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Abstract

In this paper classes of double wave solutions of the 1D Euler system describing
a ideal fluid in the non-homogeneous case have been determined. In order that
the analytical procedure under interest to hold, suitable model laws for the source
term involved in the governing model were characterized. Finally such a class of
exact double wave solutions has been used for solving some problems of interest
in nonlinear wave propagation.
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1 Introduction

Along the years many mathematical methods have been proposed in order to determine
exact solutions of PDEs. Some of them make use of group properties of differential
equations as, for instance, Lie-group analysis, non-classical methods, partially invariant
solutions, weak symmetries, etc. (see [1, 2]). Others belong to the class of the so-called
solutions with degenerate hodograph as multiple waves [3] (in particular simple waves
and double waves) and generalized hodograph method [4, 5, 6]. A third group is
based on the requirement that the governing equations satisfy some suitable additional
conditions as, for instance, in the differential constraint method. Such an approach
was first proposed and applied to gas-dynamics in [7, 8]. The main idea is to add to
the governing system under interest some further differential equations which play the
role of constraints because they select the class of special exact solutions admitted by
the overderdetermined set of equations consisting of the original equations along with
the additional differential constraints. The method is developed on two steps: first the
compatibility of such an overdetermined system must be studied, next exact solutions
of the full set of equations can be determined. On this subject many contributions have
been given [9]-[14] as well as different problems of interest in the applicatons have been
solved [15]-[21].
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More recently an approach based on the combined use of the double wave theory
as well as of the method of differential constraints has been developed in order to find
special exact double wave solutions of quasilinear first order hyperbolic systems [22].
The main idea of the method is to reduce the problem of integrating the governing
equations to that of solving a suitable 2 x 2 auxiliary system by requiring that the
remaining equations specialize to conservation laws along with a differential constraint
of the reduced 2 x 2 system under consideration. Therefore, according to the theory of
differential constraints, such an approach leads to solve a 2 x 2 "ODE" system along
with a differential constraint which selects the class of initial value problems compatible
with the procedure at hand (see section 2.1 for more details). The resulting solutions
are given in terms of one arbitrary function and such degree of freedom permitted to
solve problems of interest in nonlinear wave interactions (see for instance [23]).

Within such a theoretical framework, in this paper we consider the non-homogeneous
1D Euler equations describing an ideal fluid which in Eulerian coordinates assume the
form
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where p, u, s denote, respectively, the mass density, the velocity and the entropy density,
whereas p(p, s) is the pressure. Moreover the production term f(p, u) represents the
specific body force. The system (1) is strictly hyperbolic [24, 25] and its characteristic
speeds are

Al =u—c, Ao = u, A3 =u-+c @)

where, as usual, ¢ = 4/ %Z denotes the sound speed.

As far as we know, exact solutions of the Euler system (1) have been obtained in the
homogeneous case and only for very few special cases (see [25]-[28]). Moreover some
further results concerning the non-homogeneous 3-D case have been obtained in [29] .
Therefore, the main aim of the present paper is to develop, along the lines of the analysis
carried on in [22], a reduction procedure for determing classes of exact double wave
solutions to (1)-(3) and, consequently, some nonlinear wave problems of relevant interest
such as Riemann problems ([30]-[32]) and nonlinear wave interactions ([33]-[35]) are
analysed. In particular, after reducing the full set of governing equations to a suitable
2 x 2 hyperbolic auxiliary system, following the idea developed in [17, 18], a Riemann
problem will be solved as well as an exact analitical description of nonlinear waves
interaction admitted by the governing system under interest will be given. Furthermore,
possible functional forms of the pressure p(p, s) as well as of the production term [ (p, u)
allowing the reduction procedure under interest to hold are characterized.

The plan of the paper is the following. In Section 2 we outline the main steps of
the method of differential constraints as well as of the reduction process developed in
[22] in order to find particular double wave solutions to quasilinear hyperbolic non-
homogeneous system of first order PDEs in one space dimension. In Section 3 we



obtain classes of double waves admitted by the non-homogeneous model (1)-(3). In
Section 4 we make use of the solutions obtained via double wave ansatz to solve a
Riemann problem and to give an exact description of nonlinear simple wave interactions.
Conclusions and final remarks are given in the last section while in the appendix we
sketch a more general analysis concerning the differential compatibility between the
differential constraints under interest and the corresponding 2 x 2 reduced systems.

2 On a class of double waves to quasilinear hyperbolic
systems

In this section, for further convenience, we outline the main steps of methods of differ-
ential constraints as well as of the reduction approach proposed in [22] in order to find
particular double wave solutions to a first order hyperbolic system of PDEs.

2.1 Differential Constraints

Let us consider the set of N equations
Ui+ 4(U)U, =B(U) &)

where U € RN denotes the vector of the field variables, B (U) a vector source and
A(U) the N x N matrix coefficients. Furthermore we assume the system (5) is hy-
perbolic in the ¢ direction, namely the N-th order matrix A is required to admit NV
real eigenvalues \; to which there correspond N right eigenvectors d(*¢) and N left
eigenvectors 1(**) spanning the Euclidean space EN.

For strictly hyperbolic systems (i. e. A; # A;, Vi,7 = 1,.., N) it has been proved
(see for instance [28] and references there quoted) that the more general first order
differential constraint admitted by (5) must adopt the form

12 . U, = ¢; (z,t,0) (6)

where g; is a function which must be determined during the compatibility process. Let
M < N be the number of the differential constraints like (6) appended to (5). Once the
compatibility of the resulting overdetermined set of equations is satisfied, then exact
solutions of the governing system (5) can be obtained in terms of N — M arbitrary
functions. The case of relevant interest is when M = N — 1. In fact if we append to
the governing system (5) the N — 1 differential constraints (6) with¢ = 1,.., N — 1,
then the equations (5) can be rewritten under the form

N-1
Ui+ WU =B+ > g (Ax — A;) d )

i=1

so that the searched solutions can be obtained through integration along the characteristic
curves associated to the eigenvalue A\y. Therefore exact solutions of (7) are determined
by solving a set of "ODEs". Moreover the initial data U(z, 0) associated to (7) must



satisfy the N — 1 constraint equations (6) (see [28]) which also select the class of
initial value problems compatible with the reduction approach under interest. The
corresponding class of exact solutions are called generalized simple waves because
when in (5) and (6) the source B = 0 and ¢; = 0 they specialize to the classical simple
wave solutions of a homogeneus hyperbolic model.

2.2 Double wave solutions

Here we consider the quasilinear hyperbolic system (5). Owing to the assumed hyper-
bolicity with respect to ¢, the equation

det (A —AI) = 0 8)

admits N real roots \; to which there corresponds a complete set of left and right
eigenvectors 1*) and d(*¢) respectively

10 (A -\T) =0, (A-X\1)dX =0, (i=1,.,N). )
We set
|V _ | B: _| P Q N _ [ <)
U—[W], B_{BQ], A_{R s]’ 1 _[lu, I } (10)
being V,Bl,/l\p‘) € R?%, W,BQ,I(A) € RY~2 and P, Q, R, S suitable matrix coeffi-
cients
P =|Pull, Q=IQnsll, R=[Rekl, S=[Ssl, (1D
h,k=1,2; r,s=3,..,N.
Looking for solutions of (5) under the form
Vv
U=uU(Vv)= [ W(V) ] (12)

with W (V) sufficiently smooth functions of V, we get the overdetermined system

ov ov
Sr+(PHQYW) S =By (13)
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where oW,
= r = e N' = 1 2.
VW ’ avi |’ r=3,...N; k ,

The main goal of the reduction approach proposed in [22] was the characterization of
exact solutions consistent with special evolution processes ruled by an auxiliary 2 x 2
hyperbolic system. Thus, for what concerns the hyperbolicity of the N(N — 1)/2
reduced systems (13), obtained for each fixed choice of the field V, it was proved the
following



Proposition 1 Ler U = U(V) a class of solutions to (5), then the hyperbolicity of (5)
induces the hyperbolicity of at least one of the 2 X 2 reduced system in the new field
variable V.

Therefore, without loss of generality, we can assume as reduced 2 X 2 governing system
the pair of equations (13) which results to be strictly hyperbolic so that the equation

det (P+QVW—X1):0 (15)

admits two real eigenvalues A #* X2 with left and right eigenvectors 11*+) and dOw)
(k =1,2) such that

1) (P+QVW = XeI) =0, (P+QVW -}, 1)d™ =o,
100 .30 = 5, (hk =1,2)

where &y, is the Kronecher tensor. The remaining N — 2 equations (14) give further
restrictions on the class of solutions (12) and, owing to the hyperbolicity of the auxiliary
reduced system (13), can be recast in the following form

[CS (), ZY ) _ r _
Wr1 (1 ) —+ Wpo (l ) = B, 2 A By, (7" =3,... ,N) (16)

with w,p, = wrp(V, W (V)) suitable functions of V. It follows that, for a fixed 7, the
corresponding relation (16) is a supplementary equation to be satisfied by any solution
8WT»
oV,
according to [28], it is a involutive differential constraint associated to the hyperbolic
system (13) iff wy; = 0 or alternatively w2 = 0. In such a case relation (16) reduces to

2
of the 2 x 2 auxiliary reduced system iff wy; = wyro = By — Z Bj, = 0 whereas,
h=1

5, OV 1 2 OWs
1()‘2) —_ = BF_ T-B = V 17
5 = o < }; v h) ¢ (V) (17)
or 9
~3y OV 1 OW=
o 9V _ _ "B | =a (V). 18
35 = o ( 2 v, h> @ (V) (18)

Of course, according to the differential constraint method [7, 8], the relation (17) or
(18) selects the class of initial value problem V(z,0) = V(z) compatible with the
procedure under interest. In fact, it results

Vo
or

In the following we will consider the case where one of the equations (16) is a differential
constraint of (13) while the remaining N — 3 relations are identically satisfied for all
solutions of (13). _ _

As far as the characteristic speeds A\; and A5 is concerned, it can be proved the
following

10 (Vo(x) = q(Vo()). (19)



Proposition 2 Let X(V) be a characteristic velocity associated to (13), and
H;\) #0 YA (3<j<N) (20)

where H; (X) is the determinant of the matrix of order N — 2 obtained from
(S -VWQ ~\ I) when the j—th row is replaced by ™ Q. Then, under assumption

Wp1 = Wprg = B *Zavh (T:3a-~-aNa T#j) (21)

the j —th condition (16) reduces to a first order differential constraint associated to Xk
iff M. is not a characteristic velocity of the hyperbolic system (5) whereas the remaing
eigenvalue belongs to the spectrum of \’s.

In particular, the following relations hold [22]
det (A 7}:1 I) = (Xl — Xg) leHj (Xl) (22)
det (A —Xg I) = (Xg — X1> OJngj (Xg) (23)

It turns out that in the case _ _
Hj(A) = Hj(A2) =0 (24

both characteristic velocities of the hyperbolic reduced system (13) belong to the spec-
trum of \'s and the j —th condition (16) may reduce to a first order differential constraint
associated both to A\; or ;.

Remark 1. The approach here sketched leads to determine exact solutions of (5) under
the form (12) which belongs to the class of partially invariant (double wave) solutions.
Of course in the case of a system involving two independent variables all the solutions
are double waves [1]. Therefore, the reduction procedure here considered permits to
characterize particular double wave solutions of the governing hyperbolic systems (5).

Remark 2. The key idea for determining particular double wave solutions of (5) by using
the procedure developed in [22] is to require that one of the relations (16) specializes
to a differential constraint of the reduced 2 x 2 system (13) while the remaining N — 3
equations result to be identically satisfied for all solutions of (13) (i. e. they become
conservation laws for the reduced 2 x 2 model). Hence, according to the general theory
illustrated in section 2.1, classes of exact double wave solutions are determined by
solving a 2 x 2 "ODE" system. Furthermore such solutions are characterized in terms of
one arbitrary function so that classes on initial value problems can be solved. Therefore,
the approach under interest here is not based on the study of the general compatibility
between relations (16) with the reduced model (13) but on the requirement that equations
(16) specialize to conservation laws and one differential constraint.

Remark 3. The method of differential constraints requires that the compatibility con-
ditions between (5) and (6) are satisfied for all solutions of the resulting overdetermined
system (5), (6) (i. e. V U,). If we do not invoke such a requirement (i. e. we look for



particular solutions of (5) and (6) some of the field derivatives can be calculated from
the consistency conditions so that new differential constraints must be appended to (5)
and new compatibility conditions must be required. In the case here considered of a
2 x 2 system with one differential constraint, if we do not require that the compatibility
conditions are satisfied V U, we obtain a 2 x 2 model with two differential constraints.
Such a possibility leads to determine exact solution which are Lie group invariants [21]
and they are obtained in terms of arbitrary constants which usually cannot be useful for
solving problems of interest in nonlinear wave propagation like Riemann problems or
nonlinear wave interactions. Therefore in the analysis developed in section 3 we do not
consider such a possibility.

3 Double waves to gas dynamics equations

Here, owing to the results sketched in the previous section, we look for double wave
reduction of the model (1)-(3) in two different cases. Owing to the invertibility assump-
tion, the wave parameters can be interchanged so that, first we’ll investigate the possible
reduction to a homogeneous 2 x 2 hyperbolic model along with the choice (p, s), next
areduction to a non-homogeneous system with (p, u) as dependent variables is consid-
ered.

I) Firstly, we consider double waves of the form
u=U(p,s) (25)

where the function U(p, s) will be determined in order that the reduction process be
consistent. Substituting the ansatz (25) in the equations (1) and (3) we obtain

Op oU\ Op oU 0s
“F | = = 2
8t+(U+pap)8m+pasax 0 (26)
Js 0s
hid Z2 27
5+ U e 0 (27)
whereas, taking (26) into account, equation (2) yields
2
(- (3)) 8+ (B-rEE) E-rto) o

According to Proposition 1, the hyperbolicity of the reduced auxiliary 2 x 2 system
(26) is ensured by the hyperbolic character of the original model (1). In particular, the
associated characteristic speeds along with the corresponding left and right eigenvectors
of the matrix coefficients are

~ ~ ~ T
M=, ) =To0, 1], dow — | 9r 50 |
o=U+pge, =8 %], d=[1 0],

with %—g # 0. In the present case we have

A= Ao (30)



and, as far as the quantity H3(\) involved in (20) is concerned
Hs(M) =0, Hs(s) = p22 #0. (31)

Owing to (31), the hypotesis (20) of the proposition 2 is not fulfilled. Therefore, in the
present case, we have to require by direct inspection that relation (28) specializes to a
differential constraint of (26), (27) associated to A\; or A; which adopt, respectively, the

form 5
o = ai(p.s) Q)

or
ooy oUos
Op Ox  0s Ox 210,
with ¢1(p, s) and g2(p, s) unknown functions to be determined. Hereafter, the two
possibilities (i) or (ii) will be considered.

(i)

Case (i)

Firstly we consider double wave solutions satysfing the differential constraint (i), namely

we require the condition (28) reduces to (i) so that, under assumption % —p? %—g %g #0,
we get
AW
222 ) 2= 32
(%) - )
10p oU oU
=(-=—-—p—— . 33
Ho.0G.5) = (35 =050 50 ) o) (3
The compatibility between the equations (26), (27) and the constraint (i) gives rise to
oU o oU 0p oU
— | p—=— — —_— — ] =0 34
op (pap q1>(8p3x+q183 (34

which, bearing in mind that %—g # 0, in line with differential constraint theory, implies

PH-—0 = (33)
whose general solution is
a1(p, s) = pSA(s) (36)

and €)(s) arbitrary function of its argument. Therefore, from (32), (33) and (36), we
have

Ulp,s) = i/%dﬁh(s) (37)

PEULIATYE

f(pU) = (as o s (38)



where h denotes an arbitrary function and, according to the choice of the sign in (37)1,
we have A = A; or Ay = A3 as already observed. Once the pressure p(p, s) is given,
the relations (37) determine « = U (p, s) and it also induces restrictions on the specific
body force f(p,u).

As an example, hereafter we assume the following pressure law

p(p,s) =(s)p” (39)

with vy # 0, 1 a real number and II(s) a function of the entropy s such that

~II(s) > 0 Vs. For a polytropic gas v = % and TI(s) = e T being C,, C, the
dimensionless specific heat capacities at constant pressure and volume respectively and
So a constant. Owing to (39), from relation (37) we obtain

24/~11 g
u=U(p,s) = ivvfs)pf +h(s) (40)
whereas, from (38), the production term f, evaluated at the class of solutions (40),
becomes IT(s) o
s EES1
Fo. 0o =00 (L 2wy mm )y

and the prime denotes the derivative with respect to the indicated argument. As far as
the functional form of the body force f(p, u) is concerned, it will be obtained from (41)
after inserting s = s(p,u) determined through (40). In particular, if kg and Qy < 0
denote two real constants, a friction-like body force is obtained with the choice

h(S) = ho
— = fu)=Qolu—ho)iT.  (42)
o(s) = (2250) ™ g

Finally, exact solutions of the original set of equations (1)-(3) endowed with (41), are
obtained through (40) by solving the reduced 2 x 2 homogeneous hyperbolic model
(26), (27). To this end we introduce the Riemann invariants [26, 27]

=X =Ulps), rP=s 3

and, by using the variable transformations (43), we recast the system (26), (27) under
the form

or! Y41, 1=y L0\ ort B

8t+< 2 Tt h(r)) oz @4
or?  or?

AaL 5)

Thus, via the well known hodograph transformation

O(x,t)

a6, 7 o

r=ax(rtr?), t=t("r?), ‘




the system (44), (45) and in turn (26), (27), can be reduced to a pair of linear equations
whose integration yields

x(r',r?) =Tl% — A+ rtM(rt) = m(rt) (47)
OA
Hrtr?) = 55+ M), @
with
m(rt) = /M<7"1>d7"1 “9)
A(’I"17’I"2) — @/ (rl — h(r2))$ L(TZ)de. (50)

and M (r!), L(r?) arbitrary functions of their arguments which, according to (19), will
be determined once initial or boundary data, selected by the constraint equation (i)
endowed with (36), are given. We’ll give further details in Section 4.2 where initial
value problems will be solved in order to investigate nonlinear simple wave interactions.

Case (ii)
Next, in order that condition (28) reduces to (ii) we have to require
opoU  0OpdU
- - = = . 51
dp 0s  0s Op 0 = U=Uw) 5D
Therefore, the source term f must adopt the form
g2(p, 5) 20p 1y 1o
f(p,U(p)) = (1— - (U'(p (52)
(U () = 5 (1 750 (0" 0))
so that the constraint (ii) specializes to
p
U'p)=— = . 53
(p) 5 = a2(p,) (53)

By requiring the compatibility conditions between the reduced 2 x 2 system (26), (27)
and the constraint (53) we obtain

0p g 9p Ogo P*(pU) g8 9*(pU) \ | 05
/ e P ) _os il
<pU (v) (8p ds  Os 8p> ta ( dsdp 2 9p? Fral

Op

) ) 54)
n a4 9*(pU) _ 0
1\ Hp2
U (p) 3p P
and in turn
0*(pU) _
5 =0 (55)
1 (9P 022 OpOaz 9%(pU) _
U'e) ((‘3,0 ds  9s Op © opds 0 (56)
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After some algebra, from (55) and (56) it follows
u=U(p) = ———= + k(s) (57)
02(p. ) = 5= p) (58)

with k(s), b(s) and Q(p) arbitrary functions and, in turn, from (52) we get

1—b(s)U'(p)
b(s)U’(p)
We notice that from (57) we deduce s = s(p, u) and, once the arbitrary function U (p)
is given, p = U ~!(u) so that the functional form of the body force f(p, ) is obtained.
In the particular case U(p) = p and b(s) = by # 1 we have
1— by
f(u) - bO
Finally, as it is straightforward to ascertain, the reduced system (%6), (27) is completely

exceptional (CEX) [24] being both characteristic speeds A; and A5 linearly degenerate
(31]

f(p,U) = Q(p). (59)

Qu). (60)

A1 = k(s) — %b(s), X2 = k(s) (61)

Vi, -d) = v, - d®e) = 0. (62)

For the class of 2 x 2 homogeneous CEX system a wide literature is avaible and several
problems concerning wave interaction phenomena have been solved, so that we do not
go further with investigation of this case (see [20], [34]).

II) Here we look for double wave solution of system (1)-(3) in the form

s = F(p,u). (63)
Substituting the ansatz (63) in (1) and (2), after few calculations, we have
dp dp ou
op ou _ .
ot or TPar =" (64)
du (Op  OpdF\ dp (IpdF ou

while from (3) we get

dp OpOF 82@ dp (OF 23£ @7 aj
(8p+858p> 8u8$+<65 (8u> te dp 8x_pf(p’u)8u' (66)

The characteristic speeds \ of the reduced system (64), (65) satisfy the following equa-
tion

(67)

Op OF Ty dp OpOF _0
0s Ou N

“o, OPOF, dp | OpOF
plu—A)"+ (u=2) op 95 op

11



while Hs()\) assumes the form

-~ 19
Hy(\) = ;ai;l (68)

Then equation (66), under assuption H: 3( ) # 0 reduces to a first order differential
gonstralnt associated to (64), (65) iff only one of the two characteristic velocity )\1 or
A2 belongs to the spectrum of \’'s. Therefore we next consider the following two cases

Xl =uzxc (2)
or B
A1 = u. (b)
Case (a)
Here we assume 8F OF
+ =0 69
“ou P8, o ; (69)
so that equation (67) admits the following solutions
~ F
A =u*tec, )\qu:Fchf@a— (70)
p 0s Ou

with associated left and right eingevectors

(71)

- -~ T
1%2) = [ Fe, p ], d“"’)z{p, %%%‘Z?ﬂ ,
such that
Hs(\) = H3(\2) = s #0 (72)
and, in turn,
c
F(p,u) = F(n), n:u:F/;dp. (73)
Therefore relation (66) can be a differential constraint of (64), (65) and it assumes the
form 9 5
P U
et = 74
o F g =alp,u) (74)
Op OF
where, by assuming pcF — 95 ou # 0, the function q is related to the source term

f(p,u) through
1 Op OF

flpsu) = (C F 288%) a(p,u). (75)

12



The compatibility between (64), (65) and (74) gives

Oc OF Jq Jq ap _
()t ) ()

which, in line with differential constraint theory, gives

dq 8q Oc OF
e 87+ ap <2i85 8u> a7
so that we have
Jdc OF
q(p,u) = Q(n) exp (/ ) (2 + 858u> dp> (78)

with Q(n) an arbitrary function. Once the pressure law p = p(p, s) is given, the
body force f is obtained from (75) whereas the class of solutions s = F(p, u) is fully
determined by integrating the following system

p ap

yrias Alax +q(p,u) (79)
ou ~ Ou

ot Mg =0 (80)

with initial data p(z,0) = po(z) and u(x,0) = wug(x) satisfying the differential con-
straint (74) which specializes to

dpo(x dug(z
clpo(), o) 2T o () L) () o). 8D
Case (b)
Let us assume 9 90 OF
14 P _
9 + Bs Op 0 (82)
so that, from (67), we obtain
~ ~ 10poF
Al = u, /\2_u+p838u’ (83)

with associated left and right eigenvectors

o= [ 12er ;] a®=[o 1]
(34)
T(2) T(X2) 1opor 17
1 :[170], d :|:p, ;E%}
such that
H3z(\1) = 75 #0, H3(\)=0. (85)

13



After (85), condition (23) requires

10poF

;& u +¢, (86)
so that (66) reduces to

OF

Sl () =0. 87)

The present case will not be further investigated because from (87) we get f(p,u) = 0
(homogeneous case) or, taking (86) into account, ¢ = 0.

Remark 4. The approach proposed in [22] is based on the requirement that relation
(28) and (66) are first order differential constraints of the corresponding 2 x 2 reduced
systems. Therefore, taking into account the previous remarks, in section 3 we required
that (28) and (66) assume the form (6). Of course, more generally, the compatibility
of relations (28) or (66) with the 2 x 2 subsystems under interest can be studied .
Such an approach is different from the one developed in [22] which is based on the
method of differential constraints and, usually, it leads to results which are not useful
for determining double wave solutions of interest in nonlinear wave propagations. In
fact in some cases the analysis cannot be fully developed analytically, in others we are
led to append to the corresponding 2 x 2 subsystem two first order differential constraints
so that the resulting exact solutions are not determined in terms of arbitrary functions
as in [22] but they are parameterized by arbitrary constants. Nevertheless a sketch of
this different strategy is given in the appendix.

4 Nonlinear wave interactions

Here, by using the results obtained in the previous sections, our main aim is to study
two problems of relevant interest within the framework of nonlinear wave propagation:
Riemann problems and nonlinear simple wave interactions.

4.1 Riemann problem

In the case of system of conservation laws a Riemann Problem (RP), under the assump-
tion of not large initial jumps, admits an unique solution in terms of constant states
separated by rarefaction waves, shock waves and/or contact discontinuities [30]-[32].
However, a rarefaction wave is characterized by a simple wave solution which, in gen-
eral, is not admitted by non homogeneous systems (balance laws). Furthermore, to
study generalized Riemann problems (GRP) which are characterized by non constant
discontinuous initial states, is a very hard task both in the homogenoeus as well as in
the non homogeneous case. In fact for solving a GRP it is necessary to determine the
exact solution of the governing equations for general initial data. Therefore only few
cases of exact solution to RP and GRP for balance laws are known in the litterature.
Within such a framework, a combined use of the approach developed first in [11] and
later in [17, 18] with the reduction procedure developed in this paper will permit us to
solve a RP as well as a GRP for the non homogeneous system (1)-(3).
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To this end we will consider the results obtained in the case (a) of Section 3. We
develop our analysis for Ay = u + ¢. Of course a similar procedure can be carried on
in the remaing case A\; = u — c. Therefore from (73) and (78) we get

s = F(n), 77=u—/c(p’f(n))dp

_ _ 10coF
q=p"Qn)g(p,n), g=exp (/ (pas au> dp) (89)

In view of integrating equations (79), (80) and (81) it is more convenient to make use
of the change o variable u <+ 7 so that the system (79), (80) assumes the form

Ip

(88)

ot +ale.m) % = p*Q(n)g(p,n) (90)
% + (1 +a(p,m)) g—z = 1” j (;2)(}(?15;)2;) 1)
where
(o) = o, F0) + [ Sdo ©2)
while equation (81) specializes to
o pmglen) ©93)
v 1+ F(n) [ (55)dp
First we consider the Riemann problem
S TR U BT S ST

where pr,, pr, Nz and nr are constant equilibrium states of (90), (91) and (93) so that

Q(nr) = Qnr) = 0. 95)

By using the method of characteristics, owing to (95), integration of (90), (91) and (93)
for z < 0 and z > 0 subjected to (94) leads, respectively, to

p=pr
forx < (np +or(pr,nL))t (96)
n=nr
and
P = PR
forz > (nr + or(pr,MR))t o7
n=T"r

Since we are looking for a smooth solution connecting the left state (96) to the right
state (97), the next step is to solve equations (90), (91) and (93) under the conditions

2(0) =0, p=pla), n=i(a) (98)
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where a € [0, 1] is a real parameter characterizing the characteristics of the fun starting
from the origin in the (x,t) half- plane (¢ > 0). Moreover we require

p(0) = pr; 1(0)=nr; p(1)=pr; 7(1)=ng. (99)

In [17] the authors proved that the solution of an initial data like (98) reduces the
differential constraint under interest in a homogeneous form. Therefore, in the present
case from (93) we get

dn
— =0 100
Ja (100)
so that, owing to conditions (99), we obtain
n=nL="nr (101)

and in turn, taking (95) and (101) into account, integration of (90), (91) subject to (98)
leads to

p = pla)
n=n (102)
z = (+0(pa), )t

Of course the non constant central state characterized by (102) is defined in the domain

(me +orlpr,ne))t <z < (Mr+or(pr,MR))t (103)

and it connects smootly the left state (96) with the right state (97) if the following
condition holds

or(pi,ne) < or(PR.MR)- (104)

Therefore relations (96), (97) and (102) along with the conditions (101) and (104) give
the solution of the Riemann problem (94) for the system (90), (91) in terms of constant
states separated by a generalized simple wave. Consequently, once the constitutive law
p(p, s) is given, then from (88), (96), (97) and (102) the solution of a Riemann problem
for the full system (1)-(3) can be obtained. In such a case, taking (101) into account,
the initial data must satisfy the condition (104) along with

ug, — (/ ;@)L =uRr — (/ ;dP>R, sp(F(nr)) = sr(F(nr)).  (105)

We notice that, because of conditions (105), the solution of the RP under interest is
characterized by an isoentropic flow with initial discontinuities for the mass density and
velocity as it happens for the 2 x 2 isoentropic homogeneous fluid dynamics model.
Therefore in order to study a more interesting case as well as to show the flexibility
of the approach here developed, in the following we are going to solve the generalized
Riemann problem

pi(xz) forxz <0 w(z) forz <O

plz,0) = { pr(z) forz >0 P u(@,0)= { up(x) forx >0 (106)
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where p;, pr, u;, and u,. are smooth functions. Moreover we set

Jim (p(x)) =pr,  lim (pr(2)) = pr (107)
1iI(I]17 (wi(x)) = ur, lir(r)l+ (ur(z)) = ugr (108)

with p;, # pr and up # wup. As an example, we consider a polytropic real gas

characterized by the pressure law (39) with II = ¢ @ . Furthermore in (88); we
choose

2
F(y) = Cyln (’7) + s (109)

Y7o

where 7y is an arbitrary constant which, for further convenience, we assume to be
positive. Therefore, from (88) and (89) we get

2
550+Cvln(n), p= — 0% (110)
7o To+%ﬁ2
2 y—1
2 JdQ—-
= p?Q 1+ — 2> (111)
q=p (n)( oy Py L

Finally for simplicity we choose (1) = ko7, where kg is an arbitrary constant. Of
course different solutions of (106) can be obtained by choosing different forms of ().
Therefore, in the present case, integration of (79), (80) and (81) gives

_ po(2) _
pP=1- Fotuo(Ipo(a) u = up(2) (112)
pol2) =) _ (113)
To + Po U

where p(z,0) = po(x), u(z,0) = up(z) and the variable z is defined by solving the
equation
d ro+ Zp7T
ax = <0'Y21p71 (114)
dt ro + ﬁpT

Once the gas index -y is assigned, by integrating (114) the characteristic curves associated
to the solution (112) will be obtained. In the case of v = 3, from (114) we have

T = up(2)t — 1 ln<T0+Po(2)—Tokotuo(2>P0(2)>+Z (115)

roko 70 + po(2)

In passing we notice that (114) can be solved also in the case of monoatomic gas
(fy = %) and for a diatomic gas (fy = %) In such a cases the corresponding solution is
cumbersome and therefore hereafter we point out our attention to the case v = 3.
The initial data (106) must satisfy the differential constraint (113), so that we get
P (ro +pr(2)) ko fg prl)de UL (ro +p1(2) ko f3 pr(@)da (116)
To + PR To + pL
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Therefore, taking (112), (113) and (115) into account, by developing the same procedure
considered in this section for the RP (94), the following solution of the GRP (106) is
obtained:

Left state
_ pu(2) _
P=1C kotu(2)p1(2)’ u=w(z) (17
B 1 ro + pi(z) — rokotu(2)pi(2)
x=wu(2)t rok ln< ot o) ) +2z, z2<0(118)

Central state

_ = 11
P= T hta@p) VT M@ (119)
) o O
= i(a)t — In (TO + p(a) Tofcot“(a)p(a)) 0<a<1 (120)
roko ro + pla)
where .
o) _ _ur __um (121)
ro+pla)  To+prL  To+pr
Right state
_ pr(2) _
p - 1 . kotur(z)pr(z)7 u = uT(Z) (122)
1 (2) — rokotur(2)py
o =up(2)t — ——In <T0 + po(2) = rokotuy (2)p (z)> +2, 2> 0(123)
Toko ro + pr(2)

From (118) and (123), by setting, respectively,

1 — rokot
lim 2 = Br(t) = upt — ——1In (”’”L Toko “L”L> (124)
2—0- Toko ro + pL
. 1 To + pr — rokoturpr
1 = t) = t— 1 125
z—l>%l+ r 6R( ) UR Toko n ( To + PR ( )

the left state is defined for = < S, (t), the central state for 31, (t) < z < Sg(t) and the
right state for > Sr(¢). Next, in order that the central state connects smoothly the
left state with the right one, we require

dA
— >0 (126)
da

where we denoted by A(a) the characteristc speed A1 = u + ¢ calculated in the central
state, so that from (126) the following condition is obtained

@
da

>0, where ¢g= £ - YR (127)
ro+pL To+ PR

Co

18



Moreover it is not difficult to ascertain that the characteristic of the central state given
in (120) are well defined if
koco <0 (128)

Therefore, the solution of the GRP (106) is given by (117)-(123) if the conditions (127)
and (128) hold. In particular from (127) and (128) two possible cases are obtained

c>0, pr<pr, k<0 = 0<up<ug (129)

c<0, pL>pr, ko>0 = wup<ur<0 (130)
As far as the entropy is concerned, from (110) we obtain

_ (ro — rokotwi(2)pi(2)) wi(2)

1o — rokotui(2)pi(2) + pi(2) for @< bu(t) (30
_ (ro — rokoti(a)p(a)) i(a)
o TR S for i) <o <Bplt) (132
_ (ro — rokotu,(2)pr(2)) ur(2)
= o~ rokotur2)pr(2) + pr(2) for = > Br(¢) (133)
From (131) and (133) we get
) m(@) = r;‘f;l("‘gz for <0
(e, 0) = { N (1) = TZT;EZCE) for x>0 (139
so that
wlinél_ m(x) = xli%l+ nr(x) = roco (135)

Therefore, from (131)-(133) we get a non constant entropy state which is continuous
vt > 0.

Finally, as far as the source term f(p,u) is concerned, in the case concerning a
polytropic gas, from (75) we get

=00 (peton) + 7

If we make the further assumptions 2 = kg, v = 3 along with (109) as for the GRP
here considered, we get

H(n)/ﬂ) . (136)

_ ko (3ro+p) p? w2

fp.w) 3ro (1o + /))2

(137)

4.2 Simple wave interactions

In this section, following the analytical approach outlined in [20] for classes of 2 x 2
strictly hyperbolic and homogeneous systems, we make use of the exact solution (40),
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(47) and (48) to describe nonlinear wave interaction processes ruled by (1)-(3) endowed
with (41). _ _

To this aim we consider the characteristic curves C(*1) and C(*2) defined, respec-
tively, by
Goy.dr 5 _ Xy, 47 5 o+l

P =M= CP2) == = Ny = ~——r! + h(r?) (138)

c s 5

and we denote with a(z, t) and 5(z, t) the characteristic parameters satisfying

o ~ 0B da ~ Oa

— 4+ AM=—=0, —+X—=0 0) = 0) = 139
+ A .’E ’ ot + 281’ ) a(x, ) 6(737 ) T ( )
Then, owing to (44), (45) which express the invariance of the Riemann variables along
the associated characteristic curves, we have ' = r!(a) and > = 72?(8) and, in
turn, from (47) and (48) the following representation of the solution in terms of the
characteristic parameters is obtained

z—A(a)t =—A(a, B) — m(a) (140)

z— g, B) t = 1—7 (r'(a) — h(B)) (g;\l(a, B) + M(a)) — A, B) — m(a)

where, as usual, for a generic function G(r*, %) we denote G(a, 8) = G(r'(a), r%(B)).
Next we consider initial data for ! and 2

rt(2,0) =R (z), 7*(2,0)=R*(z), —oo<x<+o0

obeying the constraint equation

(141)

AR2@) a7 1 R~ h(R2@)\ T
T = AR ) (i 5 ) )

and, taking (140) into account, we determine the functions M («) , m(a), A(a, B),
gTAl(oz, B) as follows

_ [P (RY@) —h@)\ T
Ao, B) = —/IO (Rl(x)—h(:v)> dz (142)
oA 2 A 1 oy £
ﬁ(a,ﬂ) = po 5 (R' () = h(z)) (R'(z) — h(z))" " d= (143)
m(a) = —a—Alo,a), M(a)= —%(a,a). (144)

In the following, without loss of generality, from (40) we consider

u="U(p,s) = —2771_[1(8)/)721 + h(s). (145)
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Our aim, here, is to describe in the (z,t) plane the interaction of two simple waves
travelling along characteristic curves belonging to different families. Therefore, owing

to (145)

= U
U=X > =U+p=—, (146)
dp

so that the pulse travelling along C'*1) occupies the region z; < = < xo whereas

the pulse travelling along C'(*2) the region z3 < z < x4 (see figure 1 ). Both waves
propagate into a region of constant state where r' = r} and 72 = rZ. We also require

that R! (z) and R? () are continuous. Therefore at t = 0 we have

RQ(ZL') _ { C(CC) 1 <x < oo

ré otherwise
(147)

1 | w(x) 3 <x <@y
R(w) = { r otherwise

C(a1) = ((x2) =78, wlxs) = w(za) = rg.

where, taking (141) into account, we require Q (r3) = 0.

Remark 5. As far as the role of the restriction (141) is concerned we remark that, once
the functional form of §2(s) is given and in turn, by means of inversion s = s(p, u), the
force f(p,u) is obtained, equation (141) defines the initial datum R!(z) (or R?(z)) in
terms of remaing one. In a different way, the constraint equation (141) may be used,
once the initial data R'(z) and R? () are given, to define the function () and in turn
the force f.

In the (z,t) plane, explicit evaluation of the characteristic parameters z — A1t and
z — Aot allows us to describe the behavior of the emerging simple waves. In particular
the simple wave regions Ir, IIr and Ig, IIg are adjacent, respectively, to the constant
state 72 = 73 and 7! = r{ [27]. Therefore we have

Simple wave r2 =13, 1! = w(a)
REGION I, REGION I 15,
z3<a<zy, B2 z3<a<zy B2 (148)
x—XQt:a x—thza—i-Js(a)

21



Simple wave rt =1},  r?={(B)
REGION Ig REGION I1g
1 < B <2, o< 11 <P ST, azay (149)
x—xlt:B x—xltzﬂ—i-JT

with

o= [ ()™ ) o
o= [ ()

From(148)—(150) it follows that the pulse travelling along C (A1) traverses region Ig, it

(150)

interacts with the C'*2) travelling pulse and emerges in the region I I as a simple wave
identical with that produced by the following initial conditions at ¢ = 0

1 ] w(z) 3 <z <1y
R(w) = { T otherwise

(151)

2y J Cx+dy) i —J<z<33-J0
R (z) = { So otherwise.

Therefore the pulse travelling along C(*1) evolves as an hyperbolic wave but in the
interaction process exhibit a soliton-like behavior being the only effect of the interaction
a change in the origin of the original pulse [33, 34]. On the contrary, the pulse travelling
along C'*2) emerges in the region 11y as a simple wave with altered profile. The
interaction product J, () represents a quantitative measure of the distortion, it depends
on the initial data (147) and it vanishes when h(s) = hg = constant as in (42). In
this latter case, as it is straightforward to ascertain, the 2 x 2 system (44), (45) partially
decouples.

In order to better illustrate the wave behavior described hitherto, hereafter we choose

U(p,s) = h(s) — 00 7

h(s) = h1+/II(s)

(152)

with h; constant.
Next we perfom a numerical investigation of the system (26), (27) with initial data
for the density p(x,t) and the entropy s(z, t) obtained from

0 = [ 2=L (p, - _RA=)
Pz, 0) <2W< LT AR @) (153)
s(z,0) = R?(x).
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Figure 1: Qualitative behavior in the (x, ¢)-plane of the interaction between two simple
waves travelling along different characteristic curves. The initial data for R! (x) and
R2? (z) are as in (147).

Moreover the initial datum for the velocity u(x,t) is given by
u(z,0) = R (). (154)
The numerical solution showed in figure 2 is obtained with the following choice

R (x) = 4 — 0.9sech (0.02(z — 600))

, (155)
R*(x) =2+ 0.6sech (0.02 (z + 300)),

and simulates two simple waves travelling along different families of characteristic
curves. We notice that to the initial value problem (153) for the auxiliary 2 x 2 reduced
model (26), (27) there corresponds through (154) an initial value problem for the full
governing system (1)-(3). Such behaviours are in agreement with the theoretical results
obtained in the present section. Finally in figure 3 we show the corresponding plot of
the force f obtained from (41), (141) and (153)-(155).

5 Conclusion

In this paper we considered the Euler system describing the one dimensional flow of a
ideal fluid with a source term. Following the procedure proposed in [22], a class of dou-
ble wave solutions of the governing model (1)—(3) has been determined. The approach
developed in this article permits to reduce the problem of integrating a hyperbolic full
systems to that of solving areduced 2 x 2 sub-system. Since we can always choose such
a 2 x 2 reduced model so that it results to be hyperbolic, then the obtained solutions
can be used for studying problems of interest in nonlinear wave propagation.
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Figure 2: Simulation of two interacting simple waves. The numerical solution of
equations (26) with (141) is obtained with initial data (155), v = 3, h; = 20 and the
choice: (a) II(s) = s2; (b) (s) = e%v.
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Figure 3: Plot of the body force f

In fact, first a Riemann problem for the non-homogeneous Euler system under con-
sideration has been solved by means of a generalized rarefaction wave and an isentropic
flow has been characterized. Next nonlinear wave interaction problems have been con-
sidered. In particular an exact analytical description of the interaction of two simple
waves travelling along different families of characteristics was given and in one case a
soliton-like behaviour was determined. Such behaviours are in a completely full agree-
ment with the numeric results carried on in Section 4.2. Furthemore, the reduction
procedure here adopted requires that the source term involved in the balance equation
of the linear momentum assumes some special functional forms which in some cases
are in agreement with the standard friction terms.

As far as the exact description of nonlinear wave interaction processes is concerned,
we remark that it is fully developed for 2 x 2 strictly hyperbolic models but, unfortu-
nately, such an analysis cannot be in general applied to quasilinear hyperbolic systems
involving more dependent and/or independent variables although special wave interac-
tion problems were solved [23, 35].

Finally, we point out that, although in the present study we confined ourselves to
the 1D non-homogeneous Euler system, the extension to the 3D case is actually under
investigation.
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Appendix

Our aim here is to sketch a general analysis of the compatibility conditions obtained in
Section 3 which permits, in principle, a full classification of the exact solutions of the
gas-dynamic equations obtained via the double wave ansatz here under interest.

Firstly, we consider the assumption u = U (p, s) which leads to the equations (26),
(27) and (28). Since f # 0, from (28) the following two cases arise

2 S
g%_pz’(g%) —0 2 =aqlps)
= Al
op _ 20U oU £( U)—(l@f ‘LU“LU) (p, 5) "o
87;27 (97;)%#0 P =\pas ~Papas ) 1P
or
2 U)— (8p _ 20U 00U 0s
3;0 2 oUu ap pf(p’ ) Os p Op 9s | Ox
£ — | £0 = = . (A2
0 0 0 2
P o z op _ 2 (09U
op P ap

The case (A1) was considered in Section 3 (see case (i)). In fact relation (28) reduces

to the equation

15) .
a% =qi(p,s) @)

Avyhich is the first order differential constraint of (26), (27) associated to the eigenvalue
A1 = U. By requiring the compatibility between (26), (27) and (i) we get

oU g oU 0p oU
v, g aor A 4
o (p o ql)(@p@x”@s) ’ oY

In Section 3, according to the method of differential constraints, we required that relation
(34) is satisfied for all solutions of (26), (27) (i.e. V %) so that condition (35) is obtained.
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Slnce ;é 0 because of the assumed hyperbolicity of the corresponding reduced 2 x 2
system, 1n order to complete our analysis, now we require

U dp U

By s T 1gs =0 (A3)

so that, taking (26), (27) into account, the following 2 x 2 system endowed with two
differential constraint is obtained

1o) s s
9 +U(p,s)% =0, 98+ U(p,s)32 =0

o (A4)
L N )

9p

It is straigthforward to ascertain that equations (A4) are compatible (i. e. their differen-
tial consistencies are identically satisfied). Therefore from (A4) we have 2 am = %[t] =0
and, in turn, the following travelling wave solution of the non-homogeneous Euler equa-

tions parameterized by arbitrary constants is obtained

ds

P =qi(p(s),s), z=ax—Ut (AS)

— Ulp,5) = const, p=p(s(2)),
where U(p, s) and ¢ (p, s) can be determined from (A1) once the response functions
p(p, s) and f(p,u) are assigned.

Next we consider the case (A2). The corresponding differential compatibility with
the governing subsystem (26), (27) lead to

() (02 + (50 +13 - 1) (2)°) -5 + 0% =0 (A0

where g3 (p, $) is related to the source term f through

2(p,s) (Op o [OUN?
f(va(pvs)): qp(gU) <ai_p (ap) )

9p
while
T _nermn
Y= Tetamy T T e
_ oUu (oU® U 8 a(rgYl) ou (,0u o U
@(Pas)*Pg (asaq,fapaqf)Jrfh( o, T (PT,,;T,,*QF**K) .
If

Y=0 = U=U(p

we recover the case (ii) considered in Section 3 so that (A2) represents the first order
differential constraint of (26), (27) associated to the eigenvalue )\2 U+ an. In
such a case, the differential compatibility between (A6) and (26), (27) has been already
investigated (see (55), (56)) according to the differential constraint method (i. e. by
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requiring O(p, s) = 828(5 U) — (). Therefore here we require O(p, s) # 0 which leads

to

ds g5 9*(pU)
or  O(p,s) 9p?
so that the 2 x 2 model (26), (27) is endowed with the differential c2onstraints (A2) and

. .y .. 2 .
(A7). In such a case, the further compatibility condition % = a?: 5, gives

(A7)

9 op .o op 92(pU)
opo (1) _0po (1) 4 1 (10p_  0p | 9:07p) _ 90 82 _  (AQ)
Op 9s \ q2 ds Op \ g2 g2 \ pOs 0s0p %6/)2 - ngo(s)(au)2
P op

with 0y(s) # 0 an arbitrary function. Once p(p, s) and U (p) are given, further integra-
tion of condition (A8), allows us to obtain ¢z(p, s) and, in turn, f(p, U). Furthermore
p(x,t) and s(z,t) are determined in terms of arbitrary constants as solutions of

9p 9p _ _ Os ds _

ot T Usy = —Pa2; ot TUg =0

9 _ qp _ _a33E  0°(p) os _ a3 9*(pU)
Az L @(p,s)g—g 9p% Oz O(p,s) 9p?

Finally we assume %%—g — %—gg—i # 0 (i.e. T # 0) so that from (A6) we obtain
2

% and, by requiring the equality of the third order mixed derivatives, the following

compatibility condition is obtained

ds\° 95\ 2 0s
Z1l = o[ =— E3—+24=0 A9
1(833) + 2(8x) + 5633—’_ 4 (A9)
where we set
= — T@(@i_z_lag_zdg)
=1 = oo\ » TOs Tap)>
= _o(_e o (1ox , 2\ 92 | 1da
—2 — dp <(%Z)2 +(%)2 ('r P)+ S +F 0

q2 au 22U \ 9gz
Tt (3 +2pap2) 20
q262(pU)
= — _ 3, 0 2 9p2
=4 P42 p P2T(%)2 .

As far as relation (A9) is concerned, further analysis depends on =1, Z5, =3 and =4.
In the general case, when these coefficients do not simultaneously vanish, (A9) defines
implicitly the derivative % and two further compatibility conditions arising by differ-
entiating (A9), respectively, with respect ¢ or  will lead to fourth order polynomials in
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% . Neverthless such an analysis goes beyond the aims of this paper so that we do not
go further.

Now we consider the class of solutions s = F(p,u) which leads to the equa-
tions (64), (65) and (66). Since f ‘?0—5 = 0, without loss of generality we can assume

%ﬁ + %% 2 0 (see case (b)), so that (66) specializes to

o] u
op  PHow3E — (B (55) + P9 5

o= . Al10
Oz oF (dp i+ @al) (A10)
ou \ 9p ds Op
The differential consistency between (A10) and (64), (65) leads to
9%u a<1> v du _
(I)W_’_(au Vo + 2% )(aw) +A5 =0 (ALL)
where
o = PP (EE) -5 (50)) o 2(35)+0? 58
CALCE TN EGEE)
p OF 9q OF Oq q o [P35 p;g
A:c%(maipiaip%)%»z \II% @5)222% .

with, as usual, ¢ = 4/ g—’; and ¢(p, u) is related to the source term f through

_a (o opor

If & = 0 we recover relation (69) considered in Section 3

6F oF

+ 0
“ou pap ’

so that (A10) reduces to (74) and it is, in fact, the first order differential constraint of (64),
(65) associated to the eigenvalue A\o. In such a case the resulting compatibility condition
(A11) has been already investigated by requiring the vanishing of the coefficient of g—g
(case (a)).

Here we consider also the possibility % = 0 so that solutions of non-homogeneous
gas-dynamic equations are obtained in terms of arbitrary constants by solving the cor-
responding 2 x 2 reduced system along with two differential

ou

8p __ q(pyu) Oou =0
9z = clps) o =

with g(p,u) and s = F(p,u) determined once p(p,s) and f(p,u) are given. The
resulting exact solution is characterized by a travelling wave along with constant fluid
velocity.
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Next we assume cg—i + p%—f # 0 (i.e. @ # 0) so that from (A11) we obtain %
and by requiring a further compatibility condition we obtain

ou\? ou
Yil=— ) +X2—+33=0 (A12)
or ox
where
Y, = 0 1092 (9% 10>  24p (0¥ _ 109¥ _®4+p 0 (0¥ _ 19V
1= P U du P D Ou P dp v Ju ¥ Ou P U du
ov _ 190¥ 02 109 _ 2+p 0¥ 0 (0¥ _ 109¥
+ {5 \I/8u> 9p ~ Wou w2 du+1)+(q)+p)dp('p \I/u)
9 (o 19¥ v 92w
toulap ~sau) 28 P
— 10 (2+4p 9q¢ _ 9q A (202 _ 02 +p 9 (0¥ _ 19¥)\ _
Yy = cap(\li)\pp 8u>+<1><\1/8u 6p+2\118u(p \I/u) 4)
_0A g (g o (Etp) _ 02 (S4p) _ Ptp 0 (LOD _ 10 _ 0¥
P c Op? N7 dpdu w v 9p \ @ 9p P du op ’

B 14 (1 (%) 2 (u-22))
cOp \ cOp
Further analysis of condition (A12) depends on X, 39 and 3. Also in the present case

when X1, 35 and X3 do not simultaneously vanish, (A12) defines implicitly g—“; so that
further compatibility condition leads to a third order polynomial in %.
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