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Abstract

In this paper classes of double wave solutions of the 1D Euler system describing
a ideal fluid in the non-homogeneous case have been determined. In order that
the analytical procedure under interest to hold, suitable model laws for the source
term involved in the governing model were characterized. Finally such a class of
exact double wave solutions has been used for solving some problems of interest
in nonlinear wave propagation.

Keywords: Hyperbolic systems. Double wave solutions. Riemann Problem. Nonlinear
wave interactions.
MSC2010: 35L50, 35L60, 35N10

1 Introduction
Along the years many mathematical methods have been proposed in order to determine
exact solutions of PDEs. Some of them make use of group properties of differential
equations as, for instance, Lie-group analysis, non-classical methods, partially invariant
solutions, weak symmetries, etc. (see [1, 2]). Others belong to the class of the so-called
solutions with degenerate hodograph as multiple waves [3] (in particular simple waves
and double waves) and generalized hodograph method [4, 5, 6]. A third group is
based on the requirement that the governing equations satisfy some suitable additional
conditions as, for instance, in the differential constraint method. Such an approach
was first proposed and applied to gas-dynamics in [7, 8]. The main idea is to add to
the governing system under interest some further differential equations which play the
role of constraints because they select the class of special exact solutions admitted by
the overderdetermined set of equations consisting of the original equations along with
the additional differential constraints. The method is developed on two steps: first the
compatibility of such an overdetermined system must be studied, next exact solutions
of the full set of equations can be determined. On this subject many contributions have
been given [9]-[14] as well as different problems of interest in the applicatons have been
solved [15]-[21].
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More recently an approach based on the combined use of the double wave theory
as well as of the method of differential constraints has been developed in order to find
special exact double wave solutions of quasilinear first order hyperbolic systems [22].
The main idea of the method is to reduce the problem of integrating the governing
equations to that of solving a suitable 2 × 2 auxiliary system by requiring that the
remaining equations specialize to conservation laws along with a differential constraint
of the reduced 2× 2 system under consideration. Therefore, according to the theory of
differential constraints, such an approach leads to solve a 2 × 2 "ODE" system along
with a differential constraint which selects the class of initial value problems compatible
with the procedure at hand (see section 2.1 for more details). The resulting solutions
are given in terms of one arbitrary function and such degree of freedom permitted to
solve problems of interest in nonlinear wave interactions (see for instance [23]).

Within such a theoretical framework, in this paper we consider the non-homogeneous
1D Euler equations describing an ideal fluid which in Eulerian coordinates assume the
form

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (1)

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+
∂p

∂x
= ρf(ρ, u), (2)

∂s

∂t
+ u

∂s

∂x
= 0, (3)

where ρ, u, s denote, respectively, the mass density, the velocity and the entropy density,
whereas p(ρ, s) is the pressure. Moreover the production term f(ρ, u) represents the
specific body force. The system (1) is strictly hyperbolic [24, 25] and its characteristic
speeds are

λ1 = u− c, λ2 = u, λ3 = u+ c (4)

where, as usual, c =
√

∂p
∂ρ denotes the sound speed.

As far as we know, exact solutions of the Euler system (1) have been obtained in the
homogeneous case and only for very few special cases (see [25]-[28]). Moreover some
further results concerning the non-homogeneous 3-D case have been obtained in [29] .
Therefore, the main aim of the present paper is to develop, along the lines of the analysis
carried on in [22], a reduction procedure for determing classes of exact double wave
solutions to (1)-(3) and, consequently, some nonlinear wave problems of relevant interest
such as Riemann problems ([30]-[32]) and nonlinear wave interactions ([33]-[35]) are
analysed. In particular, after reducing the full set of governing equations to a suitable
2× 2 hyperbolic auxiliary system, following the idea developed in [17, 18], a Riemann
problem will be solved as well as an exact analitical description of nonlinear waves
interaction admitted by the governing system under interest will be given. Furthermore,
possible functional forms of the pressure p(ρ, s) as well as of the production term f(ρ, u)
allowing the reduction procedure under interest to hold are characterized.

The plan of the paper is the following. In Section 2 we outline the main steps of
the method of differential constraints as well as of the reduction process developed in
[22] in order to find particular double wave solutions to quasilinear hyperbolic non-
homogeneous system of first order PDEs in one space dimension. In Section 3 we
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obtain classes of double waves admitted by the non-homogeneous model (1)-(3). In
Section 4 we make use of the solutions obtained via double wave ansatz to solve a
Riemann problem and to give an exact description of nonlinear simple wave interactions.
Conclusions and final remarks are given in the last section while in the appendix we
sketch a more general analysis concerning the differential compatibility between the
differential constraints under interest and the corresponding 2× 2 reduced systems.

2 On a class of double waves to quasilinear hyperbolic
systems

In this section, for further convenience, we outline the main steps of methods of differ-
ential constraints as well as of the reduction approach proposed in [22] in order to find
particular double wave solutions to a first order hyperbolic system of PDEs.

2.1 Differential Constraints
Let us consider the set of N equations

Ut +A (U)Ux = B (U) (5)

where U ∈ RN denotes the vector of the field variables, B (U) a vector source and
A (U) the N × N matrix coefficients. Furthermore we assume the system (5) is hy-
perbolic in the t direction, namely the N–th order matrix A is required to admit N
real eigenvalues λi to which there correspond N right eigenvectors d(λi) and N left
eigenvectors l(λi) spanning the Euclidean space EN.

For strictly hyperbolic systems (i. e. λi 6= λj , ∀i, j = 1, .., N ) it has been proved
(see for instance [28] and references there quoted) that the more general first order
differential constraint admitted by (5) must adopt the form

l(λi) ·Ux = qi (x, t,U) (6)

where qi is a function which must be determined during the compatibility process. Let
M < N be the number of the differential constraints like (6) appended to (5). Once the
compatibility of the resulting overdetermined set of equations is satisfied, then exact
solutions of the governing system (5) can be obtained in terms of N −M arbitrary
functions. The case of relevant interest is when M = N − 1. In fact if we append to
the governing system (5) the N − 1 differential constraints (6) with i = 1, .., N − 1,
then the equations (5) can be rewritten under the form

Ut + λNUx = B +

N−1∑
i=1

qi (λN − λi)d(λi) (7)

so that the searched solutions can be obtained through integration along the characteristic
curves associated to the eigenvalue λN. Therefore exact solutions of (7) are determined
by solving a set of "ODEs". Moreover the initial data U(x, 0) associated to (7) must
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satisfy the N − 1 constraint equations (6) (see [28]) which also select the class of
initial value problems compatible with the reduction approach under interest. The
corresponding class of exact solutions are called generalized simple waves because
when in (5) and (6) the source B = 0 and qi = 0 they specialize to the classical simple
wave solutions of a homogeneus hyperbolic model.

2.2 Double wave solutions
Here we consider the quasilinear hyperbolic system (5). Owing to the assumed hyper-
bolicity with respect to t, the equation

det (A−λ I) = 0 (8)

admits N real roots λi to which there corresponds a complete set of left and right
eigenvectors l(λi) and d(λi) respectively

l(λi) (A−λi I) = 0, (A−λi I)d(λi) = 0, (i = 1, .., N). (9)

We set

U =

[
V
W

]
, B =

[
B1

B2

]
, A =

[
P Q
R S

]
, l(λ) =

[
l̂(λ), l

(λ)
]

(10)

being V,B1, l̂
(λ) ∈ R2, W,B2, l

(λ) ∈ RN−2 and P,Q,R,S suitable matrix coeffi-
cients

P = ‖Phk‖, Q = ‖Qhs‖, R = ‖Rrk‖, S = ‖Srs‖,
h, k = 1, 2; r, s = 3, .., N.

(11)

Looking for solutions of (5) under the form

U = U(V) =

[
V

W(V)

]
(12)

with W(V) sufficiently smooth functions of V, we get the overdetermined system

∂V

∂t
+ (P + Q∇W)

∂V

∂x
= B1 (13)

(∇W)
∂V

∂t
+ (R + S∇W)

∂V

∂x
= B2 (14)

where

∇W =

∥∥∥∥∂Wr

∂Vk

∥∥∥∥ , r = 3, ..., N ; k = 1, 2.

The main goal of the reduction approach proposed in [22] was the characterization of
exact solutions consistent with special evolution processes ruled by an auxiliary 2× 2
hyperbolic system. Thus, for what concerns the hyperbolicity of the N(N − 1)/2
reduced systems (13), obtained for each fixed choice of the field V, it was proved the
following
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Proposition 1 Let U = U(V) a class of solutions to (5), then the hyperbolicity of (5)
induces the hyperbolicity of at least one of the 2 × 2 reduced system in the new field
variable V.

Therefore, without loss of generality, we can assume as reduced 2×2 governing system
the pair of equations (13) which results to be strictly hyperbolic so that the equation

det
(

P + Q∇W − λ̃ I
)

= 0 (15)

admits two real eigenvalues λ̃1 6= λ̃2 with left and right eigenvectors l̃(λ̃k) and d̃(λ̃k)

(k = 1, 2) such that

l̃(λ̃k)
(

P + Q∇W − λ̃k I
)

= 0,
(

P + Q∇W − λ̃k I
)
d̃(λ̃k) = 0,

l̃(λ̃h) · d̃(λ̃k) = δhk, (h, k = 1, 2)

where δhk is the Kronecher tensor. The remaining N − 2 equations (14) give further
restrictions on the class of solutions (12) and, owing to the hyperbolicity of the auxiliary
reduced system (13), can be recast in the following form

ωr1

(̃
l(λ̃1) · ∂V

∂x

)
+ ωr2

(̃
l(λ̃2) · ∂V

∂x

)
= Br −

2∑
h=1

∂Wr

∂Vh
Bh (r = 3, . . . , N) (16)

with ωrh = ωrh(V,W(V)) suitable functions of V. It follows that, for a fixed r, the
corresponding relation (16) is a supplementary equation to be satisfied by any solution

of the 2×2 auxiliary reduced system iff ωr1 = ωr2 = Br −
2∑

h=1

∂Wr

∂Vh
Bh = 0 whereas,

according to [28], it is a involutive differential constraint associated to the hyperbolic
system (13) iff ωr1 = 0 or alternatively ωr2 = 0. In such a case relation (16) reduces to

l̃(λ̃2) · ∂V
∂x

=
1

ωr 2

(
Br −

2∑
h=1

∂Wr

∂Vh
Bh

)
= q2 (V) (17)

or

l̃(λ̃1) · ∂V
∂x

=
1

ωr 1

(
Br −

2∑
h=1

∂Wr

∂Vh
Bh

)
= q1 (V) . (18)

Of course, according to the differential constraint method [7, 8], the relation (17) or
(18) selects the class of initial value problem V(x, 0) = V0(x) compatible with the
procedure under interest. In fact, it results

l̃(λ̃)(V0(x)) · ∂V0

∂x
= q(V0(x)). (19)

In the following we will consider the case where one of the equations (16) is a differential
constraint of (13) while the remaining N − 3 relations are identically satisfied for all
solutions of (13).

As far as the characteristic speeds λ̃1 and λ̃2 is concerned, it can be proved the
following

5



Proposition 2 Let λ̃(V) be a characteristic velocity associated to (13), and

Hj(λ̃) 6= 0 ∀λ̃ (3 ≤ j ≤ N) (20)

where Hj(λ̃) is the determinant of the matrix of order N − 2 obtained from(
S−∇WQ−λ̃ I

)
when the j−th row is replaced by l̃(λ̃) Q. Then, under assumption

ωr1 = ωr2 = Br −
2∑

h=1

∂Wr

∂Vh
Bh = 0 (r = 3, . . . , N, r 6= j) (21)

the j− th condition (16) reduces to a first order differential constraint associated to λ̃k
iff λ̃k is not a characteristic velocity of the hyperbolic system (5) whereas the remaing
eigenvalue belongs to the spectrum of λ’s.

In particular, the following relations hold [22]

det
(

A−λ̃1 I
)

=
(
λ̃1 − λ̃2

)
ωj1Hj(λ̃1) (22)

det
(

A−λ̃2 I
)

=
(
λ̃2 − λ̃1

)
ωj2Hj(λ̃2). (23)

It turns out that in the case
Hj(λ̃1) = Hj(λ̃2) = 0 (24)

both characteristic velocities of the hyperbolic reduced system (13) belong to the spec-
trum ofλ′s and the j−th condition (16) may reduce to a first order differential constraint
associated both to λ̃1 or λ̃2.

Remark 1. The approach here sketched leads to determine exact solutions of (5) under
the form (12) which belongs to the class of partially invariant (double wave) solutions.
Of course in the case of a system involving two independent variables all the solutions
are double waves [1]. Therefore, the reduction procedure here considered permits to
characterize particular double wave solutions of the governing hyperbolic systems (5).

Remark 2. The key idea for determining particular double wave solutions of (5) by using
the procedure developed in [22] is to require that one of the relations (16) specializes
to a differential constraint of the reduced 2× 2 system (13) while the remaining N − 3
equations result to be identically satisfied for all solutions of (13) (i. e. they become
conservation laws for the reduced 2×2 model). Hence, according to the general theory
illustrated in section 2.1, classes of exact double wave solutions are determined by
solving a 2×2 "ODE" system. Furthermore such solutions are characterized in terms of
one arbitrary function so that classes on initial value problems can be solved. Therefore,
the approach under interest here is not based on the study of the general compatibility
between relations (16) with the reduced model (13) but on the requirement that equations
(16) specialize to conservation laws and one differential constraint.

Remark 3. The method of differential constraints requires that the compatibility con-
ditions between (5) and (6) are satisfied for all solutions of the resulting overdetermined
system (5), (6) (i. e. ∀ Ux). If we do not invoke such a requirement (i. e. we look for
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particular solutions of (5) and (6) some of the field derivatives can be calculated from
the consistency conditions so that new differential constraints must be appended to (5)
and new compatibility conditions must be required. In the case here considered of a
2× 2 system with one differential constraint, if we do not require that the compatibility
conditions are satisfied ∀ Ux, we obtain a 2×2 model with two differential constraints.
Such a possibility leads to determine exact solution which are Lie group invariants [21]
and they are obtained in terms of arbitrary constants which usually cannot be useful for
solving problems of interest in nonlinear wave propagation like Riemann problems or
nonlinear wave interactions. Therefore in the analysis developed in section 3 we do not
consider such a possibility.

3 Double waves to gas dynamics equations
Here, owing to the results sketched in the previous section, we look for double wave
reduction of the model (1)-(3) in two different cases. Owing to the invertibility assump-
tion, the wave parameters can be interchanged so that, first we’ll investigate the possible
reduction to a homogeneous 2× 2 hyperbolic model along with the choice (ρ, s), next
a reduction to a non-homogeneous system with (ρ, u) as dependent variables is consid-
ered.

I) Firstly, we consider double waves of the form

u = U(ρ, s) (25)

where the function U(ρ, s) will be determined in order that the reduction process be
consistent. Substituting the ansatz (25) in the equations (1) and (3) we obtain

∂ρ

∂t
+

(
U + ρ

∂U

∂ρ

)
∂ρ

∂x
+ ρ

∂U

∂s

∂s

∂x
= 0 (26)

∂s

∂t
+ U

∂s

∂x
= 0 (27)

whereas, taking (26) into account, equation (2) yields(
∂p
∂ρ − ρ

2
(
∂U
∂ρ

)2
)
∂ρ
∂x +

(
∂p
∂s − ρ

2 ∂U
∂ρ

∂U
∂s

)
∂s
∂x = ρf(ρ, U) (28)

According to Proposition 1, the hyperbolicity of the reduced auxiliary 2 × 2 system
(26) is ensured by the hyperbolic character of the original model (1). In particular, the
associated characteristic speeds along with the corresponding left and right eigenvectors
of the matrix coefficients are

λ̃1 = U, l̃(λ̃1) =
[

0, 1
]
, d̃(λ̃1) =

[
∂U
∂s , −∂U∂ρ

]T
λ̃2 = U + ρ∂U∂ρ , l̃(λ̃2) =

[
∂U
∂ρ ,

∂U
∂s

]
, d̃(λ̃2) =

[
1, 0

]T
,

(29)

with ∂U
∂ρ 6= 0. In the present case we have

λ̃1 = λ2 (30)
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and, as far as the quantity H3(λ̃) involved in (20) is concerned

H3(λ̃1) = 0, H3(λ̃2) = ρ∂U∂ρ 6= 0. (31)

Owing to (31), the hypotesis (20) of the proposition 2 is not fulfilled. Therefore, in the
present case, we have to require by direct inspection that relation (28) specializes to a
differential constraint of (26), (27) associated to λ̃1 or λ̃2 which adopt, respectively, the
form

∂s

∂x
= q1(ρ, s) (i)

or
∂U

∂ρ

∂ρ

∂x
+
∂U

∂s

∂s

∂x
= q2(ρ, s) (ii)

with q1(ρ, s) and q2(ρ, s) unknown functions to be determined. Hereafter, the two
possibilities (i) or (ii) will be considered.

Case (i)

Firstly we consider double wave solutions satysfing the differential constraint (i), namely
we require the condition (28) reduces to (i) so that, under assumption ∂p

∂s−ρ
2 ∂U
∂ρ

∂U
∂s 6= 0,

we get

ρ2

(
∂U

∂ρ

)2

− c2 = 0 (32)

f(ρ, U(ρ, s)) =

(
1

ρ

∂p

∂s
− ρ∂U

∂ρ

∂U

∂s

)
q1(ρ, s). (33)

The compatibility between the equations (26), (27) and the constraint (i) gives rise to

∂U

∂ρ

(
ρ
∂q1

∂ρ
− q1

)(
∂U

∂ρ

∂ρ

∂x
+ q1

∂U

∂s

)
= 0 (34)

which, bearing in mind that ∂U∂ρ 6= 0, in line with differential constraint theory, implies

ρ
∂q1

∂ρ
− q1 = 0 (35)

whose general solution is
q1(ρ, s) = ρΩ(s) (36)

and Ω(s) arbitrary function of its argument. Therefore, from (32), (33) and (36), we
have

U(ρ, s) = ±
∫

c

ρ
d ρ+ h(s) (37)

f(ρ, U) =

(
∂p

∂s
− ρ2 ∂U

∂ρ

∂U

∂s

)
Ω(s) (38)
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where h denotes an arbitrary function and, according to the choice of the sign in (37)1,
we have λ̃2 = λ1 or λ̃2 = λ3 as already observed. Once the pressure p(ρ, s) is given,
the relations (37) determine u = U(ρ, s) and it also induces restrictions on the specific
body force f(ρ, u).

As an example, hereafter we assume the following pressure law

p(ρ, s) = Π(s)ργ (39)

with γ 6= 0, 1 a real number and Π(s) a function of the entropy s such that

γΠ(s) > 0 ∀s. For a polytropic gas γ =
Cp
Cv

and Π(s) = e
s−s0
Cv being Cp, Cv the

dimensionless specific heat capacities at constant pressure and volume respectively and
s0 a constant. Owing to (39), from relation (37) we obtain

u = U(ρ, s) = ±
2
√
γΠ(s)

γ − 1
ρ
γ−1

2 + h(s) (40)

whereas, from (38), the production term f , evaluated at the class of solutions (40),
becomes

f(ρ, U(ρ, s)) = Ω(s)

(
Π′(s) ργ

γ − 1
∓ h′(s)

√
γΠ(s) ρ

γ+1
2

)
(41)

and the prime denotes the derivative with respect to the indicated argument. As far as
the functional form of the body force f(ρ, u) is concerned, it will be obtained from (41)
after inserting s = s(ρ, u) determined through (40). In particular, if h0 and Ω0 < 0
denote two real constants, a friction-like body force is obtained with the choice

h(s) = h0

Ω(s) = Ω0

(
2
√
γΠ(s)

γ−1

) 2γ
γ−1

γ−1
Π′(s)

⇒ f(u) = Ω0(u− h0)
2γ
γ−1 . (42)

Finally, exact solutions of the original set of equations (1)-(3) endowed with (41), are
obtained through (40) by solving the reduced 2 × 2 homogeneous hyperbolic model
(26), (27). To this end we introduce the Riemann invariants [26, 27]

r1 = λ̃1 = U(ρ, s), r2 = s (43)

and, by using the variable transformations (43), we recast the system (26), (27) under
the form

∂r1

∂t
+

(
γ + 1

2
r1 +

1− γ
2

h(r2)

)
∂r1

∂x
= 0 (44)

∂r2

∂t
+ r1 ∂r

2

∂x
= 0. (45)

Thus, via the well known hodograph transformation

x = x(r1, r2), t = t(r1, r2),

∣∣∣∣ ∂(x, t)

∂(r1, r2)

∣∣∣∣ 6= 0 (46)
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the system (44), (45) and in turn (26), (27), can be reduced to a pair of linear equations
whose integration yields

x(r1, r2) = r1 ∂Λ

∂r1
− Λ + r1M(r1)−m(r1) (47)

t(r1, r2) =
∂Λ

∂r1
+M(r1), (48)

with

m(r1) =

∫
M(r1) d r1 (49)

Λ(r1, r2) =
(1− γ)

2

∫ (
r1 − h(r2)

) 2
1−γ L(r2) d r2. (50)

and M(r1), L(r2) arbitrary functions of their arguments which, according to (19), will
be determined once initial or boundary data, selected by the constraint equation (i)
endowed with (36), are given. We’ll give further details in Section 4.2 where initial
value problems will be solved in order to investigate nonlinear simple wave interactions.

Case (ii)

Next, in order that condition (28) reduces to (ii) we have to require

∂p

∂ρ

∂U

∂s
− ∂p

∂s

∂U

∂ρ
= 0 ⇒ U = U(p). (51)

Therefore, the source term f must adopt the form

f(ρ, U(p)) =
q2(ρ, s)

ρU ′(p)

(
1− ρ2 ∂p

∂ρ
(U ′(p))2

)
(52)

so that the constraint (ii) specializes to

U ′(p)
∂p

∂x
= q2(ρ, s). (53)

By requiring the compatibility conditions between the reduced 2× 2 system (26), (27)
and the constraint (53) we obtain(

ρU ′(p)

(
∂p

∂ρ

∂q2

∂s
− ∂p

∂s

∂q2

∂ρ

)
+ q2

(
∂2(ρU)

∂s∂ρ
−

∂p
∂s
∂p
∂ρ

∂2(ρU)

∂ρ2

))
∂s

∂x
+

+
q2
2

U ′(p)∂p∂ρ

∂2(ρU)

∂ρ2
= 0

(54)

and in turn

∂2(ρU)

∂ρ2
= 0 (55)

ρU ′(p)

(
∂p

∂ρ

∂q2

∂s
− ∂p

∂s

∂q2

∂ρ

)
+ q2

∂2(ρU)

∂ρ∂s
= 0. (56)

10



After some algebra, from (55) and (56) it follows

u = U(p) = −b(s)
ρ

+ k(s) (57)

q2(ρ, s) =
ρ

b(s)
Ω(p) (58)

with k(s), b(s) and Ω(p) arbitrary functions and, in turn, from (52) we get

f(ρ, U) =
1− b(s)U ′(p)
b(s)U ′(p)

Ω(p). (59)

We notice that from (57) we deduce s = s(ρ, u) and, once the arbitrary function U(p)
is given, p = U−1(u) so that the functional form of the body force f(ρ, u) is obtained.
In the particular case U(p) = p and b(s) = b0 6= 1 we have

f(u) =
1− b0
b0

Ω(u). (60)

Finally, as it is straightforward to ascertain, the reduced system (26), (27) is completely
exceptional (CEX) [24] being both characteristic speeds λ̃1 and λ̃2 linearly degenerate
[31]

λ̃1 = k(s)− 1

ρ
b(s), λ̃2 = k(s) (61)

∇λ̃1 · d̃(λ̃1) = ∇λ̃2 · d̃(λ̃2) = 0. (62)

For the class of 2×2 homogeneous CEX system a wide literature is avaible and several
problems concerning wave interaction phenomena have been solved, so that we do not
go further with investigation of this case (see [20], [34]).

II) Here we look for double wave solution of system (1)-(3) in the form

s = F (ρ, u). (63)

Substituting the ansatz (63) in (1) and (2), after few calculations, we have

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0 (64)

ρ
∂u

∂t
+

(
∂p

∂ρ
+
∂p

∂s

∂F

∂ρ

)
∂ρ

∂x
+

(
∂p

∂s

∂F

∂u
+ ρu

)
∂u

∂x
= ρf(ρ, u) (65)

while from (3) we get(
∂p

∂ρ
+
∂p

∂s

∂F

∂ρ

)
∂F

∂u

∂ρ

∂x
+

(
∂p

∂s

(
∂F

∂u

)2

+ ρ2 ∂F

∂ρ

)
∂u

∂x
= ρf(ρ, u)

∂F

∂u
. (66)

The characteristic speeds λ̃ of the reduced system (64), (65) satisfy the following equa-
tion

ρ(u− λ̃)2 +
∂p

∂s

∂F

∂u
(u− λ̃)− ρ

(
∂p

∂ρ
+
∂p

∂s

∂F

∂ρ

)
= 0 (67)
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while H3(λ̃) assumes the form

H3(λ̃) =
1

ρ

∂p

∂s
l
(λ̃)
2 . (68)

Then equation (66), under assuption H3(λ̃) 6= 0 reduces to a first order differential
constraint associated to (64), (65) iff only one of the two characteristic velocity λ̃1 or
λ̃2 belongs to the spectrum of λ′s. Therefore we next consider the following two cases

λ̃1 = u± c (a)

or
λ̃1 = u. (b)

Case (a)

Here we assume
c
∂F

∂u
± ρ∂F

∂ρ
= 0, (69)

so that equation (67) admits the following solutions

λ̃1 = u± c, λ̃2 = u∓ c+
1

ρ

∂p

∂s

∂F

∂u
(70)

with associated left and right eingevectors

l̃(λ̃1) =
[
±c− 1

ρ
∂p
∂s

∂F
∂u , ρ

]
, d̃(λ̃1) =

[
ρ, ±c

]T
l̃(λ̃2) =

[
∓c, ρ

]
, d̃(λ̃2) =

[
ρ, 1

ρ
∂p
∂s

∂F
∂u ∓ c

]T
,

(71)

such that
H3(λ̃1) = H3(λ̃2) =

∂p

∂s
6= 0 (72)

and, in turn,

F (ρ, u) = F (η), η = u∓
∫

c

ρ
d ρ. (73)

Therefore relation (66) can be a differential constraint of (64), (65) and it assumes the
form

c
∂ρ

∂x
∓ ρ∂u

∂x
= q(ρ, u) (74)

where, by assuming ρ c∓ ∂p

∂s

∂F

∂u
6= 0, the function q is related to the source term

f(ρ, u) through

f(ρ, u) =

(
c

ρ
∓ 1

ρ2

∂p

∂s

∂F

∂u

)
q(ρ, u). (75)
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The compatibility between (64), (65) and (74) gives((
2± ∂c

∂s

∂F

∂u

)
q ∓ c ∂q

∂u
− ρ∂q

∂ρ

)(
c
∂ρ

∂x
− q
)

= 0 (76)

which, in line with differential constraint theory, gives

±c ∂q
∂u

+ ρ
∂q

∂ρ
=

(
2± ∂c

∂s

∂F

∂u

)
q, (77)

so that we have

q(ρ, u) = Ω(η) exp

(∫
1

ρ

(
2± ∂c

∂s

∂F

∂u

)
d ρ

)
(78)

with Ω(η) an arbitrary function. Once the pressure law p = p(ρ, s) is given, the
body force f is obtained from (75) whereas the class of solutions s = F (ρ, u) is fully
determined by integrating the following system

∂ρ

∂t
+ λ̃1

∂ρ

∂x
= ±q(ρ, u) (79)

∂u

∂t
+ λ̃1

∂u

∂x
= 0 (80)

with initial data ρ(x, 0) = ρ0(x) and u(x, 0) = u0(x) satisfying the differential con-
straint (74) which specializes to

c(ρ0(x), u0(x))
d ρ0(x)

dx
∓ ρ0(x)

du0(x)

dx
= q(ρ0(x), u0(x)). (81)

Case (b)

Let us assume
∂p

∂ρ
+
∂p

∂s

∂F

∂ρ
= 0 (82)

so that, from (67), we obtain

λ̃1 = u, λ̃2 = u+
1

ρ

∂p

∂s

∂F

∂u
, (83)

with associated left and right eigenvectors

l̃(λ̃1) =
[
− 1
ρ
∂p
∂s

∂F
∂u , ρ

]
, d̃(λ̃1) =

[
0, 1

]T
l̃(λ̃2) =

[
1, 0

]
, d̃(λ̃2) =

[
ρ, 1

ρ
∂p
∂s

∂F
∂u

]T (84)

such that
H3(λ̃1) =

∂p

∂s
6= 0, H3(λ̃2) = 0. (85)
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After (85), condition (23) requires

1

ρ

∂p

∂s

∂F

∂u
= ∓c, (86)

so that (66) reduces to
∂F

∂u
f(ρ, u) = 0. (87)

The present case will not be further investigated because from (87) we get f(ρ, u) = 0
(homogeneous case) or, taking (86) into account, c = 0.

Remark 4. The approach proposed in [22] is based on the requirement that relation
(28) and (66) are first order differential constraints of the corresponding 2× 2 reduced
systems. Therefore, taking into account the previous remarks, in section 3 we required
that (28) and (66) assume the form (6). Of course, more generally, the compatibility
of relations (28) or (66) with the 2 × 2 subsystems under interest can be studied .
Such an approach is different from the one developed in [22] which is based on the
method of differential constraints and, usually, it leads to results which are not useful
for determining double wave solutions of interest in nonlinear wave propagations. In
fact in some cases the analysis cannot be fully developed analytically, in others we are
led to append to the corresponding 2×2 subsystem two first order differential constraints
so that the resulting exact solutions are not determined in terms of arbitrary functions
as in [22] but they are parameterized by arbitrary constants. Nevertheless a sketch of
this different strategy is given in the appendix.

4 Nonlinear wave interactions
Here, by using the results obtained in the previous sections, our main aim is to study
two problems of relevant interest within the framework of nonlinear wave propagation:
Riemann problems and nonlinear simple wave interactions.

4.1 Riemann problem
In the case of system of conservation laws a Riemann Problem (RP), under the assump-
tion of not large initial jumps, admits an unique solution in terms of constant states
separated by rarefaction waves, shock waves and/or contact discontinuities [30]-[32].
However, a rarefaction wave is characterized by a simple wave solution which, in gen-
eral, is not admitted by non homogeneous systems (balance laws). Furthermore, to
study generalized Riemann problems (GRP) which are characterized by non constant
discontinuous initial states, is a very hard task both in the homogenoeus as well as in
the non homogeneous case. In fact for solving a GRP it is necessary to determine the
exact solution of the governing equations for general initial data. Therefore only few
cases of exact solution to RP and GRP for balance laws are known in the litterature.
Within such a framework, a combined use of the approach developed first in [11] and
later in [17, 18] with the reduction procedure developed in this paper will permit us to
solve a RP as well as a GRP for the non homogeneous system (1)-(3).
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To this end we will consider the results obtained in the case (a) of Section 3. We
develop our analysis for λ̃1 = u + c. Of course a similar procedure can be carried on
in the remaing case λ̃1 = u− c. Therefore from (73) and (78) we get

s = F (η), η = u−
∫
c (ρ, F (η))

ρ
dρ (88)

q = ρ2Ω(η)g(ρ, η), g = exp

(∫ (
1

ρ

∂c

∂s

∂F

∂u

)
dρ

)
(89)

In view of integrating equations (79), (80) and (81) it is more convenient to make use
of the change o variable u↔ η so that the system (79), (80) assumes the form

∂ρ

∂t
+ (η + σ(ρ, η))

∂ρ

∂x
= ρ2Ω(η)g(ρ, η) (90)

∂η

∂t
+ (η + σ(ρ, η))

∂η

∂x
= − ρc (ρ, η) Ω(η)g(ρ, η)

1 + F ′(η)
∫ (

1
ρ
∂c
∂s

)
dρ

(91)

where
σ(ρ, η) = c (ρ, F (η)) +

∫
c

ρ
dρ (92)

while equation (81) specializes to

∂η

∂x
= − ρΩ(η)g(ρ, η)

1 + F ′(η)
∫ (

1
ρ
∂c
∂s

)
dρ
. (93)

First we consider the Riemann problem

ρ(x, 0) =

{
ρL for x < 0
ρR for x > 0

; η(x, 0) =

{
ηL for x < 0
ηR for x > 0

(94)

where ρL, ρR, ηL and ηR are constant equilibrium states of (90), (91) and (93) so that

Ω(ηL) = Ω(ηR) = 0. (95)

By using the method of characteristics, owing to (95), integration of (90), (91) and (93)
for x < 0 and x > 0 subjected to (94) leads, respectively, to ρ = ρL

for x < (ηL + σL(ρL, ηL)) t
η = ηL

(96)

and  ρ = ρR
for x > (ηR + σR(ρR, ηR)) t

η = ηR

(97)

Since we are looking for a smooth solution connecting the left state (96) to the right
state (97), the next step is to solve equations (90), (91) and (93) under the conditions

x(0) = 0, ρ = ρ̂(a), η = η̂(a) (98)
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where a ∈ [0, 1] is a real parameter characterizing the characteristics of the fun starting
from the origin in the (x, t) half- plane (t ≥ 0). Moreover we require

ρ̂(0) = ρL; η̂(0) = ηL; ρ̂(1) = ρR; η̂(1) = ηR. (99)

In [17] the authors proved that the solution of an initial data like (98) reduces the
differential constraint under interest in a homogeneous form. Therefore, in the present
case from (93) we get

dη̂

da
= 0 (100)

so that, owing to conditions (99), we obtain

η̂ = ηL = ηR (101)

and in turn, taking (95) and (101) into account, integration of (90), (91) subject to (98)
leads to  ρ = ρ̂(a)

η = η̂
x = (η̂ + σ (ρ̂(a), η̂)) t

(102)

Of course the non constant central state characterized by (102) is defined in the domain

(ηL + σL(ρL, ηL)) t ≤ x ≤ (ηR + σR(ρR, ηR)) t (103)

and it connects smootly the left state (96) with the right state (97) if the following
condition holds

σL(ρl, ηL) < σR(ρR, ηR). (104)

Therefore relations (96), (97) and (102) along with the conditions (101) and (104) give
the solution of the Riemann problem (94) for the system (90), (91) in terms of constant
states separated by a generalized simple wave. Consequently, once the constitutive law
p(ρ, s) is given, then from (88), (96), (97) and (102) the solution of a Riemann problem
for the full system (1)-(3) can be obtained. In such a case, taking (101) into account,
the initial data must satisfy the condition (104) along with

uL −
(∫

c

ρ
dρ

)
L

= uR −
(∫

c

ρ
dρ

)
R

, sL(F (ηL)) = sR(F (ηR)). (105)

We notice that, because of conditions (105), the solution of the RP under interest is
characterized by an isoentropic flow with initial discontinuities for the mass density and
velocity as it happens for the 2 × 2 isoentropic homogeneous fluid dynamics model.
Therefore in order to study a more interesting case as well as to show the flexibility
of the approach here developed, in the following we are going to solve the generalized
Riemann problem

ρ(x, 0) =

{
ρl(x) for x < 0
ρr(x) for x > 0

; u(x, 0) =

{
ul(x) for x < 0
ur(x) for x > 0

(106)
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where ρl, ρr, ul, and ur are smooth functions. Moreover we set

lim
x→0−

(ρl(x)) = ρL, lim
x→0+

(ρr(x)) = ρR (107)

lim
x→0−

(ul(x)) = uL, lim
x→0+

(ur(x)) = uR (108)

with ρL 6= ρR and uL 6= uR. As an example, we consider a polytropic real gas
characterized by the pressure law (39) with Π = e

s−s0
Cv . Furthermore in (88)1 we

choose

F (η) = Cv ln

(
η2

γr0

)
+ s0 (109)

where r0 is an arbitrary constant which, for further convenience, we assume to be
positive. Therefore, from (88) and (89) we get

s = s0 + Cv ln

(
η2

γr0

)
, η =

r0u

r0 + 2
γ−1ρ

γ−1
2

(110)

q = ρ2Ω(η)

(
1 +

2

r0 (γ − 1)
ρ
γ−1

2

)
(111)

Finally for simplicity we choose Ω(η) = k0η, where k0 is an arbitrary constant. Of
course different solutions of (106) can be obtained by choosing different forms of Ω(η).
Therefore, in the present case, integration of (79), (80) and (81) gives

ρ =
ρ0(z)

1− k0tu0(z)ρ0(z)
, u = u0(z) (112)

ρ′0(z)

r0 + ρ0
− u′0(z)

u0
= k0ρ0 (113)

where ρ(x, 0) = ρ0(x), u(x, 0) = u0(x) and the variable z is defined by solving the
equation

dx

dt
= u

(
r0 + γ+1

γ−1ρ
γ−1

2

r0 + 2
γ−1ρ

γ−1
2

)
(114)

Once the gas indexγ is assigned, by integrating (114) the characteristic curves associated
to the solution (112) will be obtained. In the case of γ = 3, from (114) we have

x = u0(z)t− 1

r0k0
ln

(
r0 + ρ0(z)− r0k0tu0(z)ρ0(z)

r0 + ρ0(z)

)
+ z (115)

In passing we notice that (114) can be solved also in the case of monoatomic gas(
γ = 5

3

)
and for a diatomic gas

(
γ = 7

5

)
. In such a cases the corresponding solution is

cumbersome and therefore hereafter we point out our attention to the case γ = 3.
The initial data (106) must satisfy the differential constraint (113), so that we get

ur =
uR (r0 + ρr(x))

r0 + ρR
e−k0

∫ x
0
ρr(x)dx, ul =

uL (r0 + ρl(x))

r0 + ρL
e−k0

∫ x
0
ρl(x)dx (116)
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Therefore, taking (112), (113) and (115) into account, by developing the same procedure
considered in this section for the RP (94), the following solution of the GRP (106) is
obtained:
Left state

ρ =
ρl(z)

1− k0tul(z)ρl(z)
, u = ul(z) (117)

x = ul(z)t−
1

r0k0
ln

(
r0 + ρl(z)− r0k0tul(z)ρl(z)

r0 + ρl(z)

)
+ z, z < 0 (118)

Central state

ρ =
ρ̂(a)

1− k0tû(a)ρ̂(a)
, u = û(a) (119)

x = û(a)t− 1

r0k0
ln

(
r0 + ρ̂(a)− r0k0tû(a)ρ̂(a)

r0 + ρ̂(a)

)
, 0 ≤ a ≤ 1 (120)

where
û(a)

r0 + ρ̂(a)
=

uL
r0 + ρL

=
uR

r0 + ρR
(121)

Right state

ρ =
ρr(z)

1− k0tur(z)ρr(z)
, u = ur(z) (122)

x = ur(z)t−
1

r0k0
ln

(
r0 + ρr(z)− r0k0tur(z)ρr(z)

r0 + ρr(z)

)
+ z, z > 0 (123)

From (118) and (123), by setting, respectively,

lim
z→0−

x = βL(t) = uLt−
1

r0k0
ln

(
r0 + ρL − r0k0tuLρL

r0 + ρL

)
(124)

lim
z→0+

x = βR(t) = uRt−
1

r0k0
ln

(
r0 + ρR − r0k0tuRρR

r0 + ρR

)
(125)

the left state is defined for x < βL(t), the central state for βL(t) ≤ x ≤ βR(t) and the
right state for x > βR(t). Next, in order that the central state connects smoothly the
left state with the right one, we require

dλ

da
> 0 (126)

where we denoted by λ(a) the characteristc speed λ̃1 = u+ c calculated in the central
state, so that from (126) the following condition is obtained

c0
dρ̂

da
> 0, where c0 =

uL
r0 + ρL

=
uR

r0 + ρR
(127)
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Moreover it is not difficult to ascertain that the characteristic of the central state given
in (120) are well defined if

k0c0 < 0 (128)

Therefore, the solution of the GRP (106) is given by (117)-(123) if the conditions (127)
and (128) hold. In particular from (127) and (128) two possible cases are obtained

c > 0, ρL < ρR, k0 < 0 ⇒ 0 < uL < uR (129)

c < 0, ρL > ρR, k0 > 0 ⇒ uL < uR < 0 (130)

As far as the entropy is concerned, from (110) we obtain

η =
(r0 − r0k0tul(z)ρl(z))ul(z)

r0 − r0k0tul(z)ρl(z) + ρl(z)
for x < βL(t) (131)

η =
(r0 − r0k0tû(a)ρ̂(a)) û(a)

r0 − r0k0tû(a)ρ̂(a) + ρ̂(a)
for βL(t) ≤ x ≤ βR(t) (132)

η =
(r0 − r0k0tur(z)ρr(z))ur(z)

r0 − r0k0tur(z)ρr(z) + ρr(z)
for x > βR(t) (133)

From (131) and (133) we get

η(x, 0) =

{
ηl(x) = r0ul(x)

r0+ρl(x) for x < 0

ηr(x) = r0ur(x)
r0+ρr(x) for x > 0

(134)

so that
lim
x→0−

ηl(x) = lim
x→0+

ηr(x) = r0c0 (135)

Therefore, from (131)-(133) we get a non constant entropy state which is continuous
∀t ≥ 0.

Finally, as far as the source term f(ρ, u) is concerned, in the case concerning a
polytropic gas, from (75) we get

f = Ω(η)

(
ρc(ρ, η) +

F ′(η)

Cv(γ − 1)
Π(η)ργ

)
. (136)

If we make the further assumptions Ω = k0, γ = 3 along with (109) as for the GRP
here considered, we get

f(ρ, u) =
k0 (3r0 + ρ) ρ2

3r0 (r0 + ρ)
2 u2. (137)

4.2 Simple wave interactions
In this section, following the analytical approach outlined in [20] for classes of 2 × 2
strictly hyperbolic and homogeneous systems, we make use of the exact solution (40),
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(47) and (48) to describe nonlinear wave interaction processes ruled by (1)-(3) endowed
with (41).

To this aim we consider the characteristic curves C(λ̃1) and C(λ̃2) defined, respec-
tively, by

C(λ̃1) :
dx

d t
= λ̃1 = r1, C(λ̃2) :

dx

d t
= λ̃2 =

γ + 1

2
r1 + h(r2) (138)

and we denote with α(x, t) and β(x, t) the characteristic parameters satisfying

∂β

∂t
+ λ̃1

∂β

∂x
= 0 ,

∂α

∂t
+ λ̃2

∂α

∂x
= 0 , α(x, 0) = β(x, 0) = x (139)

Then, owing to (44), (45) which express the invariance of the Riemann variables along
the associated characteristic curves, we have r1 = r1(α) and r2 = r2(β) and, in
turn, from (47) and (48) the following representation of the solution in terms of the
characteristic parameters is obtained

x− λ̃1(α) t = −Λ(α, β)−m(α) (140)

x− λ̃2(α, β) t =
1− γ

2

(
r1(α)− h(β)

)( ∂Λ

∂r1
(α, β) +M(α)

)
− Λ(α, β)−m(α)

where, as usual, for a generic functionG(r1, r2) we denoteG(α, β) = G(r1(α), r2(β)).
Next we consider initial data for r1 and r2

r1 (x, 0) = R1 (x) , r2 (x, 0) = R2 (x) , −∞ < x < +∞

obeying the constraint equation

dR2(x)

dx
= Ω(R2(x))

(
±γ − 1

2

R1(x)− h(R2(x))√
γΠ(R2(x))

) 2
γ−1

(141)

and, taking (140) into account, we determine the functions M(α) , m(α), Λ(α, β),
∂Λ
∂r1 (α, β) as follows

Λ(α, β) = −
∫ β

x0

(
R1(α)− h(x)

R1(x)− h(x)

) 2
1−γ

dx (142)

∂Λ

∂r1
(α, β) =

2

γ − 1

∫ β

x0

(
R1(α)− h(x)

) 1+γ
1−γ

(
R1(x)− h(x)

) 2
γ−1 dx (143)

m(α) = −α− Λ(α, α), M(α) = − ∂Λ

∂r1
(α, α). (144)

In the following, without loss of generality, from (40) we consider

u = U(ρ, s) = −
2
√
γΠ(s)

γ − 1
ρ
γ−1

2 + h(s). (145)
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Our aim, here, is to describe in the (x, t) plane the interaction of two simple waves
travelling along characteristic curves belonging to different families. Therefore, owing
to (145)

U = λ̃1 > λ̃2 = U + ρ
∂U

∂ρ
, (146)

so that the pulse travelling along C(λ̃1) occupies the region x1 ≤ x ≤ x2 whereas
the pulse travelling along C(λ̃2) the region x3 ≤ x ≤ x4 (see figure 1 ). Both waves
propagate into a region of constant state where r1 = r1

0 and r2 = r2
0. We also require

thatR1 (x) andR2 (x) are continuous. Therefore at t = 0 we have

R2(x) =

{
ζ(x) x1 ≤ x ≤ x2

r2
0 otherwise

(147)

R1(x) =

{
ω(x) x3 ≤ x ≤ x4

r1
0 otherwise

ζ(x1) = ζ(x2) = r2
0, ω(x3) = ω(x4) = r1

0.

where, taking (141) into account, we require Ω
(
r2
0

)
= 0.

Remark 5. As far as the role of the restriction (141) is concerned we remark that, once
the functional form of Ω(s) is given and in turn, by means of inversion s = s(ρ, u), the
force f(ρ, u) is obtained, equation (141) defines the initial datumR1(x) (orR2(x)) in
terms of remaing one. In a different way, the constraint equation (141) may be used,
once the initial dataR1(x) andR2(x) are given, to define the function Ω(x) and in turn
the force f .

In the (x, t) plane, explicit evaluation of the characteristic parameters x− λ̃1t and
x− λ̃2t allows us to describe the behavior of the emerging simple waves. In particular
the simple wave regions IR, IIR and IS , IIS are adjacent, respectively, to the constant
state r2 = r2

0 and r1 = r1
0 [27]. Therefore we have

Simple wave r2 = r2
0, r1 = ω(α)


REGION IR

x3 ≤ α ≤ x4, β ≥ x2

x− λ̃2 t = α


REGION IIR

x3 ≤ α ≤ x4, β ≤ x1

x− λ̃2 t = α+ Js(α)

(148)
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Simple wave r1 = r1
0, r2 = ζ(β)

REGION IS

x1 ≤ β ≤ x2, α ≤ x3

x− λ̃1 t = β


REGION IIS

x1 ≤ β ≤ x2, α ≥ x4

x− λ̃1 t = β + Jr

(149)

with

Jr =

∫ x4

x3

((
r1
0 − h(r2

0)

ω(x)− h(r2
0)

) 2
1−γ

− 1

)
dx ,

Js (α) =

∫ x2

x1

h(r2
0)− h(ζ(x))

ω(α)− h(ζ(x))

(
ω(α)− h(ζ(x))

r1
0 − h(ζ(x))

) 2
1−γ

dx.

(150)

From(148)–(150) it follows that the pulse travelling along C(λ̃1) traverses region IS , it
interacts with theC(λ̃2) travelling pulse and emerges in the region IIS as a simple wave
identical with that produced by the following initial conditions at t = 0

R1(x) =

{
ω(x) x3 ≤ x ≤ x4

r1
0 otherwise

(151)

R2(x) =

{
ζ(x+ Jr) x1 − Jr ≤ x ≤ x2 − Jr

S0 otherwise.

Therefore the pulse travelling along C(λ̃1) evolves as an hyperbolic wave but in the
interaction process exhibit a soliton-like behavior being the only effect of the interaction
a change in the origin of the original pulse [33, 34]. On the contrary, the pulse travelling
along C(λ̃2) emerges in the region IIR as a simple wave with altered profile. The
interaction product Js(α) represents a quantitative measure of the distortion, it depends
on the initial data (147) and it vanishes when h(s) = h0 = constant as in (42). In
this latter case, as it is straightforward to ascertain, the 2× 2 system (44), (45) partially
decouples.

In order to better illustrate the wave behavior described hitherto, hereafter we choose U(ρ, s) = h(s)− 2
√
γΠ(s)

γ−1 ρ
γ−1

2

h(s) = h1

√
Π(s)

(152)

with h1 constant.
Next we perfom a numerical investigation of the system (26), (27) with initial data

for the density ρ(x, t) and the entropy s(x, t) obtained from

ρ(x, 0) =

(
γ−1
2
√
γ

(
h1 − R1(x)√

Π(R2(x))

)) 2
γ−1

s(x, 0) = R2(x).

(153)
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0

C(λ̃1)
C(λ̃2)

IS IR

IIR
IIS

x1 x2 x3 x4

t

Figure 1: Qualitative behavior in the (x, t)-plane of the interaction between two simple
waves travelling along different characteristic curves. The initial data for R1 (x) and
R2 (x) are as in (147).

Moreover the initial datum for the velocity u(x, t) is given by

u(x, 0) = R1(x). (154)

The numerical solution showed in figure 2 is obtained with the following choice

R1(x) = 4− 0.9 sech (0.02(x− 600))

R2(x) = 2 + 0.6 sech (0.02 (x+ 300)) ,
(155)

and simulates two simple waves travelling along different families of characteristic
curves. We notice that to the initial value problem (153) for the auxiliary 2× 2 reduced
model (26), (27) there corresponds through (154) an initial value problem for the full
governing system (1)-(3). Such behaviours are in agreement with the theoretical results
obtained in the present section. Finally in figure 3 we show the corresponding plot of
the force f obtained from (41), (141) and (153)-(155).

5 Conclusion
In this paper we considered the Euler system describing the one dimensional flow of a
ideal fluid with a source term. Following the procedure proposed in [22], a class of dou-
ble wave solutions of the governing model (1)–(3) has been determined. The approach
developed in this article permits to reduce the problem of integrating a hyperbolic full
systems to that of solving a reduced 2×2 sub-system. Since we can always choose such
a 2 × 2 reduced model so that it results to be hyperbolic, then the obtained solutions
can be used for studying problems of interest in nonlinear wave propagation.
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Figure 2: Simulation of two interacting simple waves. The numerical solution of
equations (26) with (141) is obtained with initial data (155), γ = 3, h1 = 20 and the
choice: (a) Π(s) = s2; (b) Π(s) = e

s
Cv .

24



(a) (b)

xx

f(x, 0)f(x, 0)

Figure 3: Plot of the body force f

In fact, first a Riemann problem for the non-homogeneous Euler system under con-
sideration has been solved by means of a generalized rarefaction wave and an isentropic
flow has been characterized. Next nonlinear wave interaction problems have been con-
sidered. In particular an exact analytical description of the interaction of two simple
waves travelling along different families of characteristics was given and in one case a
soliton-like behaviour was determined. Such behaviours are in a completely full agree-
ment with the numeric results carried on in Section 4.2. Furthemore, the reduction
procedure here adopted requires that the source term involved in the balance equation
of the linear momentum assumes some special functional forms which in some cases
are in agreement with the standard friction terms.

As far as the exact description of nonlinear wave interaction processes is concerned,
we remark that it is fully developed for 2 × 2 strictly hyperbolic models but, unfortu-
nately, such an analysis cannot be in general applied to quasilinear hyperbolic systems
involving more dependent and/or independent variables although special wave interac-
tion problems were solved [23, 35].

Finally, we point out that, although in the present study we confined ourselves to
the 1D non-homogeneous Euler system, the extension to the 3D case is actually under
investigation.
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Appendix
Our aim here is to sketch a general analysis of the compatibility conditions obtained in
Section 3 which permits, in principle, a full classification of the exact solutions of the
gas-dynamic equations obtained via the double wave ansatz here under interest.

Firstly, we consider the assumption u = U(ρ, s) which leads to the equations (26),
(27) and (28). Since f 6= 0, from (28) the following two cases arise

∂p
∂ρ − ρ

2
(
∂U
∂ρ

)2

= 0

∂p
∂s − ρ

2 ∂U
∂ρ

∂U
∂s 6= 0

=⇒


∂s
∂x = q1(ρ, s)

f(ρ, U) =
(

1
ρ
∂p
∂s − ρ

∂U
∂ρ

∂U
∂s

)
q1(ρ, s)

(A1)

or

∂p

∂ρ
− ρ2

(
∂U

∂ρ

)2

6= 0 =⇒ ∂ρ

∂x
=
ρf(ρ, U)−

(
∂p
∂s − ρ

2 ∂U
∂ρ

∂U
∂s

)
∂s
∂x

∂p
∂ρ − ρ2

(
∂U
∂ρ

)2 . (A2)

The case (A1) was considered in Section 3 (see case (i)). In fact relation (28) reduces
to the equation

∂s

∂x
= q1(ρ, s) (i)

which is the first order differential constraint of (26), (27) associated to the eigenvalue
λ̃1 = U . By requiring the compatibility between (26), (27) and (i) we get

∂U

∂ρ

(
ρ
∂q1

∂ρ
− q1

)(
∂U

∂ρ

∂ρ

∂x
+ q1

∂U

∂s

)
= 0 (34)

In Section 3, according to the method of differential constraints, we required that relation
(34) is satisfied for all solutions of (26), (27) (i.e. ∀ ∂ρ∂x ) so that condition (35) is obtained.
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Since ∂U
∂ρ 6= 0 because of the assumed hyperbolicity of the corresponding reduced 2×2

system, in order to complete our analysis, now we require

∂U

∂ρ

∂ρ

∂x
+ q1

∂U

∂s
= 0 (A3)

so that, taking (26), (27) into account, the following 2 × 2 system endowed with two
differential constraint is obtained

∂ρ
∂t + U(ρ, s) ∂ρ∂x = 0, ∂s

∂t + U(ρ, s) ∂s∂x = 0

∂ρ
∂x = − q1(ρ,s) ∂U∂s

∂U
∂ρ

, ∂s
∂x = q1(ρ, s).

(A4)

It is straigthforward to ascertain that equations (A4) are compatible (i. e. their differen-
tial consistencies are identically satisfied). Therefore from (A4) we have ∂U

∂x = ∂U
∂t = 0

and, in turn, the following travelling wave solution of the non-homogeneous Euler equa-
tions parameterized by arbitrary constants is obtained

u = U(ρ, s) = const, ρ = ρ(s(z)),
d s

d z
= q1(ρ(s), s), z = x− Ut (A5)

where U(ρ, s) and q1(ρ, s) can be determined from (A1) once the response functions
p(ρ, s) and f(ρ, u) are assigned.

Next we consider the case (A2). The corresponding differential compatibility with
the governing subsystem (26), (27) lead to(

∂U
∂ρ

)2 (
Υ ∂2s
∂x2 +

(
∂Υ
∂s + Γ∂Υ

∂ρ −Υ∂Γ
∂ρ

) (
∂s
∂x

)2)− q2
2
∂2(ρU)
∂ρ2 + Θ ∂s

∂x = 0 (A6)

where q2(ρ, s) is related to the source term f through

f(ρ, U(ρ, s)) =
q2(ρ, s)

ρ∂U∂ρ

(
∂p

∂ρ
− ρ2

(
∂U

∂ρ

)2
)

while

Υ(ρ, s) =
ρ( ∂p∂s

∂U
∂ρ −

∂U
∂s

∂p
∂ρ )

∂p
∂ρ−ρ2( ∂U∂ρ )

2 , Γ(ρ, s) =
− ∂p∂s+ρ2 ∂U

∂ρ
∂U
∂s

∂p
∂ρ−ρ2( ∂U∂ρ )

2 ,

Θ(ρ, s) = ρ∂U∂ρ

(
∂U
∂s

∂q2
∂ρ −

∂U
∂ρ

∂q2
∂s

)
+ q2

(
∂(Υ ∂U

∂ρ )

∂ρ + ∂U
∂ρ

(
ρ∂U∂ρ

∂Γ
∂ρ − 2Γ∂U

∂ρ −
∂U
∂s

))
.

If
Υ = 0 =⇒ U = U(p)

we recover the case (ii) considered in Section 3 so that (A2) represents the first order
differential constraint of (26), (27) associated to the eigenvalue λ̃2 = U + ρ∂U∂ρ . In
such a case, the differential compatibility between (A6) and (26), (27) has been already
investigated (see (55), (56)) according to the differential constraint method (i. e. by
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requiring Θ(ρ, s) = ∂2(ρU)
∂ρ2 = 0). Therefore here we require Θ(ρ, s) 6= 0 which leads

to
∂s

∂x
=

q2
2

Θ(ρ, s)

∂2(ρU)

∂ρ2
(A7)

so that the 2× 2 model (26), (27) is endowed with the differential constraints (A2) and
(A7). In such a case, the further compatibility condition ∂2s

∂x∂t = ∂2s
∂t∂x gives

∂p
∂ρ

∂
∂s

(
1
q2

)
− ∂p

∂s
∂
∂ρ

(
1
q2

)
+ 1

q2

(
1
ρ
∂p
∂s −

∂2p
∂s∂ρ +

∂p
∂s
∂p
∂ρ

∂2p
∂ρ2

)
=

∂p
∂ρ

∂2(ρU)

∂ρ2

ρ2θ0(s)( ∂U∂ρ )
2 (A8)

with θ0(s) 6= 0 an arbitrary function. Once p(ρ, s) and U(p) are given, further integra-
tion of condition (A8), allows us to obtain q2(ρ, s) and, in turn, f(ρ, U). Furthermore
ρ(x, t) and s(x, t) are determined in terms of arbitrary constants as solutions of

∂ρ
∂t + U ∂ρ

∂x = −ρq2,
∂s
∂t + U ∂s

∂x = 0

∂ρ
∂x = q2

∂U
∂ρ

− q2
2
∂p
∂s

Θ(ρ,s) ∂p∂ρ

∂2(ρU)
∂ρ2 , ∂s

∂x =
q2
2

Θ(ρ,s)
∂2(ρU)
∂ρ2 .

Finally we assume ∂p
∂s

∂U
∂ρ −

∂U
∂s

∂p
∂ρ 6= 0 (i.e. Υ 6= 0) so that from (A6) we obtain

∂2s
∂x2 and, by requiring the equality of the third order mixed derivatives, the following
compatibility condition is obtained

Ξ1

(
∂s

∂x

)3

+ Ξ2

(
∂s

∂x

)2

+ Ξ3
∂s

∂x
+ Ξ4 = 0 (A9)

where we set

Ξ1 = Υ ∂
∂ρ

(
∂Γ
∂ρ −

Γ
ρ −

1
Υ
∂Υ
∂s −

Γ
Υ
∂Υ
∂ρ

)
,

Ξ2 = − ∂
∂ρ

(
Θ

( ∂U∂ρ )
2

)
+ Θ

( ∂U∂ρ )
2

(
1
Υ
∂Υ
∂ρ + 2

ρ

)
+ ∂q2

∂s + Γ∂q2
∂ρ

−q2

(
ρ ∂
∂ρ

(
∂Γ
∂ρ −

1
Υ
∂Υ
∂s −

Γ
Υ
∂Υ
∂ρ

)
+ 1

∂U
∂ρ

∂
∂ρ

(
Υ
ρ

))
,

Ξ3 = q2
2

(
∂
∂ρ

(
∂2(ρU)

∂ρ2

( ∂U∂ρ )2

)
+

∂Υ
∂ρ

∂2(ρU)

∂ρ2

Υ( ∂U∂ρ )2

)
+ ρ3q2

∂
∂ρ

(
Θ

ρ2Υ( ∂U∂ρ )2

)
+ q2

( ∂U∂ρ )2

(
3∂U∂ρ + 2ρ∂

2U
∂ρ2

)
∂q2
∂ρ ,

Ξ4 = −ρ3q2
∂
∂ρ

(
q2
2
∂2(ρU)

∂ρ2

ρ2Υ( ∂U∂ρ )2

)
.

As far as relation (A9) is concerned, further analysis depends on Ξ1,Ξ2,Ξ3 and Ξ4.
In the general case, when these coefficients do not simultaneously vanish, (A9) defines
implicitly the derivative ∂s

∂x and two further compatibility conditions arising by differ-
entiating (A9), respectively, with respect t or x will lead to fourth order polynomials in
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∂s
∂x . Neverthless such an analysis goes beyond the aims of this paper so that we do not
go further.

Now we consider the class of solutions s = F (ρ, u) which leads to the equa-
tions (64), (65) and (66). Since f ∂F∂u 6= 0, without loss of generality we can assume
∂p
∂ρ + ∂p

∂s
∂F
∂ρ 6= 0 (see case (b)), so that (66) specializes to

∂ρ

∂x
=
ρf(ρ, u)∂F∂u −

(
∂p
∂s

(
∂F
∂u

)2
+ ρ2 ∂F

∂ρ

)
∂u
∂x

∂F
∂u

(
∂p
∂ρ + ∂p

∂s
∂F
∂ρ

) . (A10)

The differential consistency between (A10) and (64), (65) leads to

Φ∂2u
∂x2 +

(
∂Φ
∂u −Ψ∂Φ

∂ρ + Φ∂Ψ
∂ρ

) (
∂u
∂x

)2
+ ∆∂u

∂x = 0 (A11)

where

Φ =
ρ(ρ2( ∂F∂ρ )2− ∂p∂ρ ( ∂F∂u )2)
( ∂F∂u )

2
( ∂p∂ρ+ ∂p

∂s
∂F
∂ρ )

, Ψ =
∂p
∂s ( ∂F∂u )

2
+ρ2 ∂F

∂ρ
∂F
∂u ( ∂p∂ρ+ ∂p

∂s
∂F
∂ρ )

,

∆ = ρ
c ∂F∂u

(
∂F
∂u

∂q
∂ρ −

∂F
∂ρ

∂q
∂u

)
+ q

c

(
Ψ ∂
∂ρ

(
ρ ∂F∂ρ
∂F
∂u

)
− 2−

ρ ∂
2p

∂ρ2

2 ∂p∂ρ

)
.

with, as usual, c =
√

∂p
∂ρ and q(ρ, u) is related to the source term f through

f(ρ, u) =
q

ρ c

(
∂p

∂ρ
+
∂p

∂s

∂F

∂ρ

)
.

If Φ = 0 we recover relation (69) considered in Section 3

c
∂F

∂u
± ρ∂F

∂ρ
= 0,

so that (A10) reduces to (74) and it is, in fact, the first order differential constraint of (64),
(65) associated to the eigenvalue λ̃2. In such a case the resulting compatibility condition
(A11) has been already investigated by requiring the vanishing of the coefficient of ∂u∂x
(case (a)).

Here we consider also the possibility ∂u
∂x = 0 so that solutions of non-homogeneous

gas-dynamic equations are obtained in terms of arbitrary constants by solving the cor-
responding 2× 2 reduced system along with two differential

∂ρ
∂t + u ∂ρ∂x = 0, ∂u

∂t = 0

∂ρ
∂x = q(ρ,u)

c(ρ,s) ,
∂u
∂x = 0

with q(ρ, u) and s = F (ρ, u) determined once p(ρ, s) and f(ρ, u) are given. The
resulting exact solution is characterized by a travelling wave along with constant fluid
velocity.
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Next we assume c∂F∂u ± ρ
∂F
∂ρ 6= 0 (i.e. Φ 6= 0) so that from (A11) we obtain ∂2u

∂x2

and by requiring a further compatibility condition we obtain

Σ1

(
∂u

∂x

)2

+ Σ2
∂u

∂x
+ Σ3 = 0 (A12)

where

Σ1 =
(
∂Φ
∂ρ −

1
Ψ
∂Φ
∂u

)(
2Ψ

Φ −
1
Φ
∂Φ
∂u −

Φ+ρ
Φ

(
∂Ψ
∂ρ −

1
Ψ
∂Ψ
∂u

))
− Φ+ρ

Ψ
∂
∂u

(
∂Ψ
∂ρ −

1
Ψ
∂Ψ
∂u

)
+
(
∂Ψ
∂ρ −

1
Ψ
∂Ψ
∂u

)(
∂Φ
∂ρ −

1
Ψ
∂Φ
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Ψ2

∂Ψ
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)
+ (Φ + ρ) ∂∂ρ

(
∂Ψ
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1
Ψ
∂Ψ
∂u

)
+ ∂
∂u

(
∂Φ
∂ρ −

1
Φ
∂Ψ
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)
− 2∂Ψ

∂ρ − Φ∂2Ψ
∂ρ2 ,

Σ2 = 1
c
∂
∂ρ

(
Φ+ρ

Ψ

)(
Ψ ∂q
∂ρ −

∂q
∂u

)
+ ∆

Φ

(
2
Ψ
∂Φ
∂u −

∂Φ
∂ρ + 2Φ+ρ

Ψ
∂
∂u

(
∂Ψ
∂ρ −

1
Ψ
∂Ψ
∂u

)
− 4
)

−∂∆
∂ρ + q

c

(
Ψ ∂2

∂ρ2

(
Φ+ρ

Ψ

)
− ∂2

∂ρ∂u

(
Φ+ρ

Ψ

)
− Φ+ρ

Ψ
∂
∂ρ

(
Ψ
Φ
∂Φ
∂ρ −

1
Φ
∂Φ
∂u −

∂Ψ
∂ρ
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,

Σ3 = q
c
∂
∂ρ

(
q
c
∂
∂ρ

(
Φ+ρ

Ψ

)
+ ∆

Φ

(
u− Φ+ρ

Ψ

))
Further analysis of condition (A12) depends on Σ1,Σ2 and Σ3. Also in the present case
when Σ1,Σ2 and Σ3 do not simultaneously vanish, (A12) defines implicitly ∂u

∂x so that
further compatibility condition leads to a third order polynomial in ∂u

∂x .
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