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3

Abstract4

In this work we consider a quite general class of two-species hyperbolic reaction-advection-5

diffusion system with the main aim of elucidating the role played by inertial effects in the dynam-6

ics of oscillatory periodic patterns. To this aim, first, we use linear stability analysis techniques7

to deduce the conditions under which wave (or oscillatory Turing) instability takes place. Then,8

we apply multiple-scale weakly nonlinear analysis to determine the equation which rules the9

spatio-temporal evolution of pattern amplitude close to criticality. This investigation leads to a10

cubic complex Ginzburg Landau (CCGL) equation which, owing to the functional dependence11

of the coefficients here involved on the inertial times, reveals some intriguing consequences.12

To show in detail the richness of such a scenario, we present, as an illustrative example, the13

pattern dynamics occurring in the hyperbolic generalization of the extended Klausmeier model.14

This is a simple two-species model used to describe the migration of vegetation stripes along15

the hillslope of semiarid environments. By means of a thorough comparison between analytical16

predictions and numerical simulations, we show that inertia, apart from enlarging the region of17

the parameter plane where wave instability occurs, may also modulate the key features of the18

coherent structures, solution of the CCGL equation. In particular, it is proven that inertial ef-19

fects play a role, not only during transient regime from the spatially-homogeneous steady state20

toward the patterned state, but also in altering the amplitude, the wavelength, the angular21

frequency and even the stability of the phase winding solutions.22

Keywords: wave instability; hyperbolic model; weakly nonlinear analysis; inertial effects,23

cubic complex Ginzburg-Landau equation.24

1 Introduction25

Pattern formation and modulation is an active branch of mathematics, not only from the perspective26

of fundamental theory but also for its huge applications in many fields of physics, ecology, chemistry,27

biology and other sciences [1–6]. In 1952, Alan Turing proposed the mechanism through which a28

pattern-forming instability develops [7]. It arises from the coupling of diffusion and reaction kinetics,29
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and is based on the destabilization of a spatially uniform steady state due to a perturbation of a30

given wavenumber.31

The occurrence of such an instability is theoretically investigated by addressing, first, linear and,32

then, weakly-nonlinear stability analysis.33

Linear Stability Analysis (LSA) is aimed at defining the critical threshold of the control parameter34

responsible for the instability. When addressing this study, it should be kept in mind that the35

simplest bifurcation of a spatially uniform steady state may result in the spontaneous formation36

of patterns that are: oscillatory in time and uniform in space, stationary in time and periodic in37

space or oscillatory in time and periodic in space. The primary bifurcations associated to these38

classes of patterns are classically identified as Hopf, Turing and wave (also named Turing-Hopf or39

oscillatory-Turing), respectively [8].40

Weakly-Nonlinear stability Analysis (WNA) is focused on deducing the equation governing the41

evolution of pattern amplitude (or envelope) close to criticality. In spatially extended systems,42

pattern amplitude is usually ruled by the well-known (real or complex) Ginzburg-Landau equation,43

which represents a general normal-form type of equation, valid for a large class of bifurcations and44

nonlinear wave phenomena occurring in many areas of sciences [1, 2, 5, 6, 9–18]. In particular, when45

applied to the study of oscillatory periodic patterns, the Ginzburg-Landau equation has complex46

coefficients and doesn’t have a Lyapunov functional [1, 2, 5, 6, 19–23]. Its simplest solutions are in47

the form of coherent structures, among which plane-wave (or traveling-wave) solutions represent the48

easiest and most intuitive example.49

In this work we focus our attention on the occurrence of wave instability with the goal of charac-50

terizing the dynamics of traveling patterns in one-dimensional hyperbolic reaction-advection-diffusion51

systems for two interacting species. In particular, by using the above-mentioned tools of LSA and52

WNA, we aim at elucidating the role played by inertia in modifying the instability threshold, the53

key features of the emerging patterns and their stability.54

This work is an attempt to provide a step forward towards a deeper understanding of the un-55

derlying mechanisms involved into the formation of traveling patterns in hyperbolic models. Indeed,56

the goal is to extend the literature of hyperbolic systems that encloses several related works focusing57

for instance on: wave instability in systems where one species diffuses and the other ones undergoes58

advection, by adopting LSA only [24]; Turing and wave instabilities in the presence of cross-diffusion,59

with no advection, by adopting LSA and WNA in limited domains [25] or LSA only [8, 26]; Turing60

instability in the absence of advection, by using LSA and WNA in extended domains with con-61

stant [27–29] and non-constant [30] inertial times; traveling fronts in models with advection [31, 32]62

or in its absence considering self-diffusion [33] and cross-diffusion [34].63

As widely outlined in all the above-mentioned works, the use of an hyperbolic framework has64

a manifold justification. First, it is well known that parabolic models suffer from the paradox of65

infinite propagation speed of disturbances, whereas hyperbolic models overcome this problem by66

accounting for relaxational effects due to the delay of the species in adopting one definite mean67

speed and direction to propagate [32].Therefore, these latter are better suited to describe transient68

regimes, especially those involving long time scales. Moreover, the inertial (delay) times constitute69

additional degrees of freedom that may be used to better mimic experimental observations and, at70

the same time, offer a richer scenario of dynamics [28, 29,35–45].71

The theoretical predictions here carried out are then corroborated by numerical investigations72

on the so-called extended Klausmeier model, taken into account as an illustrative example of a two-73

species system where the combination of kinetics, diffusion and advection gives rise to oscillatory74
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periodic patterns. It is a conceptual model for surface water and vegetation biomass, used to describe75

the formation and migration of vegetation patterns over sloping terrains of semi-arid ecosystems. This76

model, among many others [46–50], aims at exploring the processes of desertification occurring in such77

drylands areas [51–55]. In its original formulation [56], this model accounted for the isotropic diffusion78

of vegetation and the anisotropic advection of water along the hillslope. Later [57], this model has79

been extended to account also for diffusion of water and, in [58], it has been further generalized80

to include the phenomenon of secondary-seed dispersal. All the above models are able to capture81

the uphill migration of vegetation bands, which are believed to be observed experimentally [45, 59].82

Moreover, to account for the relevance of biological inertia in plant communities to ecology of arid83

ecosystems [36, 42, 44] as well as to provide a proper description of long transient pattern dynamics84

[60–63], hyperbolic generalizations of Klausmeier model have been proposed in [24,27,30,31].85

The paper is outlined as follows. In Section 2, we present the class of hyperbolic reaction-86

advection-diffusion models and characterize the phenomenon of wave instability through LSA and87

WNA. In Section 3, we compare our results of analytical predictions to those arising from numerical88

simulations, carried out on the hyperbolic version of the extended Klausmeier model. Conclusions89

are given in the last section.90

2 Model formulation and analytical investigations91

We consider a class of hyperbolic reaction-advection-diffusion systems for two species u(x, t) and92

w(x, t) satisfying the following hypotheses: dynamics takes place at time t and along a preferred93

direction x; w undergoes both diffusion and advection with a velocity denoted by ν, whereas u has94

a diffusive character only; the w-by-u diffusion ratio is termed d; the inertial times associated to95

the two species are denoted by τu and τw, which are assumed to be constant; kinetic terms are96

generically indicated by f(u,w) and g(u,w). Following the guidelines of Extended Thermodynamics97

(ET) theory [64], we also introduce two additional field variables representing the diffusive fluxes,98

Ju(x, t) and Jw(x, t), each of them obeying a thermodynamically-consistent balance equation that,99

in the parabolic limit approximation, τu → 0 and τw → 0, recover the classical constitutive Fick’s100

law.101

According to these assumptions, the hyperbolic system can be expressed in vector form as:102

Ut +MUx = N(U), (1)

being:103

U =


u

w

Ju

Jw

 , M =


0 0 1 0

0 −ν 0 1

1
τu

0 0 0

0 d
τw

0 0

 , N (U) =


f(u,w)

g(u,w)

−Ju

τu

−Jw

τw

 (2)

where the subscript stands for the partial derivative with respect to the indicated variable.104

Note that the model (2) belongs to a more general class of n-species hyperbolic reaction-advection-105

diffusion systems deduced via ET and reported in [31].106

In the following subsections, we will address LSA and WNA on the steady states admitted by107

this model with particular emphasis on the occurrence of wave instability.108
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2.1 Linear Stability Analysis109

Let U∗ = (u∗, v∗, 0, 0) be a positive spatially-homogeneous steady-state satisfying N(U) = 0. By110

looking for solutions of system (1) of the form U = U∗ + Û exp (ωt+ i k x), we derive the following111

dispersion relation which gives the growth factor ω as a function of the wavenumber k:112

τuτwω4 +
(
Ã3 − ikντuτw

)
ω3 +

(
Â2k

2 + Ã2 + ikνb̂2

)
ω2 +

[
Â1k

2 + Ã1 + ikν
(
b̂1 − τwk2

)]
ω + Ã0 + ikνb̂0 = 0

(3)

with113

Ã3 = τu + τw − (f ∗
u + g∗w) τuτw

Â2 = dτu + τw

Ã2 = 1− (τu + τw) (f ∗
u + g∗w) + τuτw (f ∗

ug
∗
w − f ∗

wg
∗
u)

b̂2 = τuτwf ∗
u − τu − τw

Â1 = d+ 1− τwg∗w − dτuf ∗
u (4)

Ã1 = (τu + τw) (f ∗
ug

∗
w − f ∗

wg
∗
u)− (f ∗

u + g∗w)

b̂1 = (τu + τw) f ∗
u − 1

Ã0 = dk4 − (df ∗
u + g∗w) k2 + f ∗

ug
∗
w − f ∗

wg
∗
u

b̂0 = f ∗
u − k2

where the asterisk denotes that the function is evaluated at the steady state U∗.114

It is straightforward to ascertain that, for homogeneous perturbation k = 0, the equation (3) can115

be easily factorized and its solutions are:116

ω1 = − 1

τu
< 0 ω2 = − 1

τw
< 0 ω3,4 =

1

2

(
f ∗
u + g∗w ±

√
(f ∗
u + g∗w)2 − 4 (f ∗

ug
∗
w − f ∗

wg
∗
u)

)
. (5)

Therefore U∗ is stable with respect homogeneous perturbation iff:117

f ∗
u + g∗w < 0, f ∗

ug
∗
w − f ∗

wg
∗
u > 0. (6)

As far as non-homogeneous perturbations are concerned, we notice that a non-vanishing advection118

term (ν 6= 0) prevents the occurrence of Turing instability, because the expression Ã0 + ikνb̂0 is119

nonzero for all values of k. Therefore, we focus our attention on the occurrence of wave instability as120

a control parameter, say B, is varied. To this aim, we look for solutions of the characteristic equation121

(3) having null real part for some k 6= 0 and require the transition from negative to positive real122

part to occur via a maximum. More precisely, we assume ω = −isk, with s = s(k) ∈ R so that any123

perturbation can be recast in the form of a travelling plane wave with speed s, i.e. Û exp
[
i k (x− st)

]
.124

Then, by substituting the previous ansatz into the characteristic equation and taking the derivative125

of this latter with respect to k, we obtain:126 
k4 − δ2k2 + δ4 = 0

δ1k
2 − δ3 = 0

2k
(
2k2 − δ2

)
+
(
∂δ4
∂s
− ∂δ2

∂s
k2
)
∂s
∂k

= 0

(δ1δ2 − 2δ3)
(
δ1

∂δ3
∂s
− δ3 ∂δ1∂s

)
− δ21

(
δ1

∂δ4
∂s
− δ3 ∂δ2∂s

)
= 0

(7)
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where127

δ1 = ν+Â1s+νb̂2s2−Ã3s3

(τus2−1)(τws2+ντws−d)
,

δ2 = Ã2s2−b̂1νs+df∗u+g∗w
(τus2−1)(τws2+ντws−d)

,

δ3 = νf∗u−Ã1s

(τus2−1)(τws2+ντws−d)
,

δ4 =
(f∗ug∗w−f∗wg∗u)

(τus2−1)(τws2+ντws−d)
.

(8)

System (7) defines implicitly the critical value Bc of the control parameter at which wave insta-128

bility develops, together with the critical wavenumber kc, the wave speed s and its derivative with129

respect to the wavenumber ∂s/∂k. Therefore, we can draw a first conclusion that the presence of130

inertia affects not only the instability threshold but also the wavenumber of the emerging pattern.131

This result differs from what observed in the case of pure stationary Turing patterns, where hyper-132

bolicity does not affect such quantities but plays an active role during transient regime [27,30].133

134

Notice that in the limit case τu → 0 and τw → 0 the hyperbolic model (1),(2) reduces to the135

corresponding parabolic one. Details on the structure of the parabolic model, the characteristic136

equation and the locus of wave instability are given in Appendix A.137

2.2 Multiple-scale weakly nonlinear analysis138

As it is well known, LSA is only valid for small times and infinitesimal perturbations. For this reason,139

the transition to the new spatially nonuniform state is usually investigated by means of WNA which,140

by using a standard perturbative approach, provides an approximate analytical description of the141

perturbation dynamics. In this Section, we shall employ the multiple scale method to derive the142

amplitude equation describing the dynamics close to the critical bifurcation parameter Bc at which143

instability develops [5, 6, 25,27–29,65–67].144

We recast the original system (1) in the following form:145

Ut +MUx = L∗U + NL∗, (9)

where the matrix L∗, the vectors U and NL∗ are defined as146

U = U−U∗ (10)

L∗ = (∇N)∗ (11)

NL∗ =
∑
k≥2

1

k!

[(
U · ∇

)(k)
N

]∗
(12)

and ∇ = ∂/∂U, for a generic vector V, the expression (V · ∇)(j) stands for the operator147

V · ∇ = V1
∂

∂u
+ V2

∂

∂w
+ V3

∂

∂Ju
+ V4

∂

∂Jw
(13)

applied j times.148
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First, we expand the field vector U as well as the control parameter B with respect to a small149

positive parameter ε� 1 and introduce two time and spatial scales as follows:150

U = εU1 + ε2U2 + ε3U3 +O
(
ε4
)

B = Bc + ε2B2 +O
(
ε4
)

∂
∂t
→ ∂

∂t
+ ε2 ∂

∂T2

∂
∂x
→ ∂

∂x
+ ε ∂

∂X

(14)

The use of two spatial scales is justified whenever patterns emerge and propagate over large spatial151

domains in the form of traveling wavefronts.152

Then, substituting all the above expansions into the governing system (9) and collecting terms153

of the same orders of ε we obtain the following set of linear partial differential equations:154

at order 1 ∂U1

∂t
+M ∂U1

∂x
= L∗

cU1

at order 2 ∂U2

∂t
+M ∂U2

∂x
+M ∂U1

∂X
= L∗

cU2 + 1
2

(
U1 · 5

)(2)
N|∗c

at order 3 ∂U3

∂t
+ ∂U1

∂T2
+M ∂U3

∂x
+M ∂U2

∂X
=

= L∗
cU3 +B2

dL∗

dB

∣∣∣
c
U1 +

(
U1 · 5

)(
U2 · 5

)
N|∗c + 1

6

(
U1 · 5

)(3)
N|∗c

(15)

where the subscript “c” denotes that the quantity is evaluated at the critical value of the control155

parameter. We now look for solution Ui = Ui(z) with z = x − st, so that the system (15) can be156

written as a system of ordinary differential equations:157

at order 1
dU1

d z
= K∗

cU1 (16)

at order 2
dU2

d z
= K∗

cU2 + (M − sI)−1

{
1

2

(
U1 · 5

)(2)
N|∗c −M

∂U1

∂X

}
(17)

at order 3
dU3

d z
= K∗

cU3 + (M − sI)−1 ×

×

{
B2

dL∗

dB

∣∣∣∣
c

U1 +
(
U1 · 5

)(
U2 · 5

)
N|∗c +

1

6

(
U1 · 5

)(3)
N|∗c −

∂U1

∂T2
−M∂U2

∂X

}
(18)

where I is the identity matrix and158

K∗
c = (M − sI)−1L∗

c (19)

According to WNA developed in Appendix B, the solutions of systems (16) and (17), satisfying periodic159

boundary conditions, take respectively the following structures:160

U1 = Ω(X,T2)e
i kczd(i kc) + Ω(X,T2)e

− i kczd(− i kc) (20)
161

U2 =
∂Ω

∂X
ei kczg +

∂Ω

∂X
e− i kczg + Ω2e2 i kczq + Ω

2
e−2 i kczq + 2q0|Ω|2 (21)

where the complex pattern amplitude Ω obeys the Cubic Complex Ginzburg–Landau (CCGL) equation162

∂Ω

∂T2
= (ρ1 + i ρ2)

∂2Ω

∂X2
+ (σ1 + iσ2) Ω− (L1 − iL2) Ω |Ω|2. (22)
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The coefficients appearing in (20)-(22) are given in Appendix B.163

As known, two different qualitative dynamics of the CCGL equation can be observed: L1 > 0 corresponds164

to the supercritical bifurcation case while L1 < 0 to the subcritical one. The former exists for above-165

threshold values of the control parameter only, exhibits a small amplitude close to onset and the wavelength166

of the excited pattern is close to the critical value 2π/kc. The latter exists for both below- and above-167

threshold values, exhibits hysteresis and has a large amplitude at onset such that the WNA may only168

provide qualitative information on the excited patterns [1, 5, 6].169

Remark 1. The CCGL equation (22) deduced in the more general framework of hyperbolic systems appears170

formally unchanged with respect to the classical one deduced in parabolic models [67]. It can be indeed171

verified that the expressions of the coefficients there appearing may be obtained from the ones appearing172

in (22) by setting the inertial times to zero. Of course, each of these coefficients encloses a dependence on173

the inertial times which, acting as additional degrees of freedom, offers a richer scenario of spatio-temporal174

dynamics with respect to the parabolic counterpart, as it will be shown below.175

2.2.1 Coherent structure solutions of the CCGL equation176

Let us now focus our attention on those solutions of the CCGL equation that are referred to as coherent177

structures, and in particular to the one-parameter family of solutions localized in space characterized by178

features uniformly translating with a constant velocity v [1, 5, 19–23], i.e:179

Ω(X,T2) = Q(ξ)eiφ(ξ), ξ = X − vT2 (23)

Substituting this ansatz into the CCGL equation (22) and indicating by κ = φξ, we get a system of three180

ordinary differential equations:181 
Qξ = R

ρ2Qκξ − ρ1Rξ = (v − 2ρ2κ)R+
(
σ1 − ρ1κ2

)
Q− L1Q

3

ρ2Rξ + ρ1Qκξ = −2ρ1κR+
(
ρ2κ

2 − σ2 − vκ
)
Q− L2Q

3

(24)

The dynamical system (24) admits two fixed points in the form F∗ = (R∗, Q∗, κ∗) given by: F∗
1 = (0, 0, κ0),182

with κ0 an arbitrary constant, and F∗
2 =

(
0, Q̃, κ̃

)
, where the constants Q̃ and κ̃ are defined by:183

Q̃ =
√

σ1−ρ1κ̃2
L1

(ρ1L2 + ρ2L1) κ̃
2 − vL1κ̃− (σ2L1 + σ1L2) = 0

(25)

The fixed point F∗
1 defines a null-amplitude patterned state Ω = 0 that is representative of the spatially-184

homogeneous steady state U∗ undergoing the spatially-driven destabilization. On the other hand, the185

plane-wave solution of the CCGL equation associated to the fixed point F∗
2, i.e.186

Ω(X,T2) = Q̃ei(κ̃X+ω̃T2) with ω̃ = −κ̃v (26)

represents a particular case of coherent structure named phase winding solution [1,5,21,23,68] and describes187

a traveling pattern characterized by a total wavenumber ktot = kc+εκ̃ and angular frequency ωtot = kcs−ε2ω̃.188

If the wave bifurcation is supercritical (L1 > 0), under the assumptions that σ1 > 0 and ρ1 > 0, according189

to (25)1, such a solution exists if190

−
√
σ1
ρ1

< κ̃ < +

√
σ1
ρ1

(27)
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so that there is a band of permitted wavenumbers around κ̃ = 0 and the second-order correction of the191

angular frequency takes the form:192

ω̃ =
[
(σ2L1 + σ1L2)− (ρ1L2 + ρ2L1) κ̃

2
]
/L1 (28)

Since we deal with three unknowns (κ̃, Q̃ and ω̃) and two conditions arising from the CCGL equation, one193

parameter needs to be estimated from numerical simulations. For instance, κ̃ can be deduced by comparing194

the numerically-computed value of the total wavenumber ktot with the theoretical critical wavenumber kc,195

whereas the values of amplitude Q̃ and angular frequency ω̃ can be consequently obtained via (25)1 and196

(28), respectively.197

To investigate the stability of the phase winding solution, we can proceed, as usual in the literature, by198

perturbing the amplitude (26) as follows:199

Ω(X,T2) =
[
1 + a(X,T2)

]
Q̃ei(κ̃X+ω̃T2)

a(X,T2) = Ψ(T2)e
i lX + Ξ(T2)e

− i lX
(29)

with l the small perturbation of the wavenumber κ̃, namely we look for long-wave effects. After some200

algebraic manipulations, we end up with the system:201 
ΨT2 =

[
−l (l + 2κ̃) (ρ1 + i ρ2)− Q̃2 (L1 − iL2)

]
Ψ− (L1 − iL2) Q̃

2Ξ

ΞT2 =
[
−l (l − 2κ̃) (ρ1 − i ρ2)− Q̃2 (L1 + iL2)

]
Ξ− (L1 + iL2) Q̃

2Ψ
(30)

where Ξ is the complex conjugate of Ξ.202

Then, looking for the usual exponential dependence of Ψ and Ξ on T2, in the limit of large wavelengths203

(small l), one retrieves a necessary condition for the stability of plane wave structures, named Benjamin-204

Feir-Newell condition [1, 2, 6, 23,67], that reads:205

1− ρ2L2

ρ1L1
> 0. (31)

Remark 2. It should be finally noticed that all the features characterizing the phase winding solution,206

i.e. amplitude Q̃, wavenumber κ̃ and angular frequency ω̃, together with its stability, inherit the functional207

dependence on the inertial times from the coefficients of the CCGL equation (22). Therefore, it is expected208

that hyperbolicity effects may manifest, not only during the transient regime from the homogeneous steady209

state toward the patterned state (the heteroclinic orbit of (24) joining F∗
1 and F∗

2) but also modifying the210

value of the above-mentioned key features of the phase winding solution and, possibly, its stability.211
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3 An illustrative example: the extended Klausmeier model212

As an illustrative example, let us take into account the hyperbolic generalization [24, 27, 30, 31] of the213

extended Klausmeier model [57,67], whose dimensionless 1D version belongs to the class of systems (1),(2).214

In this framework, the field variables u(x, t) and w(x, t) assume the meaning of densities of plant biomass215

and surface water, respectively, at location x (positive direction being uphill) and time t. In this model, the216

motion of surface water accounts for two different mechanisms. First, the downhill water flow on slopes is217

accounted by an advection term. Second, dispersal of surface water is mimicked via a diffusion term that218

aims at capturing the movement induced by spatial differences in infiltration rate [57]. The coefficient d is219

here representative of the water-to-plant diffusion ratio whereas ν is the water advection speed along the220

hillslope. The source terms, unchanged with respect to those originally proposed by Klausmeier [56], are221

given by:222

f(u,w) = w u2 −B u
g(u,w) = A− w − w u2 (32)

where the dimensionless coefficients A and B are related to the rates of average annual rainfall and plant223

loss, respectively. Previous investigations suggest that realistic values of plant loss and rainfall rate belong224

to the ranges B ∈ (0, 2) and A ∈ (0, 3), respectively [47,56,69].225

It is known that, for A ≥ 2B this model admits three spatially-homogeneous steady states given by:226

U∗
D = (0, A, 0, 0)

U∗
L =

(
uL, B/uL, 0, 0

)
U∗
S =

(
uS , B/uS , 0, 0

) (33)

where:227

uL =
A−
√
A2 − 4B2

2B
, uS =

A+
√
A2 − 4B2

2B
, 0 < uL < 1 < uS , (34)

the first being representative of the desert state and the other ones of uniformly-vegetated areas. For228

A < 2B, the desert state becomes the only steady state admitted by the model.229

It can be easily checked that the desert state U∗
D is always stable whereas the vegetated state U∗

L is230

always unstable. On the contrary, the state U∗
S is stable with respect to homogeneous perturbations. Indeed,231

by considering that:232

f∗u = fu
(
U∗
S

)
= B, f∗w = fw

(
U∗
S

)
= u2S , g∗u = gu

(
U∗
S

)
= −2B, g∗w = gw

(
U∗
S

)
= −

(
1 + u2S

)
, (35)

conditions (6) become:233

f∗u + g∗w = B − 1− u2S < 0, f∗ug
∗
w − f∗wg∗u = B

(
u2S − 1

)
> 0, (36)

that are fulfilled for any realistic values of B and uS .234

To prove that the state U∗
S may be destabilized via non-homogeneous perturbations, and can thus235

undergo wave instability, we need to solve the system (7),(8). Unfortunately, owing to its highly nonlinear236

nature, information on the locus of wave instability, together with the dependence of the critical parameters237

on the inertial times, cannot be obtained analytically. Therefore, by solving the above system numerically,238

we found that it admits real solutions representing the values of the control parameter Bc, wavenumber kc,239

wave speed s and its derivative with respect to k, at the onset of instability. Results of this investigation240

are shown in Fig.1, where the locus of wave instability depicted in the (B,A) parameter plane (solid lines)241

is obtained by fixing the parameters d = 100 [57, 70] and ν = 182.5 [56] and varying the two inertial times242

τu and τw. In the same figure we also represent by circles the locus obtained in the parabolic case, i.e. from243
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Figure 1: Solid lines represent the loci of wave instability in the (B,A) parameter plane obtained by solving numerically the
system (7),(8) for different values of inertial times. Symbols denote the locus obtained in the parabolic case, resulting from
integration of equation (A.4). The bottom dashed line defines the condition A = 2B, below which the only desert state exists.
Fixed parameters: d = 100 and ν = 182.5.

the numerical solution of (A.4), which gives real and positive root by taking the plus sign. As it can be244

noticed, this latter coincides with the locus deduced for very small inertial times (black line), as expected.245

It is worth noticing that, when the system moves away from the parabolic limit, the locus of wave instability246

progressively shifts up so enlarging the region where non-stationary patterns may be observed. This is247

consistent with our previous results obtained for the hyperbolic generalization of the original Klausmeier248

model, so confirming that the hyperbolicity destabilizes the system and allows to observe oscillatory periodic249

patterns, i.e. uphill migrating banded vegetation in the context of dry-land ecology, over a wider region of250

the parameter plane [24].251

A first check on the validity of these analytical predictions has been carried out by inspecting the252

wavenumber dependence of the four roots of the characteristic polynomial (3) at the three points P1, P2253

and P3 indicated in the inset of Fig.1, for different couples of inertial times. Results are shown in Fig.2 (top254

row panels (a)-(c) correspond to P1, middle row panels (d)-(f) to P2 and bottom row panels (g)-(i) to P3)255

for the largest eigenvalue only (being the real part of the other three roots always negative). For brevity, we256

refer to the couple (τu, τw) =
(
10−5, 10−5

)
(whose corresponding locus is the black curve in Fig.1) as setup257

I; the couple (0.5, 1) as setup II (blue curve in Fig.1) and (0.5, 100) as setup III (red curve in Fig.1). Setup258

I is representative of the behavior close to the parabolic limit, while setups II and III mimic dynamics259

that progressively deviate away from it.260
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Let us investigate, first, the locus of roots related to P1. Results related to setups I and II (panels (a) and261

(b)) reveal that all roots have negative real part, denoting that the state U∗
S is also stable with respect to non-262

homogeneous perturbations. On the contrary, in setup III (panel (c)), there exists a range of wavenumber263

where one root has positive real part and non-null imaginary part, so pointing out a destabilization of the264

steady state. These observations are consistent with the predictions reported in Fig.1 because, in setups I265

and II, the investigated point is outside the wave instability region but, in setup III, it is located inside.266

About the point P2, in setups II and III (panels (e),(f)) there exists a range of k where the real part of the267

most unstable root becomes positive. On the contrary, in setup I (panel (d)), the real part of this root keeps268

negative, consistently with its location with respect to the bifurcation loci. Finally, at point P3, for each of269

the chosen setups (panels (g),(h),(i)), there exists a range of k where the real part of the most unstable root270

becomes positive, consistently with the fact that this point always lies inside the wave instability region.271

Another confirmation of the analytical predictions carried out in Section 2.1 may be achieved by in-272

tegrating numerically the governing system (1),(2),(32) together with periodic boundary conditions and273

using small sinusoidal fluctuations about the steady state U∗
S as initial conditions. Simulations have been274

performed by means of COMSOL Multiphysics R© [71] over a time window t ∈ [0, 50], considering a spatial275

domain of length lD = 100 (unless specified differently). Results of this investigation, which make use of the276
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Figure 2: Wavenumber dependence of the real (left axes, continuous lines) and imaginary (right axes, discontinuous lines) part
of largest root of (3) evaluated for A = 2.8 at the points P1 (B = 0.40, panels (a)-(c)), P2 (B = 0.41, panels (d)-(f)) and P3

(B = 0.43, panels (g)-(i)) indicated in Fig.1, for different couples of inertial times (τu, τw). In detail, setup I: (10−5, 10−5),
panels (a),(d),(g); setup II: (0.5, 1), panels (b),(e),(h); setup III: (0.5, 100), panels (c),(f),(i).
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same parameter set as the one used in Fig.2, are reported in Fig.3. To provide an immediate and intuitive277

view of the underlying dynamics, the colormap used for the density plots of vegetation biomass u(x, t) ranges278

between yellow (desert) and green (vegetated areas). In agreement with the above-mentioned predictions,279

it is possible to notice that, when all the roots have negative real parts, the initial perturbation dies out280

and the system converges toward the stable, spatially-uniform, vegetated state U∗
S , see panels (a),(b),(d).281

On the contrary, if there exists a range of unstable wavenumbers, then the system evolves toward a periodic282

patterned state that oscillates in time, representative of an uphill migrating vegetation band, see panels283

(c),(e)-(i).284

We can also numerically verify whether the range of unstable wavenumbers depends on inertia. It is285

known that, if a non-homogeneous perturbation is applied to a state U∗ falling within the wave instability286

region, the system tends to form a traveling pattern whose wavenumber is close to the one of the most287

unstable mode, i.e. the mode exhibiting the largest growth rate. The range of unstable wavenumbers that288

is created when the control parameter is above the critical value Bc degenerates into the single value kc at289

onset. To address this point, we track the variations in the (B, k) plane of the root of the characteristic290

polynomial (3) associated to the most unstable mode, for different values of inertial times. Results are291

shown in Fig.4, where the wavenumber of the mode exhibiting the largest growth rate is depicted by dashed292

lines whereas the range of unstable wavenumbers is delimited by solid lines. When we move away from293

the parabolic limit (from black to red curves in the figure), the role played by inertia becomes manifold: it294

decreases the lowest value of the control parameter (plant loss) at which instability may form, it modifies the295

wavenumber of the most unstable mode and also enlarges significantly the range of unstable wavenumbers.296

Furthermore, by solving numerically the system defining theoretically the wave bifurcation locus (7),(8),297

we can quantitatively estimate the wave speed s at the onset of instability as a function of inertial times.298

From the analysis of the results depicted in Fig.5, we infer that the values of the inertial times affect directly299

and indirectly through the variation of Bc the migrating speed at the onset of instability, as it varies from300

about 0.8 (close to the parabolic limit) to 1.0 (away from it), i.e. hyperbolicity may increase the wave301

speed up to 30%. To get a validation of these results, we integrate again numerically the governing system302

(1),(2),(32) over a larger time window t ∈ [0, 200] and a larger spatial domain lD = 200. We use the303

parameter set corresponding to the points Q1 and Q2 depicted in Fig.5 and choose the control parameter304

B in such a way the distance from the threshold is ε2 = 10−3 in both cases. Then, in order to extract305

the critical values of angular frequency ωc and wavenumber kc, we perform two Fast-Fourier-Transforms306

(FFTs) on the variable u(x, t), by fixing either space or time. In detail, in the former case, the solution307

u(x, t) is evaluated at x = lD/2 while, in the latter case, it is set at t = tend. According to the results308

shown in Fig.6, each resulting spectrum contains several peaks, the dominant of which gives information309

on the angular frequency ωc and the wavenumber kc of the main mode, respectively. Finally, the migrating310

speed value is simply given by the ratio s = ωc/kc. Following this procedure, we get: for the point Q1,311

s = 0.301/0.376 = 0.801, in excellent agreement with the value extracted from system (7),(8), that is equal312

to s = 0.807; for the point Q2, the value s = 0.380/0.410 = 0.926, in good agreement with the theoretical313

value s = 0.923. These results reinforce our previous conclusion on the non-negligible role played by inertial314

times: apart from affecting the migrating speed, they also alter both angular frequency and wavenumber of315

the emerging pattern.316

So far, we have validated all the theoretical predictions connected to LSA developed in Section 2.1. Let317

us now focus on those arising from multiple-scale WNA whose general formulation has been given in Section318

2.2. In the specific case of the hyperbolic extension of the Klausmeier model, the explicit expressions of the319

quantities here involved are reported in Appendix B.320

As known, the sign of the real part of the Landau coefficient determines the supercritical (if L1 > 0) or321

subcritical (if L1 < 0) character of the generated patterns. Here, we aim at inspecting how such a character322

could be altered by a suitable combination of inertial times. In Fig.7 we have addressed numerically this323

investigation, by using the same set of parameters as those used to build Fig.5. In the figure, the colored324
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(white) areas denote a supercritical (subcritical) behavior. These results reveal that, for relatively small325

values of the inertial times, namely close to the parabolic limit (bottom left corner of the figure), patterns326

exhibit a supercritical behavior. For increasing values of inertial times, hyperbolicity may give rise to a327

subcritical instability.328

Let us now inspect whether these predictions may be corroborated by numerical simulations. First,329

the supercritical character associated to the points Q1 and Q2 can be extracted from Fig.6, where patterns330

slightly above threshold exhibit small amplitude, don’t exist for sub-threshold values of the control parameter331

and have a wavenumber very close to kc. Indeed, the numerically-deduced values, i.e. kc = 0.376 in Fig.6(c)332

and kc = 0.410 in Fig.6(f), are in close agreement with the theoretical ones deduced from (7),(8),(B.2),333

i.e. kc = 0.376 and kc = 0.403, respectively. To test whether a subcritical instability takes place at Q3,334

we perform simulations where the initial condition is set, at first, as a small sinusoidal perturbation of the335

steady state and the control parameter is slightly smaller than the critical value. Results indicate that the336

initial perturbation simply dies out and the system converges towards the stable homogeneously vegetated337

area, see Fig.8(a). Then, we increase the control parameter slightly above threshold and, as expected, large338

amplitude patterns are generated, see Fig.8(b) (notice the larger scale in the color bar in comparison with339

those of Fig.6(a),(d)). Finally, we take the final state of this latter simulation as the initial condition of a new340

Figure 3: Spatio-temporal dynamics of vegetation biomass u(x, t) corresponding to the panels shown in Fig.2 obtained via
numerical integration of system (1),(2),(32).
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Figure 5: Density plot of migrating speed s at onset of instability (B = Bc) as a function of the inertial times τu and τw. Fixed
parameters: ν = 182.5, d = 100, A = 2.8.
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Figure 6: (a,d) Snapshots of migrating vegetation patterns. (b,e) FFT of the time-dependent solution evaluated at a fixed
location within the domain, u(lD/2, t). (c,f) FFT of the space-dependent solution evaluated at the final simulation time,
u(x, tend). Panels in the top (bottom) row are obtained by using the parameter set corresponding to point Q1 (Q2) depicted
in Fig.5. Note that the arising FFT spectra contain some higher-order harmonics (mainly, the component proportional to
exp(2 i kcz)) due to the slow modulation of the pattern close to the onset [19].
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Figure 7: Contour plot of L1 as a function of the inertial times τu and τw. Colored (white) areas denote positive (negative)
values of L1. The parameter set is the same as the one reported in Fig.5.
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simulation where the control parameter is set to the same below-threshold value as the one used to build341

Fig.8(a). Interestingly, patterns still survive, so denoting the hysteretic behavior typical of a subcritical342

instability.343

Finally, we investigate on the one-parameter family of coherent structures, solutions of the CCGL equa-344

tion, and address again a comparison between the analytical predictions reported in Section 2.2.1 and345

numerical simulations . We shall limit the discussion to the supercritical regime by considering those re-346

gions of the (τw, τu) plane where the real part of the Landau coefficient keeps positive (colored areas in347

Fig.7). Then, we study the sign of the necessary condition for stability given by the Benjamin-Feir-Newell348

criterion (31) and report the results in Fig.9. Here, the white (orange) color denotes an area where patterns349

are unstable (may be stable). Our results indicate that, in a wide region enclosing the parabolic limit350

(point Q1), i.e. for τw < 2 and independently of the value of τu, the abovementioned criterion is always351

satisfied and patterns may be stable. In this region, a slow modulation of travelling patterns is observed,352

as shown in Fig.10(a). Far away from the parabolic limit, there exist values of inertial times that may353

lead to destabilization of patterns, as it happens in the subregion of the (τw, τu) plane depicted in Fig.9.354

Indeed, considering the inertial times corresponding to point Q4, the wavetrain structure may break up into355

a sequence of unequal pulses [5], as depicted in Fig.10(b).356

Then, we inspect the role of inertial effects on phase winding solutions, i.e. on the fixed points F∗
1 and357

F∗
2 of system (24). In this analysis, we set the inertial times in such a way they correspond to points Q1 and358

Q2 and keep the dimensionless distance from the threshold fixed at ε2 = 10−2. We integrate the governing359

system (1),(2),(32) over a larger time window t ∈ [0, 1000] in order to allow transient regime to expire and360

the system to reach a steady travelling patterned configuration. These are depicted in Figs.11(a),(b) by361

solid lines. To determine the extra parameter involved in the phase-winding solution κ̃, we compare the362

theoretical critical value kc with the total wavenumber of the observed pattern ktot. This value is then363

used in (25),(28) to compute the amplitude Q̃ and the second-order correction of the angular frequency ω̃,364

respectively. Then, the corresponding analytical phase winding solutions are built via (26). Results are365

represented in the previously mentioned figures via dashed lines and reveal a satisfying agreement with366

those arising from numerical simulations. Moreover, we integrate system (24) to describe the heteroclinic367

orbits joining the fixed points F∗
1 (unstable) and F∗

2 (stable) in the two configurations represented by the368

points Q1 and Q2. The initial condition is set as a small perturbation of F∗
1 in both cases. The resulting369

fronts are depicted in Fig.11(c) and confirm that inertial effects take a relevant role, not only in modulating370

the duration of the transient regime from the homogeneous steady state to the patterned state, but also in371

modifying the amplitude, the wavenumber and the angular frequency of the traveling patterns.372

Figure 8: Snapshots of spatio-temporal evolution of vegetation biomass corresponding to the point Q3 shown in Fig.7 for (a)
B = 0.403, (b) B = 0.405 and (c) B = 0.403. The initial condition in simulations (a) and (b) is taken as a small periodic
perturbation of the steady state U∗

S whereas in (c) it is given by the final state of (b). The critical value of the control parameter
is Bc = 0.404.
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Figure 9: Plot of the Benjamin-Feir-Newell necessary condition for stability in the supercritical regime. Colored (white) areas
denote regions where the condition (31) is (is not) fulfilled.

Figure 10: Proof of the Benjamin-Feir-Newell instability condition showing the spatial profiles of the patterned configurations
obtained at points Q1 (a) and Q4 (b) represented in Fig.9(a). To improve the visibility of the wavetrain structure breaking, the
computational domain has been enlarged to lD=400.

4 Conclusions373

In this manuscript, we have considered a class of hyperbolic reaction-advection-diffusion system for two374

species, one of which undergoes both diffusion and advection while the other one has a diffusive character375

only. The hyperbolic structure of the model accounts for the biological inertia of both the involved species376

and allows a better description of transient phenomena characterized by waves evolving in space over a377

finite time. On this general framework, we have carried out, first, linear stability analysis to deduce the378
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Figure 11: (a,b) Comparison between the numerical simulation arising from integration of the governing system (1),(2),(32)
(solid lines) and the analytically-deduced phase winding solution U = εU1 together with (20),(25)-(28) (dashed lines). The set
of parameters correspond to the points Q1 (a) and Q2 (b) with ε2 = 10−2. (c) Results of numerical integration of system (24)
representative of the heteroclinic orbits joining the fixed points F∗

1 and F∗
2 [black (red) curve stands for dynamics around point

Q1 (Q2)]. The initial condition is set as a small perturbation of F∗
1.

conditions under which wave instability, responsible for the occurrence of non-stationary spatial patterns,379

takes place. Then, by applying multiple-scale weakly nonlinear analysis we have determined the amplitude380

equation describing the slow modulation in space and time near criticality.381

All our theoretical findings enclose the parabolic limit as particular case, when the inertial times tend382

to zero. In particular, it has been shown that the resulting CCGL equation is formally unchanged with383

respect to the classical one obtained in parabolic framework, but the coefficients here involved exhibit a384

strong dependence on inertial times.385

Moreover, to better emphasize the role of hyperbolicity, we have also inspected coherent structures of386

the CCGL equation whose fixed points are in the form of phase winding solutions. For this class of solutions387

we have determined the expressions of the key features and established the necessary condition for stability.388

The previous theoretical predictions have been tested on an illustrative example, the extended Klausmeier389

model, describing the formation and the migration of vegetation patterns over a sloping semiarid terrain.390

Numerical investigations have validated our findings and have allowed to draw several conclusions about the391

role played by inertia. It has been indeed proven that inertial times:392

i) enlarge both the wave instability region in the parameter plane where traveling patterns may be observed393

and is less selective on the range of unstable wavenumbers. Thus, inertia allows to destabilize the394

spatially homogeneous steady state over a wider set of model parameters (see Figs.1-4);395

ii) vary the key features associated to migrating patterns, speed, wavelength and angular frequency, leaving396

all the other model parameters unchanged (see Figs.5,6);397

iii) affect the supercritical or subcritical nature of patterns at onset (see Figs.7,8);398

iv) exert influence on localized coherent structures, and in particular on the fronts connecting the plane-399

wave state to the unstable spatially-homogeneous steady state. In particular, it has been shown that400

inertia takes a role, not only during transient regime, but also modifies the amplitude, the wavenumber,401

the angular frequency and the stability of the phase winding solution associated to the plane wave402

(see Figs.9,11).403

In the light of the above statements, it has to be emphasized that hyperbolic models provide additional404

degrees of freedom that can be used to better modeling experimental observations.405

We plan to extend our hyperbolic framework to the case in which both species undergo diffusion and406

advection, so enabling the possibility of exploring an even richer set of dynamics.407
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Appendix A: Wave instability in parabolic reaction-advection-414

diffusion models415

In this Appendix we give some details on the occurrence of wave instability in parabolic reaction-advection-416

diffusion models. In this framework, diffusion occurs through Fick’s laws, Ju = −ux and Jw = −dwx, and417

the governing system is cast as:418

Ũt + M̃Ũx +DŨxx = Ñ(Ũ), (A.1)

with:419

Ũ =

 u

w

 , M̃ =

 0 0

0 −ν

 , D =

 −1 0

0 −d

 , Ñ
(
Ũ
)

=

 f(u,w)

g(u,w)

 . (A.2)

The resulting spatially-homogeneous steady-states are denoted by Ũ∗ = (u∗, v∗) and the dispersion relation420

reduces to a quadratic equation:421

ω2 +
[
k2 (d+ 1)−

(
f∗u + g∗w

)
− ikν

]
ω + Ã0 + ikνb̂0 = 0 (A.3)

with Ã0 and b̂0 given in (4). Conditions (6) for the stability of Ũ∗ against homogeneous perturbations hold422

for both hyperbolic and parabolic models.423

By applying the same procedure as the one discussed in Section 2.1 in the hyperbolic framework, but424

exploiting the lower complexity of the characteristic equation (A.3) with respect to (3), the locus of wave425

instability can be defined implicitly via the following equation:426

(4χ3
2 + 2χ0χ2 + χ1)(4χ

3
2 + 2χ0χ2 − χ1) = 0 (A.4)

whereas the critical wavenumber is given by:427

k2c = −χ3

χ4
± χ2 (A.5)

and the wave speed obeys:428

s = ν
(
f∗u − k2c

)
/
[
k2c (d+ 1)− f∗u − g∗w

]
. (A.6)

The expressions of the coefficients χi (i = 0, . . . , 4) appearing in (A.4),(A.5) are given by:429

χ0 =
8χ4χ8−3χ2

3

8χ2
4

, χ1 =
8χ2

4χ9−4χ4χ3χ8+χ3
3

8χ3
4

, χ2 = 1
2

√
−2

3χ0 + 1
3χ4

(
χ5 + χ6

χ5

)
,

χ3 = dν2 − (d+ 1)2 (g∗w + df∗u)− 2d (d+ 1) (f∗u + g∗w) , χ4 = d (d+ 1)2
(A.7)
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where430

χ5 =
3

√
χ7+
√
χ2
7−4χ3

6

2 , χ6 = 12χ4χ10 − 3χ3χ9 + χ2
8,

χ7 = 27χ4χ
2
9 − 72χ4χ8χ10 + 27χ2

3χ10 − 9χ3χ8χ9 + 2χ3
8,

χ8 = d (f∗u + g∗w)2 + 2 (d+ 1)
(
f∗u + g∗w − ν2

)
(g∗w + df∗u) + (d+ 1)2 (f∗ug

∗
w + f∗wg

∗
u) ,

χ9 = ν2f∗ug
∗
w − (g∗w + df∗u) (f∗u + g∗w)2 − 2 (d+ 1) (f∗u + g∗w) (f∗ug

∗
w + f∗wg

∗
u) ,

χ10 = (f∗u + g∗w)2 (f∗ug
∗
w + f∗wg

∗
u) .

(A.8)

Note that, in the parabolic case, the critical value of the control parameter Bc is defined implicitly by431

the sole highly nonlinear equation (A.4), which results to be decoupled from the others. Moreover, the sign432

in (A.5) has to be chosen in such a way it gives real and positive values for Bc and kc.433

Appendix B: Derivation of Cubic Complex Ginzurg-Landau434

equation435

In this Appendix we fully describe the procedure to deduce the CCGL equation (22) for the hyperbolic436

reaction-advection-diffusion model (1)-(2).437

First of all, substituting the expansion (14) into the governing system (9) and looking for solution438

Ui = Ui(z) with z = x− st, the set of ordinary differential equations (16)-(18), to be solved sequentially, is439

obtained. At the first perturbative order, the system reads:440

dU1

d z
= K∗

cU1 (B.1)

where the matrix K∗
c , defined in (19), admits four complex eigenvalues given by441

λ1,2 = ∓ikc with k2c =
δ3
δ1

∣∣∣∣
c

(B.2)

and442

λ3,4 = α∓ iβ with α = − δ1
2

∣∣∣∣
c

and β =

√√√√(δ1δ4
δ3
− δ21

4

)∣∣∣∣∣∣∣
c

(B.3)

to which there correspond the following right eigenvectors443

d(± i kc) =


r1 ± i r̂1
r2 ± i r̂2
r3 ± i r̂3
r4 ± i r̂4

 , d(α±iβ) =


y1 ± i ŷ1
y2 ± i ŷ2
y3 ± i ŷ3
y4 ± i ŷ4

 . (B.4)

The general solution of the homogeneous linear system (B.1) can be expressed as:444

U1 = PeQzP−1C(T2) (B.5)

where the vector C(T2) is determined by boundary conditions, whereas P and Q are, respectively, the445

eigenvectors and eigenvalues matrices of K∗
c given by446

P =


r1 + i r̂1 r1 − i r̂1 y1 + i ŷ1 y1 − i ŷ1
r2 + i r̂2 r2 − i r̂2 y2 + i ŷ2 y2 − i ŷ2
r3 + i r̂3 r3 − i r̂3 y3 + i ŷ3 y3 − i ŷ3
r4 + i r̂4 r4 − i r̂4 y4 + i ŷ4 y4 − i ŷ4

 , Q =


i kc 0 0 0
0 − i kc 0 0
0 0 α+ iβ 0
0 0 0 α− iβ

 . (B.6)
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Then, solution of (B.1) reads:447

U1 = Ω(X,T2)e
i kczd(i kc) + Ω(X,T2)e

− i kczd(− i kc) (B.7)

where the complex pattern amplitude Ω remains undetermined at this stage and Ω denotes its complex448

conjugate.449

At the second order, the governing system is the following:450

dU2

d z
−K∗

cU2 = (M − sI)−1

{
1

2

(
U1 · 5

)(2)
N|∗c −M

∂U1

∂X

}
(B.8)

whose general solution is given by451

U2 = PeQzP−1C(T2) + PeQz
∫
e−Qz(MP )−1Fdz (B.9)

where F is the non-homogeneous term at the right-hand side of (B.8).452

Now, taking into account (B.9) and inserting (B.7) into the non-homogeneous linear system (B.8), the453

solution at the second perturbative order satisfying periodic boundary conditions reads:454

U2 =
∂Ω

∂X
ei kczg +

∂Ω

∂X
e− i kczg + Ω2e2 i kczq + Ω

2
e−2 i kczq + 2q0|Ω|2 (B.10)

where the vectors:455

g =


g1 + i ĝ1
g2 + i ĝ2
g3 + i ĝ3
g4 + i ĝ4

 , q =


q1 + i q̂1
q2 + i q̂2
q3 + i q̂3
q4 + i q̂4

 , q0 =


q01
q02
0
0

 (B.11)

fulfill the linear systems:456 [
L∗
c − i kc(M − sI)

]
g = Md(i kc)[

L∗
c − 2 i kc(M − sI)

]
q = −1

2

(
d(i kc) · ∇

)(2)
N

∣∣∣∣∗
c

L∗
cq0 = −1

2

(
d(i kc) · ∇

)(
d(− i kc) · ∇

)
N

∣∣∣∣∗
c

(B.12)

with457

lMd(i kc) = 0,

l
[
L∗
c − i kc(M − sI)

]
= 0,

(B.13)

whereas g and q are the complex conjugate of g and q, respectively.458

Finally, by substituting (B.7) and (B.10) into (18), from the removal of secular terms, we deduce that459

the pattern amplitude Ω(X,T2) satisfies the CCGL equation:460

∂Ω

∂T2
= (ρ1 + i ρ2)

∂2Ω

∂X2
+ (σ1 + iσ2) Ω− (L1 − iL2) Ω |Ω|2 (B.14)

where:461

ρ1 + i ρ2 =
[
(n1e1 + n2e2) + i (n2e1 − n1e2)

]
/
(
e21 + e22

)
σ1 + iσ2 = B2

[
(m1e1 +m2e2) + i (m2e1 −m1e2)

]
/
(
e21 + e22

)
L1 − iL2 = (p1 − i p2) /

(
e21 + e22

) (B.15)
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with:462

n1 =
[
(g4 − νg2)f∗u − g3g∗u

]
E1r +

[
(g4 − νg2)f∗w − g3g∗w

]
E2r + (f∗ug

∗
w − f∗wg∗u)(dg2E4r − g1E3r),

n2 =
[
(g4 − νg2)f∗u − g3g∗u

]
E1i +

[
(g4 − νg2)f∗w − g3g∗w

]
E2i + (f∗ug

∗
w − f∗wg∗u)(dg2E4i − g1E3i),

m1 = − (s1r1 + s2r2) (E1rf
∗
u + E2rf

∗
w) + (s1r̂1 + s2r̂2) (E1if

∗
u + E2if

∗
w) +

+ (h1r1 + h2r2) (E1rg
∗
u + E2rg

∗
w)− (h1r̂1 + h2r̂2) (E1ig

∗
u + E2ig

∗
w) ,

m2 = − (s1r1 + s2r2) (E1if
∗
u + E2if

∗
w)− (s1r̂1 + s2r̂2) (E1rf

∗
u + E2rf

∗
w) +

+ (h1r1 + h2r2) (E1ig
∗
u + E2ig

∗
w) + (h1r̂1 + h2r̂2) (E1rg

∗
u + E2rg

∗
w) ,

p1 = (b1f
∗
u − a1g∗u) (E1re1 + E1ie2)− (b2f

∗
u − a2g∗u) (E1ie1 − E1re2) +

+ (b1f
∗
w − a1g∗w) (E2re1 + E2ie2)− (b2f

∗
w − a2g∗w) (E2ie1 − E2re2) ,

p2 = (b1f
∗
u − a1g∗u) (E1ie1 − E1re2)− (b2f

∗
u − a2g∗u) (E1re1 + E1ie2) +

+ (b1f
∗
w − a1g∗w) (E2ie1 − E2re2)− (b2f

∗
w − a2g∗w) (E2re1 + E2ie2) ,

e1 = (r1g
∗
u − r2f∗u)E1r − (r̂1g

∗
u − r̂2f∗u)E1i + (r1g

∗
w − r2f∗w)E2r − (r̂1g

∗
w − r̂2f∗w)E2i+

(f∗ug
∗
w − f∗wg∗u) (τur3E3r − τwr4E4r − τur̂3E3i + τwr̂4E4i) ,

e2 = (r1g
∗
u − r2f∗u)E1i + (r̂1g

∗
u − r̂2f∗u)E1r + (r1g

∗
w − r2f∗w)E2i + (r̂1g

∗
w − r̂2f∗w)E2r+

(f∗ug
∗
w − f∗wg∗u) (τur3E3i − τwr4E4i + τur̂3E3r − τwr̂4E4r) ,

E1r + iE1i = r̂4(y1ŷ3 − y3ŷ1) + r̂3(y4ŷ1 − y1ŷ4) + r̂1(y3ŷ4 − y4ŷ3)+

i
[
r4(y1ŷ3 − y3ŷ1) + r3(y4ŷ1 − y1ŷ4) + r1(y3ŷ4 − y4ŷ3)

]
,

E2r + iE2i = r̂4(y2ŷ3 − y3ŷ2) + r̂3(y4ŷ2 − y2ŷ4) + r̂2(y3ŷ4 − y4ŷ3)+

i
[
r4(y2ŷ3 − y3ŷ2) + r3(y4ŷ2 − y2ŷ4) + r2(y3ŷ4 − y4ŷ3)

]
,

E3r + iE3i = r̂4(y2ŷ1 − y1ŷ2) + r̂2(y1ŷ4 − y4ŷ1) + r̂1(y4ŷ2 − y2ŷ4)+

i
[
r4(y2ŷ1 − y1ŷ2) + r2(y1ŷ4 − y4ŷ1) + r1(y4ŷ2 − y2ŷ4)

]
,

E4r + iE4i = r̂3(y2ŷ1 − y1ŷ2) + r̂2(y1ŷ3 − y3ŷ1) + r̂1(y3ŷ2 − y2ŷ3)+

i
[
r3(y2ŷ1 − y1ŷ2) + r2(y1ŷ3 − y3ŷ1) + r1(y3ŷ2 − y2ŷ3)

]
,

(B.16)

h1 =
dfu
dB
|∗c , h2 =

dfw
dB
|∗c , s1 =

dgu
dB
|∗c , s2 =

dgw
dB
|∗c

and463
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a1 + i a2 = fuu|∗c
{
r1(2q01 + q1) + r̂1q̂1 + i

[
r̂1(2q01 − q1) + r1q̂1

]}
+

fuw|∗c
{
r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1+

i
[
r̂1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1

]}
+

fww|∗c
{
r2(2q02 + q2) + r̂2q̂2 + i

[
r̂2(2q02 − q2) + r2q̂2

]}
+

1
2fuuu|

∗
c(r

2
1 + r̂21)(r1 + i r̂1) + 1

2fwww|
∗
c(r

2
2 + r̂22)(r2 + i r̂2)+

1
2fuuw|

∗
c

{
2r1r̂1r̂2 + r2(3r

2
1 + r̂21) + i

[
2r1r̂1r2 + r̂2(r

2
1 + 3r̂21)

]}
+

1
2fuww|

∗
c

{
2r2r̂1r̂2 + r1(3r

2
2 + r̂22) + i

[
2r1r̂1r2 + r̂1(r

2
2 + 3r̂22)

]}
,

b1 + i b2 = guu|∗c
{
r1(2q01 + q1) + r̂1q̂1 + i

[
r̂1(2q01 − q1) + r1q̂1

]}
+

guw|∗c
{
r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1+

i
[
r̂1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1

]}
+

gww|∗c
{
r2(2q02 + q2) + r̂2q̂2 + i

[
r̂2(2q02 − q2) + r2q̂2

]}
+

1
2guuu|

∗
c(r

2
1 + r̂21)(r1 + i r̂1) + 1

2(gwww)|∗c(r22 + r̂22)(r2 + i r̂2)+

1
2guuw|

∗
c

{
2r1r̂1r̂2 + r2(3r

2
1 + r̂21) + i

[
2r1r̂1r2 + r̂2(r

2
1 + 3r̂21)

]}
+

1
2guww|

∗
c

{
2r2r̂1r̂2 + r1(3r

2
2 + r̂22) + i

[
2r1r̂1r2 + r̂1(r

2
2 + 3r̂22)

]}
.

(B.17)

In the particular case of the hyperbolic extension of the Klausmeier model, taking into account464

f∗u = B, f∗w = u2S , g∗u = −2B, g∗w = −
(
1 + u2S

)
,

f∗uu = 2B/uS , f∗uw = 2uS , f∗ww = 0,

g∗uu = −2B/uS , g∗uw = −2uS , g∗ww = 0,

f∗uuu = f∗uww = f∗www = 0, f∗uuw = 2,

g∗uuu = g∗uww = g∗www = 0, g∗uuw = −2,

(B.18)

the components of the right eigenvectors d(± i kc) and d(α±iβ) reported in (B.4) become:465
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r1 = 1, r̂1 = 0,

r2 = k2c−Bc−(τu)2k2cs
2Bc

u2Sc
[k2cs2(τu)

2+1]
, r̂2 = −

kcs
[
1+k2cτ

u(τus2−1)
]

u2Sc
[k2cs2(τu)

2+1]
,

r3 = k2csτ
u

k2cs
2(τu)2+1

, r̂3 = − kc
k2cs

2(τu)2+1
,

r4 = kcd(r̂2+kcsr2τw)

1+(τw)2k2cs
2
, r̂4 = kcd(−r2+kcsr̂2τw)

1+(τw)2k2cs
2

,

y1 = 1, ŷ1 = 0,

y2 = (αsτu−1)l1+βsτul2
u2Sc

[(αsτu−1)2+β2s2(τu)2]
, ŷ2 = (αsτu−1)l2−βsτul1

u2Sc
[(αsτu−1)2+β2s2(τu)2]

,

y3 = α(αsτu−1)+β2sτu

(αsτu−1)2+β2s2(τu)2
, ŷ3 = − β

(αsτu−1)2+β2s2(τu)2
,

y4 =
d[(αy2−βŷ2)(αsτw−1)+βsτw(βy2+αŷ2)]

(τwαs−1)2+β2s2(τw)2
, ŷ4 =

d[(βy2+αŷ2)(αsτw−1)+βsτw(βŷ2−αy2)]
(τwαs−1)2+β2s2(τw)2

,

(B.19)

where466

l1 =
(
α2 − β2

) (
1− s2τu

)
+ αs (1−Bcτu) +Bc, l2 = 2αβ

(
1− s2τu

)
+ βs (1− τuBc) . (B.20)

Moreover, the coefficients occurring in (B.17) reduce to:467

a1 + i a2 = 2Bc/uSc
[
r1(2q01 + q1) + r̂1q̂1

]
+ 2r1r̂1r̂2 + r2(3r

2
1 + r̂21)+

+2uSc
[
r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1

]
+

+ i
{

2Bc/uSc
[
r̂1(2q01 − q1) + r1q̂1

]
+ 2r1r̂1r2 + r̂2(r

2
1 + 3r̂21) +

+2uSc
[
r̂1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1

]}
,

b1 + i b2 = − (a1 + i a2) .

(B.21)
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