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Abstract 11 

In this study we propose a probabilistic approach for coupled distributed hydrological-12 

hillslope stability models that accounts for soil parameters uncertainty at basin scale. The 13 

geotechnical and soil retention curve parameters are treated as random variables across the 14 

basin and theoretical probability distributions of the Factor of Safety (FS) are estimated. The 15 

derived distributions are used to obtain the spatio-temporal dynamics of probability of failure, 16 

in terms of parameters uncertainty, conditioned to soil moisture dynamics. The framework has 17 

been implemented in the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-based Real-18 

time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution) - 19 

Landslide model and applied to a basin in the Luquillo Experimental Forest (Puerto Rico) 20 

where shallow landslides are common.  In particular, the methodology was used to evaluate 21 

how the spatial and temporal patterns of precipitation, whose variability is significant over the 22 

basin, affect the distribution of probability of failure, through event scale analyses. Results 23 

indicate that hyetographs where heavy precipitation is near the end of the event lead to the 24 

most critical conditions in terms of probability of failure. 25 

 26 
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1 Introduction 1 

Rainfall-triggered landslides are among the most common types of landslides, which every 2 

year cause fatalities, damage to properties and economic losses all over the world. Methods 3 

available in the scientific literature for rainfall-triggered hazards analyses are various and can 4 

be empirical, statistical or deterministically based. The first two types of methods can be 5 

included within a broader category in which the relation between rainfall and landslide hazard 6 

is analyzed based on past observations and lead to the derivation of landslide susceptible areas 7 

or rainfall thresholds (e.g. Glade, 1998; Guzzetti et al., 1999; Guzzetti et al., 2007; Ponziani et 8 

al., 2013; Stefanini, 2004). Whereas, a class of coupled distributed hydrological-stability 9 

models, to which our approach belongs, can be used to evaluate, dynamically, the risk of 10 

shallow rainfall-triggered landslide hazards at catchment scale (deterministic approach). In 11 

fact, failures result from interdependent spatio-temporal dynamics which include many of the 12 

hydrological processes (rainfall, evapotranspiration, infiltration, etc..) as well as vegetation 13 

surcharge, root strength, soil moisture conditions. The practice consists in estimating a 14 

spatially distributed Factor of Safety (FS) as a function of the basin hydrological response, 15 

which is evaluated in terms of soil moisture and groundwater fields (Arnone et al., 16 

2011;Burton and Bathurst, 1998;Capparelli et al., 2002;Montgomery and Dietrich, 17 

1994;Rosso et al., 2006;Simoni et al., 2008;Wu and Sidle, 1995). Mechanical and 18 

hydrological soil properties play a crucial role in such an evaluation, and the importance of 19 

appropriately modeling soil water dynamics has been clearly demonstrated in some studies 20 

(Lanni et al., 2009;Lepore et al., 2013). 21 

A limitation of using physically-based and spatial distributed models is the high numbers of 22 

model parameters whose reliable estimation is not always possible in a natural catchment 23 

(Beven, 1993;Beven and Binley, 1992). The inability to fully characterize hydrological and 24 

geotechnical behavior of soil may have a significant impact on model results; indeed, the 25 

uncertainty in model parameter evaluation has been recognized as an important cause of the 26 

mismatch between simulated and observed distributions of landslides across the catchment 27 

(Burton et al., 1998).  28 

Burton et al., 1998 provides an in depth analysis on the effect of the spatial variation of soil 29 

parameters (i.e. soil strength, soil depth and slope) on landslide occurrence, starting from an 30 

accurate dataset of parameters with high frequency of spatial measurements. The analysis, 31 

conducted on a selected area of a catchment, has provided interesting insights into the 32 
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statistical relationships among the parameters and has demonstrated that the effects of spatial 1 

variability of model parameters can be significant.  2 

To account for this uncertainty, FS can be computed within a probabilistic framework, by 3 

considering soil parameters as random variables with given probability distributions. This 4 

practice has received considerable attention in the geotechnical engineering literature where 5 

we find different methodologies for modeling and analyzing the uncertainty related to the 6 

shear strength parameters (i.e. soil cohesion and friction angle) at hillslope scale (Abbaszadeh 7 

et al., 2011;Ray and Baidya, 2011;Malkawi et al., 2000). Based on similar approaches, some 8 

studies have been conducted for basin scale applications using coupled hydrological-stability 9 

models (Frattini et al., 2009;Melchiorre and Frattini, 2012;Pack et al., 1998;Simoni et al., 10 

2008). In those applications, the probability of FS, conditioned on the soil moisture, is 11 

dynamically estimated across the basin, whereas the probability distributions of the shear 12 

strength parameters are time independent.  13 

However, the uncertainty of soil hydrological properties, which may be predominant in the 14 

case of unsaturated conditions and at basin scale, is still neglected in most published 15 

literature. Of particular interest and importance are the soil retention curve parameters that are 16 

most significant in determining the soil matric suction contribution to the stability of slopes.  17 

If one presumes that soil parameters are random variables then the probability distribution of 18 

FS could potentially be derived numerically, analytically, or through analytical 19 

approximations. The Monte Carlo simulation method uses independent sets of soil properties, 20 

generated through a priori assigned probability distributions (Abbaszadeh et al., 21 

2011;Malkawi et al., 2000) at fixed topographic (i.e. slope) and hydrological (i.e. soil 22 

moisture) conditions to obtain a solution. However, such an approach may have significant 23 

computational cost for basin scale applications, since the conditions change in time and space. 24 

The FS probability distribution can be analytically derived in the case where only 25 

geotechnical parameters (i.e., cohesion and friction angle) are considered as time independent 26 

random variables and the infinite slope model is used for the slope stability analysis (Frattini 27 

et al., 2009;Simoni et al., 2008). When all soil retention curve parameters are also assumed to 28 

be random, analytical derivation of FS distribution is not tractable. Then, the First Order 29 

Second Moment (FOSM) method (Benjamin and Cornell, 1970) is commonly used to 30 

estimate analytical approximations of the spatio-temporal FS statistics (i.e. mean and 31 

variance), that can be used to fit a theoretical probability distribution for FS and estimate the 32 
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spatio-temporal dynamics of probability of failure. To our knowledge, a first example of 1 

using the FOSM method in a hydrological-stability model is given by Arnone et al. (2014). In 2 

that effort, the lognormal distribution is used to describe the FS occurrences. However, when 3 

the function is highly nonlinear as the case of the FS equation, a better approximation to the 4 

mean can be obtained by using higher order terms in the Taylor series expansion of the FS 5 

expression.  6 

In this paper we propose an advanced methodology to take into account the uncertainty 7 

associated to the soil parameters in the computation of FS, by using higher order expansions 8 

of the non linear FS expression, thus improving on the results of Arnone et al., (2014). The 9 

parameters of the FS equation are thus treated as random variables and consequently the 10 

associated distributions of FS are estimated. Parameters of the soil water retention curve are 11 

treated as random variables as well as the mechanical parameters. However, the uncertainty 12 

derived from the spatial variability across the same soil type is not taken into account. The 13 

framework is implemented in the tRIBS-VEGGIE (Triangulated Irregular Network (TIN)-14 

based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive 15 

Evolution) - Landslide module (Lepore et al., 2013). The proposed methodology is applied to 16 

the Rio Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico that is 17 

particularly susceptible to shallow landslides due to both the morphology and the numerous 18 

intense rainfall events that hit the area. Precipitation at the site is strongly correlated to the 19 

topography (Daly et al., 2003;Garcia-Martino et al., 1996) and the extreme events are also 20 

characterized by different types of temporal distributions (Bonnin et al., 2006). Such spatial 21 

and temporal patterns may have different impacts on the hydrologic response (Ogden and 22 

Julien, 1993;Singh, 1997;Wilson et al., 1979) and hence may initiate landslides events 23 

differently (D'Odorico et al., 2005). The basin has been the subject of previous landslides 24 

analysis with the tRIBS-VEGGIE-Landslide model in Lepore et al., 2013 work, which we 25 

will refer to for the description of most of the data. In addition to the description and 26 

implementation of the new probabilistic framework of tRIBS-VEGGIE-Landslide model, this 27 

paper also aims to assess the effects of different temporal distribution of precipitation on the 28 

hillslope stability and on the consequent landslide hazards across the basin. 29 
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2 Methods 1 

2.1 Coupled Hydrological-Stability Model 2 

The methodology is built around the tRIBS-VEGGIE-Landslide model (Lepore et al., 2013) 3 

which was developed by embedding a limit equilibrium analysis into the eco-hydrological 4 

model tRIBS-VEGGIE (Ivanov et al., 2008).The model inherits from tRIBS the capability to 5 

simulate most of the hydrological processes (e.g. infiltration, evapotranspiration, interception, 6 

lateral redistribution, soil moisture dynamics), by explicitly considering the spatial variability 7 

of land-surface properties as well as in precipitation field. Topography is described by means 8 

of an irregular triangulated spatial mesh which allows for the use of variable computational 9 

elements and thus for the increase in accuracy only in the most critical areas of the basin 10 

(Vivoni et al., 2004). The vegetation module (VEGGIE) simulates the plant physiology, and 11 

in particular the biophysical energy processes (e.g. transpiration), biophysical hydrologic 12 

processes (e.g. unsaturated zone flow) and biochemical processes (e.g. photosynthesis, plant 13 

respiration) (Ivanov et al., 2008). A detailed description of model can be found in (Ivanov et 14 

al., 2008). For understanding this paper it is nevertheless important to review the following 15 

elements of tRIBS-VEGGIE-Landslide:  16 

• The infiltration module is based on a numerical approximation of the one dimensional 17 

Richards’ equation (Hillel, 1980), which provides the moisture transfer in the 18 

subsurface within an element. Subsurface and surface moisture is then laterally 19 

redistributed among the elements along the direction of steepest descent in a rate 20 

depending on the unsaturated hydraulic conductivity of the receiving cell.  21 

• As a consequence of the Richard’s equation resolution scheme, soil moisture is 22 

estimated in a multi-layer scheme parallel to the slope surface, with a number of layers 23 

equal to 25. 24 

• The Brooks and Corey (1964) (BC) parameterization scheme is used to model the soil 25 

retention curve and the unsaturated hydraulic conductivity, as a function of saturated 26 

hydraulic conductivity in the normal to the soil surface direction, air entry bubbling 27 

pressure, and pore-size distribution index.  28 

• In this work only the effects of vegetation on soil moisture are considered, not the 29 

mechanical effects. 30 
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The coupled model is capable to dynamically compute the factor of safety, FS(t), across a 1 

basin as a response of the soil moisture dynamics, by applying the infinite slope analysis. The 2 

implemented equation is the following (Lepore et al., 2013):  3 

      

      

(1)
 

4 

where FS(t) is the time dependent factor of safety (hereinafter simply FS), c’ is the effective 5 

soil cohesion, gs is the total unit weight of soil (varying with soil moisture), gw is the water unit 6 

weight, zn is the soil depth measured along the normal direction to the slope; a is the slope 7 

angle, f is the soil friction angle, yb is the air entry bubbling pressure, l is the pore-size 8 

distribution index, q(t)  is the time depended volumetric water content (hereinafter simply q), 9 

and qr and qs are the residual and saturated soil moisture contents, respectively. yb, l , qr and 10 

qs are the Brooks-Corey equation parameters used to represent the soil retention curve. As a 11 

result of the multi-layer representation of soil moisture, the final products of the module are 12 

dynamic maps of instability areas as well as dynamic FS profiles at selected areas. 13 

2.2 Probabilistic Framework 14 

A probabilistic framework was developed to take into account the soil parameters uncertainty 15 

that characterizes slope stability analyses. The methodology consists of i) treating the soil 16 

hydrological and geotechnical parameters of the FS equation (Eq. 1) as random variables, ii) 17 

estimating the FS moments through the FOSM method and, finally, iii) computing the FS 18 

distribution by fitting a theoretical distribution to the estimated moments. The framework 19 

upgrades the approach presented in Arnone et al. (2014) by improving the accuracy of the 20 

approximation and by using a more appropriate theoretical probability distribution for the 21 

Factor of Safety.  22 

The FOSM method is the most widely used approximate method in engineering design for the 23 

analytical estimation of the mean and variance of a random function and it is based on a 24 

Taylor series expansion. Consider a function of variables, X1,…,Xn: Y=y(X1,…,Xn). The 25 

approximation used here expands up to second order terms in the Taylor series, as opposed to 26 

Arnone et al., (2014), resulting in: 27 

 28 
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                              (2) 1 

 2 

where E[·] denotes the expectation, Var[·] denotes the variance, Cov[Xi, Xj] denotes the 3 

covariance between Xi and Xj  and n is the number of random variables. Eq. (2) has been used 4 

in engineering studies for the estimation of the mean FS (Abbaszadeh et al., 2011).  5 

The variance of the random function Y is approximated by the FOSM method as following: 6 

 7 

  (3) 8 

 9 

Derivatives of y in Eqs. (2) and (3) are estimated around the mean values μXi.  10 

Given the marginal (means and variances) and joint statistics (covariances) of the six assumed 11 

random variables (c, f, qr, qs ,yb, and l ), Eqs. (2) and (3) analytically approximate the mean, 12 

and variance of FS, E[FS] and Var[FS] respectively. Eq. (1) is continuously differentiable 13 

with respect to each assumed random variable, a condition required for the analytical 14 

implementation of the FOSM method. First, second and mixed derivatives of Eq. (1) with 15 

respect to each of the six parameters were analytically derived for a total of 15 derivatives. In 16 

particular, we obtained 6 first derivatives for the 6 variables, 3 second derivatives for qr, qs , 17 

and l (the others are null) and 6 mixed derivatives of the correlated random variables (i.e. qr-18 

qs, qr-yb, qr-l, qs-yb, qs-l,yb-l). Each term is thus a function of the topographic characteristics 19 

and the soil moisture spatial and temporal dynamics (q), leading the statistics E[FS] and 20 

Var[FS] that are dependent on both space and time, via changes of the moisture and 21 

topography.  22 

Given the two FS moments, it is then possible to fit a two-parameter distribution to the factor 23 

of safety. Given the FS distribution it is possible to compute the soil moisture dependent 24 

probability of failure as the cumulative probability that FS is less than a given critical value, 25 

FScrit, Pr[FS<FScrit]. This critical value is the one that delimits stable and unstable conditions, 26 

and rigorously it is equal to 1, based on the definition of FS (eq. 1). However, under 27 

conservative conditions, it could be set to values greater than 1 (e.g. 1.2). In this work we 28 

assumed FScrit =1. Probability of failure can be thus evaluated across the basin and used to 29 

assess shallow landslide hazards. The best-fit theoretical FS distribution can be identified by 30 
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Monte-Carlo experiments with fixed hydrologic and topographic conditions (see Section 4). 1 

The normal distribution has been commonly used to describe the FS as a random variable 2 

(e.g., (Abbaszadeh et al., 2011;Malkawi et al., 2000;Simoni et al., 2008). However, in those 3 

studies only the geotechnical parameters were considered as random variables. Nevertheless, 4 

other studies (e.g. (Arnone et al., 2014;Frattini et al., 2009)) have found that the FS may 5 

exhibit significant positive skewness, with the tail of the distribution located on the right, with 6 

considerable probability mass concentrated at the left side of the distribution. In order to 7 

capture the asymmetry of the FS distribution, works by Arnone et al., 2014 and Frattini et al., 8 

2009 used the lognormal distribution, that was verified for different soil formations. 9 

 10 

Under saturated conditions, matric suction vanishes and FS is independent of the BC 11 

parameters, becoming a linear function of the normally distributed soil cohesion and friction 12 

angle. In this case, the FS distribution is analytically derived and the use of an approximate 13 

method is not required. More precisely, by applying the convolution integral (Feller, 1971) it 14 

can be shown that the FS becomes also a normally distributed random variable, and the FS 15 

statistics (i.e., E[FS] and Var[FS]) can be analytically derived: 16 

       (4) 17 

      (5) 18 

 19 

where µc, s2c, and µtanf, s2tanf are the statistics of cohesion and friction angle respectively, hs 20 

the soil thickness and hw the water level. Given the FS distribution, the probability of failure 21 

for saturated conditions is then computed as the cumulative probability that FS is less than 1: 22 
 23 

    (6) 24 

  25 
where erf is the error function.  26 

The framework described above was implemented in the tRIBS-VEGGIE-Landslide model to 27 

dynamically evaluate the landslide hazard at basin scale. In particular, probabilities of failure 28 

are computed for each time step, voronoi element and soil vertical layer (i). The probability of 29 

FS being equal or lower than a critical value at the ith layer (here referred to as event Ei, 30 
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corresponding to the Probability of Failure at the ith layer, PrFi) is computed, assuming both 1 

independent and not mutually exclusive events among different soil layers. This hypothesis 2 

implies that the occurrence of an event in a layer does not affect nor exclude the occurrence of 3 

another event in a different layer.  4 

At each timestep, the model estimates the spatial map of the probability of landslide 5 

occurrence at each soil column, here referred as Probability of Failure of the soil Column 6 

(PrFC). The PrFC is equal to the probability of the union of events Ei for the entire soil 7 

column. Furthermore, at each soil column the probability of the landslide depth is 8 

dynamically estimated. The probability that the plane of failure is located at the ith layer (here 9 

referred as Probability of Plane of Failure at ith layer, PrPFi) is given by the joint probability 10 

of FS being equal or lower than FScrit at layer i, while there is no failure above that layer 11 

(mutually exclusive). 12 

The landslide depth corresponding to the maximum value of PrPFi represents the most 13 

probable depth of failure. Thus, the model is able to evaluate when and where failure is most 14 

probable to occur within each soil column and across the basin. 15 

 16 

3 Case Study 17 

The island of Puerto Rico is located in the northeastern Caribbean and is the smallest island of 18 

the Greater Antilles. With its roughly rectangular shape (Figure 1), the island is characterized 19 

topographically by flat coastal areas and two mountain ranges, the Cordillera Central, which 20 

spans east to west with a peak of 1,338 m, and the Sierra de Luquillo which will be the focus 21 

of this study, with Pico del Este, or East Peak, at 1075 m. The Sierra de Luquillo was chosen 22 

for this study as it contains the Luquillo Experimental Forest (LEF) which is part of both the 23 

Long-Term Ecological Research (LTER) and of the Critical Zone Observatory (CZO) 24 

networks. This study will focus on the Rio Mameyes basin (hereto referred to as "Mameyes 25 

Basin"), in the northeast of the Sierra de Luquillo and within the LEF boundaries (Figure 1). 26 

The LEF has been a focal point for studies in landslide impacts on ecology, geomorphology, 27 

biology, disturbance and recovery of vegetation (Myster et al., 1997;Scatena and Lugo, 28 

1995;Shiels et al., 2008;Walker and Shiels, 2008;Walker et al., 1996).  29 

The Mameyes basin has an area of 16.7 km2, and is characterized by a rapid change in 30 

elevation from 104.2 m to 1046 m across a horizontal distance of 3 km. An analysis of the 31 

slope distribution derived from a 30 m resolution US Geological Survey (USGS) National 32 
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Elevation Dataset (NED) DEM (Digital Elevation Model) (Figure 1a, c) reveals 10% of the 1 

basin area with slopes greater than 30° and 30% of the basin area with slopes greater than 25°. 2 

The climate of the island is controlled by the easterly trade winds from the Atlantic ocean and 3 

the pronounced topography (Garcia-Martino et al., 1996). The basin falls in the windward 4 

climatic region of the Island, making it one of the wettest basins on the island. Because of the 5 

strong gradient in elevation, rainfall, cloudiness and temperature vary consistently throughout 6 

the basin. The mean annual precipitation (MAP) varies from approximately 3000 mm, 7 

measured at an elevation of 352 m (Bisley Tower), to 5000 mm at higher elevations (Lepore 8 

et al., 2012).  9 

The Luquillo forest is characterized by a mix of lower montane wet tropical, wet subtropical 10 

and rain forest (Ewel and Whitmore, 1973). There are three major forest types: the Tabonuco 11 

forest (Dacryodes excelsa) in the wet subtropical and subtropical rain forest life zones, 12 

typically within the 150-600 m elevation range; the Colorado forest (Cyrilla racemiflora) in 13 

the lower montane wet and rain forest life zones, within 600 and 900 m, and the Dwarf 14 

(cloud) forest, above 900 m (Waide et al., 1998).  15 

The Mameyes basin has been previously modeled in terms of spatio-temporal dynamics of 16 

hillslope stability by Lepore et al., (2013) using the tRIBS-VEGGIE-Landside model. 17 

Therefore, most of the needed data, data description and model setup are described in detail in 18 

Lepore et al., 2013. For the sake of clarity, we briefly describe the main model data and 19 

parameters in the following section.  20 

 21 

3.1 Data and model parameters  22 

The tRIBS-VEGGIE-Landside model operates at hourly scale and the required model inputs 23 

are mainly meteorological data, soil data, and soil and ecological parameters.  24 

The meteorological data used were obtained from the Bisley Tower located within the basin 25 

(lat. 18.31, long. 65.74, 352 m) (Figure 1a), which measures many of the needed input data at 26 

hourly resolution (wind speed and direction, air temperature, cloud cover, relative humidity, 27 

rainfall, incoming shortwave radiation).  28 

The 30m DEM was also used to derive the Triangulated Irregular Network (TIN) that describe 29 

the topography within the model. The soil data were obtained from the USDA Forest 30 

Service’s International Institute of Tropical Forestry of San Juan; in particular, the 31 



 11 

USDA/NRCS (Huffaker, 2002) report provides a detailed description of the 12 soil complexes 1 

that characterize the basin. As described in Lepore et al., 2013, the 12 soil types were further 2 

simplified into four soil types (Figure 1b) according to the USDA soil classification. The 3 

bedrock is located at a depth of 8m or deeper (Simon et al., 1990) and is assumed not to affect 4 

a shallow slope failure mechanism. 5 

The main hydrological soil properties (i.e. saturated hydraulic conductivity, anisotropy ratio) 6 

were obtained through a validation/confirmation procedure based on soil moisture data 7 

(Lepore et al., 2013).  In particular, nine soil moisture hourly series measured at a 30 cm depth 8 

were used for the model confirmation. The measurements were taken at three locations, within 9 

an area close to the Bisley Tower and each with three time-domain reflectometry (TDRs) 10 

Campbell Scientific Model CS616 instruments (Lepore et al., 2013). tRIBS-VEGGIE defines 11 

the anisotropy ratio as the ratio of the saturated hydraulic conductivities in the directions 12 

parallel to the slope and normal to the slope and thus it is partially responsible of the lateral 13 

subsurface flux transfer. In this work, the anisotropy ratio is 100 (Lepore et al., 2013).  14 

The BC soil retention parameters, i.e. qr, qs, yb, and l, and their statistics were estimated from 15 

a generalized soil properties database available in the literature (Table 1). In particular,  16 

Brakensiek et al. (1981) suggested transformations of the BC parameters to normality and 17 

reported their statistical properties for different soil types. McCuen et al. (1981) reported BC 18 

parameters statistics and demonstrated the variation that the BC parameters exhibit across 19 

different soil textural classes. Rawls et al. (1982) provided BC marginal statistical properties. 20 

Meyer et al. (1997) and Flores et al. (2010) reported marginal distributions of BC parameters 21 

by applying parameter equivalency relationships between BC and van Genuchten (1980) soil 22 

retention parameters. As in Arnone et al. (2014), we used statistical properties (i.e., means, 23 

variances and cross-correlation coefficients) reported by Brakensiek et al. (1981) and McCuen 24 

et al. (1981) and the corresponding transformations of BC parameters to normal random 25 

variables  (Table 1), which allowed the use of the joint Normal distribution for the BC soil 26 

retention parameters. 27 

With regard to the geotechnical parameters, Simon et al. (1990) and Lohnes and Demirel 28 

(1973) reported values for cohesive strength and friction angle for some of the geological 29 

units of the study area, and illustrated the expected high variability of these two quantities. In 30 

this study, as in Lepore et al., (2013), we assumed spatially homogenous properties over the 31 

entire basin following the predominant geological unit (Simon et al., 1990). The uncertainty 32 
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characterizing estimates of soil cohesion and friction angle has been thoroughly studied in the 1 

literature. Lumb (1966) suggests that c’ and f can be described by the Normal distribution. 2 

This assumption has been widely used in the literature (Abbaszadeh et al., 2011;Frattini et al., 3 

2009;Melchiorre and Frattini, 2012;Simoni et al., 2008;Tobutt, 1982;Wu and Kraft, 4 

1967;Langejan, 1965;Malkawi et al., 2000;Rackwitz, 2000). Fredlund and Dahlman (1972), 5 

Lumb (1974) and Schultze (1975) provided statistical properties of geotechnical parameters. 6 

Matsuo and Kuroda (1974) and Lumb (1974) suggested that correlation between cohesion and 7 

friction angle is negligible, and independence between the two random variables has been 8 

assumed in past studies (Abbaszadeh et al., 2011;Christian et al., 1994;Dettinger and Wilson, 9 

1961;Malkawi et al., 2000;Yucemen MS et al., 1975). Therefore, here we assume that c’ and f  10 

are independent Normal random variables. The associated statistics of the geotechnical 11 

parameters are reported in Table 1. Incorporating marginal distributions consistent with the 12 

literature is an advantage of the implemented framework over simpler approaches (e.g. over 13 

Pack et al. (1998) who assume input parameters which follow a uniform distribution). 14 

As for the vegetation characteristics, only the Tabonuco forest is considered, because it is the 15 

predominant vegetation type of the basin and it is present where both the meteorological and 16 

the soil moisture measurements were taken (Lepore et al., 2013). The forest is modeled as 17 

broadleaf evergreen tropical (BET) class, with vegetation height of 20m and a LAI of 6m2 m−2 18 

(Wang et al., 2003;Weaver and Murphy, 1990). The root component has been modeled with a 19 

rectangular density function through a depth of 40 cm (typical of the Tabanuco forest).  Other 20 

parameters used in the vegetation modeling have been taken from the literature (Ivanov et al., 21 

2008a, b; Wang et al., 2003;Weaver and Murphy, 1990). 22 

 23 

4 Monte Carlo Simulations 24 

As previously mentioned, the selection of the probability distribution was based on Monte 25 

Carlo experiments for various hydrological and topographical conditions (i.e. soil moisture 26 

and slope values and soil depth). First, values of BC parameters, soil cohesion, and friction 27 

angle are sampled from the corresponding assumed theoretical distributions (as explained 28 

section 2.2), given the moments reported in Table 1. Then, the FS is estimated (Eq.1) for each 29 

set of sampled values, and for the fixed hydrological and topographical conditions. The 30 

results are then used to obtain the empirical distribution of FS. The procedure was repeated 31 

for different sets of slope, soil depth and soil moisture, and for all different soil types 32 
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characterizing the area, i.e., clay, clay-loam, silty-clay, and sandy-loam. The empirical FS 1 

distributions were compared to different theoretical fits, based both on Kolmogorov-Smirnov 2 

goodness of fit statistics and visually. The graphical method of Quantile-Quantile (QQ) plots 3 

(Wilk and Gnanadesikan, 1968) was used for visual comparison. We are specifically 4 

interested in reproducing the values of FS probability around 1, which is the FScrit for failure. 5 

Thus, it is important that the theoretical quantiles be as close as possible to the empirical ones 6 

around values of FS=1. 7 

As a further improvement with respect to the work by Arnone et al., (2014), several two-8 

parameter theoretical distributions were compared against the empirical FS distribution as 9 

well as different combinations of fixed values of slope, depth of failure, and volumetric water 10 

content. For the sake of brevity, here we show the comparison of only three probability 11 

distributions against the empirical FS distribution (Figure 2), i.e., the normal, lognormal, and 12 

inverse gamma distributions, for the case of slope, depth of failure, and volumetric water 13 

content equal to 40°, 1000 mm, and 0.3 mm3/mm3, respectively, and for hydrological and soil 14 

properties given in Table 1. The inverse gamma distribution, which constitutes a special case 15 

of Pearson V distribution (Pearson, 1895), is a non-negative skewed distribution, 16 

characterized by a heavy tail on the right.  17 

The perfect agreement between theoretical and empirical quantiles is depicted by the diagonal 18 

gray line in the QQ plots of Figure 2. This figure demonstrates that the normal distribution 19 

(purple dots) is the worst in terms of reconstruction of the empirical quantiles whereas the 20 

best results correspond to the  inverse (red dots) and the lognormal (blue dots) distributions. 21 

Given that the goal is to identify the distribution that provides the most accurate estimation of 22 

FS quantiles close to the critical value (1 in this case), the inverse gamma distribution can be 23 

considered as the most appropriate distribution for the estimation of the probability of failure. 24 

Similar results were obtained for other combinations of slope, depth of failure, and volumetric 25 

water content. 26 

The inverse gamma distribution was then used in tRIBS-VEGGIE-Landslide for the dynamic 27 

computation of the FS distribution at each cell. The probability of failure for unsaturated 28 

conditions is then computed as the cumulative probability that FS is less than 1: 29 
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where a and b are the parameters of the distribution, defined as a function of the mean and 1 

variance of FS: 2 

      (8) 3 

 4 
 5 

          (9) 6 

 7 

Note that the results are strictly dependent on the assumed moments of the random variables 8 

(i.e., values given in Table 1).  9 

 10 

5 Rainfall Analysis 11 

In order to evaluate the effect of the temporal rainfall distribution and provide generalized 12 

landslide probability maps for the study area, different synthetic hyetographs representative of 13 

extreme rainfall observations were used to force the model.  14 

The hyetographs were derived from the precipitation frequency estimates provided by the 15 

NOAA Atlas 14 Volume 3 (Bonnin et al., 2006) for Puerto Rico and the U.S. Virgin Islands, 16 

and available at the data sever http://hdsc.nws.noaa.gov/hdsc/pfds. The estimates are provided 17 

for several durations and return periods and are based on statistical analysis of the annual 18 

maximum series. In particular, the procedure makes use of regional frequency analysis based 19 

on L-moments method (Hosking and Wallis, 1997) for selecting and parameterizing 20 

probability distributions.  The quantiles are provided at a spatial resolution of 3 arc-seconds (~ 21 

80 m x 80 m) obtained by spatially interpolating the mean annual maximum of the series at 22 

each station and duration. In particular, data were spatially interpolated by using the PRISM 23 

(Parameter-elevation Regressions on Independent Slopes Model) model (Daly et al., 24 

2002;Daly et al., 2003;Daly and Neilson, 1992), a hybrid statistical-geographic tool for 25 

mapping climate data that generates spatial distribution of estimated climatic parameters 26 

based on the correlation between point data and other geographic and climatic information. 27 

This procedure takes into account the topographic effect on climate and in particular 28 

precipitation patterns, which are known to be particularly significant in Puerto Rico (Daly et 29 

al., 2003;Garcia-Martino et al., 1996). For details reader can refer to NOAA report (Bonnin et 30 

al., 2006) . The result of this analysis is a spatial distribution of the total precipitation at given 31 

duration and return period, as specified above.  32 
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NOAA also provides the normalized temporal distribution of precipitation of durations of 1, 1 

6, 12, 24, 96 hours. The temporal distributions are expressed in probabilistic terms as 2 

cumulative percentages of precipitation and duration at various percentiles. The data were 3 

also subdivided into four categories (identified as ‘quartiles’ in the NOAA report (Bonnin et 4 

al., 2006) based on where the most precipitation occurred in the distribution. For example, 5 

first-quartile group consist of cases where the greatest percentage of the total rainfall 6 

precipitates during the first quarter of the time period. This procedure led to four different 7 

hyetographs which characterize the area (Bonnin et al., 2006).   8 

 9 

For our application, we selected a return period of 100 years and duration of 24 hours, which 10 

represents a typical event duration that may cause initiation of landslide events according to 11 

Larsen and Simon’s (1993) work. Figure 3 shows the corresponding time distributions for 12 

each category, which are representative of four different types of precipitation events (Rosso, 13 

2002): in Q1 most of the rainfall precipitates at the beginning of the event (typical of heavy 14 

storms), whereas in Q2 and Q3, the peak of precipitation is expected around the middle part 15 

of the event (frontal precipitations); finally, in Q4 most of the rainfall volume falls at the end 16 

of the event (tropical cyclones).  17 

For the chosen duration, the most recurrent type of precipitation follow the Q1 pattern (32%);, 18 

27% follow Q2, 22% is of Q3 type  and 19% is Q4 (for more details see NOAA report, A. 1-19 

3).  20 

Given the temporal distribution and the spatial distribution of total precipitation at selected 21 

duration and return period it is then possible to derive, cell by cell, the corresponding 22 

hyetographs by simply distributing the total volume through the duration according to the 23 

curves showed in Figure 3. As an example, Figure 4 shows the obtained hyetographs at a 24 

selected location (in particular, where the Bisley tower is located) for the four types of 25 

hyetographs.  26 

The spatially-averaged precipitation volume for this 24 hr, 100yr event is around 500 mm; in 27 

particular, figure 5 shows the map of the total rainfall estimate of hyetograph Q1. 28 

Precipitation is heavier at higher elevations (west and south corners of the basin), with values 29 

up to 615 mm, and lower in the extreme north-east area (close to the outlet zone), with values 30 

up to 485 mm  (Figure 5). The resulting spatial coefficient variation is 0.05. It is worth 31 
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highlighting that the four types of rain storms have a stationary spatial pattern responding 1 

only to elevation, i.e. no dynamic propagation of precipitation has been considered. 2 

 3 

6 Model application 4 

As mentioned above, four 24 hours, 100 year return period events with different temporal 5 

distributions were used to force the model. The initial conditions of the basin were identified 6 

using a spin-up procedure, which consists of running the model continuously for a long period 7 

(in this case one year) so that the model reaches equilibrium (Lepore et al., 2013). Equal 8 

initial conditions were thus imposed to the 4 storms; the effect of different initial conditions is 9 

not analyzed in this work. Results will be analyzed in a time window of 48 hours, which 10 

includes 24 hours of no rainfall after the end of the event to account for the soil moisture 11 

redistribution effects.’ 12 

 13 

The model output includes: the time series and depth profiles of volumetric soil moisture (q), 14 

probability that FS≤1 (PrFi) and probability that the plane of failure is located at a given 15 

depth (PrPFi), for a given element. Spatially the model provides the distribution of the 16 

probability that failure occurs at any depth within the element-soil column (PrFC) and the 17 

distribution of the most probable depth of failure.  18 

In order to provide a comprehensive description of the model variables, the following section 19 

will discuss the results of a single model application, i.e. the results of the model forced with a 20 

single rainfall series whereas the analysis of the effect of different rainfall temporal 21 

distributions is discussed in section 6.2. 22 

 23 

6.1 Time series model output 24 

A time series output is given in Figure 6, which shows the response to the rainfall type Q1 25 

(panel a) at element scale (the time window includes a period before the event, useful to 26 

assess the initial conditions in terms of soil moisture profiles, which are different across the 27 

basin). The selected element falls within the clay-loam soil type and has a slope value of 28 

~52°, and thus can be considered as relatively steep. The element is located upstream and has  29 

a small contributing area of about 1.3 ha. The soil moisture distribution (panel b) shows 30 
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moderately fast dynamics within the shallow layers of the column, down to 600 mm of depth 1 

where the soil reaches full saturation at the time the rainfall peaks. Although this part of the 2 

basin is characterized by high value of hydraulic conductivity (see Table 1), saturation is not 3 

reached throughout the entire column because a significant portion of water is laterally 4 

redistributed, at a rate which depends on the steepness and which is governed by the 5 

anisotropy ratio coefficient in the model (see Lepore et al., 2013 for additional analyses). 6 

Panel c shows the probability of failure (PrFi) for a selected time at each soil depth. This type 7 

of probability is representative of the likelihood of failure occurrence at each depth 8 

conditioned on the local soil moisture content (time variant) and soil weight (time invariant). 9 

At t1 the probability of failure is zero along the entire column and q corresponds to the initial 10 

conditions, with the soil water content uniform with depth. At t2 the soil moisture rapidly 11 

increases to a depth of 600 mm where the PrFi reaches its peak (~0.58). Apart from the soil 12 

moisture conditions, the cohesion (which is invariant) and the soil weight are the other factors 13 

that affect the final result; therefore the probability of failure is generally very low at shallow 14 

depths, due to the low weight. At t3 the probability reaches its maximum value (~0.65) at a 15 

depth of 800 mm where both the contribution of moisture and soil weight are significant, and 16 

also at t4. Panels d and e show the probability that the failure occurs at a given depth At each 17 

layer, the PrPFi depends on the probability that the failure does not occur in the above layers 18 

(see definition in section 2.2). Consequently, the most probable planes of failure (i.e., where 19 

PrPFi is high) are located at the medium depth layers where the effects of soil moisture and 20 

soil weight are significant, which, in this case, is around 300-500 mm at the time of rainfall 21 

peak (dark red area in panel d). Deeper layers have lower probability of becoming a plane of 22 

failure, as shown in the panel d for timestep t3 and t4. Finally, panel d also shows how the 23 

high risk of failure occurrence is prolonged in time and the probability gradually decreases at 24 

shallower layers and increases at deeper layers, as long as the soil moisture conditions are 25 

close to saturation.  26 

Figure 7a shows the response to the same rainfall type Q1 of a silty-clay element with a slope 27 

value of ~21°, gentle relative to the previous case. Note that the hyetograph over this element 28 

is slightly different than that over the previously discussed element, as a result of the spatially 29 

distributed precipitation. The element is located in the downstream flatter part of the basin, 30 

with a contributing area of about 2.5 ha. In this case, the initial soil moisture profile (panel b) 31 

is wetter than the previous case (due to slightly higher convergence of fluxes and lower 32 

redistribution to adjacent to the cells) and is not homogeneous with depth, with dryer 33 
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conditions at shallower layers, due to the evapotranspiration processes. At the rainfall peak 1 

the column almost reaches full saturation. In fact, the combination of gentler topography and 2 

medium-high hydraulic conductivity results in faster soil moisture dynamics within the 3 

column but slower among the adjacent cells, since the lateral redistribution is slower for 4 

gentler slopes.  5 

In terms of probability of failure, the PrPFi distribution (panel c) depicts a restricted risk of 6 

failure limited to depths between 600 and 800 mm and to the peak of the storm. Panel d 7 

shows the probability of failure associated with the entire column (PrFC). This variable takes 8 

into account the model assumption that failure may occur anywhere in the column, instead of 9 

occurring exclusively at a preselected depth. Here the maximum value is reached at the peak 10 

of the storm and is strictly dependent on the fully saturated conditions. 11 

6.2 Effect of rainfall temporal distribution 12 

The basin response to the four different hyetographs described in Section 5 is analyzed here in 13 

terms of landslide probability. Variables are dynamically evaluated by the model, which 14 

produces a spatial distribution of the most probable areas of failure at each computational 15 

time step. The most severe scenario associated with each event is evaluated as the maximum 16 

value of the probability of failure anywhere in the column, PrFC, recorded at each voronoi 17 

cell over the entire run time (i.e. peak of the curve shown in figure 7d).  18 

Maps showing PrFC for each rainfall forcing are shown in Figure 8. 19 

Across the four maps, the likelihood of failure occurrence is particularly high in the steepest 20 

part of the basin (yellow regions). The dark green regions depict the areas where the 21 

probability of failure is zero or close to zero, which correspond mostly to the flat areas. In the 22 

remaining part of the basin, the probability of failure is the result of the interaction of rainfall 23 

type with basin soils and morphology. 24 

In order to compare the results better, we define five classes of landslide hazards at equal 25 

intervals: very low (VL), 0-0.2; low (L), 0.2-0.4; medium (M), 0.4-0.6; high (H), 0.6-0.8; very 26 

high (VH), 0.8-1.0. Differences are then quantified in terms of relative frequency distribution 27 

over the basin. Results across the four rainfall events (Figure 9a) indicate that events Q2 and 28 

Q3 resulted in the safest scenarios, showing the highest frequency in the VL class and the 29 

lowest in the remaining classes. Q4 is the rainfall event that provides the most severe 30 

landslide hazard, with the highest relative frequency within the VH landslide probability class 31 
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and the lowest within the VL class. Event Q1 shows an intermediate behavior between Q4 and 1 

Q2-Q3, with a frequency distribution similar to Q2 and Q3 within the most hazardous class, 2 

and similar to Q4 for H, M and L landslide probability classes; class VL is slightly less 3 

frequent during events Q2 and Q3, but more frequent for Q4. 4 

The above analysis highlights a clear and strong effect of the rainfall type on the landslide 5 

probability; this effect depends on the different interactions between rainfall forcing, 6 

topography and soil characteristics, which induce different soil moisture redistribution and, in 7 

particular, whether full saturation is achieved or not. In fact, saturation leads to the loss of 8 

suction with a significant increase of probability of failure. The Q1 and Q4 events induce 9 

saturation in a larger portion of the basin, leading to higher failure probability, although the 10 

timing of the maximum landslide probability is different over the run time. This is depicted in 11 

Figure 9b that shows the frequency distribution of the time of occurrence of the maximum 12 

value of PrFC. The peak of the distributions clearly follows the peak of the rainfall intensity 13 

for each hyetograph, with 1 hr delay (at time 7, 11, 17 and 23 hour respectively). Q1 and Q4 14 

exhibit the highest peaks of frequency. Moreover, for Q1, the effects of the rainfall are more 15 

prolonged. PrFC is still high after 13 hours from the rainfall peak. Q3 is the event that 16 

provides the highest probability of failure almost throughout the duration of the precipitation 17 

event. These results can be particularly interesting in terms of basin risk management, since 18 

the high probability of failure is significantly different for the four cases, despite the same 19 

total volume in 24 hr. The higher peack of frequency of Q4 with respect to Q1 highlights the 20 

importance of the moisture conditions prior the rainfall peak. In fact, although Q1 and Q4 21 

have comparable storm peaks, the response with respect to landslide occurrence does differ 22 

because soil moisture conditions at time of the rainfall peak are not the same for the two 23 

scenarios.  24 

In order to understand how the rainfall forcing interacts differently with the soils of the basin, 25 

the responses in terms of soil moisture are analyzed below in conjunction with the main basin 26 

characteristics (i.e. topography and soil types).  27 

Figure 9c shows the relative frequency distribution of the average (in depth) soil moisture in 28 

the root zone (equal to 1 m) reached at time of the maximum value of PrFC across the basin. 29 

Clearly, Q4 shows the highest occurrence of elements at saturation (here equal to 0.55 30 

mm3/mm3).  31 
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In order to identify which portion of the basin experiences the most differences in probability 1 

of failure, we analyze the spatial distribution of the difference in maximum PrFC between the 2 

events Q4 and Q3 (which are the two configurations that differ the most), denoted as DQ4Q3 3 

and evaluated for each single element. The map is depicted in Figure 10 and it reports only 4 

the differences greater than a threshold, fixed at 0.05; in many cases, this difference is greater 5 

than 0.5 (blue). Since soil moisture redistribution processes are driven by topography (i.e. 6 

slope) and hydrological soil properties (i.e. hydraulic conductivity and anisotropy), one might 7 

expect this difference to follow somehow similar patterns to either the soils (Figure 10a) or 8 

distributions of slope(Figure 10b).  9 

The map in Figure 10a highlights that DQ4Q3 values greater than the threshold are distributed 10 

all over the basin, falling within all the soil types and highlighting the absence of a clear 11 

spatial pattern related to the soil characteristics. Instead, Figure 10b clearly shows that the 12 

spatial distribution of DQ4Q3 values greater than the threshold fall within the part of basin 13 

characterized by a particular range of slope, i.e. between 0.20 and 0.45 rad (~10° and 25°), 14 

which is the only interval shown in the map.  15 

The reason for this result is the ‘partition’ of the contribution to the probability of failure of 16 

soil moisture and soil weight. Flat areas, either saturated or not, are certainly stable (or 17 

‘unconditionally stable’, as defined by Montgomery and Dietrich (1994)); steep areas, 18 

although they may not reach the full saturation, can easily have high probability of failure, 19 

given the significant component of destabilizing forces due to the steepness ( ‘unconditionally 20 

unstable’ as defined by Montgomery and Dietrich (1994)). Therefore, as previously discussed, 21 

rainfall type distributions influence mostly areas where both factors, soil moisture and soil 22 

weight, are predominant. In this case, those are areas of medium slope (from 10° and 25°). 23 

Figure 11 provides a clear confirmation of these results. Panel a shows the relationship, for 24 

each element, between slope and the max value of PrFC for Q1, Q3 and Q4 (Q2 is omitted 25 

because of its similarity to Q3). Clearly, the PrFC increases with slope following a well-26 

defined trend (at given soil moisture and for fixed hydrological parameters, probability of 27 

failure only changes with slope according to Eq. 1). At a given slope (i.e. within a given 28 

voronoi cell) Q4 results are shifted up with respect to Q1 (blue) and Q3 (red), i.e. provides 29 

higher max PrFC. Panel b shows the distribution of DQ4Q3 values with the slope, separately 30 

for each soil type. The variable jumps to high values within the slope range 0.2 – 0-45, except 31 
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for the clayey soil where differences are not that significant, due to the much slower soil 1 

moisture dynamics (i.e. low hydraulic conductivity). 2 

 3 

6.3 Discussion  4 

The described results show the capability of the proposed methodology in accounting for 5 

uncertainty of soil parameters and in evaluating how the temporal variability of storms may 6 

influence the initiation of landslide occurrences in terms of probability of failure. 7 

The model produces different types of ‘probabilities of failure’, thus overcoming the 8 

uncertainty related to the assumption of the depth of failure. The most probable depth of 9 

failure and the probability of failure of the soil column (generated anywhere within the 10 

column) are the two main representative outputs. The results demonstrate that, in agreement 11 

with the definition of shallow landslides, the most probable failure surfaces occurred at depths 12 

between 300 and 1000 mm.  13 

The precipitation fields in the case study area are strongly variable both in space and in time. 14 

The analysis of the influence of different hyetograph shapes indicates that heavy rainfall 15 

concentrated during the latter part of event (as the case of Q4) leads to higher probability of 16 

failure across the basin, making Q4 the most critical type of event. Such a result agrees with 17 

the outcomes of D’Odorico et al., (2005) work which demonstrated that hyetographs with the 18 

peak near the end of the storm produce peak pressure heads higher than uniform hyetographs, 19 

decreasing the return period of rainfall events causing landsliding. Although events Q1 and 20 

Q4 have the same maximum rainfall intensity ( ~55mm/hr at the selected location reported in 21 

Figure 3), Q1 results in a less serious scenario because the Q1 hyetograph has the maximum 22 

rainfall intensity closer to the beginning of the storm. These outcomes depend on how the 23 

rainfall distribution affects the hydrological basin response, which is mainly driven by the 24 

hydraulic-hydrological soil properties and topography. The spatial analysis of the differences 25 

in the maximum PrFC between Q3 and A4 (DQ4Q3), clearly demonstrates that the shape of 26 

the hyetograph, and in particular the timing of the peak, controls the resulting stability mainly 27 

at medium slopes (from 10° and 25°). As previously discussed, at these slopes, both the soil 28 

moisture and soil weight contribute to instability. Events Q2 and Q3, which are characterized 29 

by a lower peak rainfall intensity (~45mm/hr for the location shown in Figure 3) and a less 30 

skewed temporal distribution, result in a much larger portion of the basin having low 31 

probability of failure.  32 
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In order to evaluate the consistency of the model results, the classified map of probability of 1 

failure obtained for Q4 is compared with the map of historical landslide scars (Figure 12). The 2 

study area is historically characterized by a high frequency of landslide occurrence and plenty 3 

of events have been mapped over the years. Landslide scars reported in Figure 12 are obtained 4 

from the work of Larsen (2012), which mapped historical landslide scars estimated to 5 

represent landslide activity for a 50 year period (1945-1995). Landslides were mapped from 6 

aerial photographs (1951, 1962, 1972, 1974, 1979, 1990 and 1995), but the storms that 7 

triggered landslide scars were not precisely identified because no historical records of the 8 

events exist (Larsen, 2012). According to Larsen and Simon (1993), the 61% of the rainfall 9 

triggered landslides were likely triggered by the tropical disturbances that struck the central 10 

mountain of Puerto Rico between 1960 and 1990. Moreover, the reported map includes 11 

different type of movements, i.e. shallow soil slip, debris avalanche, debris flow, slump). Soil 12 

slips are the second most common type of scar after debris flow (Larsen, 2012) and both these 13 

landslide types are characteristic of high-intensity, short-duration storms. Figure 12 reports 14 

also some landslide scars identified from more recent satellite images (2006-2014) obtained 15 

from Google Earth.  16 

Visually the areas of high and very high probability of landslide occurrence are consistent 17 

with areas of past landslide zones. For instance, the northwest, south, and southeast parts of 18 

the basin correspond to areas dense in landslide scars which are adequately reproduced by the 19 

model. Other areas classified as  probable to fail are not in the  historical record of 20 

scars(central north-eastern part of the basin). Part of the southwest strip of the watershed 21 

perimeter is mostly classified as stable by the model, while in the past it did experience 22 

various failure events. 23 

It is clear that such a comparison cannot be interpreted as model validation because a rigorous 24 

validation of dynamic approaches requires a functional database which records the locations 25 

of failure associated with the exact timing of the failure, the corresponding meteorological 26 

data, and the topographical data prior to the failure events, information that is not available. 27 

Moreover, the map reported by Larsen  (2012) includes various type of landslides (according 28 

to Larsen, (2012) mainly debris flow) that are not of the nature represented in this work. 29 

About 43% of historical landslide mapped in the Mameyes basin were associated with road 30 

construction and maintenance (Larsen, 2012), anthropogenic disturbance that is not accounted 31 

for in this study. Nevertheless, the rough comparison between historical landslides and model 32 
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results demonstrate the model capability in identifying the most critical landslide areas of the 1 

basin. 2 

 3 

7 Conclusions  4 

This study proposed a probabilistic framework, implemented in an existing rainfall-triggered 5 

shallow landslide model, able to take into account the uncertainty of soil parameters. We 6 

presented a methodology based on a modified version of the First Order Second Moment 7 

(FOSM) method, which has been implemented into the physically-based tRIBS-VEGGIE-8 

Landslide model (Lepore et al., 2013). The framework allows to dynamically evaluate the 9 

Factor of Safety (FS) probability distribution conditioned on the soil moisture content. In 10 

contrast to similar approaches, this methodology treats all parameters of the FS equation (i.e. 11 

soil cohesion, friction angle, and soil retention curve parameters) as random variables. The 12 

probabilistic approach provides a sound and suitable framework to evaluate the probability of 13 

landslide occurrence by accounting for the uncertainty associated with the difficulty in 14 

estimating the soil hydrological and geotechnical parameters. 15 

The methodology was used in the Rio Mameyes basin, located in Puerto Rico, to also 16 

evaluate the effect of spatial and different temporal distributions of precipitation on shallow 17 

landslide occurrence over the basin. Four different synthetic and spatially distributed 18 

hyetographs at a given rainfall volume were used to carry out the analysis. 19 

The use of the proposed physically based approach allowed the simulation of the complex 20 

nonlinear interactions between rainfall forcing and soil basin characteristics (mainly 21 

topography and soil types) in evaluating the hydrological and slope stability basin responses. 22 

The main results indicated that i) hyetographs exhibiting a peak towards the end of the event, 23 

typical of tropical cyclones, can be most catastrophic in terms of rainfall-triggered landslide 24 

occurrence. ii) Given equal rainfall intensity peaks, events with peaks occurring early in time 25 

result in lower probability of failure across the basin. iii) Precipitation with maximum 26 

intensities around the middle part of the event (frontal precipitations) and with a lower peak 27 

result in lower probabilities of failure; although in those cases, relatively high probabilities of 28 

failure persisted throughout the whole event. Finally, iv) differences in probability of failure 29 

due to the different shape of the hyetographs were observed at intermediate slopes where the 30 

stability is controlled by the combined impact of soil moisture and soil weight, in contrast to 31 

steeper or flatter slopes. The overlap between historical landslide events, mainly relative to 32 
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the 20th century, and the region of the maximum probability of failure has confirmed the 1 

model capability to identify the areas at dense frequency of landslides, even if this 2 

comparison cannot be considered a rigorous validation procedure. 3 

The proposed approach is computationally feasible, as opposed to numerical probabilistic 4 

analyses at basin scale that require prohibitive numbers of model runs. Some modeling 5 

assumptions could be still limiting: (i) the assumption of normal distribution of cohesion and 6 

friction angle, which is widely used; (ii) the assumption of independence between cohesion 7 

and friction angle; (iii) the slope geometry of the slope can be very restrictive in some cases, 8 

as for all the models based on the infinite slope models; (iv) the spatial variability of 9 

parameters which is not taken into account in this discussion; (v) the fact that the dynamic 10 

propagation of storms was not considered in this case study. 11 

A more accurate characterization of natural variability of soil parameters could be developed 12 

by taking into account the spatial correlation that soil geotechnical and hydrological 13 

properties may exhibit. This aspect could be achieved in the future by introducing 14 

geostatistical techniques, able to model the spatial correlation of such parameters, within the 15 

proposed framework. Moreover, the mechanical role of vegetation dynamics could be also 16 

included in a future development of the probabilistic methodology to quantify the effects on 17 

landslide occurrence. 18 

 19 
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Table 1.Hydrological and mechanical soil properties and their statistics for the four soil types 1 

present in the Mameyes basin. See text for description and origin of data. Note that shear 2 

strength parameters are assumed homogenous across the basin. 3 
Parameter Description Units Clay – Loam Sandy – Loam Silty - Clay Clay 

Ks Saturated hydraulic conductivity [mm/hr] 50.0 50.0 50.0 10.0 

µqS Mean of saturated soil moisture, qS [mm3/mm3] 0.56 0.55 0.55 0.53 

µqR Mean of residual soil moisture, qR [mm3/mm3] 0.075 0.041 0.051 0.09 

µl Mean of pore-size distribution index, l [-] 0.200 0.322 0.127 0.130 

µyb Mean of air entry bubbling pressure, yb [mm] -250 -150 -340 -370 

µc’ Mean of soil effective cohesion, c’ [N/m2] 3000 3000 3000 3000 

µf Mean of soil friction angle, f [°] 25 25 25 25 

sc’ Standard deviation of c’ [N/m2] 1200 1200 1200 1200 

sf Standard deviation of f [°] 2.5 2.5 2.5 2.5 

syb Standard deviation of yb [mm] 290 210 390  600 

sqS Standard deviation of qS [mm3/mm3] 0.054 0.076 0.064  0.040 

sqR Standard deviation of qR [mm3/mm3] 0.007 0.004 0.022  0.011 

sl Standard deviation of l [-] 0.113 0.145 0.094 0.098 

ryb-qS Coefficient of correlation yb-qS [-] 0 0 0 -0.216 

r yb-qR Coefficient of correlation yb-qR [-] 0.203 0 0 0.154 

r yb-l Coefficient of correlation yb-l [-] 0.151 0.274 0 0.128 

rqS-qR Coefficient of correlation qS-qR [-] 0.307 0 0 0 

r qS-l Coefficient of correlation qS-l [-] 0.168 0 0 0 

r qR-l Coefficient of correlation qR-l [-] 0.429 0.518 0.476 0.442 
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 1 

Figure 1. Mameyes basin characteristics: Digital Elevation Model (a), soil type distribution (b) and slope 2 
distribution (c). 3 
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 1 

Figure 2. Comparison of the empirical FS quantiles vs the theoretical FS quantiles of Normal (purple), 2 
Lognormal (blue), and Inverse Gamma (red) distributions, for (a) clay, (b) clay-loam, (c) sandy-loam, and (d) 3 
silty-clay. The values of slope, depth of failure surface and volumetric water content correspond to 40°, 1000 4 
mm, and 0.3 mm3/mm3, respectively, while the associated statistical properties are reported on Table 1. 5 
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Figure 3. Different types of rainfall temporal distributions of 24 hours duration. 2 
3 
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 1 

Figure 4. Hyetographs at Bisley tower location (indicated in figure 1a) for each type of rainfall events. Total 2 
precipitation volume is about 500 mm.   3 

4 
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 2 

Figure 5. Spatial distribution of total rainfall estimate of hyetograph Q1. Total rainfall ranges from ~485 mm of 3 
the zone approaching to the basin outlet, to ~615 mm of the highest zones. The spatial coefficient of variation is 4 
0.05. 5 
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 1 

Figure 6. Time series model output response of a clay loam element (52°): rainfall type Q1 (a); volumetric soil 2 
content (q) profile and time series (b); probability of failure at each layer at selected times, PrFi (c); profile and 3 
time series of probability of plane of failure at given depth, PrPFi (d); PrPFi at selected times (e).  4 

5 
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 1 

Figure 7. Time series model output response of a silty-clay element with gentler slope (~21°): rainfall type Q1 2 
(a); volumetric soil moisture content (q) profile and time series (b); profile and time series of probability of plane 3 
of failure at given depth, PrPFi (c); time series of the probability of failure of the column, PrFC (d) (see section 4 
2.2). 5 

 6 

 7 

 8 

 9 



 38 

 1 

Figure 8. Spatial distribution of the maximum values of PrFC recorded at each pixel across the run time for each 2 
rainfall type.  3 
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 1 

Figure 9. Relative frequency distribution across the basin of (a) the PrFC occurrence for the 4 rainfall events, (b) 2 
the time of occurrence of the maximum value of PrFC and (c) 1m depth average soil moisture at time of 3 
maximum PrFC values.  4 
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 1 

Figure 10. Spatial distribution of the difference of maximum PrFC between Q4 and Q3 (DQ4Q3) overlapped with 2 
the maps of soil type (a) and slope range 0.20 and 0.45 rad (~10° and 25°) (b).  3 
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 1 

Figure 11. Distribution of maximum PrFC with slope for Q1, Q3 and Q4 (Q2 is omitted because it is similar to 2 
Q3). (a); distribution of difference of maximum PrFC between Q4 and Q3 (DQ4Q3)  with slope (b).  3 
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 1 

Figure 12. Comparison between historical landslide scars caused by intense or prolonged storms during the 20th 2 
century (Larsen, 2012) and observed through recent satellite images (from Google Earth) with the classified 3 
maximum PrFC of Q4.  4 
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