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Abstract
In this paper, we propose a novel picking algorithm for the automatic P- and S-waves onset time determination. Our

algorithm is based on the variance piecewise constant models of the earthquake waveforms. The effectiveness and

robustness of our picking algorithm are tested both on synthetic seismograms and real data. We simulate seismic events

with different magnitudes (between 2 and 5) recorded at different epicentral distances (between 10 and 250 km). For the

application to real data, we analyse waveforms from the seismic sequence of L’Aquila (Italy), in 2009. The obtained results

are compared with those obtained by the application of the classic STA/LTA picking algorithm. Although the two

algorithms lead to similar results in the simulated scenarios, the proposed algorithm results in greater flexibility and

automation capacity, as shown in the real data analysis. Indeed, our proposed algorithm does not require testing and

optimization phases, resulting potentially very useful in earthquakes routine analysis for novel seismic networks or in

regions whose earthquakes characteristics are unknown.

Keywords Earthquake early warning � Picking � Change-points � Variance piecewise constant models � Arrival times

1 Introduction

Earthquakes may be generated by fracture processes in the

Earth’s crust, causing a partial release of the elastic strain

energy stored by tectonic processes. The released energy is

partially propagated away from its source as a wave-field.

There are three basic types of seismic waves—P-waves

(also known as primary waves, traveling at the greatest

velocity through the Earth), S-waves (transverse waves

also known as secondary waves, slower than P-waves) and

surface waves (similar in nature to water waves and travel

just under the Earth’s surface). P-waves and S-waves are

sometimes collectively called body waves. The spatial

sampling of the wave-field and recorded by a seismic

network are the waveforms represented by seismograms. A

correct registration and detection by the seismic station of

the arrival of the first P-wave, as well as other relevant

phases of the seismic event, is crucial for understanding the

nature of the generating event (Adelfio et al. 2012). An

earthquake monitoring network is a set of seismic stations

(accelerometer and velocimeters) suitably distributed over

the territory capable of detecting the occurrence of an

earthquake. In addition to sensors capable of measuring the

shaking generated by the earthquake, a seismic network

includes data transmission and processing systems capable

of determining in the shortest possible time the location of

an earthquake (hypocenter) and its magnitude. When a

seismic network is very efficient, i.e. able to automatically

and quickly detect an earthquake, it can be used as an early

warning tool. Both in the case of use for seismic moni-

toring and for early warning, the first step to be faced is the

correct detection of the seismic event, the correct estimate

of the arrival times of the main seismic phases. Given the

great growth of seismic networks and the large amount of

data that is collected during seismic sequences, the
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development of automatic picking algorithms capable of

carrying out a precise and reliable identification of the

arrival times of seismic phases has become increasingly

important. These algorithms must be at the same robust but

not computationally complex so that they can be executed

in real-time and also used for early warning purposes. An

accurate picking can allow a precise hypocentral localiza-

tion; moreover, high-quality data can be used for tomo-

graphic reconstructions of the subsoil.

More in detail, as stated above, first arrival times on

seismograms coincides with the arrival of the first P-wave.

The time of the phase-detection T̂ i at a station i is inter-

preted as the first P-phase arrival time, which is, of course,

affected with an error �i. T̂ i may be written as T̂ i ¼
T0 þ ti þ �i; where T0 is the earthquake origin time and ti is

the travel time of a P-wave to station i. The coincidence

trigger detects an event if for any combination of a mini-

mum number of stations (typically three or four) the con-

dition jT̂ i � T̂ jj � � is met. � is the maximum allowed

difference between trigger times at neighbouring stations.

This coincidence trigger works satisfying for local or

regional networks, where the inter-distance among the

seismic stations is not large. For global networks, this

simple event detection algorithm has to be modified.

Küperkoch et al. (2012) review the most widespread

automatic picking algorithms. Comparative works among

different pickers have been carried out in literature (Slee-

man and Van Eck 1999; Aldersons 2004; Küperkoch et al.

2010). Here we briefly outline the most known in the lit-

erature. Allen (1978, 1982) introduce the concept of

characteristic function (CF), obtained by one or several

non-linear transformations of the seismogram and should

increase abruptly at the arrival time of a seismic wave. This

allows both to estimate the arrival time from the CF and

assess the quality estimation. The Allen’s picker is a fast

and robust algorithm, which also accounts for automatic

quality assessment. However, since this algorithm is just

based on the amplitude information, it might miss emer-

gent P-onsets. A comparative study by Küperkoch et al.

(2010) shows that this algorithm tends to pick somewhat

early compared to what an analyst would pick.

Another widely used picking algorithm is the one pro-

posed by Baer and Kradolfer (1987). This algorithm is

frequently applied, e.g. by ‘Programmable Interactive

Toolbox for Seismological Analysis’ [PITSA, Scherbaum

(1992)] and the picking system MannekenPix (Aldersons

2004). In contrast to the Allen’s squared envelope function,

this CF is sensitive to changes in amplitude, frequency and

phase.

The Baer and Kradolfer’s picker is also very fast and

robust and quite user-friendly, needing just four input

parameters. A shortcoming of this algorithm is the missing

automated quality assessment. Several comparative studies

(Sleeman and Van Eck 1999; Aldersons 2004; Küperkoch

et al. 2010) show how this picking algorithm tends to be

somewhat late compared to manual P-picks.

The statistical properties of the seismogram might be

characterized by its distribution density function and by

parameters like variance, skewness and kurtosis. The latter

two are parameters of higher order statistics (HOS) and are

defined by Hartung et al. (2014). Though just amplitude-

based, higher order statistics are quite sensitive to emergent

P-onsets. In combination with a sophisticated picking

algorithm [e.g. Küperkoch et al. (2010)], which exploits the

entire information provided by the determined CF, it yields

excellent results. If precisely tuned, the automated quality

assessment proposed by Küperkoch et al. (2010) gives

similar weights as the analysts. However, choosing the

parameters for this sophisticated algorithm is quite difficult

and needs a great experience.

Finally, the so called autoregressive-Akaike-Informa-

tion-Criterion-piker (AR-AIC) proposed by Sleeman and

Van Eck (1999) is based on the work by Akaike

(1975, 1998), Morita (1984) and Takanami and Kitagawa

(1988). It is a highly more sophisticated algorithm based on

information theory. The algorithm is computationally quite

expensive and hence much slower than the other reviewed

pickers.

In this paper, we advocate the usage of the algorithm

proposed in Adelfio (2012) for the automated seismogram

onset time determination. This considers the case of

changepoint detection procedure for changes in variation,

assuming that the variance function can be described by a

piecewise constant function with segments delimited by

unknown changepoints. It is worth to notice that there

exists a wide literature about changes in mean in a Gaus-

sian model (Chernoff and Zacks 1964; Gardner 1969;

Hawkins 1992; Worsley 1979), as well as the problem of

variance change-point detection, mostly focusing on

autoregressive time-series models (Wichern et al. 1976;

Wang and Wang 2006; Zhao et al. 2010).

In D’Angelo et al. (2020), a new automatic picking

algorithm, based on the proposal of Adelfio (2012) and

suitable for the implementation of an automatic seismic

surveillance system, is proposed and tested on a set of 100

synthetic seismograms, showing that the model is always

able to correctly detect the arrival of the first P-wave, as

well as other relevant phases of the seismic event, such as

the arrival of the first S-wave and the end of the seismic

event. These simulated waveforms all presented the same

true values of arrival times but different underlying noise.

In D’Angelo et al. (2021) the performance of the pro-

posed algorithm is tested on a set of simulated waveforms

as generated by seismic events with different characteris-

tics, such as the magnitude, and with different scenarios of
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detection, namely with different epicentral distances from

the nearest seismic station that first recorded the event.

This allows assessing the performance of the algorithm

with respect to the different characteristics of both the

seismic event and the detection scenario, to identify the

most suitable scenario for the application of our algorithm.

Those preliminary experiments show that the algorithm

performs well in identifying the arrival times of the first P-

and S-waves. In particular, the arrival time of the first

P-waves is detected more easily than the arrival time of the

first S-waves. This is a relevant result because the arrival

time of the first P-wave represents the beginning of the

seismic event. Furthermore, it is noticed that the post-se-

lection algorithm is not always able to correctly identify

the relevant changepoints among the first estimated subset

of possible values.

Following these results, in this paper, we aim to present

our proposed algorithm’s methodology, suitable for the

automatic identification of the two relevant phrases in a

seismic waveform: the arrival times of the P- and S-waves.

To assess the algorithm’s performance in different sce-

narios, we simulate a new richer dataset of waveforms with

different magnitudes and epicentral distances. Moreover, to

show the advantages of our approach, we compare our

results with that obtained, applying a standard Short Time

Average over Long Time Average (STA/LTA) algorithm

(Allen 1978).

These two algorithms lead to similar results in terms of

performance. However, the proposed algorithm is charac-

terized by greater flexibility and automation capacity, as it

does not require testing and optimization phases. This

peculiarity makes it potentially very useful in earthquakes

routine analysis in the case of novel seismic networks, in

particular in those areas where earthquake characteristics

are unknown. Indeed, features like the window width,

threshold and characteristic function may depend on the

recording network and on the application. The proposed

algorithm just requires to set the maximum number of

potential changepoints, denoted as K�. This, may influence

the computational time, as the larger is K�, the more is the

time to estimate the corresponding changepoints, and most

of all, the time to compare the set of the reduced models by

the used lars procedure, for finding the best changepoints.

Furthermore, our proposal provides an automatic detection

of the arrival time of the P- and S-waves, and therefore, no

intervention is needed by the researcher to identify the

arrivals. Finally, the proposed algorithm can be easily

modified to allow the identification of further seismic

phases, such as the end of the seismic event.

All the developed codes are available from the authors.

The structure of the paper is as follow: Sect. 2 presents

the new picking algorithm; Sect. 3 reports the testing of the

algorithm on a dataset of simulated waveforms; an

application to real data is presented in Sect. 4; finally, Sect.

5 contains the conclusions and future works.

2 Methodology: variance piecewise
constant models

This section proposes a new methodology for automatic

picking of arrival times based on the theory of the variance

piecewise constant models.

Adelfio (2012) considers the case of changepoint

detection procedure for changes in variation, assuming that

the variance function can be described by a piecewise

constant function with segments delimited by unknown

changepoints.

Let yi be the outcome and xi be the observed sample, for

i ¼ 1; 2; . . .; n occasions. Let us assume that yi ¼ li þ �i,

where li is for instance a sinusoidal function representing

the observed signal and �i �Nð0; r2
i Þ is an error term. In

this context, r2
i is a variance function approximated by a

piecewise constant regression function with K0 þ 1 seg-

ments. An example is shown in Fig. 1.

For simplicity, the model for changes in variance after

the k�th observation is

yi ¼
li þ k�i 1� i� k�

li þ ~k�i k� � i� n

�

with k, ~k, and k� unknown and

H0 : k ¼ ~k

H1 : k 6¼ ~k

(

Taking advantage of a generalized linear model formula-

tion of the investigated problem, the test for stepwise

changes in the variance of a sequence of Gaussian random

variables may be transformed equivalently to the case of

testing for changes in the mean of the squared residuals

from an estimated linear model that accounts for the mean

behaviour of the observed signal. The estimation of the

mean signal l̂ can be carried out by using a standard

smoothing procedure, e.g., fitting a cubic smoothing spline

to the data. Following a suggestion in Smyth et al. (2001),

a gamma generalized linear model (GLM) is fitted with a

log-link function, with response given by the squared stu-

dentized residuals si ¼ ðyi � ŷiÞ2=wi, with ŷ ¼ l̂ and

weights wi ¼ 1 � hi, where hi is the ith diagonal element of

the hat matrix H. According to this approach, testing H0

against H1 means that we are looking for a change in the

mean of the residuals from a fitted linear model.

The proposed approach can be considered as a wider

version of the cumSeg models proposed in Muggeo and

Adelfio (2011) for independent normally distributed
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observations with constant variance and piecewise constant

means to detect multiple changepoints in the mean of the

gene expression levels in genomic sequences by the least-

squares approach. The authors assume that the datum yi; 8i
is defined as the sum of the signal li and noise

�i �Nð0; r2
i Þ and that li is approximated by a piecewise

constant regression function with K0 þ 1 segments, that is:

yi ¼ b1 þ d1Iðxi [w1Þ þ . . .þ dK0
Iðxi [wK0

Þ þ �i:

Here, Ið�Þ is the indicator function, such that IðxÞ ¼ 1 is x is

true, w represents the K0 locations of the changes on the

observed phenomenon, b1 is the mean level for xi\w1, and

d is the vector of the differences in the mean levels at the

change points. The authors proceed to take the cumulative

sums of the jump-points model to get a convenient mod-

elling expression that faces the discontinuities at the

changepoints wk assuming a piecewise linear or segmented

relationship. Therefore, looking for changes in variance,

the model is specified as

gðhiÞ ¼ b1xi þ d1ðxi � w1Þþ þ . . .þ dK0
ðxi � wK0

Þþ ð1Þ

where the term ðxi � wkÞþ for the changepoint k is defined

as ðxi � wkÞIðxi [wkÞ, and hi ¼ E½
Pi

j sj�. This model

specification has the advantage of an efficient estimating

approach via the algorithm discussed in Muggeo

(2003, 2008), fitting iteratively the generalized linear

model:

gðhiÞ ¼ b1xi þ
X
k

dk ~Uik þ
X
k

ck ~V
�
ik ; ð2Þ

where ~Uik ¼ ðxi � ~wkÞþ, ~V
�
ik ¼ �Iðxi [ ~wkÞ. The parame-

ters b1 and d are the same of Eq. (1), while the c are the

working coefficients useful for the estimation procedure

Muggeo (2003). At each step the working model in Eq. (2)

is fitted and new estimates of the changepoints are obtained

via

ŵk ¼ ~wk þ
ĉk
d̂k

iterating the process up to convergence. K�ð\KÞ values

are returned, producing the fitted model

gðĥ�i Þ ¼ b̂1 þ d̂Vi1 þ . . .þ d̂K�ViK� ;

where Vik ¼ Iðxi [ ŵkÞ for k ¼ 1; 2; . . .;K� and the

squared residuals are modelled as the response of a gamma

GLM with logarithmic link function. Selecting the number

of significant changepoints means selecting the significant

variables among V1; . . .;Vk, where K� is the number of

estimated changepoints from model (1). The author solves

the model selection problem by using the lars algorithm by

Efron et al. (2004). Thus, the optimal fitted model with

K̂
�
\K� changepoints, is selected by the generalized

Bayesian Information Criterion (BICCn
), that is:

BICCn
¼ �2 log Lþ edf logðnÞCn

where L is the likelihood function, edf is the actual model

dimension quantified by the number of estimated parame-

ters (including the intercept, the d and w vectors), and Cn is

a known constant. The vector of the corresponding selected

changepoints is denoted by ŵ�.

The first issue concerns the value of Cn to be used in the

BICCn
criterion to select the changepoints. In D’Angelo

et al. (2020), by simulation, the performance of different

specifications of Cn is assessed and, among the different

examined specifications of Cn, simulations reveal that Cn ¼
log log n has the best performance. Thus, we use this value

for the provided analysis.

2.1 The proposed algorithm: changepost

Based on the above methodology, we propose a further

algorithm (denoted as changepost) to detect, among the

estimated changepoints, the two corresponding to the arrival

of the first P-wave, and the arrival of the first S-wave. For-

mally, we define the relevant changepoints to be identified as

the true arrival times of the first P- and S-waves, denoted by

w1 and w2, respectively (i.e. K0 ¼ 2Þ. In particular, we

compare the ratio between the variances of the subsequent

phases identified by the K̂
�

changepoints ŵ� estimated by the

main algorithm. The two relevant changepoints are selected

as the two ones in correspondence to the two biggest variance

ratios. The pseudo-code comes in Algorithm 1.

Fig. 1 An example of simulated signal and its corresponding variance with jump points. The red dashed lines indicate the true changepoints
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As shown in steps (4), (7), and (10), for each estimated

changepoint ŵ�
i , we compute the ratio between the variance

of the interval delimited by the ŵ�
i�1 and ŵ�

i , and the

variance of the interval between ŵ�
i�1 and ŵ�

iþ1. Then, in

step (14), the two highest ratios suggest which are the

corresponding changepoints ŵ1 and ŵ2 leading to the most

relevant changes in variance.

Figure 2 depicts the changepoints indenfied by change-

post, on the simulated data of Fig. 1. As the variance of the

real signal is r2
i ¼ 0:5 þ 8Iði[ :2Þ þ 3Iði[ :6Þþ Iði[ :8Þ,

it is evident that changepost correctly identifies the changepoints

corresponding to the most abrupt changes in the variance.

3 Simulations: evalutating the performance
of the algorithm changepost

In this section, the proposed picking algorithm for the

automatic seismogram onset time determination (simply

denoted as changepost) is tested on a dataset of simulated

waveforms. Simulated seismograms are used to have the

maximum control about the arrival times of the P- and

S-phases on the waveforms. This aspect is of fundamental

importance for correct validation of the algorithm, impos-

sible with experimental seismograms. Indeed, when using

real data, i.e. experimental seismograms, it is not possible

to know with certainty the arrival times of the seismic

phases. Experimental seismograms are recordings of

ground motion, or seismic waves, generated at several

kilometers in depth and distance. The identification of the

arrival times of the seismic phases on experimental seis-

mograms, or the best picking of the P and S waves, is

carried out manually by expert seismologists. However,

even an expert seismologist may introduce errors and

uncertainties in the picking phase. Thus, for controlling the

precision and accuracy of an automatic picking procedure,

the best practice is to start from simulated data, with well

known seismic phases arrival times.

We aim at capturing the performance variations due to

some characteristics of both the seismic event and its

detection, which in turn affect some characteristics of the

Fig. 2 Simulated data of Fig. 1.

The red dashed lines indicate

the changepoints identified by

the main algorithm, described in

Sect. 2. The red straight lines

indicate the ones further

identified by changepost
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waveforms. Therefore, seismic events with different mag-

nitude are simulated, assuming different distances from the

nearest seismic station.

Our tests allow highlighting the most general scenarios

for the algorithm. Waveforms generated by earthquakes of

small magnitude often have energy comparable to the

background noise and allow to validate the functioning of

the algorithm in case of a low signal-to-noise ratio.

Waveforms with different magnitudes and epicentral dis-

tances can also differ greatly in terms of frequency content.

Events with small in magnitude and with small epicentral

distances are generally rich in other frequencies; on the

contrary, events with high magnitude and great epicentral

distance are also rich in low frequencies. Variations in the

epicentral distance also affect the nature of the seismic

phases P and S.

The seismic phases, and more generally the shape of the

seismomgrams, depend on the epicentral distance. At very

small epicentral distances (from a few kilometers to a few

tens of kilometers) the seismic waves travel inside the

upper crust. The seismic phases coming first to the surface

are not undergone to refraction and reflection phenomena;

they can be considered as direct waves. At greater dis-

tances instead (typically over a 100 km), the seismic phases

first emerging on the surface are refracted critically from

the upper mantle (Mohorovich discontinuity). Therefore,

using three epicentral distances (10, 250 and 50 km),

simulations involve the recording of three different types of

earthquakes, corresponding respectively to: local events,

whose first arrival seismic phases are direct waves, regional

events, in which the first seismic phases are seismic waves

critically refracted by the upper mantle, and transitional

events.

3.1 The simulation setup

The waveforms are simulated as coming from seismic

events with different characteristics, referring to altogether

12 scenarios, one for each combination of the following:

• Three distances from the nearest station that recorded

the seismic event: 10, 50 and 250 km;

• Four magnitudes: 2, 3, 4 and 5.

For each scenario, 100 waveforms are simulated, all

assumed to have impulsive onset of P- and S-waves and

standard seismic noise. Moreover, the synthetic signals are

generated with a sampling rate of 200 samples per second.

The seismic waveforms are simulated using the deter-

ministic hybrid approach proposed by Mourhatch and

Krishnan (2020). In detail, the low-frequency content

(limited to a frequency of 0.5 Hz) of the ground motion is

generated from a kinematic source model using the open-

source seismic wave-propagation package SPECFEM3D

(Komatitsch and Tromp 1999; Komatitsch et al. 2004), that

implements the spectral-element method, incorporating the

regional 3-D wave-speed structure of the earth. Following

Mourhatch and Krishnan (2020), low-frequency synthetic

SPECFEM3D seismograms are combined with high-fre-

quency seismograms generated using a variant of the

classical EGF (Empirical Green’s Function) approach.

For each seismic event, we generate all three compo-

nents of motion (i.e. North–South, East–West and Verti-

cal). In our analysis, we only report the results for the

Vertical component, for the sake of brevity. In Fig. 3, an

example of waveforms (vertical movement component) for

each of the considered scenarios with highlighted the true

P- and S arrival times is shown.

3.2 Simulation results for changepost

Table 1 reports the empirical means (m) and Mean Squared

Error values (s) of the two relevant changepoints estimated

by the proposed algorithm over the 100 waveforms coming

synthetic seismic events, for the four different Magnitudes

and three epicentral distances. For each epicentral distance,

we assume different true arrival times (in blue). Along with

the mean and the mean squared error values, we also

Fig. 3 A simulated waveform for each scenario and true arrival times. From left to right increasing magnitude levels. From top to bottom
increasing distance from the nearest seismic station

Stochastic Environmental Research and Risk Assessment

123



compute the percentage of waveforms where no change-

point is estimated.

Overall we may notice that, as expected, the changepost

algorithm performs the best as the distance from the nearest

seismic station that recorded the event decreases and as the

magnitude of the seismic event increases. This is the case

with the best signal to noise ratio. Indeed, the NA values

are most likely to occur when the magnitude is small and

the distance is large, that is basically when the P- and

S-waves have comparable or lower energy with respect to

the background noise, that is indiscernible from that. In

such cases, the arrival times can not be estimated correctly.

The scenarios in which the distance from the nearest

seismic stations is 50 km is the one reporting no NAs,

regardless of the magnitude level. Nevertheless, this does

not represent the best picking scenario, as the uncertainty

of the estimates is larger than the performance in the 10 km

scenario.

3.3 Comparison with STA/LTA

In this paragraph, we compare the changepost picking

algorithm, based on the variance piecewise constant mod-

els, introduced in Sect. 2, with the Short-Term Average/

Long-Term Average (STA/LTA) method (Allen 1978).

The STA/LTA method is the simplest and most com-

monly picking technique used in earthquake seismology.

The STA/LTA method computes the ratio of the continu-

ously computed average energy (generally the waveforms

envelope, the absolute amplitude, or other characteristic

functions) of a recorded trace in two synchronous moving-

time windows: a Short-Term window and a Long-Term

window (STA/LTA ratio). The short-time window permits

to highlight sudden amplitude changes in the signal, while

the long time one estimates the current average of the

seismic noise. Therefore, the STA/LTA ratio allows high-

lighting variations in energy in the signal with respect to

the background noise. These energy variations can be

identified by setting thresholds: when the STA/LTA ratio

exceeds a certain threshold, the arrival of a seismic phase is

identified. The output of the STA/LTA algorithm is the

characteristic function Ek, defined as:

Ek ¼ x2
k þ ðx0kÞ

2 þ C

where, xk is the seismic trace, x0k is its derivative and C is

an empirical weighting constant.

This method is undoubtedly computationally efficient,

and its variants are widely used for the picking of seismic

phases. However, it needs a calibration phase to identify

both the best length of the STA and the LTA and the best

threshold level. The optimal STA width depends on the

frequency content of the seismic event and, therefore, on its

magnitude and epicentral distance. Similarly, the width of

the LTA should also be chosen according to the noise

characteristics. The trigger threshold is also very important:

values that are too high can lead to the failure to identify

the arrival of the seismic phases, values that are too low

can provide false identifications. This method can therefore

be inaccurate in the case of a low signal to noise ratio.

After several optimization tests for each earthquake

class, we set the parameters reported in Table 2 for the

comparison. Once the parameters are set, we run the tests,

Table 1 Empirical means (m) and Mean Squared Error values (s) of

the two relevant changepoints detected by changepost, over the 100

waveforms of each simulated dataset, with four different magnitudes

and three epicentral distances

M w1 w2 NA%

10 km

True 41.6 42.75

2 m 41.415 43.101 7

s 0.107 2.256

3 m 41.514 42.708 1

s 0.017 1.604

4 m 41.496 42.278 2

s 0.012 1.355

5 m 41.382 45.751 1

s 0.055 1.081

M w1 w2 NA%

50 km

True 47.63 53.714

2 m 47.592 53.394 0

s 0.002 5.168

3 m 47.453 57.686 0

s 0.240 49.011

4 m 47.229 53.194 0

s 0.789 19.630

5 m 47.118 55.537 0

s 0.376 45.036

M w1 w2 NA%

250 km

True 75.26 103.15

2 m – – 100

s – –

3 m – – 100

s – –

4 m 75.115 105.626 0

s 7.904 80.144

5 m 74.192 103.592 1

s 1.322 434.865
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obtaining the results reported in Table 3. We have noticed

that the number of the picked arrival times is generally

lower using the STA/LTA, with respect to the changepost

algorithm. Then, a further note is needed. Before com-

puting Mean, MSE and NA%, we set the picking’s STA/

LTA results in this way: for each seismic event, we check

if there are zero picking, one or more than one picking. If

zero picking is observed, we only increment the NA%;

instead, if we find one or more than one picking, the closest

picking to the real picking is determined. Just after finding

all picking values for all events, we compute Mean and

MSE for picked events, and NA%, as for the proposed

algorithm. This specification is due since there are a

number of cases where the STA/LTA algorithm picks a

unique arrival time (see the first scenario—S-waves—in

Table 3).

Nevertheless, if the number of the estimated picked

arrival times K̂
�

is large, the probability of having a picking

close to the true one increases, resulting in smaller mean

squared error values and then, influencing the results as

mentioned above. Therefore, we define a probability index,

computed for each waveform q: let ŵ�
q be the vector of the

K̂
�
q [ 1 estimated changepoints, the probability index is

defined as follows:

Iðŵ�
q � true� pickÞ

K̂
�
q

; ð3Þ

where Ið�Þ is the indicator function, such that IðxÞ ¼ 1 if x

is true, i.e. counting how many times the changepoints ŵ�
q

estimated for the waveform q fall inside the interval �pick

around the true arrival time (which varies with the scenario

considered).

In Tables 4 and 5 we report the computed probability

index (3), for the proposed picking algorithm and for the

Table 2 STA/LTA settings

STA/LTA parameters (s) 10 km 50 km 250 km

STA window length 0.1 0.5 2.5

LTA window length 1 5 25

Threshold trigger on 5.0 5.0 5.0

Threshold trigger off 2.5 2.5 2.5

Table 3 Empirical means (m) and Mean Squared Error values (s) of

the two relevant arrival times estimated by the STA/LTA algorithm

over the 100 waveforms of each simulated dataset, with four different

magnitudes and three distances

M w1 w2 NA%

10 km

True 41.6 42.75

2 m 41.605 – 0

s 0.000 –

3 m 41.589 42.272 0

s 0.003 0.413

4 m 41.573 42.853 0

s 0.000 0.140

5 m 41.514 42.740 0

s 0.009 0.291

50 km

True 47.63 53.714

2 m 47.682 49.148 1

s 0.018 35.847

3 m 47.620 47.642 0

s 0.034 36.873

4 m 47.617 53.632 0

s 0.006 0.430

5 m 47.589 53.472 0

s 0.006 2.193

250 km

True 75.26 103.15

2 m 78.275 129.137 82

s 9.145 989.601

3 m 82.935 129.166 90

s 58.905 922.363

4 m 75.809 106.600 0

s 0.655 13.357

5 m 75.351 107.340 0

s 0.033 21.231

Table 4 Percentage of the changepoints estimated by the changepost
algorithm, lying within a �0:2 interval around the true value

M w1 NA% w2 NA%

10 km 2 0.540 8 0.000 100

3 0.740 1 0.020 96

4 0.650 2 0.070 86

5 0.200 69 0.115 77

50 km 2 0.500 0 0.020 96

3 0.500 0 0.010 98

4 0.300 43 0.020 96

5 0.165 67 0.005 99

250 km 2 – 100 – 100

3 – 100 – 100

4 0.130 74 0.145 71

5 0.010 98 0.010 98
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STA/LTA algorithm, respectively. In particular, we set the

pick to 0.2 s, and compute (3) for both the P- and S-ar-

rivals, separately. Then, those values are averaged with

respect to the 100 waveforms of each scenario, and the

percentage of NAs is reported, to take into account both the

waveforms where no changepoint is estimated (i.e. NAs in

Tables 1 and 3) and those cases in which

IðK̂�
q � true� pickÞ ¼ 0, i.e. no estimated changepoint for

that specific waveform falls into the interval.

From Tables 4 and 5, we may notice that STA/LTA

outperforms changepost in picking the P-Phases times.

Almost in the all S-Phases, instead, STA/LTA provides the

highest NA%: the scenario with distance 10 km and

magnitude 2 is the only one where changepost provides

100% of NAs. Moreover, for the scenario 250 km distance

and magnitude 2, changepost does not find any change-

point and then provides the highest NA%; this percentage

gradually decrease as the magnitude increases.

When the distance is 50 km, even in lower magnitudes,

the changepost algorithm provides a lower percentage of

NA than STA/LTA. Overall, changepost outperforms STA/

LTA in the S-Phases picking. Otherwise, the STA/LTA

picking time is better for the P-Phases, being more precise

in terms of tenths of a second.

A comment on the computational cost is in order.

Indeed, computation time is crucial in automated seismo-

gram onset time determination, mostly accounting for its

implications in seismic monitoring and in earthquake early

warning systems. Even tough we have assessed that

changepost is quite slower than STA/LTA, the computa-

tional time of the former does not represent a limitation.

The only setting influencing the computational time is K�,
that is the maximum number of changepoints to be detec-

ted: the larger K�, the higher the computational time, but

also the more the estimated changepoints. Therefore, since

changepost is able to process hundreds of waveforms

within minutes, the researcher could even consider to

reproduce the analyses with different values of K�,
depending on the available time and the complexity of the

waveforms. Therefore, even tough STA/LTA has lower

computational time, the automation of changepost coun-

terbalance its higher computational cost.

4 Application to real data

The seismic events selected for showing an application to

real data belong to the seismic sequence of L’Aquila

(Italy), in 2009. The complete database is made up of 80

seismic events recorded by 12 stations with three compo-

nents (identify the component of motion to which they

refer: Up–Down, North–South and East–West), for a total

of 2880 waveforms. They all exhibit a magnitude between

3 and 4.1. The waveforms were sampled at 100 Hz, and the

length total of each of the waveforms is 100 s (10,000

samples). To increase the signal ratio noise, a bandpass

filter was applied in frequency band between 0.1 and 35

Hz. Such an operation was necessary to eliminate fre-

quencies related to electronic and anthropic noise clearly

not part of seismic signals. Also, the waveforms have been

normalized with respect to the maximum amplitude.

Figures 4 and 5 contain five waveforms selected to show

the results, and the arrival times identified by changepost

and STA/LTA, respectively. For the proposed changepost

procedure, K� is set to 10. In Fig. 4, the red dashed lines

represent all the K̂
�

change-points detected by the main

algorithm, while the solid red ones identify the two

selected change-points, representing the arrival times of the

P- and S-waves, respectively. Figure 5 depicts the results of

the application of STA/LTA: the solid red lines indicate the

estimated arrival times. As evident from the two figures,

while changepost is always able to identify two arrival

times (most likely to represent the arrivals of the P- and

S-waves), the STA/LTA algorithm either succeeds in

identifying only very early arrival times (very likely to be

arrival times of the P-waves) or completely fails to identify

any arrival time.

This is an expected result for the seismic events con-

sidered in this experiment, in particular using the STA/

LTA settings reported in Table 2. Better results for the

STA/LTA algorithm, comparable with those just showed

with synthetic seismograms, could be obtained only after a

few rounds of optimization of the triggering parameters.

These results confirm the conclusion drawn by simulation

study, that is the high flexibility of the proposed change-

post algorithm. Indeed, it does not require neither testing

Table 5 Percentage of the changepoints estimated by the STA/LTA

algorithm, lying within a �0:2 interval around the true value

M w1 NA% w2 NA%

10 km 2 1.000 0 0.000 100

3 0.935 1 0.020 96

4 0.433 0 0.253 38

5 0.551 0 0.150 63

50 km 2 0.805 12 0.000 100

3 0.935 5 0.000 100

4 0.512 1 0.128 74

5 0.464 0 0.112 73

250 km 2 0.000 100 0.000 100

3 0.000 100 0.000 100

4 0.170 81 0.000 100

5 0.456 14 0.000 100
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Fig. 4 Vertical components of

three seismic events detected by

the seismic station BSSO—

Busso (Italy) during the

L’Aquila seismic sequence

occurred in 2009. Red dashed

lines all the K̂
�

change-points

estimated by the main

algorithm. Red straight lines the

K̂ ¼ 2 change-points, among

the K̂
�

estimated ones, most

likely to represent the true

arrival times of the P- and

S-waves
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Fig. 5 Vertical components of

three seismic events detected by

the seismic station BSSO—

Busso (Italy) during the

L’Aquila seismic sequence

occurred in 2009. Red straight
lines the arrival times identified

by STA/LTA
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nor optimization phase, and its accuracy is almost inde-

pendent of the analyzed dataset.

5 Conclusions

The precise and quick determination of the arrival times of

the main seismic phases is of fundamental importance for

seismic surveillance and routine earthquake hypocenter

determination. Clearly, to be suitable also for early warn-

ing, a picking algorithm must be computationally efficient,

avoid false alarms, and time picking must be as accurate as

possible.

With these premises, in this work, we proposed a novel

picking algorithm for the automatic P- and S-waves onset

time determination. The changepost algorithm is based on

the variance piecewise constant models. The effectiveness

and robustness of our picking algorithm were tested on

synthetic seismograms. In order to make the STA/LTA

algorithm work correctly, many tests are necessary to

optimize the processing parameters. These parameters

(window width, threshold, characteristic function) are

clearly a function of the type of seismicity recorded by the

network and must be optimized from time to time.

If compared to the well-established STA/LTA offline

picking algorithm, the changepost opens a promising path.

Indeed, changepost is entirely automatic, meaning that no

choice of any parameters is needed to run the algorithm.

This feature can be particularly important when, for

example, the characteristics of the seismicity of a given

area are not well known or when a new seismic monitoring

network is set up. The only prior setting regards the max-

imum number of changepoints to be detected: the larger the

number, the more the resulting estimated changepoints, but

also the higher the computational time. Furthermore,

changepost provides automatically the arrival time of the

P- and S-waves, and therefore, no intervention is needed by

the researcher to identify the arrivals among those possibly

triggered.

Changepost can be easily modified to allow the identi-

fication of further seismic phases, such as the end of the

seismic event. Certainly, interesting results can be obtained

by applying the same technique to transforms of the orig-

inal signal (integrated signal, derivative, frequency filtered,

etc.). These future developments that we are foreseeing

could certainly improve the performance of the proposed

algorithm.
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