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Abstract
We study the emergence of synchronisation in a chiral network of harmonic oscillators. The
network consists of a set of locally incoherently pumped harmonic oscillators coupled pairwise in
cascade with travelling field modes. Such cascaded coupling leads to feedback-less dissipative
interaction between the harmonic oscillators of the pair which can be described in terms of an
effective pairwise Hamiltonian a collective pairwise decay. The network is described
mathematically in terms of a directed graph. By analysing geometries of increasing complexity we
show how the onset of synchronisation depends strongly on the network topology, with the
emergence of synchronised communities in the case of complex networks. The quantum nature of
the non local correlation between network nodes is assessed.

1. Introduction

Spontaneous synchronisation can be described as the emergence of a collective dynamics in a set of

interacting subsystems such that all the individual parts of the whole system evolve in the same way in spite

of their differences [1]. This class of phenomena is relevant in several contexts: from bridge engineering [2]

to neurosciences [3, 4], from neural networks [5] to synchronized motion of butterflies and fireflies [6] and

also in social [7] and chemical [8] systems. If an external forcing is applied, the ability of the system to

follow the driver dynamics defines instead the emergence of driven synchronization [1]. In the last decades,

attention to synchronisation phenomena has moved from the realm of classical mechanics [9–12] to the

quantum physics one [13–18], with particular interest for the behaviour of networks of interacting

quantum subsystems [19, 20].

Furthermore the connection between synchronisation and other collective phenomena such as

superradiance and subradiance [21] as well as the synchronisation of hybrid quantum systems consisting of

coupled quantum oscillators and few-state systems has been analysed [22, 23]. While the emergence of

synchronisation is generally linked to the interplay between dissipative dynamics, nonlinear couplings and

driving, in the case of quantum systems an important role is played also by quantum noise and quantum

correlations [18].

In this work we will analyse the emergence of synchronisation patterns in networks of coupled quantum

harmonic oscillators [19, 20] in which the effective interaction between subsystems is due to a chiral

coupling to travelling modes. The very rapid progress in the new field of chiral quantum optics [24], paves

the way for new ways to manipulate and control light–matter interaction. For instance the strong light

confinement in nanophotonic structures [25, 26] can lead to propagation-direction-dependent emission,

scattering and absorption of photons by quantum emitters inducing a propagation-direction-dependent

light–matter interaction [27, 28]. Within the framework of chiral quantum optics, it is also possible to
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realize cascaded quantum systems [24, 29–31] that could be exploited, for example, to drive
synchronisation at demand.

The way in which the asymmetric role of the network nodes in the presence of a chiral coupling affects
synchronisation is so-far unexplored. This has led us to analyse the emergence of synchronisation in a
network of harmonic oscillators (HOs henceforth) connected via a one-directional coupling to travelling
modes. Furthermore incoherent coupling is also considered allowing for a sustained dynamics, going
beyond transient synchronization [32].

We have found a strong dependence of the synchronisation patterns on the network size and topology.
In particular, for networks involving a high number of nodes and complex topology we predict the
appearance of clusters of synchronised nodes with different cluster frequencies. In the next section we will
introduce our model and its Hamiltonian and we obtain the equation of motion of the local oscillators
when coupled to one-directional travelling modes via a master equation for the cascaded quantum systems.
In section 3 we introduce the quantitative witnesses we use to characterize the emergence of
synchronisation. In section 4 we report our main results, namely we analyse the emergence of different
synchronisation patterns in networks of increasing complexity. In section 5 we sum-up of the previous
sections and discuss future directions.

2. Dynamics of chiral harmonic quantum networks

Our system consists of a chiral network of coupled harmonic oscillators which can be conveniently
described in terms of an a directed graph, with adjacency matrix A (i.e. a set of nodes linked by directed
edges), where each node corresponds to a single, incoherently pumped, harmonic oscillator while each
directed edge corresponds to a unidirectional cascaded coupling between the oscillators. As we will consider
strictly cascaded systems [24, 29–31, 33] we restrict our attention to oriented graphs, i.e. we assume that
each pair of nodes is linked by a single oriented edge (Aij = 1 implies Aji = 0). The cascaded coupling
between a pair of oscillators s, r figure 1 is due to travelling field modes propagating from node s to node r
[34–37] such that when a photon is emitted by s it can only propagate towards r, while the reverse is not
possible [30, 38]. The dynamics of the network is generated by the sum of the node Hamiltonians Hk

N ,
which includes the local energies and the incoherent pump on the oscillator k, and of the edge
Hamiltonians Hsr

E , which describes the unidirectional coupling between pairs of oscillators s, r due to
travelling modes, and can be written in a compact form as

Ĥ =
∑
nodes

Ĥk
N +

∑
edges

Ĥsr
E . (1)

For a pair of nodes the two terms read

HN =
∑
k=s,r

εk â†kâk −
∫ ∞

0
dω ω ĉ†kω ĉkω +

√
wk

2π

∫ ∞

−∞
dω (âkĉkω + h.c.)

Hsr
E =

∫ ∞

0
dω ω b̂†ω b̂ω +

√
γ

2π

∫ ∞

0
dω

(
(âs + âre

−iωτ )b̂†ω + h.c.
)

(2)

where each oscillator, with energy εk (� = 1) and bosonic creation and annihilation operators â†k and âk, is

incoherently pumped at a rate wk by a local bath of inverted harmonic oscillators with operators ĉ†k and ĉk

[39]. In the same way, operators b̂†ω and b̂ω represent the travelling modes responsible of the coupling
between nodes s and r, and τ is the time it takes the field to propagate from s to r (note that for the
travelling modes ω plays also the role of a wavevector and the correct propagation directionality is ensured)
[30,38]. In writing (2) we have made both the rotating wave and the Markov approximation. The first
consists in neglecting the rapidly oscillating counter rotating terms in the interaction Hamiltonian [40,41]
while the second assumes the coupling amplitudes,

√
γ/2π and

√
wk/2π in (2), to be constant across a

broad band around the characteristic frequencies of the local oscillators [42–44].
From (2) it is immediate to derive the Heisenberg equations for the field operators:

db̂ω(t)

dt
= −iωb̂ω(t) − i

√
γ

2π
(âs(t) + âr(t)e−iωτ )

dĉ†kω(t)

dt
= −iωĉ†kω(t) + i

√
wk

2π
âk(t) (3)

2
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Figure 1. Sketch of pairwise coupling between nodes. A pair of HOs (blue and red, left) is coupled in cascade to travelling modes
(orange lines). The cascaded coupling leads not only to dissipation but also to a chiral coupling in which the blue HO drives the
red one but there is no feedback from the red to the blue one. Such coupling can described in terms of a pairwise effective
interaction plus a pairwise collective decay, both of dissipative origin. In the right an example of direct graph in which each links
represent exactly the pairwise coupling sketched in the left.

and for the local oscillators operators âr, âs

dâs(t)

dt
=− iεsâs(t) − i

√
γ

2π

∫ ∞

−∞
dωb̂ω(t) − i

√
wr

2π

∫ ∞

−∞
dωĉ†sω(t)

dâr(t)

dt
=− iεrâr(t) − i

√
γ

2π

∫ ∞

−∞
dωb̂ω(t)eiωτ − i

√
ws

2π

∫ ∞

−∞
dωĉ†rω(t) (4)

Formally integrating (3) for b̂ω , ĉrω, ĉsω and substituting in (4) we obtain

dâs(t)

dt
=− iεsâs(t) −√

γ b̂in(t) − γ

2
âs(t) +

√
ws ĉ†s (t) +

ws

2
âs(t)

dâr(t)

dt
=− iεrâr(t) −√

γ b̂in(t − τ) − γ

2
âs(t − τ) − γ

2
âr(t) +

√
wr ĉ†r (t) +

wr

2
âr(t), (5)

where we have defined the δ-correlated white noise operators b̂in, ĉk

b̂in(t) =
i√
2π

∫ ∞

−∞
dω e−iωt b̂ω(t) and ĉk(t) =

i√
2π

∫ ∞

−∞
dω eiωt ĉkω(t) (6)

which satisfy the commutation relations [b̂in(t), b̂†in(t′)] = δ(t − t′) and [̂ck(t), ĉ†k(t)] = δ(t − t′). In the
following we will neglect any field delay [30]. This is indeed a legitimate assumption in any configuration
that does not contain loops. So taking the limit τ → 0+ in (5) we obtain

dâs(t)

dt
=

(
−iεs +

ws

2
− γ

2

)
âs(t) −√

γ b̂in(t) +
√
ws ĉ†s (t),

dâr(t)

dt
=

(
−iεr +

wr

2
− γ

2

)
âr(t) − γ âs(t) −√

γ b̂in(t) +
√
wr ĉ†r (t). (7)

Note that while the input noise operator on s is b̂in(t), the input noise operator on r is b̂in(t) +
√
γ âs(t),

which is the input–output relation due to a cascaded interaction with the travelling field modes [30]. It
implies that the dynamics of r is driven by the output field from s (but not the reverse). The effective
coupling between the two oscillators due to their cascaded interaction is more clearly visible when one
describes their reduced dynamics in terms of the following master equation [33,45–47]

dρ̂sr(t)

dt
= −i

[∑
k=s,r

εk â†kâk + Hsr
casc, ρ̂rs(t)

]
+
(
γD[âs + âr] + wsD[â†s ] + wrD[â†r ]

)
ρ̂sr(t) (8)

where D[ô]ρ̂ = 2ôρ̂ô† − ô†ôρ̂− ρ̂ô†ô. In (8) one can identify the local pumps wsD[â†s ] and wrD[â†r ] while
the effects of the dissipative cascaded coupling to the travelling modes is described jointly by a collective
decay γD[âs + âr] and by the effective chiral Hamiltonian,

Hsr
casc = −i

γ

2

(
ârâ

†
s − âsâ

†
r

)
. (9)

proportional to γ and hence of purely dissipative origin [24]. Indeed the cascaded coupling of a pair of
systems (HOs, two level systems etc) with travelling modes leads to a collective dissipation of the pair of

3
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systems with a common bath and an effective interaction Hamiltonian between the two, both effects being
proportional, as pointed out, to the same constant γ. Dissipation and effective coupling therefore are not
independent from each other. Their interplay plays a crucial role on the onset of synchronisation.

The two dynamical quantities which we will analyse to study the emergence of synchronisation are the
mean value of the local oscillations and their two node correlations. From (2) and (7) one can derive the
following equation of motion for the average values 〈â〉 = {〈â1〉, . . . , 〈âN〉}

d〈â〉
dt

= M〈â〉 = 1

2
(W − Γ− 2iΩ− 2γA)〈â〉, (10)

where W is the diagonal matrix of the local pump strength, Ω is the diagonal matrix of the local energies
and Γ is a diagonal matrix with entries

Γii = γ
∑

j

(Aij + Aji), (11)

and where
∑

j Aij is the total number of edges from i to any other node, while
∑

j Aji is the number of edges
from any other node to i. The off-diagonal entries of M correspond to the cascaded coupling between nodes
and are all proportional to γ.

The correlations between amplitude fluctuations are conveniently characterized in terms of the
covariance matrix whose entries are Ckj =

1
2 〈χkχj + χjχk〉, where χ = {â1, . . . , âN , â†1, . . . , â†N} [48].

Following a standard recipe [42], we get a Lyapunov equation for the covariance matrix:

dC

dt
=

(
M 0
0 M∗

)
C + C

(
M 0
0 M∗

)T

+

(
0 S
S 0

)
(12)

with S = 1
2 [W + Γ+ γ(A + AT)].

Note that, both the time evolution of the annihilation (and creation) operators and of the correlation
functions involve the matrix M, although the relevant equations on motion are different [49].

3. Synchronisation witnesses

To characterise the emergence of synchronisation in our networks we will use two standard quantifiers [18].
The first one, widely used in classical contexts to detect the synchronisation of two signals, a(t) and b(t), is
the Pearson Factor [18] defined as:

Cab(t|Δt) =

∫ t+Δt
t (a(τ) − a)

(
b(τ) − b

)
dτ√∫ t+Δt

t (a(τ) − a)2dτ
∫ t+Δt

t

(
b(τ) − b

)2
dτ

(13)

where the bar stands for a time average over the time window Δt.

a =
1

Δt

∫ t+Δt

t
a(τ)dτ. (14)

As a slight generalisation of (13), we will consider also its phase shifted version, where the two time averages
are evaluated over two shifted time windows, Δta and Δtb, in order to make them in phase. The Pearson
Factor quantifies the correlation in the time domain between classical signals [1, 50]. In the quantum
domain the trajectories a(t) and b(t) can be the expectation values of any pair of quantum operators of
interest [15, 19, 32] like 〈a〉, 〈x〉, 〈x2〉 etc. Furthermore to detect the onset of synchronisation between more
than two nodes in a sub-network g, we simply take the product of the Pearson factor for pairs of nodes of
the subnetwork of interest [20]:

Sg(t|Δt) =
∏
ij∈g

Caiaj (t|Δt) (15)

A second way to characterise the emergence of synchronisation, particularly suited for periodic evolution, is
to evaluate the dynamical Fourier transform of the signals of interest in the same time window used to
evaluate the Pearson factor, more precisely:

fa(ε, t|Δt) =
1

Δt

∫ t+Δt

t
e−iετa(τ)dτ. (16)

In this case the emergence of synchronisation manifest itself in the evolution of a spectrum initially
involving several frequencies towards a single-frequency spectrum.

4
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In the following the signals which will enter in (13) or (16) will be either the complex amplitudes 〈âk〉
and the symmetrized second order moments entries of the covariance matrix of the local oscillators’
quadrature 〈x̂2

k〉 and 〈x̂kŷk + ŷkx̂k〉 where x̂k = (âk + â†k)/2 and ŷk = −i(âk − â†k)/2.
The synchronisation of the quadrature fluctuations can be a signature of non local correlations in the

dynamics of the pair of HOs [15]. To assess the quantum nature of such correlation between the pair of
HOs i and j we will use the so called quantum discord [51–53], defined as

Dij = S(ρi) − S(ρij) + min
π̂k

∑
k

pkS(ρi|k) (17)

with S(ρ) = −tr(ρ ln ρ) the von Neumann entropy and the minimisation is taken over all possible quantum
measurement {π̂k} made on HO j. A measurement outcome with index k will induce a collapse of the joint
density operator ρij into the reduced operator ρi|k = trj(πkρij)/pk of the HO i. A non zero value of the
discord is the signature of a quantum nature of the correlations between i and j. Note that in general (and in
our particular setup) the discord is asymmetric i.e. Dij 
= Dji and overlying arrows will be used in the
following to distinguish them. For Gaussian states the minimisation can be restricted to Gaussian
measurements [54,55]. In the following we therefore use as quantifier the Gaussian Discord for which there
is a closed albeit cumbersome analytical form [55].

4. Simple graphs

As we have anticipated the kind of synchronisation pattern depends strongly on the network structure. To
gain an insight into such possible synchronisation patterns we will analyse some illustrative example of
growing complexity.

Linear chains. Linear chains are just linear graphs with pairwise edges (couplings). As we will show such
structures can exhibit both synchronisation or frustration depending on the directionality of the couplings.

Oriented dimers, i.e. pairs of cascaded coupled oscillators, are the simplest structure exhibiting
synchronisation. They are also the only structure in which the whole network interacts with a single
common environment in our model. The matrix M in this case takes the form:

M =
1

2

(
−2iε1 + w1 − γ 0

−2γ −2iε2 + w2 − γ

)
. (18)

and the mean values 〈a〉 evolve as:

〈a1(t)〉 = e−
t
2 (γ−w1+2iε1 )〈a1(0)〉 (19)

〈a2(t)〉 = e−
t
2 (γ−w2+2iε2 )〈a2(0)〉+ 2γ

(
e−

t
2 (γ−w2+2iε2) − e−

t
2 (γ−w1+2iε1)

)
(w1 − w2) − 2i(ε1 − ε2)

〈a1(0)〉.

From (19) we see that for γ − w1 ∼ 0 and γ − w2 > 0, after a transient, we observe synchronisation, as all
the terms oscillating at frequency ε2 vanish. Synchronization will be stationary [20] when pumping
compensate losses in the origin node 1, i.e. for γ ≡ w1).

Note furthermore that the greater the difference w1 − w2, the lower the amplitude of the residual signal
2, while a smaller difference leads to a persistence of the component at frequency ε2 in the second signal. On
the other hand, for larger values of γ one observes a faster decay. In figure 2 we set γ = 0.05, w1 = 0.9γ and
w2 = 0. In figure 2(a), we plot the dynamical Fourier transform of Re〈â1〉 and Re〈â2〉. It is evident that the
two oscillators after a transient synchronise as witnessed by the Pearson factor of the two signals Ca1a2 (t|Δt)
plotted in figure 2(b). If pumping is removed no synchronization occurs between detuned oscillators, being
this a major difference of the chiral case with respect to the undirected one [15]. The onset of
synchronisation not only of the average values but also of the local quadratures is shown in figure 3 where
we have plotted the Pearson factor for the pair of signals {〈x̂2

1〉, 〈x̂2
2〉} and symmetrised covariance elements

{〈x̂1ŷ1 + ŷ1x̂1〉, 〈x̂2ŷ2 + ŷ2x̂2〉}. To elucidate the quantum nature of the mutual correlations of the
synchronised motion we have evaluated the quantum discord between two HOs and plotted it in figure 3,
where it is shown that quantum correlations are present in the time window where the system exhibits
synchronisation.

As we are going to analyse more complex networks we will assume, from now on, equal local pump
intensity for each harmonic oscillator. As we have seen for dimers, a suitable engineering of the pattern of
pump strengths leads always to synchronisation. With uniform pump strengths instead, neither the dimers
nor some of the three-node configurations we will characterise in the following, synchronise.We proceed
our analysis of small network by looking at linear chains with three nodes [see figures 4 and 5]. For

5
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Figure 2. Synchronisation of a dimer dynamics with γ = 0.05, w1 = 0.9γ, w2 = 0. The local frequencies are ε1 = 1, ε2 = 1.9.
In all the plots the time is taken in γ − w1 units and the time window averaging Δt is 10 times 2π/ε1. (Left) Dynamical Fourier
transform of Re〈â1〉 (left-top) and Re〈â2〉 (left-bottom). (Right) The Pearson factor (13) associated with Re〈â1〉 and Re〈â2〉. In
the insets are plotted the time evolutions of Re〈â1〉 (blue line) and Re〈â2〉 (red line) in different time windows.

Figure 3. (Top) Synchronisation of correlations in a cascaded dimer, same parameters as in figure 2. (Left) Pearson factor
relative to {〈x̂2

1〉, 〈x̂2
2〉} (blue curve) and {〈x̂1 ŷ1 + ŷ1 x̂1〉, 〈x̂2ŷ2 + ŷ2x̂2〉} (red curve). (Right) Quantum discord in the two

directions: 1 → 2 (blue curve) and 1 ← 2 (red curve). (Bottom): same parameters as before except for the pump of the second
oscillator that in this case is w2 = w1 = 0.9γ. As clarified in the main text, equally pumping the two nodes causes loss of
synchronisation and at the same time also quantum correlations vanish.

undirected networks both transient and stationary synchronization were reported in presence of a common
bath tuning frequencies and couplings [56]. In the following directional couplings determine different
behaviours, as also the presence of pumping.

Trimer out. In this first scenario, the central node drives the two external ones, each with its
own local frequency. For this configuration the equations for the average values have the following solution:

〈a1(t)〉= e−
t
2 (γ−w+2iε1)〈a1(0)〉+ 2γ

(
e−

t
2 (2γ−w+2iε2) − e−

t
2 (γ−w+2iε1)

)
γ − 2i(ε1 − ε2)

〈a2(0)〉

〈a2(t)〉= e−
t
2 (2γ−w+2iε2)〈a2(0)〉

〈a3(t)〉= e−
t
2 (γ−w+2iε3)〈a3(0)〉+ 2γ

(
e−

t
2 (2γ−w+2iε2) − e−

t
2 (γ−w+2iε3)

)
γ + 2i(ε2 − ε3)

〈a2(0)〉.

6



New J. Phys. 24 (2022) 023030 S Lorenzo et al

Figure 4. Synchronisation of linear three nodes configurations in which we set the frequencies of HOs εn = {1.5, 2, 2.5}, the
decaying rate γ = 0.05 and the pumping intensity w = 0.045. The time window averaging Δt is 10 times 2π/ε1. Dynamical
Fourier transform (left), Pearson factors for the average motion (centre), discord (right).

Figure 5. Synchronisation of a linear chain with five nodes. The local frequencies of the HOs are εn = {1.2, 1.4, 1.6, 1.8, 2}, the
decaying rate γ = 0.05 and the pump intensity wn = 0.045. The time is in unit (γ − w). The top left figure shows the shifted
Pearson factor Ckj(Δt) (optimized with delay) relative to different pairs of sites with the time window averaging
Δt = 10 × 2π/ε1. For completeness we report also the five spectra of the nodes evaluated in the same time window Δt used for
evaluation of the Pearson factor. It is evident how all the nodes, but 5, synchronise with the first frequency at different times.

Surprisingly, the central node does drive but does not synchronize the edges. In fact the dynamics at
frequency ε2 decays at a larger rate 2γ due to the fact that node 2 has a double decay channel. As a
consequence, driving is inhibited and for w − γ ∼ 0−, at long time, the first and third signals oscillate at
their own frequencies, showing no synchronisation independently on the central oscillator frequency) (see
figure 4). Also larger pumping will not help, as the edge oscillations (at the local frequencies) will always
dominate. Again if we admits different pumping intensities, more precisely w2 > w1,3, the central node is
able to impose its frequency to the others, reaching a global synchronized motion.

Trimer in. When we revert both edge directions the two external nodes drive the central one. In
this geometry the central node undergoes a frustrated dynamics as we can see from the following solution:

7
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〈a2(t)〉= e−
t
2 (2γ−w+2iε2)〈a2(0)〉+ 2γ

(
e−

t
2 (2γ−w+2iε2) − e−

t
2 (γ−w+2iε1)

)
γ + 2i(ε2 − ε1)

〈a1(0)〉

+2γ

(
e−

t
2 (2γ−w+2iε2) − e−

t
2 (γ−w+2iε3)

)
γ + 2i(ε2 − ε3)

〈a3(0)〉,

while each of the other two nodes evolves oscillating at its own frequency and decays at its relevant rate.
Once again the central node has two edges and so undergoes a double decay, but in this case its evolution is
driven by both 1 and 3. In figure 4 we plot the dynamical Fourier transform (16) of the central node average
amplitude. After a transient, we observe a two peak spectrum, at frequencies ε1 and ε3. Note that the
amplitude of the signal is rather small, compared for example to that of figure 2. This is due to the fact that
in this case we have equal pump strengths for the three oscillators, at variance with the two-node case
previously analysed.

Trimer through. While in the previous cases we have no synchronisation, reversing the
direction of only one link (leaving all the parameters unchanged), we have a partial synchronisation. This
fact shows the major difference between an undirected and a directed network. Generalizing this setup to
chain of N HOs, in fact (see figure 5 for the 5 HOs case) we have that all the nodes, but the last, synchronize
at frequency of the first one. The first HO is able to force synchronisation on the rest of the chain but not
on the last because the Nth HO has the same degree of the first one and hence the pumping turns out to be
too intense. In figure 5 is reported the synchronisation quantifier C〈ai〉〈aj〉 for a concatenation of N = 5 HOs,
it is evident how after a transient all following nodes synchronize one at a time with the first, except the last
one. Indeed, each HO, once it has synchronized with the previous ones, forces the next HO to synchronize.
This implies a sort of propagation of the synchronisation phenomenon from the first HO of the chain
towards the last one. As discussed before, the last one does not synchronize.

Rings and branches. Let us now consider some examples of non linear graphs introducing rings or
bifurcations in our networks.

Non-loop ring. The simplest ring geometry is a three nodes network in which each pair of nodes

is coupled via common travelling modes. Let us first consider the case in which node 1 drives nodes 2 and 3
while node 3 is driven by nodes 1 and 2. In this case we have

M =
1

2

⎛
⎝ η1 0 0
−2γ η2 0
−2γ −2γ η3

⎞
⎠ , (20)

where ηj = −2iεj − kγ + w. Since the matrix is triangular, its eigenvalues are equal to the diagonal
elements: λj = ηj. Also in this case, for uniform local pumps, nodes do not to synchronise. But If we choose
all the pump rates for j > 1 smaller than γ (wj − γ < 0), and w1 − γ ∼ 0, we obtain that only the single
collective mode associated to η1 survives. This implies that after a transient all the local oscillators will
oscillate at frequency ε1.

Loop ring. For a three nodes cyclic network in which each node drives the following one and is

driven by the previous one the matrix M assumes the following form:

M =
1

2

⎛
⎝ η1 0 −2γ
−2γ η2 0

0 −2γ η3

⎞
⎠ , (21)

with ηj = −2iεj − 2γ + w. Also in this case we do not observe synchronisation, unless the pump intensities
are tuned to proper different values.

Branching chain. As a final simple non linear topology we now analyse branches. The simplest

branch geometry consists of four nodes: a first HO which drives a second, which in turn drives,
independently, two further HOs. The relevant matrix M is:

M =
1

2

⎛
⎜⎜⎝

η1 0 0 0
−2γ η2 0 0

0 −2γ η3 0
0 −2γ 0 η4

⎞
⎟⎟⎠ . (22)

When allowing for longer chains after the branching, all HOs synchronize to the frequency of the first one,
except for the last ones of each branch, as shown in figure 6 where the synchronization quantifier are
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Figure 6. Synchronization of a seven nodes array with a bifurcation and corresponding Pearson factors (left pane). Discord
(central and right pane). Parameters are set as in figure 5 with equally spaced frequencies from 1.2 to 2.2 with nodes 4, 5 and 6, 7
having the same frequencies. The plot clearly show the lack of synchronization on the final node of the two branches.

Figure 7. Example of a complex directed network. The frequencies of the harmonic oscillators are equally spaced in the interval
{1.2–4} (left). On the right it is reported the collective Pearson factor Sg (t|Δt) (15) for the three different communities of
synchronisation highlighted in the sketch to the left.

plotted for a seven nodes branch. The reason for such lack of synchronisation of the last node of each
branch is the same as discussed for the linear chain. Also in figure 6, we see that synchronization among
distant elements requires more time to be established (the left panel shows synchronization with the first
node). As for the linear chain (not shown), the discord between pair of nodes decays along each chain and
is not symmetric, displaying larger values when measuring the input node.

Complex networks. We finally consider a more complex scenario enclosing all the motifs seen so far.
Given a directed graph G with N nodes and K edges, described by the adjacency matrix A, we associate to
each node a frequency εi uniformly distributed in the interval [εmin, εmax] with the only constraint
|εi − εj| > γ for any pair of nodes i, j. In this scenario the eigenfrequencies of the matrix M turn out to be
very close to the natural frequencies of the HOs. The example shown in figure 7 represents a directed graph
composed by 15 HOs. In this configuration the network shows three communities of synchronisation. After
a transient time nodes 12, 13 and 14 impose their frequencies to respective groups. Note that node 1, that
has three outgoing edges, does not synchronise with any other nodes. Node 6, driven by nodes 13 and 10,
undergoes a frustrated dynamics as in the example figure 2, but at the end synchronizes with 10, given that
10 survives longer than 13 thanks to input from node 7. In figure 7 (right) is reported the collective
quantifier (15) relative to the three communities.

The spectrum of the matrix M (10) provides a clear insight into the emerging synchronisation patterns
analysed so far, allowing to establish the presence of a time scale separation in the modes decays needed for
synchronization [32]. For example in the simple case of dimers, the eigenvalues of the matrix M of (18) are
trivially the diagonal matrix elements, w1 − γ and w2 − γ, and the corresponding (non-normalized)
eigenvectors are (−2i(ε2 − ε1) + w2 − w1, 2γ) and (1, 0). Under the assumption w1 − γ ∼ 0 and
w2 − γ < 0, one of the eigenvalues has its real part close to zero, corresponding to a long living mode, while
the other mode decays faster. Since the surviving mode involves both HOs, the long-time dynamics is
obviously a synchronized motion. In the ring topology corresponding to the matrix M of (20), no
synchronisation is possible for equal local pumps, as in this case the three eigenvalues have equal real parts,
which in turn implies that none of the three eigenstates survives to the other two.

Let us now focus on the complex network previously considered. In such a case, out of the 15
eigenvalues (numerically evaluated, all with non positive real parts) we can identify the three of them with
real parts closer to zero, i.e. the three which survive longer. Looking at the table plots in figure 8, we see that
the corresponding eigenstates roughly involve the nodes of the three clusters of figure 7, with some
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Figure 8. The squared absolute values of components of the three eigenstates responsible for the appearance of synchronisation
clusters. In the top of each plot the relevant eigenvalue is reported.

exceptions which can be easily understood. The two eigenvectors corresponding to the two dominant
eigenvalues (those with real parts equal to −0.0025) involve the nodes (2, 3, 8, 14) in II and (6, 7, 10, 12, 15)
in I, which perfectly fit two of the three clusters of synchronisation. The third eigenvalue (with real part −
0.0275) involves all the following nodes: (2, 4, 5, 6, 8, 9, 11, 13). Still such cluster does not include nodes 2
and 6, whose long time dynamics is determined by the other two eigenstates, so that, after a sufficiently long
time the oscillations of such two nodes are governed by the frequencies of the other two clusters. The
presence of the isolated node 1 is well explained looking at another eigenvector which involves node 1 and
other nodes already involved in the previously considered clusters.

5. Discussion and conclusions

We have analysed the emergence of synchronisation in quantum chiral networks of HOs. Each HO is locally
incoherently pumped and pairs of HOs interact with each other via a cascaded coupling with travelling
modes. Such coupling gives rise to an effective pairwise interaction and to a pairwise collective loss, the two
effects being of purely dissipative origin and dependent on the same dissipation parameter. Local incoherent
coupling is also introduced allowing the system to display sustained oscillations. For symmetric
bidirectional couplings reported so far, different forms of dissipation are known to induce synchronization
in different systems, as reviewed in references [32, 57].

A specific feature of directional couplings considered here is the possibility to induce hybrid features of
both mutual and driven synchronization arise. Indeed the directional coupling establishes a different (driver
or slave) role between nodes.

We have analysed networks of increasingly complex topologies. Even in the simplest configuration, as a
dimer, a chiral coupling changes the synchronization scenario. Indeed collective dissipation for bidirectional
coupling induces mutual synchronization [15] but in the chiral configuration synchronization cannot be
established unless pumping is included. As we have shown for the cascaded dimer, where the first HO drives
without feedback the second one, the appropriate choice of the local pumping gives rise to the onset of
pairwise synchronisation. Furthermore, for equal local pumping, no synchronisation occurs. If longer
chains are considered with couplings all in the same directions, we find long-distance synchronization in
agreement with reference [58], where unidirectionally cascaded optomechanical systems have been
considered in the classical regime.

We have then extended our analysis to more complex geometries, from unidimensional graphs to rings
and branches. For non-chiral couplings global dissipation has been shown to induce transient
synchronization in small (breathers) motifs in different complex networks in reference [20]. Within this
chiral quantum optics set-up the scenario changes both for the couplings directionality and for the form of
dissipation. In all cases, we have seen that, with fixed parameters (local energies and pumping), local
topological changes (for example the addition of a link or even the simple swap of direction of a link) have
a strong influence on the onset of synchronisation, meaning that in the general situation sub-networks
synchronise independently and synchronised clusters emerge. In most of the situations, an analysis of the
quantum discord shows that the establishment of a synchronised motion of two oscillators is associated
with an increase of mutual quantum correlations.

The analysis of the eigenvalues of the matrix M makes it possible to predict the onset of synchronisation
and the emergence of synchronised clusters. Indeed, the eigenvalues with their real parts close to zero (all
being negative) correspond to those pseudo-normal modes which survive longer in the dynamics, and the
analysis of the relevant eigenvectors allows for an understanding of the structure of such pseudo-normal
modes, i.e. to single out the involved nodes. This separation of time scales is indeed a known mechanism
for synchronization particularly useful in extended systems [19].
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Finally, our analysis of synchronisation of chiral harmonic network can pave the way to the study of new
features, like the onset of synchronisation in hybrid chiral system, the emergence of multipartite
entanglement in synchronised communities, the engineering of specific synchronisation patterns by a
suitable design of the chiral network.
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