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Abstract

Data collected in criminal investigations may suffer from issues like: (i) incompleteness, due

to the covert nature of criminal organizations; (ii) incorrectness, caused by either uninten-

tional data collection errors or intentional deception by criminals; (iii) inconsistency, when

the same information is collected into law enforcement databases multiple times, or in differ-

ent formats. In this paper we analyze nine real criminal networks of different nature (i.e.,

Mafia networks, criminal street gangs and terrorist organizations) in order to quantify the

impact of incomplete data, and to determine which network type is most affected by it. The

networks are firstly pruned using two specific methods: (i) random edge removal, simulating

the scenario in which the Law Enforcement Agencies fail to intercept some calls, or to spot

sporadic meetings among suspects; (ii) node removal, modeling the situation in which some

suspects cannot be intercepted or investigated. Finally we compute spectral distances (i.e.,

Adjacency, Laplacian and normalized Laplacian Spectral Distances) and matrix distances

(i.e., Root Euclidean Distance) between the complete and pruned networks, which we com-

pare using statistical analysis. Our investigation identifies two main features: first, the overall

understanding of the criminal networks remains high even with incomplete data on criminal

interactions (i.e., when 10% of edges are removed); second, removing even a small fraction

of suspects not investigated (i.e., 2% of nodes are removed) may lead to significant misinter-

pretation of the overall network.

Introduction

Criminal organizations can be defined as groups operating outside the boundaries of the law,

that profit from providing illicit goods and services in public demand in an illicit manner, and

for which achievements come at the detriment of other individuals, groups or societies [1].

Organized crime can be referred to by a range of different terms such as gangs [2], crews [3],
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firms [4], syndicates [4], or Mafia [5]. In particular, Mafia is defined in Gambetta’s work [6] as

a “territorially based criminal organization that attempts to govern territories and markets”

and he refers to the one located in Sicily as the original Mafia.

Whatever term is used to identify organized crime, the latter is anyway based on relational

traits. For this reason, scholars and practitioners are increasingly adopting a Social Network

Analysis (SNA) perspective to explore criminal phenomena [7]. SNA is indeed a powerful tool

to analyze criminal networks and to gain a deeper understanding of criminal behavior [8].

SNA algorithms are able to produce relevant measurements and parameters relevant to iden-

tify the roles and importance of individuals within criminal organizations [9] and to construct

crime prevention systems [10].

Over the last decades, SNA has been employed greatly by Law Enforcement Agencies

(LEAs). This increasing interest from law enforcement is due to the SNA ability to identify

mechanisms that are not easily discovered at a first glance [11].

SNA relies on real datasets used as sources which allow to build networks that are then

examined [10, 12–18]. However, the collection of complete network data describing the struc-

ture and activities of a criminal organization is difficult to obtain.

In a criminal investigation, the individuals subjected to LEAs enquiries may attempt to

shield sensible information. Investigators then have to rely on alternative methods and exercise

special investigative powers allowing them to gather evidence covertly. Information available

for analysis can then come from sources such as phone taps, surveillance, archives, informants,

interrogations to witnesses and suspects, infiltration in criminal groups. Despite significant

advantages, such sources may also come with a number of drawbacks.

During investigations, some of the individuals providing information might be reliable,

while others might attempt to deceive the investigations with the aim to protect themselves or

their associates, or to achieve a goal. For instance, if actors are aware of being phone-tapped,

they are more likely to avoid exposing some self-incriminating evidence. While transcripts of

discussions between unsuspecting actors may be considered more reliable, a double-check is

still needed between information collected from the taps and data collected from other official

records related to the case. This is required since conversations among criminals often involve

lies or codes concealing the true nature of the crime [19]. Moreover, if police misses surveil-

lance targets, central actors may not appear with their actual role in the data, simply because

their phones end up not being tapped [5].

While the police seeks to validate the content of phone-taps, the offenders themselves try to

find out whether the information received from fellow criminals is actually accurate. Longer

investigations and surveillance tend to eventually expose such lies. On the other side, with

investigations going on, the list of suspects may change over time, with the group, and conse-

quently data, changing significantly as a function of police decisions.

Police decisions may indeed impact the design of an investigation. LEAs normally start

with some central individuals and then expand their reach by adding further actors. Not all the

individuals linked to the central ones are automatically added, though. This can happen, for

instance, when there are not enough resources available to investigate all active criminal

groups, then prosecution services concentrate indeed on groups on which they can gather evi-

dence easily. This kind of decisions are more prone to the risk of some groups operating under

the police radar and then left out from the collected data. This approach is shown to hold

extremely high chances of generating distorted inferences about the network structure [20].

The problem of actors lying is extended to data collected through questionnaires or inter-

views as well. Information collected from interrogations may not be reliable, with the risk of

interviewees downplaying or amplifying their real role or not being representative of the

broader group.
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Incompleteness and incorrectness in criminal network data is then inevitable, since avail-

able intelligence data is determined more by the subjective judgements of investigators. This is

due to investigators dealing with different qualities of data and because there is no standard

methodology in SNA, for taking into account such degrees of reliability.

The problem of determining which information is relevant is usually referred to as the

problem of signal and noise, in which important information is mixed in with large amounts

of irrelevant, or unreliable information. LEAs are indeed often faced with the problem of hav-

ing too much data, some of which being of little value. With large volumes of raw data col-

lected from multiple sources, the risk of inconsistency becomes higher as well. Analytic

techniques used in intelligence then must be able to cope with large amounts of information,

and be capable to extract the signal from the noise.

In summary, data collected in criminal investigations often suffers from:

• Incompleteness, caused by the covert nature of such type of networks;

• Incorrectness, caused by either unintentional data collection errors and intentional deception

by criminals;

• Inconsistency, when records of the same actors may be collected into law enforcement

databases multiple times and not necessarily in a consistent way. Such misleading infor-

mation may lead to an actor featuring multiple times (as different individuals) in the

network.

Another problem specific to SNA for criminal networks lies in how data are transformed.

As stated before, data needs to be presented in a specific manner, with actors being represented

by nodes, whereas their associations or interactions are represented by links. In SNA, there is

not a standard method for such data transformation task from raw data: the process undergoes

the subjective judgement of the analyst that might be debatable. For instance, it may be diffi-

cult for an analyst to decide whom to include or exclude from the network, if its boundaries

are prone to ambiguity [21]. Data conversion then ends up being a fairly labor-intensive and

time-consuming task.

Finally, another feature of criminal networks is represented by their dynamics: such net-

works are not static, meaning that they constantly change over time. To represent such dynam-

ics, new data or even different data collection methods are required, for covering longer time

spans [21].

In this work, a network science approach is adopted to assess how much of the available

data of a criminal network may be missing, before it starts to be unreliable. In other words, our

aim is to quantify how much the partial knowledge of a criminal network can affect investiga-

tions in a significant way.

An interesting application of SNA consists of comparing networks, by finding and quanti-

fying similarities and differences between them [22–24]. Network comparison requires mea-

sures for the distance between graphs, a non-trivial task involving sets of features which are

often sensitive to the specific application domain. Some reviews on the most common graph

comparison metrics are [25–28]. In [29], such distance measures were exploited to quantify

how well artificial (but realistic) models can simulate real criminal networks. The same mea-

sures are used herein for a different task.

In this paper, we analyze nine real criminal networks of different nature, which are the

result of different investigative operations over Mafia networks, criminal street gangs and ter-

rorist organizations. To quantify the impact of incomplete data and to determine what kind of

network mostly suffers from it, we adopted the following strategy:
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1. We pruned input networks by means of two specific methods, namely: random edge
removal and random node removal, which reflect the most common scenarios of missing

data arising in investigation environments.

2. We calculated the distance between the original (and complete) network and its pruned

version.

Materials and methods

This section presents basic definitions and notations on graph theory concepts and the dis-

tance metrics used for comparing two graphs. We also describe the datasets used in our experi-

mental analysis, as well as the protocol followed to run our analysis.

Background

Graph properties. A network (or graph) G = hN, Ei consists of two finite sets N and E
[30]. The set N = {1, . . ., n} contains the nodes (or vertices, actors), and n is the size of the net-

work, while the set E� N × N contains the edges (or links, ties) between the nodes.

A network is called undirected if all its edges are bidirectional. If the edges are defined by

ordered pairs of nodes, then the network is called directed. If an edge (i, j) with i, j 2 N is

weighted, then a positive numerical weight wij is associated to it; the unweighted edges have

their weight set to the default value wij = 1.

Given an undirected network G, two nodes i, j 2 N are connected if there is a path from i to

j: here a path p is defined as a sequence of nodes i0, i1, . . ., ik such that each pair of consecutive

nodes is connected through an edge. The number of edges in a path p starting at node i and

ending at node j is called path length. While there may be several paths from the node i to the

node j, we are usually interested in the shortest paths (i.e., those with the least number of

edges), whose length defines the distance dij between i and j. Of course, in undirected networks

we have dij = dji.
A graph G is called connected if every pair of nodes in G is connected, and disconnected oth-

erwise. If a network is disconnected, then this can be partitioned into a collection of connected

subnetworks, called components.
Based on the number of edges m, a graph is called dense if m is of the same order of magni-

tude as n2, or sparse if m is of the same order of magnitude as n. The density δ of an undirected

graph is defined as

d ¼
2jEj

jVjðjVj � 1Þ
¼

2m
nðn � 1Þ

; ð1Þ

that is the total number of edges over the maximum possible number of edges.

The degree ki of the node i represents the number of adjacent edges to it. For an integer 0�

k� n, nk is the number nodes of degree k, while the degree distribution pk is the probability

that a randomly selected node in the graph has degree k. For a graph of n nodes, the normal-

ized histogram for pk is then given by

pk ¼
nk

n
: ð2Þ
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The degree ki allows to compute the clustering coefficient Ci of a node i [31], which captures

the degree to which the neighbors of the node i link to each other, given by

Ci ¼
2Li

kiðki � 1Þ
; ð3Þ

where Li represents the number of links between the ki neighbors of node i. The average of Ci

over all nodes defined the average clustering coefficient hCii, measuring the probability that

two neighbors of a randomly selected node link to each other.

Given a pair of graphs, say G1 and G2, we are often interested in defining a measure of simi-

larity (or, equivalently, distance) between them. In what follows we review some methods one

can use to compute the distance of two graphs.

Spectral distances. Spectral distances allow to measure the structural similarity between

two graphs starting from their spectra. The spectrum of a graph is widely used to characterise

its properties and to extract information from its structure.

The most common matrix representations of a graph are the adjacency matrix A, the Lapla-
cian matrix L, and the normalized Laplacian L.

Given a graph G with n nodes, its adjacency matrix A is an n × n square matrix denoted by

A = (aij), with 1� i, j� n, where aij = 1 if there exists an edge joining nodes i and j, and aij = 0

otherwise.

For undirected graphs the adjacency matrix is symmetric, i.e., aij = aji.
The degree matrix D is a diagonal matrix where Dii = ki and Dij = 0 for i 6¼ j.

Dij ¼

( ki if i ¼ j

0 otherwise:
ð4Þ

The adjacency matrix and the degree matrix are used to compute the combinatorial Lapla-

cian matrix L, which is an n × n symmetric matrix defined as

L ¼ D � A: ð5Þ

The diagonal elements Lii of matrix L are then equal to the degree ki of the node i, while the

off-diagonal elements Lij are −1 if the node i is adjacent to j, and 0 otherwise. A normalized

version of the Laplacian matrix L is defined as

L ¼ D� 1
2LD� 1

2; ð6Þ

where the diagonal matrix D� 1
2 is given by

D�
1
2

i;i ¼

1ffiffiffi
ki
p if ki 6¼ 0

0 otherwise:

8
<

:
ð7Þ

If the representation matrix is symmetric, its eigenvalues are real and they can be sorted.

The spectrum of a graph consists indeed of the set of the sorted eigenvalues of one of its repre-

sentation matrices. The sequence of eigenvalues may be ascending or descending depending

on the chosen matrix. The spectra derived from each representation matrix may reveal differ-

ent properties of the graph. The largest eigenvalue in modulus is called the spectral radius of

the graph. If l
A
k is the kth eigenvalue of the adjacency matrix A, then the spectrum is given by
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the descending sequence

l
A
1
� l

A
2
� � � � � l

A
n : ð8Þ

If l
L
k is the kth eigenvalue of the Laplacian matrix L, such eigenvalues are considered in

ascending order so that

0 ¼ l
L
1
� l

L
2
� � � � � l

L
n: ð9Þ

The second smallest eigenvalue of the Laplacian matrix of a graph is called its algebraic con-
nectivity. Similarly, if we denote the kth eigenvalue of the normalized Laplacian matrix L as l

L
k ,

then its spectrum is given by

0 ¼ l
L
1
� l

L
2
� � � � � l

L
n : ð10Þ

The spectral distance between two graphs is the euclidean distance between their spectra

[32]. Given two graphs G and G0 of size n, with their spectra respectively given by the set of

eigenvalues λi and l
0

i, their spectral distance, according to the chosen representation matrix, is

computed as follows by the formula

dðG;G0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðli � l
0

iÞ
2

s

: ð11Þ

Based on the chosen representation matrix and consequently its spectrum, the most com-

mon spectral distances are the adjacency spectral distance dA, the Laplacian spectral distance

dL and the normalized Laplacian spectral distance dL.

If the two spectra are of different sizes, the smaller graph is brought to the same cardinality

of the other by adding zero values to its spectrum. In such case, only the first k� n eigenvalues

are compared. Given the definitions of spectra of the different matrices, the adjacency spectral

distance dA compares the largest k eigenvalues, while dL and dL compare the smallest k eigen-

values. This determines the scale at which the graphs are studied, since comparing the higher

eigenvalues allows to focus more on global features, while the other two allow to focus more

on local features.

Matrix distances. Another class of distances between graphs is the matrix distance [33]. A

matrix of pairwise distances dij between nodes on the single graph is constructed for each as

Mij ¼ dij: ð12Þ

While the most common distance d is the shortest path, other measures can also be used,

such as the effective graph resistance, or variations on random-walk distances. Such matrices

provide a signature of the graph characteristics and carry important structural information.

Matrices M are then compared using some norm or distance.

Given two graphs G and G0, having M and M0 as their respective matrices of pairwise dis-

tances, the matrix distance between the G and G0 is introduced as:

dðG;G0Þ ¼k M � M0 k; ð13Þ

where k.k is a norm to be chosen. If the matrix used is the adjacency matrix A, the resulting

distance is called edit distance.
The similarity measure used in this work is called DELTACON [34]. It is based on the root

euclidean distance drootED, also called Matsusita difference, between matrices S created from

the fast belief propagation method of measuring node affinities.
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The DELTACON similarity simDC is defined as

simDCðG;G0Þ ¼
1

1þ drootEDðG;G0Þ
; ð14Þ

where the root euclidean distance drootED(G, G0) is defined as

drootEDðG;G0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i;j

ð
ffiffiffiffiffi
Si;j

q
�

ffiffiffiffiffiffiffi
S0i;jÞ

q 2
s

: ð15Þ

When used instead of the Euclidean distance, drootED(G, G0) may even detect small changes

in the graphs. The fast belief propagation matrix S is defined as

S ¼ ½I þ ε2D � εA�� 1
; ð16Þ

where ε = 1/(1 + max1�i�n Dii) and it is assumed to be ε� 1, so that S can be rewritten in a

matrix power series as:

S � I þ εAþ ε2ðA2 � DÞ þ . . . : ð17Þ

Fast belief propagation is an effective algorithm and it is designed to perceive both global

and local structures of the graph [34].

Criminal networks data sources

Our analysis focuses on nine real criminal networks of different nature (see Table 1). The first

six networks relate to three distinct Mafia operations, while the other three are linked to street

gangs and terrorist organizations.

The Montagna Operation was an investigation concluded in 2007 by the Public Prosecu-

tor’s Office of Messina (Sicily) focused on the Sicilian Mafia groups known as Mistretta and

Batanesi clans. Between 2003 and 2007 these families infiltrated several economic activities

including public works in the area, through a cartel of entrepreneurs close to the Sicilian

Table 1. Criminal networks characterization.

Investigation Network Source

Name Nodes Edges

Montagna Operation

(Sicilian Mafia)

2003-2007

MN

PC

Suspects Physical Surveillance

Audio Surveillance

[10, 16, 17, 29, 35]

Infinito Operation

(Lombardian ‘Ndrangheta)

2007-2009

SN Suspects Physical and

Audio Surveillance

[36–40]

Oversize Operation

(Calabrian ‘Ndrangheta)

2000-2009

WR

AW

JU

Suspects Audio Surveillance

Physical Surveillance

Audio Surveillance

[41, 42]

Swedish Police Operation

(Stockholm Street Gangs)

2000-2009

SV Gang members Physical Surveillance [13, 43]

Caviar Project

(Montreal Drug Traffickers)

1994-1996

CV Criminals Audio Surveillance [5]

Abu Sayyaf Group

(Philippines Kidnappers)

1991-2011

PK Kidnappers Attacks locations [44]

https://doi.org/10.1371/journal.pone.0255067.t001
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Mafia. The main data source is the pre-trial detention order issued by the Preliminary Investi-

gation Judge of Messina on March 14, 2007.

The order concerned a total of 52 suspects, all charged with the crime of participation in a

Mafia clan as well as other crimes such as theft, extortion or damaging followed by arson.

From the analysis of this legal document we built two weighted and undirected graphs: the

Meeting network (MN) with 101 nodes and 256 edges, and the Phone Calls (PC) network with

100 nodes and 124 edges (see Table 2). In both networks, nodes are suspected criminals and

edges represent meetings (MN), or recorded phone calls (PC). These original datasets have

been already studied in some of our previous works [10, 16–18, 29, 45] and they are available

on Zenodo [35].

The Infinito Operation was a large law enforcement operation against ‘Ndrangheta groups

(i.e., groups of the Calabrian Mafia) and Milan cosche (i.e., crime families or clans) concluded

by the courts of Milan and Reggio Calabria, Italian cities situated in Northern and Southern

Italy, respectively. The investigation started 2003 is still in progress. On July 5, 2010, the Pre-

liminary Investigations Judge of Milan issued a pre-trial detention order for 154 people, with

charges ranging from mafia-style association to arms trafficking, extortion and intimidation

for the awarding of contracts or electoral preferences. The dataset was extracted from this judi-

cial act and is available as a 2-mode matrix on the UCINET [46] website (Link: https://sites.

google.com/site/ucinetsoftware/datasets/covert-networks/ndranghetamafia2). The Infinito

Operation dataset was investigated by Calderoni and his co-authors in several works [36–40].

From the original 2-mode matrix, we constructed the weighted and undirected graph Summits

Network (SN) with 156 nodes and 1619 edges (Table 2). Nodes are suspected members of the

‘Ndrangheta criminal organization. Edges are summits (i.e., meetings whose purpose is to

make important decisions and/or affiliations, but also to solve internal problems and to estab-

lish roles and powers) taking place between 2007 and 2009. This network describes how many

summits any two suspects may have in common. Attendance at summits was registered by

police authorities through wiretapping and observations during this operation.

The Oversize Operation is an investigation lasting from 2000 to 2006, which targeted more

than 50 suspects of the Calabrian ‘Ndrangheta involved in international drug trafficking,

homicides, and robberies. The trial led to the conviction of the main suspects from 5 to 22

years of imprisonment between 2007-2009. Berlusconi et al. [41] studied three unweighted

and undirected networks extracted from three judicial documents corresponding to three

Table 2. Mafia networks properties.

Network MN PC SN WR AW JU

weights weighted weighted weighted unweighted unweighted unweighted

directionality undirected undirected undirected undirected undirected undirected

connectedness false false false false false false

no. of nodes n 101 100 156 182 182 182

no. of isolated nodes ni 0 0 5 0 36 93

no. of edges m 256 124 1619 247 189 113

no. of components |cc| 5 5 6 3 38 96

max avg. path length hdi for cc 3.309 3.378 2.361 3.999 4.426 3.722

max shortest path length d 7 7 5 8 9 7

density δ 0.051 0.025 0.134 0.015 0.011 0.007

avg. degree hki 5.07 2.48 20.76 2.71 2.08 1.24

max degree k 24 25 75 32 29 13

avg. clust. coeff. hCi 0.656 0.105 0.795 0.149 0.122 0.059

https://doi.org/10.1371/journal.pone.0255067.t002
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different stages of the criminal proceedings (Table 2): wiretap records (WR), arrest warrant

(AW), and judgment (JU). Each of these networks has 182 nodes corresponding to the individ-

uals involved in illicit activities. The WR network has 247 edges which represent the wiretap

conversations transcribed by the police and considered relevant at first glance. The AW net-

work contains 189 edges which are meetings emerging from the physical surveillance. The JU

network has 113 edges which are wiretap conversations emerging from the trial and several

other sources of evidence, including wiretapping and audio surveillance. These datasets are

available as three 1-mode matrices on Figshare [42].

The Stockholm street gangs dataset was extracted from the National Swedish Police Intelli-

gence (NSPI), which collects and registers the information from different kinds of intelligence

sources to identify gang membership in Sweden. The organization investigated here is a Stock-

holm-based street gang localised in southern parts of Stockholm County, consisting of margin-

alised suburbs of the capital. All gang members are male with high levels of violence, thefts,

robbery and drug-related crimes. Rostami and Mondani [13] constructed the Surveillance

(SV) network (Table 3). It contains data from the General Surveillance Register (GSR) which

covers the period 1995–2010 and aims to facilitate access to the personal information revealed

in law enforcement activities needed in police operations. SV is a weighted network with 234

nodes that are gang members. Some of them were no longer part of the gang in the period cov-

ered by the data and have been included as isolated nodes. The link weight counts the number

of occurrence of a given edge. This dataset is available on Figshare [43].

Project Caviar [5] was a unique investigation against hashish and cocaine importers operat-

ing out of Montreal, Canada. The network was targeted between 1994 and 1996 by a tandem

investigation uniting the Montreal Police, the Royal Canadian Mounted Police, and other

national and regional law-enforcement agencies from England, Spain, Italy, Brazil, Paraguay,

and Colombia. In a 2-year period, 11 imported drug consignments were seized at different

moments and arrests only took place at the end of the investigation. The principal data sources

are the transcripts of electronically intercepted telephone conversations between suspects sub-

mitted as evidence during the trials of 22 individuals. Initially, 318 individuals were extracted

because of their appearance in the surveillance data. From this pool, 208 individuals were not

implicated in the trafficking operations. Most were simply named during the many transcripts

of conversations, but never detected. Others who were detected had no clear participatory role

within the network (e.g., family members or legitimate entrepreneurs). The final Caviar (CV)

Table 3. Street gangs and terrorist networks properties.

Network SV CV PK

weights weighted weighted weighted

directionality undirected undirected undirected

connectedness false true false

no. of nodes n 234 110 246

no. of isolated nodes ni 12 0 16

no. of edges m 315 205 2571

no. of components |cc| 13 1 26

max avg. path length hdi for cc 3.534 2.655 3.034

max shortest path length d 6 5 9

density δ 0.012 0.034 0.085

avg. degree hki 2.69 3.73 20.9

max degree k 34 60 78

avg. clustering coeff. hCi 0.15 0.335 0.753

https://doi.org/10.1371/journal.pone.0255067.t003
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network was composed of 110 nodes. The 1-mode matrix with weighted and directed edges is

available on the UCINET [46] website. (Link: https://sites.google.com/site/ucinetsoftware/

datasets/covert-networks/caviar). From this matrix, we extracted an undirected and weighted

network with 110 nodes which are criminals and 205 edges which represent the communica-

tions exchanges between them (see Table 3). Weights are level of communication activity.

Philippines Kidnappers data refer to the Abu Sayyaf Group (ASG) [44], a violent non-state

actor operating in the Southern Philippines. In particular, this dataset is related to the Salast

movement that has been founded by Aburajak Janjalani, a native terrorist of the Southern Phil-

ippines in 1991. ASG is active in kidnapping and other kinds of terrorist attacks. The recon-

structed 2-mode matrix is available on UCINET [46] (Link: https://sites.google.com/site/

ucinetsoftware/datasets/covert-networks/philippinekidnappings). From the 2-mode matrix,

we constructed a weighted and undirected graph called Philippines Kidnappers (PK) (see

Table 3). The PK network has 246 nodes and 2571 edges. Nodes are terrorist kidnappers of the

ASG. Edges are the terrorist events they have attended. This network describes how many

events any two kidnappers have in common.

Useful information about Mafia, street gangs and terrorist networks is provided in Tables 2

and 3, including edges weight and directionality, connectedness, number of nodes including

isolated ones, number of edges, number of connected components, maximum average path

length for each connected component, maximum shortest path length, average degree, maxi-

mum degree and the average clustering coefficient. The CV network seems to be the only fully

connected network (i.e., |cc| = 1) and, for this reason, in all the considered networks we chose

to compute the average path length for the single components and then to show the maximum

value.

Then, we showed the degree distributions for each criminal network as a normalized histo-

gram (see Fig 1). MN, PC, WR, AW, JU, SV and CV have similar degree distributions in which

most nodes have a relatively small degree k with values around 0, 1 or 2, while a few nodes

have very large degree k and are connected to many other nodes. SN and PK are the only net-

works having different degree distributions compared to other criminal networks, as most of

their nodes have large degree k. In particular, we note that most nodes in PK are strongly con-

nected and have a degree k = 57.

SN, which derives from the Infinito operation, is a one-mode projection of the original

two-mode network in which are represented the meetings and the suspects attending them.

This implies that all suspects taking part in a meeting are assumed to be interacting with each

other, which could be somewhat artificial. In fact, in crowded meetings some participants may

have had a very limited (if any) interaction with other participants. In such case, assuming that

all participants interacted with each other may considerably overestimate the real number of

connections. However, it must be added that LEAs were only able to identify the participants

to meetings and not the full extent of their interactions. Similar consideration applies to PK

which was built based on the presence of the kidnappers in the same place of a terrorist event.

Here as well, the existence of an edge linking two terrorists does not necessarily imply that

they have interacted or worked together, despite being in the same place.

Design of experiments

In this section we give technical details on the design of the experiments conducted.

In the attempt of gaining a deeper understanding of criminal networks, in our previous

work [29] we used graph distances to compare randomly generated graphs and a real criminal

network. In the present paper, we have implemented distances, to understand the extent by

which a partial knowledge of a criminal network may negatively affect the investigations. Since
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we are trying to estimate differences based on the types/amount of data missing, we set up the

experiments based on two main strategies: random edge removal and node removal. The first

case simulates the scenario in which LEAs miss to intercept some calls or to spot sporadic

meetings among suspects (i.e., due to the delays in obtaining a warrant). In node removal, the

selected nodes are removed along with their incident edges, and afterwards they are reinserted

within the networks as isolated nodes. Indeed, the second case models the scenario in which

some suspects cannot be intercepted. For instance, if a criminal is known to be a boss but there

are not enough proofs to be investigated, then that criminal can be identified as an isolated

node with no incident edges. However, node removal is expected to have a greater impact than

simple edge removal, since removing a node implies the deletion of all its edges as well.

Note that for a better comparison among the networks, all the graphs have been considered

as unweighted (as AW and JU). Also, all the suspects showed as isolated nodes of the original

network have been excluded. In fact, our input parameter was the edge list of the graph, which

does not take into account nodes with no incident edges.

Fig 1. Degree distributions. The degree distribution pk provides the probability that a randomly selected node in each criminal network has degree k.

Same colors imply the networks belong to the same police investigation.

https://doi.org/10.1371/journal.pone.0255067.g001
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Algorithm 1 shows the pseudocode of our approach. The full code is available at https://

github.com/lcucav/criminal-nets/tree/master/missing_data. In order to obtain the subgraphs,

we started from the previously described datasets; then, we converted them into graphs (i.e.,

G) and, lastly, we pruned them (i.e., G0) according to a prefixed range of fractions with 0<

torem� 10%. We opted for the 10% because the criminal networks considered are small, as

they have less than 250 nodes. Afterwards, we have computed the spectral and matrix distances

between the original and the pruned graphs. Each edge removal process has been repeated a

fixed number of times (nrep = 100) and the results obtained have been averaged. Thus, the

averaged distances values hXi and their standard deviations σ have been computed.

Algorithm 1 Pseudocode for computing the distances
1: Parameter configuration: nrep, torem, and check
2: Read the dataset and convert it as graph G
3: if check = True then
4: Isolate torem of nodes
5: else
6: Remove torem of random edges
7: end if
8: Compute S(G)
9: Compute the matrices A(G), L(G), LðGÞ
10: for torem do
11: for nrep do
12: Create a pruned graph G0 and compute S0 (G0)
13: Compute drootED(G, G0), dA(G, G0), dL(G, G0), and dLðG;G

0

Þ

14: end for
15: Compute hXi, σ 8 d(G, G0) 2 nrep
16: end for

Results

Here we present the results obtained from the network pruning experiments. The distance

analysis between the real and the pruned networks is reported starting from the random edge

removal approach (Fig 2), moving to the analysis on the networks after node pruning (Fig 3).

The plots show the distances between the original graphs and their pruned versions up to 10%

of edges (Fe) and nodes (Fn), respectively.

In both removal processes, dA displays a saturation effect that makes the results difficult to

be interpreted. Hence, this distance is not effective for highlighting the effects of missing data

on criminal networks. Furthermore, from this metric it might seem that the two pruned net-

works of PK and SN show a greater deviation from their original counterparts, but this is due

to the inner structure of this metric, which is highly influenced by the node degree. In fact, the

average degree of PK an SN (see Tables 2 and 3) is significantly higher (i.e., hki’21) than the

other networks herein studied (i.e., 1< hki<4); moreover, their different topology is also evi-

dent from their degree distribution (see Fig 1). This is the reason why these networks seem to

have a more significant detachment effect than others; however, they too suffer the saturation

effect mentioned above as they grow. A similar behavior has also been encountered in dL and

its explanation is the same.

On the other hand, the distance metric which more effectively catches the damage caused

by a significant amount of missing data is dL, where distance growth is linear. Indeed, the

effects of hki are smaller as this aspect is compressed by the structure of this distance metric. It

would seem that this metric is the most effective measure compared to other spectral distances,

in understanding how much lacking data affects the total knowledge of the network. A similar

trend was also found in drootED; however, for a better comparison between node and edge
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removal processes, we analyzed in more detail this last metric by considering the DELTACON

similarity simDC (Fig 4).

The figure shows the difference between the original and pruned networks as the fraction

of elements removed increases (i.e., Fe for edges and Fn for nodes).

Before pruning the networks we have simDC = 1. Afterwards, the drop begins to became

more evident as the fraction F increases. In addition, as expected, the node removal process

affects more significantly the networks. This means that if the lack of data relates to sporadi-

cally missed wiretaps, or to just a few random connections between suspects, then the network

Fig 2. Edge removal effect. The removal effects of a fraction Fe of edges by showing the graph distances between the original graphs with their pruned

versions. (A) Adjacency Spectral Distance dA. (B) Laplacian Spectral Distance dL. (C) Normalized Laplacian Spectral Distance dL. (D) Root Euclidean

Distance drootED.

https://doi.org/10.1371/journal.pone.0255067.g002
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structure is not as much misinterpreted as if the case when one suspect has not been tracked at

all. Indeed, pruning the network by 2%, causes a simDC� 0.8 for edge pruning, compared to a

simDC’ 0.2 for the nodes ones. Therefore, even when a small amount of suspects are not

included in the investigations, this can lead to a very different network. The exclusion of the

suspects could be voluntary or not. It highly depends on the overall investigation process, start-

ing from the very preliminary analysis, and up to the judges’ decision to allow warrants, or to

exclude data considered irrelevant for the current investigation.

Fig 3. Node removal effect. The removal effects of a fraction Fn of nodes by showing the graph distances between the original graphs with their pruned

versions. (A) Adjacency Spectral Distance dA. (B) Laplacian Spectral Distance dL. (C) Normalized Laplacian Spectral Distance dL. (D) Root Euclidean

Distance drootED.

https://doi.org/10.1371/journal.pone.0255067.g003
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Discussion

In this paper we analyzed nine datasets of real criminal networks extracted from six police

operations to investigate the effects of missing data. More specifically, three datasets regard

Mafia operations (i.e., Montagna, Infinito, and Oversize), and the remaining ones refer to

other criminal networks, including street gangs, drug traffics, or terrorist networks (i.e., Stock-

holm street gangs, Caviar Project, Philippines Kidnappers).

Our study focused on a careful analysis of the datasets, in order to simulate the events

where some data are missing. In particular, two different scenarios have been considered: (i)

random edge removal, simulating the case in which LEAs miss to intercept some calls or to

spot sporadic meetings among suspects; and (ii) node removal, for the scenario where certain

suspects cannot be intercepted for some reason. For instance, if a criminal is known to be a

boss, but there are not enough proofs for him or her to be investigated, then this can be identi-

fied by an isolated node with no incident edges.

To quantify the difference between the original criminal networks and their pruned coun-

terparts, several distance metrics have been considered. We computed the Adjacency, Lapla-

cian, and normalized Laplacian Spectral distances (i.e., dA, dL, and dL, respectively) plus the

Root Euclidean Distance (i.e., drootED), as this metric allows to compute the DELTACON similar-

ity (i,e., simDC), which can quantify even small differences between two graphs in the interval

[0, 1]. The pruning process involved removing a fraction of up to 10% of edges and nodes.

This percentage has been chosen as the networks size was quite small (less than 250 nodes per

each dataset).

Our analysis suggests that (i) the spectral metric dL is best at catching the expected linear

growth of differences with the incomplete graph against its complete counterpart; (ii) the node

removal process is significantly more damaging than random edge removal; thus, it translates

to a negligible error in terms of graph analysis when, for example, some wiretaps are missing.

Fig 4. DeltaCon similarity simDC computation. (A) Edge removal process by the fraction Fe. (B) Node removal process by the fraction Fn.

https://doi.org/10.1371/journal.pone.0255067.g004
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Indeed, in terms of simDC drop, there is a 30% difference from the real network, for a pruned

version at 10%. On the other hand, it is crucial to be able to investigate the suspects in a timely

fashion, since any exclusion of suspects from an investigation may lead to significant errors

(due to substantial differences from the actual network)—we observed drops of up to 80% of

simDC on some networks.

A final consideration concerns the impossibility of conducting this type of analysis through

the use of Machine Learning, as it is currently practically impossible to obtain a sufficient

number of reliable and complete datasets of real criminal networks as to be able to conduct an

appropriate training of a Neural Network.

For the future, we plan to extend the analysis by considering weights as well. This will allow

to conduct a comparative analysis of the missing data effects when not only the connections

between nodes, but also their frequency is known. Another interesting aspect to be considered

is the network behaviour after their pruning in both criminal and general social networks.

Lastly, using the future knowledge gained from the network analysis herein presented, one

could try to define an artificial network able to accurately simulate the behavior of real crimi-

nal networks.
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