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Abstract
Controlled excitation ofmaterials can transiently induce changed or novel properties withmany
fundamental and technological implications. Especially, the concept of Floquet engineering and the
manipulation of the electronic structure via dressingwith external lasers have attracted some recent
interest. Herewe review the progressmade in defining Floquetmaterial properties and give a special
focus on their signatures in experimental observables as well as considering recent experiments
realizing Floquet phases in solid statematerials.We discuss how awide range of experiments with
non-equilibrium electronic structure can be viewed by employing Floquet theory as an analysis tool
providing a different view of excitations in solids.

1. Introduction

Controlling andmanipulatingmaterials properties by driving themout of equilibrium is fast emerging as an
excitingfield of research [1]. Prominent examples include signatures of light-induced [2] or light-enhanced [3]
superconductivity, ultrafast switching of hidden electronic phases [4] and phonon-inducedmagnetization [5].
In particular, the concept of viewing the non-equilibrium electronic structures as dressed by external fields and
thus allowing the control of so-called synthetic gaugefields [6]has attractedmuch attention because it shows a
route towards controlling topological and other properties via a process called Floquet engineering [7]. Based on
the theory of differential equations with oscillating coefficients, Floquet phases are thought to occurwhen a
quantummechanical system is subjected to a periodically oscillating potential, such as a laser.

Many intriguing non-equilibriumproperties have been induced in a controlledway by applying oscillating
perturbations to artificial lattices in so-called quantum simulation settings [8] including Floquet topology
[9, 10].While realmaterial realizations of Floquet engineered phases are still far and few between, we
concentrate here only on Floquet phases for condensedmatter systems. The observation of non-equilibrium
phases is a non-trivial endeavour and a field in itself [11], however herewe discuss a few examples of observation
of Floquet states or at least of observables resulting fromFloquet phases. It is important to note that realistic
Floquet phases are intricately linked tomany-body [12] and thermodynamical aspects [13], which can support
or obfuscate a pure Floquet picture.

Besides reviewing proposals and successful observations of Floquet phases, we also explore the application of
Floquet theory to solid state systems in a broader sense. The basic requirement for Floquet theory to be
applicable is a periodically oscillating potential.Most proposals of Floquet phases to date consider this to be an
externally appliedfield or other perturbation. Instead, an oscillating potential is also provided by internalmodes
of amaterial. Usually suchmodes are associatedwith quasi-particles that themselves have a dispersion relation
and thus do not necessarily provide a single frequency. Therefore, suchmodes need to be selectively excited to be
the dominating term, thus creating an non-equilibriumdressed electronic structure that is intrinsic to the
material and viewing it with Floquet theory opens a newperspective onmaterial properties.

This idea, of employing Floquet theory to perform analysis ofmaterial excitations, equally applies to
externally driven phases.Wewill showhow comparing non-equilibriumobservables of the Floquet electronic
structure can lead to valuable insight into experiments. Here Floquet theory is not viewed as away of analytically
constructing a non-equilibrium state, but as a theoretical tool to understand certain states ofmatter under
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non-equilibrium conditions. In this sense, Floquet states are considered an idealization of amore complex
physical reality. Howmuch of this idealization can be found in experiments remains to be seen andwe propose
to employ Floquet theory as a tool of analysis of non-equilibrium states.

In the following, we first review the basic theoretical concepts of Floquet theory when applied to quantum
mechanics, specifically the time-dependent Schrödinger equation.We thenmove to discuss a variety of
observables of Floquet systems and their formulationwithin Floquet theory, forming the basic tools for Floquet
analysis. The interpretation framework that Floquet analysis provides is then illustrated by explicitly solving a
driven two-level system and discussing its time-dependent properties in terms of Floquet theory. After this first
part that lays out the theoretical background, we discuss in the second part various theoretical proposals for
Floquet-engineeredmaterials as well as experimental realizations.We aim to give a broad overview over various
flavours of Floquetmaterial and provide a rough categorization. Finally we discuss howFloquet analysis can be
used to look at internalmodes and properties ofmaterials, through dressingmechanism beyond
electromagnetic fields.

2. Theoretical framework

2.1. General Theory
2.1.1. Floquet states
Floquet theory is an area ofmathematics dating back to thework of Floquet in 1883 that deals withfirst-order
differential equations with periodic coefficients [14]. Itsmost important finding is often called the Floquet–
Lyapunov theorem and states that while solutions to such differential equations generally do not have the same
periodicity as the coefficients, they can nevertheless be expressed as the product of a functionwith that
periodicity and a constant phase. The specialization of this theorem to the static Schrödinger equationwith
periodic lattice potentials is well known in solid states physics as the Bloch theoremor Floquet–Bloch theorem.
However, herewe are interested in the time-dependent Schrödinger equation as a differential equation in time

y y
¶
¶

=( ) ( ) ( ) ( )i
t

t H t t 1

with the condition thatH(t+T)=H(t) andwe callΩ=2π/T the Floquet frequency. It then follows from the
Floquet theorem that we canwrite any solution of the Schrödinger equation as a linear combination [15]

åy f=
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a a( ) ( ) ( )t f t 2F

of the fundamental solutions, the Floquet functions fa
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f =a a
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They are composed of the periodic function uα and the non-periodic part depending on the characteristic
exponentEα that we call here the Floquet energy, sometimes also referred to as quasi-energy, for reasons that will
become clear shortly. It is worth noting the similarity of the Floquet functions to the Bloch functions of periodic
lattices

f =( ) ( ) ( )e ur r , 4B i
k

kr
k

where instead of time-periodicity we have spatial periodicity and the crystal quasimomentumplays the role of
the Floquet energy. For this reason, these functions are sometimes called the Floquet-Bloch ansatz for the
solution of the Schrödinger equations.We can take the analogy even further whenwe remember that the
periodic part of the Bloch functions are often expanded in the basis of reciprocal lattice vectorsG as

= å( ) ( )u e cr Gi
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Gr
k . In the sameway the time-periodic functions uα can bewritten as
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This expansion into integermultiples of the fundamental Floquet frequency can be interpreted as a harmonic
decomposition [15] of the periodic function, where the coefficients aum are the harmonics andwe note that they
generally also have a spatial dependence, i.e. a ( )u rm . For the sumoverm in equation (5), thismeans that it can be
truncated at afinite number for the harmonics, because one does not need infinitely fast oscillating harmonics to
describe physical dressing. The crystal quasi-momentumvectors k are well known to be unique onlywithin the
first Brillouin zone, outside of whichBloch function are repeatedwith an additionalG phase. For Floquet
functions this periodicity is in energy space and the one-dimensional Floquet–Brillouin zone has the dimension
ofΩ. Despite these similarities there are, however, important differences between Floquet and Bloch states,
because they are not eigenstates of the same kind of equation.
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Here, and in the following, we consider onlymonochromatic fields, however, it is worth pointing out that it
is possible to extend the Floquet formalism tomultiple frequencies [16, 17]with intriguing implications, for
example the topological pumping of energy between two different laser pulses [18].

2.1.2. Floquet Hamiltonian
While Bloch states solve the static Schrödinger equationwith lattice periodic potentials Floquet states solve the
time-dependent Schrödinger equation. Using the Floquet states of the form equation (3) together with
equation (5) as an ansatz in the time-dependent Schrödinger equationwe get

òå d= + Wa
a a- W⎡

⎣⎢
⎤
⎦⎥( ) ( )( )E u

T
dtH t e m u

1
6n

m T

i m n t
mn m

wherewe have used ò d- W =[ ( ) ]/T dt i m n t1 exp
T mn. This is amatrix eigenvalue equation for the Floquet

energies in the space of the harmonics

å=a
a a ( )E u u 7n

m
nm m

and is referred to as the FloquetHamiltonian.One can see from equation (6) how the Floquet–Ansatz of
developing time-dependent states into harmonics of the fundamental frequency leads to a Fourier analysis of the
time-dependentHamiltonian in terms of these harmonics.

2.1.3.Monochromatic Floquet Hamiltonian
The decomposition of the time dependence of theHamiltonian intomultiples of the fundamental frequency can
in principle account for complex time profiles within one period ofΩ. However, in practice one usually deals
withmonochromatic fields, inwhich case the FloquetHamiltonian has a simple structure and one is allowed to
discuss its general properties in detail. Expanded in the basis of the harmonic components, the Floquet
Hamiltonian has thematrix structure2
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whereH0 is the groundstateHamiltonian, ò=  W( ) ( )P T dt i t H t1 exp
T

is the expansion of the time-

dependentHamiltonian into harmonics ofΩ, 1 is the identity in the space ofH0 and ui are the harmonic
components of the Floquet state.

This eigenvalue problem can equivalently expressed as a recursion relation in terms of the Floquet
harmonics:

- W - = +a
a a a

- +( )∣ ⟩ ∣ ⟩ ∣ ⟩ ( )†E m H u P u P u 9m m m0 1 1

fromwhich one can see the periododic structure of the eigenspectrum: each eigenvalue belongs to a set of
eigenvalues shifted bymultiples ofΩ. If two eigenvalues Eα and a¢E are related bymultiples ofΩ then their
eigenstates are related as

= + W ñ = ña a
a a

¢ -
¢⟺∣ ∣ ( )E E n u u 10m m n

i.e. the corresponding eigenvectors differ only in the sense that they are ‘shifted’with respect to the block
indexm.

2.1.4. Effective Floquet Hamiltonian
This is equivalent to thementioned existence of a Floquet–Brillouin zone in energy and one could in principle
devise solution strategies focused on the energywindow corresponding to thisfirst Floquet–Brillouin zone
(FBZ) [19]. However, the recursive structure of the Floquet eigenvalue problem also allows to define an
alternative set of unique states that do not belong to the first Floquet Brillouin zone, but instead are those states
that are predominantly the zero harmonics. Their eigenvalues are those that followmost closely the original
bands of the problem,which is important inmany cases for the interpretation of Floquet spectra, while one can
construct the full set of eigenstates via the relation equation (10).

2
This is only true inwhen thefield is considered in length gauge. If one uses the velocity gaugewith a vector potentialA(t), as is appropriate

for periodic systems, themonochromaticHamiltonian also contains the diamagnetic term that is proportional to ( )tA 2.
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We thus define an effective FloquetHamiltonian, which has the dimension ofH0 but that takes into account
all the effects of the nΩ shiftedH0, such that

ñ = ña
a

a∣ ∣ ( )H u E u 11eff 0 0

andwhose eigenstates are thus automatically them=0 components of the zero harmonics and the eigenvalues
are unique, i.e. are not shifted byΩ. Starting from

- ñ = ñ + ña
a a a

- +( )∣ ∣ ∣ ( )†E H u P u P u 120 0 1 1

and reusing the recursionwe can defineHeff as the continued fraction [20]

= +
- W - -

+
+ W - -

a
a a- W + Wa a

( ) ( )†
† †

†H E H P
E H P P

P P
E H P P

P
1 1

13eff

E E

0
0

1

2 ... 0
1

2 ...

which depends on the eigenvalue Eα and therefore has to be solved self-consistently. Taking the limit of large
frequencies we obtain

= +
W

[ ] ( )†H H P P
1

, 14eff 0

which is often used to approximate the zero harmonic spectrum [21].
While this high-frequency expansion is widely used for the description of drivenDirac systems, wewould

also like to point out that at the other extreme of approximations, the adiabatic limit, interesting physics can be
found and is widely discussed, like Thouless pumping [22] and relatedmechanisms [23, 24].

The recursion relation (9) also allows the interpretation of the FloquetHamiltonian in analogywith the
tight-binding formulation for electron.Writing it as

+ + = - Wa a a
a

a
- +∣ ⟩ ∣ ⟩ ∣ ⟩ ( )∣ ⟩ ( )†H u P u P u E m u 15m m m m0 1 1

shows how the coupling operators P act as hopping terms between harmonics.

2.1.5. Floquet evolution operator
Floquet states and their associated eigenvalues do not only provide a useful representation of time-dependent
states, but they also can be used to represent the entire time-evolution associatedwith the time-dependent
Schrödinger equation. Specifically, the time-evolution operator associatedwith a periodic Schrödinger equation
can be decomposed into its Floquet states:

å f f= ñá
a

a a
ˆ ( ) ∣ ( ) ( )∣ ( )U t t t t, 16F F

1 2 1 2

where the sum runs again over states from the FBZ. From this formulation it is clear howknowledge of the
Floquet states and eigenvalues completely solves the time-dependent problem, since given a state at any point in
time, it allows the direct determination of this states at all times. One can thus express any time-dependent
quantity in terms of the Floquet states in an analytical form,whichwewill use below for the formulation of
observables in the Floquet picture.

2.1.6. Floquet analysis
One can use the representation of the time evolution equation (16) to verify that the expansion of the time-
dependent solution of the Schrödinger equation into Floquet states equation (2) is unique for all times. It is
possible to see that the Floquet functions in the FBZ are orthogonal observing that, in order to satisfy the
unitarity of the evolution operator,

å f f f f= = ñá ñá
a b

a a b b
ˆ ( ) ˆ ( ) ∣ ( ) ( )∣ ( ) ( )∣ ( )†I U t t U t t t t t t, , 17F F F F

1 2 1 2
,

2 1 1 2

their overlapmust be

f f dá ñ =a b a b( )∣ ( ) ( )t t . 18F F
,

Furthermore using the orthogonality condition it follows that the coefficients in the expansion of the time-
dependent solution of equation (2) can be obtained by straightforward projection

f y= á ña a ( )∣ ( ) ( )f t t . 19F

This result is important because it provides a direct connection between the solution of the time-dependent
Schrödinger equation and the expansion in Floquet functions and therefore establishes a gateway to perform
Floquet analysis.We note that such a relation is independent of time provided the time evolution is of a pure
Floquet kind. Any deviation from the ideal case result in an approximate validity of the expansion, yet Floquet
analysis can still be performed provided a degree of accordance between Floquet and real time solution is
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achieved. The Floquet fidelity defined as the period averaged overlap

ò åy f= á ñ
t

t

a
a a

+
∣ ( )∣ ∣ ( ) ∣ ( )F

T
t t f t

1
d 20

T
F 2

is 1 for pure Floquet evolution and 0 otherwise and represents themost appropriate observable to quantify the
degree towhich Floquet analysis can be applied.

2.2. Floquet observables
2.2.1. Photoelectron spectrum
Photoelectron spectroscopy provides away to access the occupied energy levels of an electronic system. In its
general form it is governed by thematrix element

= áY Y ñ( ) ( )∣ ( )∣ ( ) ( )M t t t U t t t, , 21f i f f i ip p 0

which determines the probability = =( ) ∣ ( )∣P w M t tp ,i f f ip
2 tofind an electron residing at a given time ti in

the state Y ñ∣ ( )ti0 , in the scattering state Y ñ∣ ( )tfp with asymptoticmomentum p at a subsequent time tf owing to
the presence of an externalfield described by the evolution operatorU(tf, ti). To probe the electronic structure of
a Floquet systemwith photoelectrons one needs to consider twofields: the dressing field that creates the Floquet
system and the field is able to ionize the system and therefore generates a detectable ionization current. In order
to seewhich properties of the dressed systemone can access with this techniquewe can employ the strong field
approximation (SFA) [25, 26].We further assume that the dressing field is dressing both initial andfinal state but
ionization is taking place only by virtue of the probe laser, and that the scattering states can be described by
Volkovwaves. Volkovwaves are the analytical solutions of the time dependent Schrödinger equation of free
electrons in the presence of a time-dependent vector potentialApu(t), and are normally expressed as planewaves,
ñ∣p modulated by a time-dependent phase
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p Ad 1
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t
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Volkovwaves can be also expressed into a Floquet form assuming amonochromatic driving field [27].
Discarding the ponderomotive contribution quadratic in the field they become
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is a planewavemultiplied by a Bessel functionwhose argument depends on the dot

product between the field polarization vector Apu
0 and the planewavemomentump. Upon invoking these

conditions, the photoelectron amplitude equation (21) becomes
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where Y ( )( ) tV
p is a Volkovwave, = +( ) ·W t p A Apr pr

2 describes the couplingwith the probefield vector
potentialApr(t) andΨ(t) can be expandedwith equation (2) in Floquet states dressed by the pumpfieldApu(t). By
taking aweakmonochromatic probefield w=( ) ( )t tA A cospr pr

0 we can discard the termof the coupling

quadratic in the field. Expanding Y ñ∣ ( )t and Y ñ∣ ( )( ) tV
p we arrive at an expression for equation (24)
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where fα is the Floquet expansion coefficient andwe performed the time integral to obtain a delta function
enforcing energy conservation.

Finally exploiting the product of delta functionswe canwrite the photoemission probability amplitude as

åå d w= - + W -
a

a a a( ) ∣ ∣ ∣ ( )∣ ( · ) ( ) ( )/P f u E np p p A p 2 , 26
n

n
pr

2 2 0 2 2

where = å á ña
a

-( ) ∣u up pn
m m n m . Based on this expressionwe canmake some statements aboutwhich information

photoelectron spectroscopy of Floquet states can extract. First of all we note that the expansion coefficients fα
enter as the squaremodulus in the place of the usual equilibriumband occupation. In accordance with results
obtained below for the optical response function, see equation (33), we therefore interpret a∣ ∣f 2 as the occupation
of the FBZ state. In contrast to the equilibrium case, however, this occupation does not affect only a single band,
but aswe can also see from equation (26) there is a series of responses at w = - + WaE np 22 . This series of
satellites are signatures of the harmonics of the Floquet states and are called Floquet sidebands. The important
result here is that their intensity in a photoelectron spectrum cannot directly be interpreted as an occupation of a
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separate state, but instead their signal is a combination of the Floquet occupation a∣ ∣f 2 and the photoemission
matrix elements a∣ ( )∣u pn 2 that is unique to each harmonic and decays with increasing n. Furthermore the
dependence on n highlights the importance of accounting for dressed continuum states in this picture as it
provides different channels to enhance the probability to observe sidebands—amechanism known as laser
assisted photoemission effect [28].

2.2.2. Optical response function
Floquet theorymaps the time-dependent evolution of systemswith time-dependentHamiltonians into that of a
quasi static systems as shown in equation (16). The properties of such a quasi-static system can then be probed by
response theory. The optical absorption spectrum can be computed from the time-dependence of the induced
dipolemoment of the systemwhen perturbed by aweak but time-dependent probefield  ¢( )ti

ò c= ¢ ¢ ¢( ) ( ) ( ) ( )d t dt t t t, 27i i

where the subscript i denotes the polarization direction (whichwewill omit in the following for clarity) andχ is
the dipole response function.

The dipole response function of any (closed) systemout of equilibrium can be expressed in terms of time-
evolution operators as [20]

c q¢ = - ¢ áY ¢ - Y ¢ ñ( ) ( ) ( )∣ ˆ ˆ ( ) ˆ ∣ ( ) ( )i t t t t t dU t t d h c t, , . . 28

whereΨ(t) is the time-dependent state and d̂ one component of the vector valued dipole operator. Specifying
this general response function to the case where the system is evolving according to Floquet time-evolution, i.e.
the evolution operator is equation (16) and the time-dependent stateΨ(t) can be expanded according to
equation (2), one obtains [20]

*åc q¢ = ¢ - ¢
abg

a b ag gb ag gb- ¢( ) ( ( ) ( ) ( ) ( )) ( )i t t f f d t d t d t d t, 29t t

where q q= - ¢- ¢ ( )t tt t , and f f= á ñab a b( ) ( )∣ ˆ∣ ( )d t t d tF F . This expression allows for an analytical evaluation of
the dipole spectrum as the Fourier transformof equation (27) for different probe fields:

òw c¢ = ¢ ¢ ¢w- ¢( ) ( ) ( ) ( )d dtdt e t t t, . 30i t

In experimental realizations of pump-probe optical spectroscopy, the probe is usually a short broad band pulse
that can be thought of as kicking the system simultaneously atmany frequencies. The theoretical idealization of
such a probe is a delta function in time

  d= -( ) ( ) ( )t t t 310 0

where t0 is the probe time, often referred to as the time-delay in time-resolved spectroscopies. Thismeans that
the time-dependent induced dipole-moment, equation (27) parametrically depends on t0 andwe have

ò c d= ¢ ¢ ¢ -( ) ( ) ( ) ( )d t dt t t t t, . 32t 0 00

The Fourier transformof this expression using the Floquet dipole response function, equation (29), reads
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where = å á ñab
a b
- ∣ ˆ∣d u d um

n n m n are the dipolematrix elements between harmonic components of FBZ states and
D = -ba b aE E E . This expression is useful because its pole structure shows the features of the optical response:
unless suppressed bymatrix elements or the expansion coefficients, the optical response of a Floquet systemhas
poles corresponding to transitions between the satellite bands. This shows that while a Floquet electronic
structure is established in amaterial, the eigenmodes of the system are the Floquet quasi-energies, even if the
probe is instantaneous and it is not necessary to average over the pump cycle. The Floquet states are
instantaneously observable. The probe time t0 enters here by determining a complex phase that affects the
lineshape of resonances in a non-trivial way.
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It is worth pointing out that the Floquet response function can bewritten as
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and thefirst term closely resembles the standard Lehman representation of equilibrium response functions. It
allows for the interpretation of the squaredmodulus of the Floquet expansion coefficients a∣ ∣f 2 as occupations of
FBZ states in the sense of equilibriumdistribution functions, that affect the absorption spectrum via Pauli
blocking.We note however, that the second term is generally non-zero and indeed accounts for all response
features when =a b∣ ∣ ∣ ∣f f2 2.

In the spirit of Floquet analysis, the response function derived above is not intended as a prescription to
compute experimental spectra. Aswewill see below, the experimental reality of non-equilibrium systems is
more complex than the Floquet picture. Instead, this response functions represent the ideal limit of a pump-
probe probe setupwhere the pumphas established a stable Floquet electronic structure and the probe is
infinitely short. It can thus be used to guide the interpretation of experiments even if the conditions are not
perfectly reached.

2.2.3. High harmonic generation
Floquet theory can be naturally used to describe non-linear response phenomena such as high harmonic
generation (HHG). HHGoccurs when a system, pumped by a strongmonochromatic field, emits radiation at
higher frequencies. The spectrumof the emitted radiation is governed by the Larmor formula
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that describes the radiation emitted by an accelerated charge density in terms of the Fourier transformof the
time derivative of the current, i(t). Belowwe present a Floquet formulation ofHHG that involves only bound
states, and is therefore applicable to solids where ionization is not the dominant generationmechanism. In order
to describeHHG in atoms andmolecules one needs to include continuum states in the Floquet expansion, see
e.g. [29].

The time-dependent current i(t) is the expectation value of the current density operator ĵ over the time-
dependent stateψ(t)
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where ĵ0 is the paramagnetic current operator and the vector potential (in the velocity gauge),A(t), accounts for
the diamagnetic component.

By expandingψ(t) in Floquet states and taking the Fourier transformof(36) one obtains
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m m n m0 and y =∣ ( )∣t N2 since the normof thewavefunction is a constant equal to the
number of electrons. This result shows how the Floquet expansion can give insight into complex non-linear
spectra, such asHHG,where a simple interpretation in terms of band electrons is no longer possible. Instead the
Floquet picture provides an interpretation of the spectral features in terms of ‘transitions’ between Floquet states
and their associatedmatrix elements.

3. Illustration of Floquet analysis

In this section, wewill demonstrate the concepts of Floquet analysis with a simple illustrativemodel. First we
showhowRabi oscillation is linked to the Floquet picture. Thenwe discuss the Floquet coefficients of the
Floquet expansion of the solutions of the time-dependent Schrödinger equation that form the link between
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actual time evolutions and Floquet states. The interpretative capability of the Floquet picture is shown for the
example of photoelectron spectroscopy of this simplemodel and finally we demonstrate how the linear dipole
response functions is able to perfectly describe the non-equilibrium response of this simplemodel.

We consider a driven two-level system
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where ò is the energy difference of the levels,M the couplingmatrix element between the levels induced by the
pump andA(t) the amplitude of the pumpfield. To solve thismodel explicitly we evaluate

òy t t y= -( ) ( ( ))∣ ( )t i d Hexp 0
t

0
, whereψ(0)=(0,1).We set ò=1, so thatΩ=1 is the resonant excitation

case, and letM=0.05.

3.1. Rabi oscillation
With constant amplitudeA(t)=A0 equation (39) is the paradigm for Rabi oscillations where the overlap of
solutions of the time-dependent Schrödinger equationwith the groundstate, y yá ñ∣ ∣ ( ) ∣t0

2, oscillates with the

Rabi frequency W = + - W( ) ( )A MRabi 0
2 2 . This oscillation only indirectly depends on the fundamental

frequency of the drive through the detuning from the level spacing (ò−Ω) and on resonance is directly
proportional to the coupling and field strength. Thismeans, solutions of the time-dependent Schrödinger
equation oscillate with a frequency that is independent of the fundamental frequency, yet it is intimately related
to the Floquet solution. Diagonalizing the FloquetHamiltonian associatedwith equation (39) yields for the
Floquet Brillouin zone eigenvalues

= W  + - W( ( ) ( ) ) ( )E A M
1

2
401,2 0

2 2

under the approximation of weak coupling. These Floquet eigenvalues determine the non-periodic phase in the
Floquet ansatz, equation (3), and their combination determines the phase of the time-dependent state,
equation (2). Specifically, taking the squaremodulus of the overlapwith the groundstate
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one sees that it oscillates with - = WE E Rabi2 1 . The Rabi frequency is thus the difference of the FBZ eigenvalues,
which is also referred to Rabi splitting. This simple result shows how the time-resolved projection that is in
atomic physics interpreted as occupation transfer and the hybridization of static Floquet sidebands are twoways
of looking at the same fundamental process. The difference only appears in the observation: to observe Rabi
oscillation of the occupation one needs to refer to the groundstate, which is an eigenstate of the static
Hamiltonian and as such generally not part of the solutions of the time-dependent Schrödinger equationwhere
the pumpfield is present. Therefore, tomeasure the occupationwith photoelectron spectroscopy or optical
spectroscopy one needs to switch thefield off. The Floquet picture, instead, gives the spectrumof the system
while thefield is switched on and in order to observe the Rabi splitting one needs to probe the system together
with the pump.

We also note that the Rabi frequency is not the only time dependence in equation (41) and that other terms
can contributemultiples of the fundamental frequency, which can lead to beatings between the Rabi frequency
and the fundamentalmode.

3.2. Expansion coefficients
In the above example, we assumed a constant field amplitude, but in an experiment one needs to start from the
groundstate and turn on the pumpfield to reach the Floquet regime. During the switch-on phase, Floquet theory
does not apply to the time-dependent Schrödinger equation, but we can still compute the expansion of a
numerical time-dependent solutionswith varying switch-on profiles into Floquet states, equation (2).We
numerically compute the time-dependent solution of thismodel and compute the coefficients fα according to
equation (19) at all times.We can observe how they become time-independent once the pulse shape reaches a
plateau,figure 1(a), and the system is in the Floquet regime. For the two-level systemon resonance the time-
dependent state is described by an equal contribution of both FBZ states, i.e. =∣ ∣ ∣ ∣f f1 2 , and the system always
reaches this configuration independently of the switch-on time.

The independence of the coefficients on the evolution of the systemonly occurs for perfect resonance in the
two-level system.Whenwe allow for an imbalance between the states by considering off-resonance, the system
has the freedom to adjust its configuration and the situation is drastically different. As shown infigure 1a, the
switch-on time completely determines the Floquet configuration. The state with the smaller coefficient is a
Floquet state thatmore resembles the second level and can be interpreted as a replica of the excited state. The
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instantaneous quench provides an upper bound for the coefficient of this state andwith increasing switch-on
time the coefficient approaches zero, while it approaches one for the other state. Thismeans for slow switch-on
the time-dependent state retainsmainly the character of the ground state. Invoking the interpretation of
occupation for Floquet coefficients, thismeans that only the lowest Floquet state has occupation. This
interpretation is supported by equation (41)where noRabi oscillation takes placewhen one of the coefficients
vanish. Still, the absence of Rabi oscillation does not imply the absence of Rabi splitting, as the eigenvalue of the
occupied Floquet state is stillE1 from equation (40) and is shifted due to the presence of the pump. Thismeans
thatwhile only one Floquet state is occupied, there is still afinite occupation in the excited state and if onewould
switch off the field this excited state populationwould be exposed. By the same reasoning, perfect resonance
behaviour always presents Rabi oscillation irrespective of the switch-on.

3.3. Photoelectron spectroscopy
The photoelectron spectrumof a two-level system can be thought of as the Fourier transformof the projection of
the time-dependent state to the occupied initial state
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This equation can be evaluated either numerically from the explicit time evolution of the Schrödinger equation,
or for Floquet systems by inserting the Floquet expansion, equation (2), for the time-dependent state, giving
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Like (26), we can further simplify the equation in the above squaredmodulus are zero because by applying the
delta function in the product of the two complex conjugate terms
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Since the simple two-level system thatwe are considering here lacks spatial resolution and therefore has no
momentum, this is equivalent to the Floquet-photoelectron expression given in equation (26) andwe can
discuss some features of photoelectron spectroscopy of Floquet systems by considering this simplified example.

First we note that, as observed above, the spectrum consists of a series of peaks centered around each FBZ
energy level,Eα, and spaced bymultiples of the pump frequency. These peaks, however, can only be observed if
two conditions aremet: the FBZ state ya ( )tF needs to have afinite contribution to the time evolving solution of

Figure 1. Floquet analysis of a simplemodel: (a) Floquet expansion of a time-evolving solution for the Schrödinger equation for
different pump envelopes with an off-resonant energy,Ω=0.8. The upper panel shows a series ofA(t) that smoothly reach a constant
plateau at different times (measured in units of pump cycleT). The lower panel shows the numerically computed expansion coefficient
f2 for the upper Floquet state. One can see that when the pump envelope is constant the Floquet expansion is valid. Very slow switch-
on times lead to almost no contribution of the Floquet state to the time evolution and the coefficient vanishes. (b)Dipole response of
the resonantly driven two-level system for various probe time t0 throughout one cycleT of the drive frequency. Depending on the
probe time satellites corresponding to transitions between replica bands are emerging around themain resonance at 1 [a.u.]. The
effect of the probe time induced complex phase in the response is to completely reverse the sign of the spectrumwhen scanned though
the cycle, but the spectrum is periodic after one cycle. (c)Different cuts through the scan of (b) at given probe times, show the
comparison between the explicit time-evolution results (red dashed lines) and the evaluated Floquet response functions, equation (33)
(solid blue lines).
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the Schrödinger equation, i.e. fα has to be non-zero, and the harmonic components of the Floquet state aum need
to have afinite overlapwith the occupied groundstate. Especially the last condition is crucial for the observation
of sidepeaks and is governed by the intensity of the pump and the strength of the coupling.

The Floquet expression of pump-probe photoelectron also illustrates the important fact noted above in the
context of Rabi oscillation: the observable energy levels of a pumped system are the Floquet eigenvalues and
from equation (43)we see that there is no reference to the energy levels of the equilibrium system.While the
Floquet expansion coefficients fα depend on the switch-on of the pump, the Floquet energy levels only depend
on its intensity and the coupling strength. Thismeans that slow or fast switch-on conditionswill affect the
intensity of certain peaks in the spectrum, theywill not however, affect the energy levels themselves.

3.4.Optical response
Similar to the case of photoelectron spectroscopy Floquet analysis can also guide the interpretation of pump-
probe optical spectroscopy via the Floquet dipole response function in equation (33).We demonstrate here how
the non-equilibrium response function reproduces results from the explicit time-evolution of the driven two-
level system in equation (39). From the explicit numerical time evolution of the Schrödinger equationwe obtain
the dipole response by applying an additional ‘kick’ potential d= -( ) ( )V t t tprobe 0 to probe the system and by

then evaluating the induced dipole y y y y= á ñ - á ñ( ) ( )∣ ˆ∣ ( ) ( )∣ ˆ∣ ( )d t t d t t d t0 0 , whereψ0 is the evolution of the

reference statewithout a kick and s=d̂ x is a Paulimatrix. The frequency-dependent induced dipole response
equivalent to equation (33) is then obtained by Fourier transform
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wherewe have added the broadening factor η, see [30–32]. The results for a resonant pump frequency andwith
different kick delays t0 is shown infigure 1(b) andwe observe that the delays significantly affect the line shape of
the response and that sidepeaks originating from transition betweenRabi-split levels are enhanced or suppressed
by different delays.

Most importantly, figure 1(c) also shows the comparison to the analytical Floquet-response function for
different delays and the agreement is excellent. Here we are considering the resonant case and hence the Floquet
coefficients are =∣ ∣ ∣ ∣f f1 2 as noted above. Thismeans that thefirst term in equation (34), which resembles the
equilibrium response function, is vanishing and all the observable response is generated by the terms containing
a b¹ . This shows that the response treatment of Floquet systems is not a simple extension of the equilibrium
case and that it describes non-trivial non-equilibrium responses.

Here, we have only shown the resonant case, where the effect of the switch-on phase of the pump on the
Floquet expansion coefficients fα plays no role, butwe note that inmore general off-resonant cases this leads to a
further richmodification of the spectra.

4. Photon-driven Floquet systems

4.1. Topological Floquetmaterials
Among themost studied classes of Floquetmatter are topologicalmaterials. Generally speaking, these are
theoretical proposals, where the photon dressed electronic states of solid state systems have a different
topological nature than the equilibrium states. This idea has generated considerable interested because it
provides a route towards controlling and tuning topological properties inmaterials on a fast timescale and in a
reversible fashion, thusmaking the various features associatedwith topological edge states potentially amenable
for a variety of technological applications, such as for example computing ormetrology.

One can classify the proposed topological Floquetmaterials in two broad categories, cf figures 2(a) and (b).
One uses the Floquet picture of the electronic structure to show that the application of an electromagnetic field
changes the topology of the systemormodifies its topological features, cffigures 2(a), (c) and (d) for examples.
Such proposals usually consider hostmaterials that have non-trivial topology in equilibrium and inmany cases
use the effectiveHamiltonian equation (14) that relies on the high-frequency approximation suitable for semi-
metals. The other of the two broad classes comprises proposals that aim to turnmaterials that have trivial
topology in equilibrium into Floquet-topologicalmaterials, cffigures 2(b), (e) and (f) for examples. This usually
relies on the Floquet-replicamechanismwhere equilibriumbands of different character are brought into (near)
resonance such that newhybridizations of electronic states are created.

Thefirst works proposing this idea have concentrated on two-dimensional systems, specifically the ac-field
based realization of theHaldanemodel for aChern insulator in realmaterials [33–35].WhileHaldane’s original
proposal [36] includes amagnetic flux to break time-reversal symmetry and thus endow theDirac states of a
hexagonal systemwith a non-trivialmass term and hence a Chern number, theseworks propose using circularly
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polarized lasers to achieve the same symmetry breaking effect and to create a dressed electronic structure that is
described by a FloquetHamiltonianwith the same topological properties. In particular thework byOka et. al
[33] focuses on the experimental observable of such an induced change in the topology. They predict afiniteHall
current, in linewith the notion that the Floquet system is aChern insulator and hence hosts the anomalousHall
effect. Following these early works based on graphene, a large variety of proposals have emerged that aim at
manipulating the topology of this 2DDirac system [21, 37–43] and surface states of topological insulators [44].
With the recent discovery of higher dimensional Dirac andWeylmaterials [45], this line of research has
considerably broadened. For thesematerials especially, the high-frequency expansion of the Floquet
Hamiltonian, equation (14) has proven to be very prolific, because it affords an analytic expression for the
dressedHamiltonian and as such can be readily classified in terms of topology. Thus, there have been proposals
for themanipulation of Floquet-topological phases in line-node semimetals [46–48], Dirac-semimetals [49–52]
andWeyl-semimetals [53–57] all relying on the effectiveHamiltonian description.

Still using the effectiveHamiltonian formulation, all such Floquet-topological phases have been
systematically classified [58]. It has also been used to propose the Floquet topologicalMagnon [59–61]. Floquet
phases can even have topological properties that have no equivalent in the groundstate. For example, a new
topological numbers can been defined that can only be realized in driven systems as shown in [62, 63].

The above examples all have in common that the equilibrium system already has non-trivial topology, or at
least as in the case of graphene, is at a phase boundary in a topological phase diagram. It is, however, also possible
to turn topological trivial systems into topological ones by applying circularly polarized light. This wasfirst
proposed for 2Dquantumwells where the Floquet quasi-energy structure was demonstrated to feature the edge
states of topological insulators [64]. Themechanismbywhich this is achieved is the inversion of the band
character across the band gap that is the hallmark of topological insulators and is here realized by the Floquet
mechanism: the continuous driving on resonancewith the bandgap creates replica states of the valence band at
the energy of the conduction bands, leading to a hybridization of the states and an inversion of the band
character of the Floquet states. This opens the perspective of inducing topological properties and in particular
protected edge currents into otherwise trivialmaterials only by applying lasers. Similar proposals have explored
this pathway of designing topologicalmaterial properties [65–69]. The Floquet formulation has also been used
to define effectivematerial properties, other than topology. It has been suggested, for instance, that electron–
phonon coupling can be controlled by driving a system to the Floquet regime [70].

Figure 2.Proposed Floquet topologicalmaterials: (a) high frequency circularly polarized pumping of Dirac bands leads to Floquet-
topological phase transitions, e.g. the 3DDirac semimetal to the Floquet–Weyl semimetal (left) and the 2DDirac semimetal into a
Floquet-Chern insulator (right). (b) (Near)-Resonant pumping of trivial semiconductors leads to hybridization of Floquet bands that
host protected edge states. (c)TDDFT-Floquet-bandstructure of bulkNa3Bi showing two Floquet-Weyl points originating from a
single 3DDirac point. (d)ComputedARPES spectrumof circularly polarized pumped graphene showing the opening of a gap at the
Dirac point. (e)Computed bandstructure of a Floquet topological insulator from2Dquantumwells in a striped geometry showing
hybridization of Floquet replica bands and the Floquet topological protected edge state. (f)The computed Floquet spectrumof a
pumped stripe ofWS2monolayer, showing hybridization and protected edge state. Adapted from [52], CCBY 4.0 (c); [42], © 2015
Macmillan Publisher Limited. All rights reserved.With permission of Springer (d); [64], [65]©2011Macmillan Publishers Limited.
All rights reserved.With permission of Springer (e); [67], CCBY 4.0. (f).
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4.2. Experimental observation of Floquet topological phases
Thefirst unambiguous observation of topological Floquet bands have been reported in [71, 72] as photoelectron
spectra of the topological insulator Bi2Se3. TheDirac bands that form at the surface of thismaterial have here
been shown to develop hybridization gaps under irradiationwith light, shown infigure 3(a). The opening of
hybridization gaps is themostwidely predicted feature of Floquet topological phases, however, as pointed out in
[28, 72] in an photo-emission experiment, the external pump laser can also dress electronic states outside the
material. Such a dressing, known as the light-assisted photo-emission effect, also results in a series of satellite
bands, but does not reflect a dressing of the electronic structure of thematerial. Therefore photo-electron
experiments have to be carefully designed to account for this dressing effect.

Besides the opening of a gap forDirac bands, Floquet theory also predicts hybridization gaps from crossing
of replica bands and someworks propose that this interaction induces topological properties in topological
trivialmaterials. In particular in transitionmetal dichalcogenides, it is expected [66, 67] that a band inversion of
Floquet bands induces topological edge states.While such bands have not been directly observed, [66] report a
detailed study of a valley selective Stark effect in thesesmaterials, which can be directly interpreted in terms of
Floquet analysis,figure 3(c). The observed valley-dependent circular dichroism results from an interaction of
Floquet-replica bands that opens the band gap in either of the valleys, depending on the orientation of the pump
polarization. In the optical spectroscopy of [66] this is detected as a Stark shift, while [73] reports the Floquet
analysis of simulated photo-electron spectra of this system. The computed angular-resolved photoelectron
spectroscopy (ARPES) probabilities are shown for different pump-probe delays, figure 3(e), and directly
compared to the Floquet spectrum. The results show the hybridization of the sidebands underlying the reported
Stark effect, confirmed by Floquet analysis. A noteworthy detail of this work is that the Floquet analysis agrees

Figure 3.Observation of photon-driven Floquet phases: (a)ARPESmeasurement showing Floquet replicas ofDirac bands at the
surface of the topological insulator Bi2Se3 and the small opening of gaps indicated by red arrows. (b)Measured doping dependentHall
conductance (right panel) of Floquet bands (left panel) in graphene. As the Fermi level is scanned across an energy region
corresponding to the pump frequency, clear transport signatures are observable in correspondence to the computed gap openings of
Floquet bands. (c)Valley selective optical Stark effect inWS2, where Floquet bands hybridize leading to a shift of the optical response
and are proposed to host a topological edge state. (d) Floquet analysis of the experiment shown in (b) by considering a dissipative Dirac
model and computing howwell dynamical states are described by Floquet theory, quantified as Floquet fidelity. It confirms that
Floquet states arewell established throughout the BZ (inset) except at the resonant gap (red circle) and shows that strong fields are
required to establish a stable Floquet phase with goodfidelity. (e)ComputedARPES spectra and their Floquet analysis of pumped
WSe2 showing the formation of Floquet bands for different pump-probe overlaps (top row cartoons). The photo-electron spectra are
very wellmatchedwith the Floquet bands, giving the underlying band picture to the observed Stark effect shown in (c). Adapted from
[72], © 2016Macmillan Publishers Limited. All rights reserved.With permission of Springer (a); [75], with permission from the
authors (b); [66], © 2015Macmillan Publishers Limited. All rights reserved.With permission of Springer (c); [76], with permission
from the authors, © 2019 by theAmerican Physical Society (d); [73], reprintedwith permission, copyright© 2016, AmericanChemical
Society (e).
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with the ARPES spectra even if pump and probe are not perfectly overlapping, which in principle violates the
basic assumption of Floquet theory of perfect time-translation invariance. Instead, this shows that even forfinite
pulse setups, the Floquet picture is applicable and can be used for the interpretation of experimental results.

While the observation of Floquet bands is still being pursued, experimental confirmation of topological
properties of Floquet phases is also underway. Topologicalmaterials in equilibriumhost an anomalousHall
current, i.e. aHall current thatflows as soon as a source drain voltage is appliedwithout requiring amagnetic
field. The origin of this current is a purely quantummechanical effect, because it is directly proportional the
Chern number of thematerial, i.e. the integrated Berry curvature [74]. For Floquet topological systems it is
therefore expected that the Berry curvature of Floquet states results in the same kind ofHall current.

The challenge in observing this current in a pump-probe setup is that it has to be detected at very fast
timescales, because one needs to use ultrafast pump pulses to avoid damaging thematerial. In [75], an ultrafast
transportmeasurement setup based on optical switches is presented that achieves the detection of a current with
a resolution of 1ps.With this setup the authors succeed in obtaining the light-inducedHall conductivity in
graphene. The dependence of theHall conductivity on gate-doping of the graphene sample, shown infigure 3(b)
reveals that currents are generated from themodified Floquet bandstructure, confirming that the FloquetDirac
bands have opened hybridization gaps in accordancewith the predictions based on Floquet theory.

In equilibriummaterials, the origin of an anomalousHall current can be unambiguously related to the Berry
curvature structure, however in driven systems a careful analysis of the excitation process is required to relate an
observedHall current to the topological nature of the Floquet bands. Using the concept of Floquet fidelity, a
measure of howwell a given dynamical system is described by its corresponding Floquet states, the authors of
[76] show that for the strong pumppulse intensities used in the experiment of [75], Floquet states arewell
established throughout the Brillouin zone (BZ) as shown infigure 3(d). The observedHall current, however, is
found to result not purely from the topology of the Floquet states, but is partly due to an imbalance in the
population of excited states created by the pump.

The proposals for Floquet phases presented thus far all use external radiation to realize the dressed electronic
structure. However, as shown in the experiment reported in [75] and pointed out inmany theoretical works
[13, 77, 78], the continued application of a laser to solids results in heating and eventually damage of the sample.
Therefore, in experiments a delicate balance needs to be struck between the time necessary to establish the
Floquet phase and themaximum time thematerial can sustain the radiation. In this context it is important to
note that dissipative systems, where the energy can redistributed to a heat bath, can help to stabilize the Floquet
phase [13, 76, 79]. In the next section, instead, wewill explore the possibility to achieve establishing Floquet
dressed states without the continued transfer of energy into the system.

5. Phonon-dressed Floquetmatter

The basic idea underlying the realization of Floquetmatter is the existence of a time periodic potential in the
Hamiltonian. The origin of this potential does not need to be an externally applied laser, but instead can be
provided by an internalmode of the system.Here, wewill discuss the concept of Floquetmatter created from
dressingwith phonons [80, 81]. A somewhat similar idea, but without invoking a Floquet dressing picture was
proposed earlier [82] and the concept of electron–phonon coupling induced topological phase transitions has
gained some traction [83, 84].

Especially in photo-electron spectroscopy, features originating from strong electron–phonon coupling are
well known. The best known example being the electron–phonon kinks in the ARPES spectrumof
superconductingmaterials [85]. However, electron–phonon coupling is also known to result in observable
distinct satellite, or shadow, bands in the photo-electron spectral function [86–88], also known as Polaron
replicas [89–93]. The avenue to create a phonon-driven Floquetmaterial is to selectively excite such strongly
coupled phononmodes and thus to create new properties of the electronic structure or to better understand its
properties, as for example realized in [94]. The crucial distinction to photon-driven Floquet states is that the
systems needs to be excitedfirst externally, but the dressing then is provided by an eigenmode of the system. As
such, the Floquet phonon picture ismore of a framework to look at internal interactions of excitations in a
material in the sense of Floquet analysis, rather than providing a shortcut to computing non-equilibrium
properties, as it is, instead, often donewith the photon dressing picture.

As an example for Floquet-phononmatter we consider here thework of [81], which presents a detailed
comparison between the computed photo-electron spectrumof phonon dressed graphene and the Floquet
analysis of this dressing. The optical gE2 phononmode is dynamically realized by perturbing the lattice and
propagating numerically the coupled time-dependent density functional theory (TDDFT) and Ehrenfest
equations. This is equivalent to a state of thematerial where thismode has been excited by an external field as a
coherent lattice oscillation and then thisfield has been switched off. In the photo-electron spectrum this internal
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excitationmanifests as a series of driven polaronic satellites, see figure 4(a), which, however vary strongly across
the electronic BZ, see figure 4(b). Performing the Floquet analysis of the same time-dependentHamiltonian
yields the complete energy bands of these satellite series as shown for the spectral function at theΓ point,
figure 4(a). The Floquet quasi-energy levels are, as expected, equally spaced replicas across the full BZ, in contrast
to strong variation in the ARPES spectral function. Asmentioned before, the intensity of the Floquet sidebands
depends generally on the amplitude of the drive and the strength of the coupling. Since the electrons at all k-
points feel the same coherent phonon, this variation reflects the strong variation of the (dynamical) electron-
phonon coupling across the BZ.

The phonon-dressing of the electronic structure can also be used to affect the topological properties of the
material, in a similar way as has been proposed for photon dressing. This requires a time-reversal symmetry
breaking drivingmode, which in the case for phonons can be achieved by exciting degeneratemodes coherently
such that the atoms perform a circular trajectory around their equilibriumposition. The gE2 mode in graphene
consist of longitudinal and transverse branches that are degenerate at the phononΓ-point, so that exciting them
with a relative phase delay ofπ/2 achieves the rotatingmotion. Figure 4(e) shows the ARPES spectrumof such
an excited system aroundDirac point superimposedwith its Floquet analysis. In analogy to the proposals using
photon drives, figure 4(f), the circular polarized phonon induces the opening of a non-trivial gap at theDirac
point and thematerial has undergone a topological phase transition.

Another examplewhere the phonon-dressing of the electronic structure results in changedmaterials
properties is the phonon-driven Floquet-magnetization presented in [95].Monolayer transitionmetal
dichalcogenides can be excited selectively in either of their non-equivalentK-valleys [66] by circularly polarized
light. The spin of such an excitation is strongly coupled to the E optical phononmode, where even a relatively
small lattice displacement induces large changes in the spin polarization of the conduction band bottom as
shown infigures 4(c) and (d). Inducing the phonon as a circularly polarizedmode, as in [81], results in a phonon
dressed electronic state of this conduction band, the Floquet phonon states, which turn out to have precessing
spin polarization and thus have induced localmagnetization, see figure 4(g). Such a circular polarized phonon
breaks time reversal symmetry, with the consequence that the spin-precession in both non-equivalentK valleys
do not have the samemagnitude, which results in an overallmagnetization, as shown infigure 4(h), of this
otherwise non-magneticmaterial. This is one of the few examples of how the Floquet-phonon dressed electronic
structure can yield radically differentmaterial properties than its hostmaterial in equilibrium. This kind of
phonon-inducedmagnetization has been reported for a differentmaterial in [5].

Figure 4.Observables of Floquet-phononmatter: (a) computed ARPES spectral function and Floquet analysis of graphene pumped by
its gE2 mode at theΓpoint of the BZ. (b)ComputedARPES spectrum like in (a) but along a path through the full BZ. (c)Bandstructure
and spin-polarization ofmonolayerMoS2 that is stronglymodified by the E phononmode at K. (d)Change in spin polarization of
the conduction band atK as a function of lattice displacement along the E phononmode. (e)ComputedARPES spectrum like in (a).
Computed ARPES spectral function and Floquet analysis of graphene pumped by a circularly polarized gE2 mode (see the cartoon on
the right) around theK point of the BZ. The inset shows an enlargement of the Floquet-phonon bandswith an open gap at theDirac
point. (f) Same as (e) but the dressingfield is a circularly polarized laser, showing the equivalence of photon and phonon dressing.
(g) Spin component of circular-phonon dressed Floquet states at the conduction band bottom at theK and ¢K points of the BZ,
showing a difference in themagnitude of Sz component. (h)This results in an overall finite spin polarization (red line) in time of the
fullmaterial. Adapted from [81], Copyright © 2018, AmericanChemical Society (a), (b), (e) and (f); [95], CCBY 4.0. (c), (d), (g) and
(h).
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6. Perspective

Wehave shown hownewphases and properties ofmaterials under non-equilibrium can be understood in terms
of Floquet theory. Especially the observation of phenomena directly originating from the dressing of the
electronic structure is very encouraging for the realizations of targeted design ofmaterials through the Floquet
mechanism. In this brief reviewwe have focused on the connection between the theoretical construct of Floquet
theory and experimentally observable signatures.We have shownhowFloquet theory can be used as a tool of
analysis of excitationmechanisms and towards the interpretation of experiments. One example of such
interpretation that we have onlymentioned briefly here but deservesmore attention could be high-harmonic
generation in solids, which itself is the detection of harmonics in the optical response and as such it should be
veryworthwhile approaching it with the Floquet analysis paradigm.

Most proposals to establish Floquet phases inmaterials use external lasers as the source for the dressing field.
Herewe have discussed the possibility of using internal eigenmodes of thematerial to create a dressing field and
have demonstrated how this kind of dressed electronic structure emerges fromphonon dressing. One can,
however, envision a variety of othermodes. In particular, plasmonmodes of the electronic structure arewell
studied in terms of an expansion of so-called cumulants [96–98] in the plasma frequency and are understood to
result in plasmon polaron satellites in photo-electron spectra [97, 99], even resulting in replica bandstructures
[100, 101]. Hence, we expect that targeted excitation of suchmodes will lead to rich dressing physics.
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