivity: is defined as TP
TP+FN and can be biased if the ground truth ratio

N/P tends to 0.

5. Specificity: is defined as TN
TN+FP and can be biased if the ground truth ratio

P/N tends to 0.

5.3 Machine learning approaches

Neural networks have proved in recent years to be a valid solution to various com-
putational problems (Deng and Yu, 2014), (Khan et al., 2020), (Tajbakhsh et al., 2016)
in particular in segmentation and classification tasks (Alzubaidi et al., 2021), (Wain-
berg et al., 2018), (Khan et al., 2020). The basic technique consists of automatic learn-
ing from a training set and then the evaluation on a test set, to assess the perfor-
mances. The Convolution Neural Network (CNN) can be identified among the most
performing neuronal networks, made up of pairs of convolutional levels coupled to
connected levels. The three networks analyzed in this section will be an evolution of
the concept of CNN. The neural networks taken in account are:

1. UNet: The U-Net is a deep learning network (Ronneberger, Fischer, and Brox,
2015) for image processing. The idea is to scale down the information of the
input image through convolution layers and then scale up the information
through transposed convolutional layers to obtain an image with the exact res-
olution of the original with the information of the semantic segmentation in
each pixel. The U-Net is simple in architecture, fast to train (the U-Net used in
this paper (Ronneberger, Fischer, and Brox, 2015) has been trained on a GPU
RTX 2070 with 8 GB of VRAM in about 1 hour) and requires few computa-
tional resources in prediction (Wu et al., 2019), making this network suitable
for general purpose tasks. The main downside of this architecture is that in
cells segmentation task returns a binary label and cannot separate the single
cells by default. Therefore, this contribution will use the Keras/Tensorflow
implementation available at https://github.com/zhixuhao/unet inspired to
(Ronneberger, Fischer, and Brox, 2015) that takes as input grayscale images
with resolution 512 × 512.



5.4. Deterministic approaches 73

2. KG Network: The Keypoint Graph Network (since now KG Network) is a
neural network based on the concept of Keypoint Graph (Yi et al., 2019). The
network first applies a ResNet34-based features extraction. Then the network
layers identify some points (called Keypoints) that discretize the input image.
Then the collected key points are processed to extract the bounding boxes of
the cells. Finally, the bounding boxes of the cells are taken as input for the
final layers that extract the cells masks. This network (in contrast with the
previous U-Net) provides a cell-by-cell segmentation. However, it has a more
considerable forward time than U-Net and a training time of about 4 hours
on the same machine with a GPU RTX 2070 with 8 GB of VRAM This contri-
bution has been used a PyTorch implementation publicly available at the site
https://github.com/yijingru/KG_Instance_Segmentation based on the paper
(Yi et al., 2019) and takes as input grayscale images with resolution 256 × 256.

3. Mask R-CNN: The Mask R-CNN uses a Region-based Convolutional Neural
Network (R-CNN) (He et al., 2017) to extract the masks of the single cells. This
network has a more significant forward time than the previous networks, and
this network requires a massive quantity of VRAM to be trained; in fact, it has
been trained on a cloud node with a GPU NVIDIA K80 with 24 GB of VRAM
in 2 hours and 30 minutes. Has been used a Tensorflow/Keras implementation
publicly available at the site https://github.com/matterport/Mask_RCNN and
takes as input grayscale images with resolution 256 × 256.

5.4 Deterministic approaches

There are several approaches not using Machine learning in cells segmentation.
However, most of them are characterized by a single feature: they work for a com-
bination of parameters depending on the dataset (in worst cases from the single im-
age), but this combination must be found (most of the time using trial and error) by
the operator. The proposed model will be tested on two different datasets of white
cells on the black background being competitive with neural networks, so it is not
affected by this issue. For this reason, the approaches below described will not be
tested and will be described to have a historical point of view. However, some of
them will be used in the pipeline of the proposed model. Will be made a brief list of
the most common methods:

1. Otsu’s method: it was introduced in (Otsu, 1979). It is based on the sim-
ple idea that if a white object is placed on a dark background, then in the
grayscale pixel values histogram (Stockman and Shapiro, 2001) there must be
two peaks: the first one is the most common background color end the second
one is the most common object color. The method finds the gray scale value
that maximizes the variance between the background class (dark pixels) and
the object class (bright pixels) and then performs a thresholding on the im-
age at the threshold value found by the method to separate the two classes.
The Otsu method is a very powerful tool because it does not require any tun-
ing by the user. However, it has many downsides that make it unpractical
for real-world images. For example in real-world images rarely the histogram
has a perfectly bimodal distribution (Kittler and Illingworth, 1985) being very
noisy. Then Otsu’s method is compelling but used alone can lead to poor per-
formances. This is evident in the proposed model and will be solved using
neuronal agents.
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2. Watershed: Otsu’s method returns a binary segmentation. To overcome this
problem has been introduced the watershed (Beucher and Mathmatique, 1979).
This transform can distinguish homogeneous objects through the gradient of
the image. Meyer’s version (Meyer, 1992) of this transform starts with a set of
markers established by the user (most of the time extracted in an automated
way using mathematical morphology). Then, the algorithm performs a “flood-
ing” of the image to find the optimal “basins”. It is one of the simplest algo-
rithms for splitting purposes and with good quality images. However, it has
some downsides. Starting from an Otsu’s thresholding, it could be affected by
the same problems previously described. Another downside is that in noisy
images, a watershed can be affected by over-splitting (Kornilov and Safonov,
2018), which means that are present more clusters than expected. On the other
side for very close and merged objects (like cells clusters), the mathematical
morphology methods could fail in separating the single objects. For these rea-
sons, the proposed model has some steps of pre-processing in the markers in-
dividuation and post-processing of watershed masks to obtain optimal results.

3. Active Contour Model: the concept of the Active Contour Model (ACM since
now) was introduced in 1988 in (Kass, Witkin, and Terzopoulos, 2004). The
idea of ACM is to build a discrete contour with key points that minimize
through the gradient descent the energy potential

E∗
snake =

∫ 1

0

(
Eint(s) + Eimg(s) + Econ(s)

)
ds

where Eint is called internal energy and takes into account the derivative of the
contour, Eimg takes into account the gray scale values of the image and Econ
adds further constraints to the contour. The ACM has two main problems.
The first problem is that for complex shapes if the weights of the functionals
Eint and Eimg are not properly balanced, this could lead to a poor convergence
to the actual contour. The algorithm’s convergence causes the second kind of
problem to local minima. Both issues imply that in real-world applications,
the ACMs cannot be applied in a fully automated way (Akbari, Ziaei, and
Azarnoush, 2021) because of all these fine tunings (that in worst cases involve
every single contour of an image) required to obtain optimal results. For these
reasons, the classic functionals will be replaced by neuronal agents, leading to
a better generalization without parameter tuning.

5.5 Dataset description

The datasets used in the experiments are two:

1. Neuroblastoma dataset: This dataset introduced in (Kromp et al., 2020) is com-
posed of 4 samples of Tumor and four samples of the bone marrow of Neurob-
lastoma patients. The dataset has been created with the aid of the Children’s
Cancer Research Institute (CCRI) biobank (EK.1853/2016) to establish a bench-
mark for the experimentations on automatic cells segmentation. The dataset
consists of 41 train images and 38 test images in format .jpg with a resolution
variable of about 1200 × 1000 of IF cells. The images are already in grayscale,
and this means that brighter zones are white and darker zones are black, so
they don’t need preprocessing. The segmentation has been created by the au-
thors in a manual way (Kromp et al., 2020), and it distinguishes between cells.
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The cells segmentation is stored in text-based files. The dataset has proven to
be a hard enough benchmark to test the models on real world images (Kromp
et al., 2021). For these reasons, it will be taken as the main benchmark of the
paper.

2. NucleusSegData dataset: this dataset has been introduced in (Koyuncu, Cetin-
Atalay, and Gunduz-Demir, 2018) and used in (Gunesli, Sokmensuer, and
Gunduz-Demir, 2020), it is composed of 61 RGB images with a resolution
variable of about 1000 × 700 of cancer cells taken from the Huh7 and HepG2
regions. The cells have been stained with nuclear Hoechst 33258 (Koyuncu,
Cetin-Atalay, and Gunduz-Demir, 2018), and it has been activated by U.V.
light. This procedure has caused the bright color it is not white, but it is blue
because of U.V. light. For this reason, this dataset has been preprocessed to ex-
tract the blue channel of the image to obtain a grayscale image representative
of fluorescence. Moreover, This dataset will not be used to train the model be-
cause it has not a variety of Neuroblastoma datasets. However, it will be used
as a test set to examine the generalization capacity of the algorithms.

5.6 Why a new approach is needed

The previous algorithms are all Neural Networks, and they have good performances
in optimal conditions. However, it has been shown in the literature that Deep Neu-
ral Network (since now DNN) can be affected by adversarial attacks (Goodfellow,
Shlens, and Szegedy, 2014). An adversarial attack is a small perturbation (often
called adversarial noise) introduced and tuned by a Machine Learning algorithm to
induce a misclassification of the Network. Segmentation neural networks are not
immune from these kinds of attacks. For example, in (Bar et al., 2021) is proved as
an adversative attack is able to fool the ICNet (Zhao et al., 2018) that provides the
semantic segmentation controlling an autonomous drive car. The changes of the Ad-
versative algorithm applied to the input image are so subtle that a real world light
imperfection or a camera sensor not working properly could be able to recreate the
adversative pattern, leading to an accident. In this unlucky (but possible) scenario
emerges the second big problem of these algorithms: they are black-box algorithms,
and then in many cases after the accident, the best that can be done is to train the Net-
work again and hope that no similar issues will affect the Network in future again.
For these reasons, the concept of Explainable AI is becoming more and more popu-
lar (since now XAI). In brief, an XAI is an algorithm such as a human can explain its
actions and eventually correct them. This topic has resulted in crucial importance
for a real-world application of deep learning in fields like robotics, automation, and
medicine because an XAI can be fixed after an error, and a human can guarantee its
errors.

5.7 The proposed model

In this contribution will be proposed an XAI algorithm based on a mask transformed
by neuronal based agents. The algorithm is composed of six main parts:

1. Pre-Processing phase: prepares the images for the next steps applying, first of
all, a sharpening filter, then a Gaussian filter and in conclusion, a custom filter
to increase the contrast.
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2. Watershed Analysis: splits the cells using the well known watershed transfor-
mation (Beucher and Mathmatique, 1979).

3. Two steps of splitting and merging: in the first instance, splits every object in
the mask computed in the previous steps mask that has an average area bigger
than the average, but this process reduces the area of the masks, and for this
reason, this new mask is merged to the mask computed in previous steps. This
process is repeated twice.

4. Extraction Phase: from the cells masks extracts the contour to run the neuronal
model.

5. Neuronal Method: manipulates the contour of the mask using neuronal agents
that move on the segment that connects the centre of mass of the cell to their
input contour point. In figure 5.1 can be seen a sketch of the agent model. It
is composed of 8 neurons (6 Excitatory and 2 Inhibitory) and 3 Layers. The
first layer is an input layer and takes into account an attractive signal (figure
5.1, green line) extracted from the mask computed in previous steps, and a
repulsive signal (figure 5.1, red line) extracted from the grayscale values of the
image. The second layer is inhibitory and applies the repulsive signal. Finally,
the third layer sums up all the contributions of the previous layers, moving
the agent. The equilibrium between attraction and repulsion approximates the
actual contour point.

6. Post-processing phase: Each cell mask is post-processed using an Otsu’s seg-
mentation (Otsu, 1979) inside the masks, which has good performances being
the content inside the cell mask bimodal. However, some cells are still clus-
tered, and for this reason, has been performed the last splitting and merge
cycle. This last splitting differs from the previous from the fact that it is based
on the distance transform L2 (Ye, 1988).

The proposed method can be considered an XAI method because each step cor-
respond to a human explainable procedure:

1. The first step is done to remove the noise of the image, then a human can easily
check by sight if this has been performed properly.

2. The second step separate the clusters and again a human can easily under-
stand if this has been performed properly and then figure out how to improve
performance or fix errors.

3. The third step improve the quality of the subdivision and then is very related
to the second step.

4. The fourth step is a simple contour extraction that can be easily understood by
a human inspector.

5. The fifth step (the Neuronal method) improve the results of the fourth step and
it is also easily explainable (does the neuronal agent stop at the edge? if not
there is a problem)

6. For the sixth step hold the same considerations about the second and the third,
being a "final cut" segmentation.
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FIGURE 5.1: Sketch of Neuronal agent. Each circle is a neuron and
the two bottom curves are the mask attractor (green line) and the

grayscale repulsor (red line).

5.8 Analysis of the models

In the next sub sections will be exposed some tests and analysis performed on the
algorithms exposed using the datasets introduced.

5.8.1 Adversative noise

The FGSM methodology used in (Goodfellow, Shlens, and Szegedy, 2014) has been
performed an adversative attack towards the network U-Net. The FGSM epsilon
value has been set respectively to 0, 0.01, 0.025, 0.05, 0.1 and 0.2. In figure 5 are
shown some sample images related to Neuroblastoma dataset. The behavior of the
U-Net of an image taken from the test set for different quantities of adversative noise.
It can be seen that the U-Net, in the absence of noise, performs very well (figure 5.2A
first row). However, in the presence of a slight noise (figure 5.2B first row), the U-Net
segmentation starts to exhibit large holes in the cells and the phenomena get worse if
the noise becomes consistent (figure 5.2C first row). In these cases, the segmentation
almost disappears, not showing any cell. One of the most common critiques moved
towards the adversative noise is that the ML model that generates it is trained on
the network and is strongly focused on the analyzed network. Then, they have been
evaluated by the KG network and the Mask R-CNN network the images with the
adversative noise computed using the FGSM involving the U-Net. The result is that
KG network is very resistant to intermediate noise (figure 5.2B second row) but of-
ten returns no segmentation with high noise values (figure 5.2C second row). The
Mask R-CNN has shown good performance in every noise condition, even if some
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TABLE 5.1: Intersection over Union values of the algorithms for dif-
ferent PSNR values of adversative noise (Neuroblastoma).

IoU 100.0 40.1 32.7 26.9 21.1 15.7

Neuronal Alg. 0.695 0.700 0.695 0.673 0.614 0.549
U-Net ResNet34 0.718 0.559 0.503 0.406 0.192 0.060
KG network 0.712 0.704 0.664 0.593 0.319 0.025
Mask R-CNN 0.682 0.645 0.576 0.489 0.348 0.207

TABLE 5.2: F1-score values of the algorithms for different PSNR val-
ues of adversative noise (Neuroblastoma).

F1-score 100.0 40.1 32.7 26.9 21.1 15.7

Neuronal Alg. 0.805 0.808 0.802 0.785 0.739 0.683
U-Net ResNet34 0.815 0.678 0.623 0.523 0.297 0.111
KG network 0.796 0.787 0.754 0.688 0.435 0.047
Mask R-CNN 0.787 0.755 0.695 0.606 0.457 0.287

cells have been lost with strong noise (figure 5.2C third row). However, the best per-
formances have been achieved by the proposed model. Indeed, the segmentation is
steady for low and intermediate noise (figure 5.2A and 5.2B fourth row) and exhibits
just some holes if the noise is strong (figure 5.2C fourth row).

5.8.2 Results on Neuroblastoma Dataset

Judge the algorithms on a few images is not a good practice, so have been conducted
a quantitative investigation on the results of the algorithms with adversative noise
with PSNR values of 100.0, 40.1, 32.7, 26.9, 21.1 and 15.7. The algorithms were eval-
uated on the test set of 38 images; the metrics Intersection on Union, F1 score, pre-
cision, Sensitivity and Specificity were evaluated, taking into account their ground
truth. Thus, the results are reported in figure 5.3 and summarized in table 5.1-5.5.
It can be observed that in terms of IoU for PSNR 100.0 (no noise), the U-Net has
the best performance with an IoU of 0.718, then the KG network with an IoU of
0.712, then the proposed Neuronal algorithm with an IoU of 0.708 and finally the
Mask R-CNN with an IoU of 0.682. However, adding the adversative noise, the sit-
uation changes because the U-Net shows the steepest descent, but these results can
be explained by saying that the adversative noise has been created ad hoc for this

TABLE 5.3: Accuracy values of the algorithms for different PSNR val-
ues of adversative noise (Neuroblastoma).

Accuracy 100.0 40.1 32.7 26.9 21.1 15.7

Neuronal Alg. 0.938 0.938 0.936 0.929 0.910 0.879
U-Net ResNet34 0.955 0.926 0.915 0.895 0.845 0.811
KG network 0.953 0.952 0.945 0.932 0.873 0.804
Mask R-CNN 0.943 0.936 0.923 0.908 0.881 0.849
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P.S.N.R. = 100.0
Input Image Ground Truth

Neuronal Model U-Net ResNet34

KG network Mask R-CNN

A) P.S.N.R. = 32.7
Input Image Ground Truth

Neuronal Model U-Net ResNet34

KG network Mask R-CNN

B)

P.S.N.R. = 15.7
Input Image Ground Truth

KG network Mask R-CNN

Neuronal Model U-Net ResNet34

C)

FIGURE 5.2: Comparison of the performances of the algorithms for
different intensities of adversative noise. A) Results for an input im-
age without noise. B) Results for an input image with a 32.7 PSNR.

C) Results for an input image with a 15.7 PSNR.
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TABLE 5.4: Sensitivity values of the algorithms for different PSNR
values of adversative noise (Neuroblastoma).

Sensitivity 100.0 40.1 32.7 26.9 21.1 15.7

Neuronal Alg. 0.848 0.855 0.853 0.849 0.816 0.778
U-Net ResNet34 0.751 0.576 0.518 0.416 0.194 0.061
KG network 0.801 0.779 0.732 0.637 0.331 0.026
Mask R-CNN 0.751 0.699 0.626 0.530 0.377 0.221

TABLE 5.5: Specificity values of the algorithms for different PSNR
values of adversative noise (Neuroblastoma).

Specificity 100.0 40.1 32.7 26.9 21.1 15.7

Neuronal Alg. 0.953 0.954 0.952 0.942 0.926 0.903
U-Net ResNet34 0.988 0.993 0.993 0.995 0.998 0.999
KG network 0.973 0.976 0.976 0.981 0.991 0.9996
Mask R-CNN 0.975 0.979 0.979 0.980 0.981 0.989

network. The KG network seems to keep good performances for a low amount of
adversarial noise, but with PSNR less than 25, the IoU drops to less than 0.32. The
other algorithm outperforms the Mask R-CNN for low noise, but by adding a solid
noise, IoU has a slower decay than the other DNN, even if at the maximum adver-
sarial noise reaches the IoU of 0.21. The proposed model outperforms the DNN in
terms of noise resistance because PNSR 15.7 (the highest noise evaluated) reaches
the minimum IoU value of 0.55, which is more than double all other algorithms
performance. The F1-score (figure 5.3b and table 5.2) has a behavior equivalent to
the IoU, then all the considerations did for the IoU still holds for the F1-score. The
Accuracy (figure 5.3c and table 5.3) and all the other following metrics must be care-
fully analyzed. It has been observed that the DNN algorithm analyzed (U-Net, KG
network and Mask R-CNN) if they produce a false classification are more prone to
produce false negative (FN), instead, the Neural algorithm proposed if produces a
false classification is more prone to produce a false positive (FP). This event trans-
lates into the observation that the DNN usually have more background (negatives)
than the ground truth, and then they are under-segmenting (because cells parts are
cut by the algorithm being classified as background). On the other hand, the pro-
posed model has shown to be over-segmenting because part of the background has
been classified as cells parts. This simple observation has slightly conditioned the
Accuracy because, in under segmenting algorithms, the number TN is more signifi-
cant than in an over-segmenting algorithm. However, the whole graph still confirms
that the proposed model is more resistant to adversative noise. The previous event
becomes clear looking at Sensitivity (figure 5.3d and table 5.4) and Specificity (fig-
ure 5.3e and table 5.5). Indeed, the proposed Neuronal algorithm outperforms the
DNN algorithms in terms of Sensitivity (because in this case, FN is very small); on
the contrary, the DNN algorithms outperform the proposed algorithm in terms of
Specificity (because in these cases, FP is very small). However, the Specificity case is
very curious because it seems that the bigger the noise, the bigger the Specificity. The
answer is hosted in figure 5, in which many DNN predictions with intense noise are
almost Positives-free (black segmentation), in this case, TP=0 or FP=0, which means
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TABLE 5.6: Intersection over Union values of the algorithms for dif-
ferent PSNR values of adversative noise (NucleusSegDataset).

IoU 100.0 43.0 34.5 28.7 22.6 16.6

Neuronal Alg. 0.798 0.799 0.801 0.794 0.740 0.510
U-Net ResNet34 0.778 0.722 0.680 0.622 0.516 0.337
KG network 0.802 0.790 0.760 0.659 0.400 0.081
Mask R-CNN 0.712 0.672 0.622 0.510 0.235 0.037

TABLE 5.7: F1-score values of the algorithms for different PSNR val-
ues of adversative noise (NucleusSegDataset).

F1-score 100.0 43.0 34.5 28.7 22.6 16.6

Neuronal Alg. 0.881 0.886 0.888 0.883 0.838 0.608
U-Net ResNet34 0.873 0.834 0.802 0.758 0.669 0.491
KG network 0.889 0.882 0.863 0.789 0.550 0.142
Mask R-CNN 0.830 0.801 0.761 0.664 0.357 0.070

that it holds Sensitivity = 1 is the value TN. Then in these cases, the stronger is the
noise, the more likely it will be a Positive-free segmentation, and then higher is the
Specificity. For these reasons have been preferred more balanced metrics (like IoU
and F1-score) in results interpretation.

5.8.3 Results On NucleusSegData Dataset

The principal critique that moved towards the not deep learning approaches is that
they must be tuned on the single dataset (in worst cases on the single image) to
achieve performances comparable to neural networks. For this reason, has been per-
formed a further test. This test tries to quantify the generalization capability of the
previously exposed algorithms. For example, the DNN (U-Net, KG network and
R-CNN) have segmented the images of dataset NucleusSegData (Gunesli, Sokmen-
suer, and Gunduz-Demir, 2020) without fine tuning. Such an effect could appear a
limit, but it is the typical pipeline in real-life applications. Indeed, in some cases, the
DNN algorithm is connected to a camera that directly streams the image to the algo-
rithm (Bar et al., 2021), and then the algorithm is applied to images that could differ
substantially from the training set and test set used by the authors. In other cases,
the fine tuning should follow strict rules (AMIA, 2021), and such an approach makes

TABLE 5.8: Accuracy values of the algorithms for different PSNR val-
ues of adversative noise (NucleusSegDataset).

Accuracy 100.0 43.0 34.5 28.7 22.6 16.6

Neuronal Alg. 0.982 0.982 0.982 0.982 0.966 0.864
U-Net ResNet34 0.982 0.978 0.975 0.970 0.962 0.948
KG network 0.983 0.982 0.980 0.973 0.953 0.928
Mask R-CNN 0.977 0.973 0.969 0.959 0.938 0.917
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FIGURE 5.3: performances in terms of
IoU (a), F1-score (b), Accuracy (c), Sen-
sitivity (d) and specificity (e) for each
algorithm on Neuroblastoma dataset.
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(b)

(c)

(d)

(e)

FIGURE 5.4: performances in terms of
IoU (a), F1-score (b), Accuracy (c), Sen-
sitivity (d) and specificity (e) for each
algorithm on NucleusSegData dataset.
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TABLE 5.9: Sensitivity values of the algorithms for different PSNR
values of adversative noise (NucleusSegDataset).

Sensitivity 100.0 43.0 34.5 28.7 22.6 16.6

Neuronal Alg. 0.853 0.838 0.841 0.836 0.824 0.795
U-Net ResNet34 0.796 0.735 0.690 0.630 0.521 0.340
KG network 0.842 0.827 0.784 0.637 0.406 0.081
Mask R-CNN 0.755 0.703 0.657 0.545 0.249 0.046

TABLE 5.10: Specificity values of the algorithms for different PSNR
values of adversative noise (NucleusSegDataset).

Specificity 100.0 43.0 34.5 28.7 22.6 16.6

Neuronal Alg. 0.995 0.996 0.996 0.996 0.979 0.875
U-Net ResNet34 0.998 0.999 0.999 0.999 0.999 0.999
KG network 0.996 0.996 0.997 0.998 0.999 1.0
Mask R-CNN 0.996 0.996 0.995 0.995 0.997 0.990

itself unpractical. Similarly, the Neuronal model does not need tuning parameters
on the same dataset (NucleusSegData). In table 6 can be seen the performances of
the four models with the dataset NucleusSegData. To this dataset has been added
an adversative noise with PSNR 100.0, 43.0, 34.5, 28.7, 22.6 and 16.6. tables 5.6-
5.10 and figure 5.4 depict their results. figures 7a and 7b show how the proposed
model has outperformed the NNs for high noise values. figure 5.4c depicts that the
proposed model has high Accuracy for PSNR values greater than 16.6. However,
for PSNR equal to 16.6, the Accuracy value decreases suddenly. This evidence is
caused by the super segment of the proposed model for high noise values; instead,
the other networks are more prone to under segmentation. The same phenomenon
is the cause of the values of Sensitivity and Specificity. It can be seen (as in the pre-
vious dataset) that the proposed model has, in general, higher sensitivity and the
Neural Networks higher specificity, with the feature that specificity increases when
the noise PSNR increases. In general, these simulations have shown better values
than the Neuroblastoma case, which can be caused by the similarity of the Neurob-
lastoma dataset to real-world data (Kromp et al., 2021). In contrast, NucleusSegData
(Gunesli, Sokmensuer, and Gunduz-Demir, 2020) is a less complex dataset. Finally,
the proposed model has shown generalization capability comparable to the current
state-of-the-art Deep Learning algorithms, breaking the dogma that the explainable
method implies manual parameter tuning.
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Applications to Epidemiology

6.1 Social networks and Covid-19 pandemic

Until now have been analyzed just applications in neuronal network modelling.
However, graph theory has a wide spectrum of applications in modelling (Easley
and Kleinberg, 2010). One of them is in modelling social networks. A social network
is a graph where the people are the nodes, and their relations are the edges. The most
common relations used as edges are “the node A is a friend of the node B” (Easley
and Kleinberg, 2010) and “the node A has recently met the node B” (Mahdizadeh
Gharakhanlou and Hooshangi, 2020). Because the previous relations are symmet-
ric (if “the node A has recently met the node B” then it is also true that “the node
B has recently met the node A”). This means that the graph representing the so-
cial networks will now be undirected (the adjacency matrix is a symmetric matrix).
The concept of social network is fundamental in some branches of Epidemiology
because the physical contact of two subjects can transmit some diseases or if they
are so close to breathing, the same air (Giordano et al., 2020). The Covid-19 is one
of these diseases, in fact it is a respiratory virus that diffuses through the air. The
first big Epidemic of Covid-19 was in Italy in February 2020 (Giordano et al., 2020),
and since then, the modelling of Covid-19 spread has been performed with several
approaches (Bertozzi et al., 2020). The most used approach is through Ordinary Dif-
ferential Equations (since now ODE) (Shapiro et al., 2021) to describe the Epidemic
dynamics at the populations level (just a set of few equations describe the behaviour
of many people) (Fernández-Villaverde and Jones, 2020). However, these kinds of
models have some downsides. The main problem is that these models have abstract
parameters that must be fitted on experimental data. However, this approach does
not lead to a complete comprehension of the phenomenon but to a sort of black box
predictor that works in virtue of the fitting and not because it uses experimental
findings in the model. This issue is not very relevant when the aim is to predict
Epidemic behavior for short times. However, this problem becomes crucial if the
aim is to take in account alternative scenarios (Giacopelli, 2021). These reasons have
introduced models based on simpler and more explainable assumptions: the Agent
Based Models (since now ABM) (Son Woo-Sik, 2020). The idea behind the ABM is to
simulate the behavior of a single node of a social network (a single person) to simu-
late the Epidemic spread. The interesting feature of the ABM’s is that simulating at a
single node level can be used all the estimation done from experimental data without
any fitting, and an example is the probability of infection per contact that has been
estimated to be 1/40500 (Bhatia and Klausner, 2020). The main downside of ABM is
that because of their large number of agents involved, and their more computation-
ally expensive than ODE models. Such a matter is one of the reasons because these
kinds of models are very popular for small scale tasks (Cuevas, 2020). However, the
increasing of Computer performances of the last years has made possible bigger and
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bigger models, like the model with 750 thousand agents reproducing the city of Ur-
mia (Mahdizadeh Gharakhanlou and Hooshangi, 2020) and the ten million agents of
the proposed model reproducing Covid-19 spread in Lombardy (Giacopelli, 2021).
The following sections will be described the state of the art ODE and ABM mod-
els and then describe the ten million inhabitant ABM model (Giacopelli, 2021) with
some applications in alternative scenarios evaluation like lockdown, social distanc-
ing, and vaccine impact on the Epidemic spread.

6.2 SIR ODE based models

The SIR model is an ODE based model that takes into account the numbers of Sus-
ceptible (a person that has not already contracted the disease), Infected (a person
who has contracted the disease) and Recovered (a person who has healed from the
disease) as time dependent continuous variable ruled by the differential equations
(Baldé, 2020) 

dS
dt = − βS(t)I(t)

N
dI
dt =

βS(t)I(t)
N − γI(t)

dR
dt = γI(t)

(6.1)

Where β > 0 is the infection factor and γ > 0 the healing factor. For this system
holds the condition

N = S(t) + I(t) + R(t)

which implies that the number of subjects taken in account is constant. Unfortu-
nately some diseases can be mortal, then the straight forward generalization of SIR
model is the SIRD model, where is added a new variable D(t) representing the num-
ber of deaths. This model is ruled by the set of differential equations (Baldé, 2020):

dS
dt = − βS(t)I(t)

N
dI
dt =

βS(t)I(t)
N − γI(t)− µI(t)

dR
dt = γI(t)
dD
dt = µI(t)

(6.2)

where µ > 0 is the mortality factor. In the case of SIRD model holds the condition

N = S(t) + I(t) + R(t) + D(t)

that takes in account the number of deaths. It can be observed that the SIRD model
(but also the SIR model) has parameters that are meaningful because they can be
easily interpreted but are abstract at the same time because they are very far from
experimental observations. For this reason, most of the time, the free parameters of
SIRD models are fitted on the past values of the variables S(t), I(t), R(t) and D(t)
(Baldé, 2020) to predict the future behavior. It must be noted that the SIRD model has
shown in different scenarios to be a valid predictor (Fernández-Villaverde and Jones,
2020), however being a sort of abstract black box predictor is not able to evaluate
alternative scenarios based on experimental observations. For these reasons, more
and more studied models have been based on the single people dynamics. They are
called Agent Based Models (ABM) (Giacopelli, 2021).
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6.3 ABM models

An Agent Based Model (ABM) is a model that simulates the epidemic spread simu-
lating the behavior of each individual using a digital counterpart called agent. An
agent of an ABM has a very simple mathematical description

Definition 6.3.1 An agent is an object with a position in a 2D space and a state value. In
SIRD like ABM’s the state of an agent can be one of the following

1. Susceptible: the agent has never contracted the disease

2. Infected: the agent is ill and then contagious

3. Recovered: the agent has healed and then is now immune from the disease

4. Deceased: the agent has dead because of the disease and it is not contagious anymore

FIGURE 6.1: The 3 layers that constitute the model (Giacopelli, 2021).
The first layer simulate the environment and agents’ motion. The
second layer simulates social interaction between the agents in terms
of collision detection. The third layer simulates the virus Epidemic

behavior.

These simple agents move in a simulated environment. The realism of the en-
vironment (and then of the agent motion) can vary; for example, in (Mahdizadeh
Gharakhanlou and Hooshangi, 2020) the environment model is very detailed, tak-
ing into account geographic and social data. However, to make a realistic envi-
ronment, a considerable quantity of data about the population is needed, opening
privacy issues for these models. For this reason, in (Giacopelli, 2021) has been pro-
posed a model that uses little and publicly available information about the 10 million
inhabitants of Lombardy (for example, the density of inhabitants (slides Lombardia
2018) and the Italian citizen average path length (Osservatorio UnipolSai 2018 2018))
through the use of random walk (Rayleigh, n.d.). The agents’ motion inside the en-
vironment is just the first layer of the simulation framework, as shown in figure 6.1.
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A collision detection system makes up the second layer of the simulation frame-
work; it is an algorithm that detects if two agents are closer than a given radius. The
model presented in (Giacopelli, 2021) has a collision radius of about 1 Km, which is
greater than the 1 m suggested by the World Health Organization (Coronavirus dis-
ease (COVID-19) advice for the public 2020). This change is because the population is
large, so the model is very computationally expensive. The agents’ behaviour at 6
Frames Per Day has been simulated to solve such an issue. It means that the radius
of this model mediates on a time window of 4 hours. The result of this estimate is the
radius of 1 Km, which is one of the few fitted parameters of this model. However,
checking the distance for every couple of points of a set of N ≈ 107 elements is a
problem of complexity N2 ≈ 1014 that is a vast number of iterations. For this reason,
has been subdivided the environment into 20-Km-side square cells with an average
number of nodes m. To compute the distances among the nodes inside the cells, are
needed m2 steps, and the process must be repeated N/m times, so the complexity of
this task is not N2 anymore but

N
m

m2 = Nm

if m is very smaller than N, it can be said that Nm has the same order of magnitude
as N. This approach made it possible to run a 14 days long simulation at 6 Frames
Per Day in 20 minutes of computation on a commercial computer with a CPU AMD
3900X 12-cores and 64 GB of RAM (Giacopelli, 2021). It must be noted that this
approach ignores some detection when two nodes are close enough, but they are on
different cells; nevertheless, numerical investigations have proved that the number
of lost contacts is negligible (Giacopelli, 2021).

The third and last layer is the Epidemic model that is a SIRD model (Giordano
et al., 2020). This model is based on four states:

1. Susceptible: a agent that has not already been infected by the disease. It can be
become infected with a probability pI for each contact with an infected agent

2. Infected: a agent that has been infected by the disease, it can then infect sus-
ceptible agents. After E days, it will become recovered or to deceased, with a
probability pD to die and a probability 1 − pD to heal

3. Recovered: a agent that has recovered from the disease and then it cannot
contract it again or infect susceptible agents anymore

4. Deceased: a agent that has died because of the disease and hence cannot infect
other agents anymore

The parameters pI , pD and E are the probability of infection (Bhatia and Klaus-
ner, 2020), the probability of death (Italy COVID 2020) and the duration of the disease
(Isolation and Precautions for Adults with COVID-19 2020) that will be set on the exper-
imental values to reproduce experimental findings and then changed (in accordance
to experimental data) to reproduce alternative scenarios.

To validate the ABM, its prediction has been compared to the prediction of a
classical SIRD ODE based model (Baldé, 2020) showing equivalent performances in
fitting experimental data extracted from (COVID-19 Situazione Italia 2020) about the
first 8 days of Covid Epidemic tracking in Lombardy.
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FIGURE 6.2: Comparison in the outbreak scenario between the pro-
posed model (Giacopelli, 2021) and a classical SIRD model (Baldé,

2020).

6.4 The Outbreak scenario

The first scenario analyzed is the outbreak in Lombardy of March 2020 (COVID-19
Situazione Italia 2020). The parameters for this scenario are the interaction radius of
1 Km, pI = 1/40500 (Bhatia and Klausner, 2020), pD = 0.3 (estimated from Worl-
dometer data (Italy COVID 2020)), E = 7 days (that is coherent with the E < 10
suggested by (Isolation and Precautions for Adults with COVID-19 2020)) and the daily
average path length of an agent is about 43 Km (Osservatorio UnipolSai 2018 2018).
The results can be seen in figure 6.3. Can be seen that the model explains well the
behavior of Covid spread until the 9th day of simulation. This 9th day of simula-
tion is the 9th of March, the day of the beginning of the lockdown (Lockdown decree
2020). The behavior of the model after this date seems to forecast what could have
happened if the lockdown has not begun.

On this setting has also been tested the hypothesis that keeping a distance of 2
m between people can halve the risk of contracting the disease (Chu et al., 2020).
For this reason, it has been evaluated the scenario where the probability pI has been
halved, and the results are in figure 6.4. It shows that the contagion spread has
been significantly limited in this alternative scenario. A simulation in a lockdown
scenario has also been performed, reducing the daily average path length of an agent
from 43 km to 5 km and reducing the interaction radius from 1 km to 100 m. The
results of this simulation are shown in figure 6.5. It can be seen that these simple
actions were enough to control the virus in the simulation.

Has also been performed a simulation in a lockdown scenario, reducing the daily
average path length of an agent from 43 km to 5 km and reducing the interaction
radius from 1 km to 100 m. The results of this simulation are shown in figure 6.5.
Can be seen that these simple actions were enough to control the virus in simulation.

6.5 The Descent and the Vaccine scenario

This scenario has reproduced the situation between May 31, 2020, and June 14, 2020.
In that time, Italy concluded its lockdown period, and the number of infected was
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FIGURE 6.3: COVID-19 outbreak simulation. Top-left: population
density of Region Lombardy. Top-right: log10 value of the infected
percentage per cell. Bottom, from left to right: number of infected,
recovered, deceased, and recovered ratio (recovered/deaths). The
solid line is the model simulation, the dotted line is extracted from
the Ministry of Health/Civil Protection Department data (COVID-19
Situazione Italia 2020) for Lombardy, and the vertical dotted blue line

marks the date March 9, 2020 (Lockdown decree 2020).
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FIGURE 6.4: Social distancing simulation. Top-left: population den-
sity of Region Lombardy. Top-right: log10 value of the infected per-
centage per cell. Bottom, from left to right: number of infected,
recovered, deceased, and recovered ratio (recovered/deaths). The
solid line is the model simulation, the dotted line is extracted from
the Ministry of Health/Civil Protection Department data (COVID-19
Situazione Italia 2020) for Lombardy, and the vertical dotted blue line

marks the date March 9, 2020 (Lockdown decree 2020).
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FIGURE 6.5: Lockdown simulation. Top-left: population density of
Region Lombardy. Top-right: log10 value of the infected percentage
per cell. Bottom, from left to right: number of infected, recovered,
deceased, and recovered ratio (recovered/deaths). The solid line is
the model simulation, the dotted line is extracted from the Ministry of
Health/Civil Protection Department data (COVID-19 Situazione Italia
2020) for Lombardy, and the vertical dotted blue line marks the date

March 9, 2020 (Lockdown decree 2020).

decreasing. The daily average path length has been set to 15 km in this setting be-
cause of the lack of additional information in this period’s mobility. Furthermore,
the probability pI was halved to consider social distancing. Finally, the interaction
radius and the disease duration were tuned to reproduce the experimental data.
The value for the radius has been set to 300 m, and the disease duration was 5 weeks
(E = 35). This last value (which is higher in comparison to that of the outbreak)
could be influenced by more and more accurate clinical protocols and the waiting
line for the Covid tests created by many patients. It could have slowed down the
healing certification process. The qualitative fitting can be seen in figure 6.6.

In this setting has been tested an ideal vaccine experiment where the 70% of
population has been set as recovered (then unable to infect their selves and the other
agent) to simulate the behavior of a vaccinated agent. The results can be seen in fig-
ure 6.7. This paper (Giacopelli, 2021) has been written (and preprinted on MedRxiv)
in September 2020, some months before the approval of the vaccines today available.
At the time some estimates have set the herd immunity percentage at 62% (Park and
Kim, 2020). However, contemporary data suggests that the actual herd immunity
percentage should be higher than 70%, for example in December 2021 the percent-
age of vaccination in Italy is about 73% (Coronavirus (COVID-19) Vaccinations 2021)
and the number of infected is slightly increasing (Italy COVID 2020). This may be
caused by two main reasons:

1. The efficacy of the vaccines (Tartof et al., 2021) can range from 80% to about
90% in the first month and can decay in 5 months to 50%.

2. The vaccines could lose efficacy against Covid mutations (Tartof et al., 2021).

The model proposed could take in account this new experimental information
by construction, however it is out from the aims of this thesis.
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FIGURE 6.6: Simulation of a decline in cases. Top-left: population
density. Top-right: log10 of the infected percentage per cell. Bot-
tom, from left to right: infected number, recovered number, deceased
number, and recovered ratio (recovered/deaths). The solid line is the
model simulation and the dotted line is extracted data from Italian

Government (COVID-19 Situazione Italia 2020).

number of 
vaccinations

FIGURE 6.7: Simulation of vaccination. Top-left: population density.
Top-right: log10 of the infected percentage per cell. Bottom, from left
to right: infected number, recovered number, deceased number, and

recovered ratio.
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FIGURE 6.8: COVID-19 outbreak simulation connectivity. Top-left:
population density. Top-right: log10 of the number of tracked agents
per cell. Bottom-left: degree distribution of the tracked group.

Bottom-right: daily degree distribution of the tracked group.

FIGURE 6.9: Lockdown simulation connectivity. Top-left: population
density. Top-right: log10 of the number of tracked agents per cell.
Bottom-left: degree distribution of the tracked group. Bottom-right:

daily degree distribution of the tracked group.
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6.6 Network Topology

The impact of topology in social networks is an argument of fierce debate in the
community (Manzo, 2020). Then has been evaluated the connectivity in terms of
the degree distribution of 1000 agents randomly picked. The first scenario was the
COVID-19 outbreak scenario in figure 6.8. It can be seen that the distribution has
an evident left tail (in contrast with the right tail of the Barabási-Albert models
(Barabási and Albert, 1999)). This was probably due to the very short simulation
time of 14 days (in contrast with human social networks that usually take years to
build). The lockdown scenario was also interesting. In figure 6.9 can be observed a
substantial decline in terms of a degree from thousands of average connections per
day to hundreds. It shows the importance of lockdowns in COVID-19 containment.
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One of the leitmotifs of the thesis is to explore and characterize the micro-connectivity
of Brain networks (as explained in Chapter 1). The first step in this direction was the
Convolutive hypothesis (Giacopelli, Migliore, and Tegolo, 2020; Giacopelli et al., 2021;
Giacopelli, Tegolo, and Migliore, 2021). The idea underlying this hypothesis argues
that the most likely trend for the indegree and outdegree distrubtions, that are the
probability distributions associated to the indegrees and outdegrees of the network,
of a microconnectivity brain network seemed to have a Convolutive behavior, but
no model satisfied such an observation (as observed in Chapter 2). Indeed, the spe-
cialized literature introduced two main theoretical models adopted by the scientific
community. The exponential models (Erdös and Rényi, 1959) that has a growing be-
havior for low degrees, but they decay in an exponential way for high degrees, and
the Power law models (Barabási and Albert, 1999) that have a power law tail for high
degrees but they have high probability densities in the degree distributions for low
degrees. The concept of Convolutive behavior tries to reproduce the considerations
extracted by experimental data and data-driven models, which suggest a behavior
for the degree distributions growing for low degrees and a heavy tail behavior for
high degrees. A theoretical model able to satisfy this observation has been exposed
for the first time in (Giacopelli, Migliore, and Tegolo, 2020) observing Neocortical
network of (Markram et al., 2015), Hyppocampal slices of (Bonifazi et al., 2009) and
C. Elegans connectome (Cook et al., 2019), but only in (Giacopelli et al., 2021) has
become more than a simple hypothesis. Moreover, in (Giacopelli et al., 2021) and in
Chapter 3 have been analyzed the degree distributions of the following eight differ-
ent realistic micro-connectivity networks and can be observed the recurrent scheme
of Convolutive degree distributions:

1. The 546 neurons of the C. elegans adult male nervous system (Cook et al., 2019)
2. A dense reconstruction of 1090 neurons from a mouse retina inner plexiform

layer (Helmstaedter et al., 2013)
3. From electron microscopy data on a region of L2/3 mouse primary visual corte

(Turner et al., 2020)
4. From electron microscopy data on 226 neurons from a Songbird basal ganglia

(Dorkenwald et al., 2017)
5. 89 neurons from a slice from a rodent hippocampus (Bonifazi et al., 2009)
6. A mouse thalamus network of 963 neurons (Morgan and Lichtman, 2020)
7. From electron microscopy data containing 1761 body ID’s from a Drosophila

Optic Medulla (Takemura et al., 2013)
8. A neocortical column of rodent (Markram et al., 2015)

Such an analysis suggested that (to the best of our knowledge) brain at micro-scale
is usually connected with a Convolutive model scheme (Giacopelli, Migliore, and
Tegolo, 2020; Giacopelli et al., 2021; Giacopelli, Tegolo, and Migliore, 2021) and does
not follow an exponential scheme as previously supposed by (Potjans and Dies-
mann, 2012; Billeh et al., 2020; Brunel, 1999). However, it must be noted that most
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of the papers supposing an exponential connectivity (Potjans and Diesmann, 2012;
Brunel, 1999) have been written in a period where most of the networks previously
cited were not yet experimentally available.

In order to study and validate the model in the simulations field for brain net-
works on a cellular scale, in Chapter 4 several tests were performed on the Convolu-
tional model. The first test was proposed in (Giacopelli, Migliore, and Tegolo, 2020),
where a simple Excitatory-Inhibitory model (Brunel, 1999), with convolutive degree
distributions, was tested on a classic ER (Brunel, 1999), a mixed ER (Potjans and
Diesmann, 2012) is a data driven (Markram et al., 2015) model. The result was that
the exponential models shown a not physiological activity, in contrast with the data
driven model, that has shown many expected physiological markers experimentally
observed (Buzsáki and Draguhn, 2004). Then, the Convolutive Model (Giacopelli et
al., 2021) has been tested to fitting the degree distributions of the data driven model
(Markram et al., 2015), showing an activity very close to the data driven model. This
result suggests that matching at least the degree distributions of a network implies
matching the brain activity qualitatively. A similar result was stated by (Nykamp
et al., 2017) in terms of mean field, but in (Giacopelli et al., 2021) has been proved
to be valid in a more realistic setting. A second test has been performed in (Gia-
copelli, Tegolo, and Migliore, 2021), where in two study cases (Thick volume and
Thin volume) has been tested three different network topologies (ER classic (Erdös
and Rényi, 1959), ER spatial (Billeh et al., 2020) and Convolutive model (Giacopelli,
Tegolo, and Migliore, 2021)). The neuron model in (Giacopelli, Tegolo, and Migliore,
2021) is the Hindmarsh-Rose model (Hindmarsh and Rose, 1984), that is the starting
model of Epileptor (Jirsa and McIntosh, 2007). In (Giacopelli, Tegolo, and Migliore,
2021) is shown how exponential connectivity schemes are more prone to Epileptic
seizures, in contrast with Convolutive connectivity. In detail have been performed
two primary tests. In the first test has been simulated a population of HR neurons
very similar to the one theorized by Stefanescu in (Stefanescu and Jirsa, 2008). In
(Stefanescu and Jirsa, 2008) is supposed an exponential connectivity scheme with
an HR starting model; on this assumption, every neuron is influenced by the other
neurons, and also given the HR starting model, a mean field approximation is com-
puted (commonly known as Epileptor (Stefanescu and Jirsa, 2008)). The exciting part
is that wiring the HR networks of (Giacopelli, Tegolo, and Migliore, 2021) with an
exponential scheme, the mean field of the network is very close to the Epileptor pre-
diction, and then to an actual Epileptic EEG (Noachtar and Rémi, 2009). However,
wiring the network with a Convolutive connectivity scheme, the mean amplitude
decreases significantly. In detail, when exposed to an external current, all ER model
networks (with or without distance dependent connectivity) start to have an epilep-
tic behavior, with an average value of mean amplitude in a 10 seconds time window
of 46.6, 34.6, 47.3 and 37.1 µV, for the ER and ER-dist in thick volume and for the ER
and ER-dist in thin volume, respectively. In contrast, networks connected as in real
brain networks, show an average value o the mean amplitude in the same time win-
dow of 9.9 and 7 µV, for thick and thin volumes, respectively, very close to the value
obtained from normal traces. This suggests suggesting that exponential connectivity
could not properly model a healthy individual’s brain activity. Therefore, in the sec-
ond test has been introduced a further equation that links the inhibition to mean field
potential. In particular, the higher is the mean field higher is the inhibition. This sim-
ple equation was able to reproduce the complex behavior of spike wave complexes
(Noachtar and Rémi, 2009). This second test suggests that the phenomenon of Spike
wave complexes could be more connected to the rapidity increasing of inhibition
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than to its actual strength. Also in this case spike-wave complexes were clearly ev-
ident in the ER models, following a period of a seizure-like pattern. In this case the
average mean amplitude values during the entire stimulation period (in a time win-
dow of about 14 seconds), were 32.2 and 20.9 µV. Spike-wave complexes were also
present for the convolutive model but they were of much smaller amplitude, and the
overall average activity during the same stimulation period they keep their average
value within the range for a normal activity (9.4 µV). The encouragement of this
study can be found in the analysis of current anti-epileptic drugs that are based on
reduction of inhibitory response (Rogawski and Löscher, 2004), which may lead to
several adverse collateral effects (St Louis, 2009). Modern Graph Theory has shown
to be able to achieve good results in Connectome modeling and interpretation, with
the creation of new theories and techniques. But in Chapter 5 has been also shown
how a simple neuronal network based agent has been used to successfully solve seg-
mentation tasks in an explainable way and in Chapter 6 how a spatial connectivity
pattern combined with an Agent Based Model was able to simulate Covid-19 out-
break from publicly available data (Giacopelli, 2021). In the first study case has been
proposed a model based on a neuronal agent that is able to segment Immunofluo-
rescence images. This contribution seems promising because this algorithm is very
resilient adversarial noise, in contrast with Deep learning algorithms. In detail, the
algorithms in absence of adversative noise are very close in terms of Intersection
over Union (IoU), achieving the values 0.695 for the proposed model, 0.718 for the
U-Net (Ronneberger, Fischer, and Brox, 2015), 0.712 for the KG Network (Yi et al.,
2019) and 0.682 for the Mask R-CNN (He et al., 2017), but in presence of adversa-
tive noise the IoU keeps a reasonable value of 0.549 for the proposed model and
instead drops significantly for the Neural Networks with values 0.060 for the U-Net,
0.025 for the KG Network and 0.207 for the Mask R-CNN. This feature combined
with its Explainability of the algorithm makes it very suitable for contexts where to
each prediction is associated a concrete responsibility, like in medical applications
(AMIA, 2021). In second study case has been proposed an Agent Based Model of
10 millions agents (Giacopelli, 2021). The proposed model was validated against a
classical SIRD (Susceptible-Infected-Recovered-Deceased) model (Baldé, 2020) fitted
with a parameter exploration scheme on outbreak data showing comparable results
in terms of the rooted mean square error of the data: the SIRD model had an er-
ror of 150 for the infected, 71 for the recovered, and 18 for the deceased; and the
proposed model exhibited an error of 535 for the infected, 58 for the recovered, and
34 for the deceased. However, most of the parameters of the proposed models are
realistic and empirically measurable, making the propsed model very suitable for
evaluating alternative scenarios. One of them is the efficacy of Vaccines in fighting
Covid-19 pandemic, where the model has predicted an herd immunity percentage
of 70% in September 2020, when a vaccine was not available yet and when so many
mutations of the virus were not present yet (Tartof et al., 2021).

In conclusion Graph Theory is becoming more and more Modern, being contam-
inated by the wide spectrum of its applications (Barrat, Barthélemy, and Vespignani,
2008; Easley and Kleinberg, 2010). However, is opinion of the author that this con-
tamination of Classic Graph Theory is a good thing, because every new solution in
a new field changes and improves the tools of Graph Theory. This contamination is
just the demonstration of the unbreakable link between Theory and its applications.
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