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Abstract: The gut microbiota is emerging as an important player in neurodevelopment and aging
as well as in brain diseases including stroke, Alzheimer’s disease, and Parkinson’s disease. The
complex interplay between gut microbiota and the brain, and vice versa, has recently become not
only the focus of neuroscience, but also the starting point for research regarding many diseases such
as inflammatory bowel diseases (IBD). The bi-directional interaction between gut microbiota and the
brain is not completely understood. The aim of this review is to sum up the evidencesconcerningthe
role of the gut–brain microbiota axis in ischemic stroke and to highlight the more recent evidences
about the potential role of the gut–brain microbiota axis in the interaction between inflammatory
bowel disease and ischemic stroke.

Keywords: gut; brain; microbiota; stroke; inflammatory bowel disease

1. Introduction: The Gut–Brain Microbiota Axis

The extent and mechanisms of interaction between the gut microbiota, defined as
an ecological unit composed of microorganisms within a specific environment, and non-
gastrointestinal organs are still scanty, although many experimental and clinical experiences
show that a bidirectional communication exists between the gut and its microbiota, and
the brain [1]. This system, which has not been entirely explored, is based on neural,
endocrine, immunological and metabolic pathways [2–4]. The communication between the
brain and the gut occurs through both neuronal and non-neuronal mechanisms [1]. These
communications are defined as “top-down” when signaling is directed from brain to gut,
and defined as “bottom-up” when signaling is directed from gut to brain.

In the “bottom up” signaling, the central nervous system (CNS) receives input through
a number of different mechanisms. The CNS includes the hypothalamus, amygdala, and
hippocampus and their interaction with emotional centers localized within the limbic
system, which are mainly involved in the control of body reaction in response to stress [2].
These communications occur:
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• Directly, through the vagus nerve (VN), whose stimulation is mediated by microbial
metabolites and neuro-hormones [1] released from the enteric nervous system (ENS),
that controls bowel function even though it is completely separate from the CNS; the
ENS is made up of interneurons, sensory neurons, motor neurons, and neurotrans-
mitters [2]. Furthermore, neuroinflammation could be caused also by the production
of immunogenic microbial endotoxins (such as LPS), that act both through a direct
damage or through the activation of immune cells [1,5,6].

• Indirectly, through the microbial releasing of metabolites such as short-chain fatty
acids (SCFA), bile acids, indoles and neurotransmitters that, after entering the systemic
blood, travel to the brain in order to modulate the function of neurons, microglia,
astrocytes, and the blood brain barrier [1,7–9].

• In the “top-down” signaling, the gut microbiota receives input:

- Indirectly, from the enteric nervous system (ENS). In this context, also the neu-
roendocrine signaling network mediated by the hypothalamic–pituitary–adrenal
(HPA) axis, activated by the integrative reactions of specific centres in the CNS,
plays a pivotal role; in fact, it represents a central integrative system essential for
the successful physiological adaptation of our organism to stress [2].

- Directly, through the autonomic nervous system (ANS), the pivotal modulator of
the ENS [2].

Based on this premise, it is conceivable that gut microbiota might play an important
role both under pathological conditions and in physiological processes [10]. Researchers
have identified changes in gut microbiota composition of in several diseases, such as
inflammatory bowel disease [11], irritable bowel syndrome [12], diabetes [13], cancer [14],
and diseases of the nervous system, such as Alzheimer’s disease [15], Parkinson’s disease
(PD) [16], spinal cord injury [17], autism [18], and stroke [19].

The aim of this narrative review is to sum up the evidence about the role of the
gut–brain microbiota axis in ischemic stroke and to highlight the more recent evidence
about the potential role of the gut–brain microbiota axis in the interaction between IBD
and ischemic stroke.

2. The Role of Microbiota Gut–Brain Axis in Ischemic Stroke

According to the World Health Organization, strokes are the second leading cause of
death and the third leading cause of disability worldwide [20]. Ischemic stroke (IS), defined
as an obstruction within a blood vessel supplying blood to the brain (most frequently to
the middle cerebral artery (MCA)), accounts for about 70–80% of all strokes [21].

Alterations in gut microbiome can be a risk factor and may also lead to IS. Risk factors
for IS and alteration of gut-microbiome composition (defined as dysbiosis) are influenced
by similar factors, including aging, metabolic diseases, hypertension, and vascular dys-
function [22] Furthermore, the systemic inflammatory response after IS can impair the
clinical outcome after IS, therefore yielding to liver, renal, respiratory, gastrointestinal,
and cardiovascular impairment, including the multiple organ dysfunction syndrome [22].
Figure 1 summarizes the signaling involved in the microbiota brain–gut axis.

2.1. The Role of Gut Dysbiosis inInfluencing Stroke Risk Factors
2.1.1. Aging

Little is known about how the gut–brain axis changes with aging [23]. Aging is asso-
ciated with an impairment of the gut epithelial barrier, a loss of enteric neurons, and an
altered mucosal immune function that cause an imbalance in the secretion of proinflam-
matory cytokines [1]. Such changes, often defined as “inflammeging”, may decreases the
ability in the elderly to cope with antigenic, toxic, physical and ischemic stress [1].

Recently, Lee et al. [19] performed a systematic review including eighteen studies,
and suggested that aging, inflammation, and different microbial compositions could con-
tribute to ischemic stroke. Interestingly, it was found that the aged mice with a high
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Firmicutes/Bacteroidetes ratio were more exposed to an IS, and unable to recover from
neurological deficits, thus showing a higher mortality rate [23,24].

Figure 1. Summarizes the signaling involved in the microbiota brain–gut axis.

2.1.2. Metabolic Diseases

With regard to the role of metabolic diseases, evidence arising from randomized
controlled trials, showed that lean-donor fecal microbiota transplantation (FMT) in subjects
with metabolic syndrome improved obesity and insulin sensitivity, thus suggesting that
the microbiota can regulate host metabolism as an “organ” [25,26].

It is already known the effect of microbiota-derived metabolites of carbohydrates and
proteins on host metabolism. The importance of the involvement of gut–brain microbiota
axis in controlling host metabolism was also demonstrated from experimental studies
showing that acetate, a SCFA, reaches the hypothalamus through the blood-brain barrier,
and induces the production of gamma-aminobutyric acid, resulting in suppression of
central appetite [25,27].

Further pathways include also: peptide YY production through GPR41, which inhibits
intestinal motility and increases the absorption rate of nutrients through the intestinal
epithelium [28], the beneficial role of indole and its derivatives (through the production
of the incretin hormone GLP-1 from intestinal enteroendocrine cells) [29] and the harmful
effect of imidazole propionate, a microbial metabolites of histidine [25,30]. Furthermore,
microbial-derived metabolites control bile acid homeostasis via farnesoid X receptors,
which can also influence glucose metabolism [25,31].

2.1.3. Arterial Hypertension and Vascular Dysfunction

The gut microbiota is probably involved in the genesis of hypertension, despite the
mechanism is not yet fully elucidated.

It has been shown that in spontaneously hypertensive rats, a significant decrease in
the composition of microflora in the gut occur, associated with an increase in the ratio of
Firmicutes/Bacteroidetes [32,33]. Infusion of angiotensin II (AngII) attenuated the blood
pressure increase in germ-free mice compared with conventionally raised mice, indicating
that gut microbiota involves blood pressure regulation [32,34].
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Furthermore, the role of various G-protein-coupled receptors (GPRs) in hypertension
has been pointed out [32,35]. In fact, the gut microbial metabolites SCFAs modulate the
activity of GPRs, including GPR41, GPR43, and GPR109A [32,35].

On the other hand, high-fiber diet and acetate supplementation significantly decrease
diastolic blood pressure, cardiac fibrosis and ventricular hypertrophy when compared to
a control standard diet [36] thus suggesting that the gut microbiota-producing SCFAs in
circulation play an important role in hypertension [32].

Finally, the gut microbial metabolite, SCFAs, and their effect on ox-LDL levels and
other pathways may also contribute to increasing arterial pressure [32], for example by
inhibiting nitric oxide synthesis (NO) and endothelin-1 [37,38].

As in the case of arterial hypertension and metabolic diseases, bacterial metabolites
such as SCFAs, nitrites, flavanol, Trimethylamine N-oxide (TMAO), indoles, and sulfidic
acid have been identified all as causative factors of vascular dysfunction [22]. In the case
of TMAO, a link between this microbial metabolite with atherosclerosis has been well
established [1]. SCFAs and sulfidic acid are particularly capable of inducing vasodilata-
tion, whereas indole and TMAO increase the production of reactive oxygen species, thus
reducing cerebral vasodilatation [22].

2.2. The Effect of Gut Dysbiosis in Influencing Stroke Outcomes

As indicated by the aforementioned review performed by Lee et al. [19], stroke may
be linked with gut dysbiosis, altering the microbial composition, and therefore condition-
ing the post-stroke outcome [6,23,39–53]. An inverted Firmicutes/Bacteroidetes ratio is
suggested to be a hallmark for aging, and it is significantly associated with ischemic stroke
in mouse models [19].

In fact, these studies focused on dysbiosis-induced intestinal paralysis, an increased
gut permeability and the loss of cholinergic innervation in ileum, and an increased sympa-
thetic activity [1,5,40,54].

Another point of interest is the relationship between the dysbiosis and specific inflam-
matory markers that are present in the stroke mice. As SCFAs and TMAO have been shown
as the emerging factors in ischemic stroke in animal studies, further studies investigating
the association between SCFAs and TMAO among patients need to be performed [19].

Furthermore, changes caused by stroke on the gut microbiota can induce neurological
complications, stroke-associated pneumonia, cardiovascular complications, gastrointesti-
nal complications, and renal dysfunction, with possible development of the systemic
inflammatory response and multiple organ dysfunction syndromes [22].

With regard to neurological complications, after stroke, innate immune cells respond
within hours, followed by the adaptive immune response through activation of T and B
lymphocytes. Subpopulations of T-cells can help or worsen ischemic brain injury [21]. Pro-
inflammatory Th1, Th17, and γδ T-cells are often associated with increased inflammatory
damage, whereas regulatory T-cells are known to suppress post-ischemic inflammation
by increasing the secretion of anti-inflammatory cytokine IL-10 [21]. Therefore, all these
changes could influence the stroke severity, and therefore the cognitive, motor and sensory
dysfunction.

Complication following stroke is pneumonia, representing a further example of
dysbiosis-induced infection, with an incidence occurring in up to 10% of cases of IS [22,55],
and in turn linked with immunosuppression and dysphagia [22,55,56].

Cardiovascular complications, occurring in up to 39% of cases of IS, and including
several conditions, such as arrhythmias, Takotsubo syndrome, and myocardial infarction,
are presumably linked with post-stroke dysbiosis [22,57]. In fact, as aforementioned, in this
setting the altered secretion of TMAO increases the production of reactive oxygen species,
thus reducing cerebral vasodilatation. Moreover, other studies demonstrated that serum
levels of gamma-butyrobetaine and trimethyl-lysine, metabolites of carnitine, were also
associated with cardiovascular death [58]. With regard to renal dysfunction, occurring in
up to 10% of cases of IS, it is also influenced by stroke-induced dysbiosis [10,59]. Here, the
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link is atherosclerosis [60]; and probably also the altered secretion of TMAO following an
inflammatory process which supports the existence of a gut–brain–kidney axis, associated
with tubule-interstitial fibrosis and renal dysfunction [10,58,61].

Finally, a multiple organ dysfunction syndrome (MODS), due to the release of in-
testinal lumen bacteria and toxins into the circulation, may occur in up to 12% of cases of
IS thus enhancing systemic inflammation and causing sepsis or a systemic inflammatory
response [62]. Despite that a clear correlation between its occurrence and a microbiota
gut–brain axis has not been clearly demonstrated, an impaired intestinal permeability
(defined as “leaky gut”) could be considered as trigger factor in this setting [10].

3. The Role of the Gut–Brain Microbiota Axis in the Occurrence of Gastrointestinal
Complications after Ischemic Stroke, and the Focus about the Link between
Inflammatory Bowel Disease and Ischemic Stroke

After an acute ischemic stroke up to 50% of patients can present gastrointestinal
complications such bleeding, bowel obstruction and incontinence, and dysphagia. These
complications may increase the days of hospitalization and the risk of mortality [51].
To date, clinical and experimental data about gastrointestinal consequences after acute
ischemic stroke are limited (Table 1).

Experimental traumatic brain injury in rats is associated with severe mucosal atrophy
and disruption of gut epithelial cell tight junctions after few hours from stroke, which can
persist for 7 days [60].

In two Chinese studies it has been observed in murine models that ischemic stroke
leads to destruction and necrosis of the small bowel villus epithelium with consequences
on small intestinal motility [63,64].

Recently, it has been demonstrated that experimental induced stroke in mice leads to
noradrenaline release with altered cecal mucoprotein production and goblet cell numbers.
These changes are associated with a mutation in the composition of cecal microbiota, with
specific changes in Peptococcaceae and Prevotellaceae correlating with the extent of injury [65].

In a recent prospective case–control study rectal swabs from stroke patients were
collected within 24 h of hospital admission. This study showed an altered microbiota
composition in adults with acute ischemic stroke and cerebral hemorrhage. In particu-
lar, patients after stroke showed a higher level of bacteria implicated in trimethylamine-
N-oxide (TMAO) production and a loss of butyrate-producing bacteria. In particular,
butyrate-producing bacteria have been identified to play a protective role against a variety
of systemic infectious diseases. Moreover, a butyrate-producing bacteria increase was
independently associated with reduced infection rate [44].

In a recent study the authors found a reduction of SCFAs-producing bacteria in cases
with ischemic stroke when compared to controls [45]. Nonetheless, a study showed that
the butyrate-producing bacteria were remarkably less abundant in ischemic stroke and
with increasing abundance of lactic acid bacteria [46].

In another study the authors investigated the effects on cellularity of the lymphoid
tissue of the gut. In particular, they observed a reduction of T and B cells after ischemic
stroke, and a stability in the amount of natural killer cells and macrophages [66].

A reduction in parasympathetic nerve activity following acute CNS injury is associated
with overgrowth of bacteria in the bowel and increased bacterial translocation. Substances
released by bacteria and metabolites and media released by the gastrointestinal immune
system can affect gastrointestinal movement [67,68].

In particular, it has been described that, after CNS injury as ischemic stroke, mast
cells present in the gut release histamine and tryptase activating submucosal neurons
and peptidergic neurons to secrete vasoactive intestinal peptide (VIP) which alters the
movements of the gastrointestinal tract [69].

Enteric nervous system with the release of nitric oxide can also lead to a delay of
gastric emptying [70].
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Recently a link between ischemic stroke and inflammatory bowel disease (IBD) has
been proposed and some interesting studies about the relationship between these two
clinical entities are currently available in literature.

In particular, IBD patients present a higher risk for arterial and venous thromboem-
bolism (TE) than patients without IBD and this complication is associated with a consid-
erable morbidity and mortality rates (overall mortality 25% per episode). In particular,
cerebrovascular TE represents the most frequent and severe CNS complication in IBD [70].

In a retrospective single center cohort study, it has been demonstrated that the risk of
TE is higher in patients with active IBD than IBD in remission [71].

In a population-based retrospective cohort study it has been shown that the frequency
of IBD exacerbation and hospitalization are risk factors for ischemic stroke [72].

Current data regarding cerebrovascular risk modification induced by treatment for
IBD are contradictory. A beneficial effect with increased carotid-femoral pulse wave velocity
(PWV) has been shown with salicylates, but not with steroids or azathioprine. Moreover,
TNF-a inhibitors appear to decrease the ischemic heart disease rate but increase the risk of
cerebrovascular events [73].

Currently some studies reported a possible role of gut dysbiosis in the association
between IBD and ischemic stroke (Table 1).

In particular in IBD patients has been described an expansion of potential pathogens
such as Enterobacteriaceae including E. coli and changes in microbial composition with
a reduction of Firmicutes species [74]. Moreover, the metabolic pathway of amino acid
biosynthesis, carbohydrate metabolism, oxidative stress and bile salt seem to be modified in
the microbiota of patients affected by IBD, suggesting a functional impact of gut microbiota
on pathogenesis of these diseases [74].

In IBD patients has been reported an aberrant immune response to microbial dysbiosis
due to genetic alteration in innate immunity, intestinal barrier, microbial recognition
and processing. It leads to a persistently stimulation of proinflammatory condition and
macrophage/monocyte infiltration in the gut [3].

Some recent studies present an excellent example for the modulation by gut microbiota
through gut–brain axis via bottom-up in IBD related neurological complication such as
memory impairment and anxiety-like behavior in animal models [75–77].

Since IBD patients present higher risk of ischemic stroke, the gut–brain axis is very
likely to represent a potential link between gut pathology and the increased risk of ischemic
stroke. However, currently there are still no studies in the literature regarding the role of
gut–brain axis in the relationship between ischemic stroke and IBD. Moreover, there is no
data about the potential role of IBD therapies on risk of ischemic stroke.

Future studies are needed to establish causal association between active IBD and
cerebrovascular events in order to also establish a possible therapeutic target.

Table 1. Summarizes the evidences regarding the role of the gut–brain microbiota axis in the occurrence of gastrointestinal
complications after ischemic stroke, and the link between the microbiota gut–brain axis, IBD and ischemic stroke.

Role of the Gut–Brain Microbiota Axis in the Occurrence of Gastrointestinal Complications after Ischemic Stroke

Author Year of Publication Type of Study Population Results

Hang C.H. et al. [64] 2003 Pre-clinical study Mice subjected to
experimental stroke

Severe mucosal atrophy and
disruption of gut epithelial cell
tight junctions after few hours

from stroke to 7 days

Xu X. et al. [63] 2012 Pre-clinical study Mice subjected to
experimental stroke

Decreased gastrointestinal motility
and damage to the intestinal
mucosa existed in rats with

experimental stroke
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Table 1. Cont.

Role of the Gut–Brain Microbiota Axis in the Occurrence of Gastrointestinal Complications after Ischemic Stroke

Author Year of Publication Type of Study Population Results

Liu Y. et al. [65] 2017 Pre-clinical study Mice subjected to
experimental stroke

Ischemic stroke significantly
damaged the intestinal epithelium
and activated intestinal immunity.

Houlden A. et al. [66] 2016 Pre-clinical study Mice subjected to
experimental stroke

Noradrenaline release with
alteration of cecal mucoprotein

production, goblet cell numbers,
composition of cecal microbiota,

with specific changes in
Peptococcaceae and Prevotellaceae

Haak B.W. et al. [42] 2020 Prospective
case–control study

Stroke patients and
controls

Altered microbiota composition in
adults with stroke with higher
level of bacteria implicated in

trimethylamine-N-oxide (TMAO)
production and a loss of

butyrate-producing bacteria.

Tan C. et al. [43] 2021 Prospective
case–control study

Stroke patients and
controls

Dysbiosis of SCFAs-producing
bacteria and SCFAs in AIS patients
increased the subsequent risk for

poor functional outcomes

Li H. et al. [44] 2020 Prospective
case–control study

Stroke patients and
controls

The abundance and functions
ofbutyrate-producing bacteria in
stroke patients were significantly

decreased while lactic acid
bacteria were increased.

Schulte-Herbrüggen
O. et al. [67] 2009 Pre-clinical study Mice subjected to

experimental stroke

Peyer’s patches revealed a
significant reduction of T and B

cell counts after cerebral ischemia.

Link between inflammatory bowel disease and ischemic stroke

Bollen L. et al. [73] 2016
retrospective

monocentric cohort
study

IBD patients with a
history of TE

83% of patients developed a
venous TE. At the time of TE, 71%

patients were diagnosed with
active disease

Huang W.S. et al. [45] 2014
population-based

retrospective cohort
study

IBD adult patients
and IBD-free controls

The risk of ischemic stroke was
1.12-fold higher among the IBD
cohort than among the non-IBD
cohort. The risk of developing
ischemic stroke significantly
increased with the increased

frequency of IBD exacerbation
and hospitalization.

4. Conclusions and Perspectives

The brain–gut axis communication occur through both neuronal and non-neuronal
pathways supporting notion that gut microbiota might play a role in many pathological
and physiological conditions. A relationship between gut microbiota and ischemic stroke
has been reported. The gut dysbiosis has a strong influence on stroke risk factors such as
aging, metabolic disease and arterial hypertension. In addition, the brain–gut axis appear
significantly distressed after stroke by injury, with induced damage-associated molecular
patterns (DAMPs) and cytokine release, resulting in neurological, cardiovascular, gas-
trointestinal and nephrological complications with a possible multiple organ dysfunction.
Notably, the gastrointestinal complications are very common and may be related to an
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increase in bacteria involved in the TMAO production and loss of butyrate-producing bac-
teria. Interestingly, a link between inflammatory bowel disease and its grade activity with
ischemic stroke has been suggested. However, the exact molecular mechanisms underlying
the changes in the brain–gut axis and the related inflammatory and immune responses
after ischemic stroke should be further investigated. Prospective studies to identify the
bacterial species of microbiota involved in ischemic stroke are required. Gut microbiota
analysis could act as a potential personalized therapeutic approach for the treatment of
cardiovascular and metabolic diseases against stroke.
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