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Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models
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In this work we consider a quite general class of two-species hyperbolic reaction-advection-diffusion system
with the main aim of elucidating the role played by inertial effects in the dynamics of oscillatory periodic
patterns. To this aim, first, we use linear stability analysis techniques to deduce the conditions under which
wave (or oscillatory Turing) instability takes place. Then, we apply multiple-scale weakly nonlinear analysis
to determine the equation which rules the spatiotemporal evolution of pattern amplitude close to criticality.
This investigation leads to a cubic complex Ginzburg-Landau (CCGL) equation which, owing to the functional
dependence of the coefficients here involved on the inertial times, reveals some intriguing consequences. To show
in detail the richness of such a scenario, we present, as an illustrative example, the pattern dynamics occurring
in the hyperbolic generalization of the extended Klausmeier model. This is a simple two-species model used
to describe the migration of vegetation stripes along the hillslope of semiarid environments. By means of a
thorough comparison between analytical predictions and numerical simulations, we show that inertia, apart from
enlarging the region of the parameter plane where wave instability occurs, may also modulate the key features of
the coherent structures, solution of the CCGL equation. In particular, it is proven that inertial effects play a role,
not only during transient regime from the spatially-homogeneous steady state toward the patterned state, but
also in altering the amplitude, the wavelength, the angular frequency, and even the stability of the phase-winding
solutions.
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I. INTRODUCTION

Pattern formation and modulation is an active branch of
mathematics, not only from the perspective of fundamental
theory but also for its huge applications in many fields of
physics, ecology, chemistry, biology, and other sciences [1–6].
In 1952, Turing proposed the mechanism through which a
pattern-forming instability develops [7]. It arises from the
coupling of diffusion and reaction kinetics, and is based on
the destabilization of a spatially uniform steady state due to a
perturbation of a given wave number.

The occurrence of such an instability is theoretically inves-
tigated by addressing, first, linear and, then, weakly nonlinear
stability analysis. Linear stability analysis (LSA) is aimed at
defining the critical threshold of the control parameter respon-
sible for the instability. When addressing this study, it should
be kept in mind that the simplest bifurcation of a spatially
uniform steady state may result in the spontaneous formation
of patterns that are oscillatory in time and uniform in space,
stationary in time and periodic in space, or oscillatory in time
and periodic in space. The primary bifurcations associated to
these classes of patterns are classically identified as Hopf,
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Turing, and wave (also named Turing-Hopf or oscillatory-
Turing), respectively [8].

Weakly nonlinear stability analysis (WNA) is focused on
deducing the equation governing the evolution of pattern am-
plitude (or envelope) close to criticality. In spatially extended
systems, pattern amplitude is usually ruled by the well-known
(real or complex) Ginzburg-Landau equation, which repre-
sents a general normal-form type of equation, valid for a large
class of bifurcations and nonlinear wave phenomena occur-
ring in many areas of sciences [1,2,5,6,9–18]. In particular,
when applied to the study of oscillatory periodic patterns, the
Ginzburg-Landau equation has complex coefficients and does
not have a Lyapunov functional [1,2,5,6,19–23]. Its simplest
solutions are in the form of coherent structures, among which
plane-wave (or traveling-wave) solutions represent the easiest
and most intuitive example.

In this work we focus our attention on the occurrence of
wave instability with the goal of characterizing the dynamics
of traveling patterns in one-dimensional hyperbolic reaction-
advection-diffusion systems for two interacting species. In
particular, by using the above-mentioned tools of LSA and
WNA, we aim at elucidating the role played by inertia in
modifying the instability threshold, the key features of the
emerging patterns, and their stability.

This work is an attempt to provide a step forward towards
a deeper understanding of the underlying mechanisms in-
volved into the formation of traveling patterns in hyperbolic
models. Indeed, the goal is to extend the literature of hyper-
bolic systems that encloses several related works focusing, for
instance, on wave instability in systems where one species
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diffuses and the other ones undergoes advection, by adopting
LSA only [24]; Turing and wave instabilities in the presence
of cross-diffusion, with no advection, by adopting LSA and
WNA in limited domains [25] or LSA only [8,26]; Turing in-
stability in the absence of advection, by using LSA and WNA
in extended domains with constant [27–29] and nonconstant
[30] inertial times; traveling fronts in models with advection
[31,32] or in its absence considering self-diffusion [33] and
cross-diffusion [34].

As widely outlined in all the above-mentioned works,
the use of an hyperbolic framework has a manifold justifi-
cation. First, it is well known that parabolic models suffer
from the paradox of infinite propagation speed of distur-
bances, whereas hyperbolic models overcome this problem
by accounting for relaxational effects due to the delay of the
species in adopting one definite mean speed and direction
to propagate [32]. Therefore, these latter are better suited to
describe transient regimes, especially those involving long
timescales. Moreover, the inertial (delay) times constitute ad-
ditional degrees of freedom that may be used to better mimic
experimental observations and, at the same time, offer a richer
scenario of dynamics [28,29,35–45].

The theoretical predictions here carried out are then
corroborated by numerical investigations on the so-called ex-
tended Klausmeier model, taken into account as an illustrative
example of a two-species system where the combination of
kinetics, diffusion, and advection gives rise to oscillatory pe-
riodic patterns. It is a conceptual model for surface water
and vegetation biomass, used to describe the formation and
migration of vegetation patterns over sloping terrains of semi-
arid ecosystems. This model, among many others [46–50],
aims at exploring the processes of desertification occurring in
such drylands areas [51–55]. In its original formulation [56],
this model accounted for the isotropic diffusion of vegetation
and the anisotropic advection of water along the hillslope.
Later [57], this model has been extended to account also for
diffusion of water and, in [58], it has been further generalized
to include the phenomenon of secondary-seed dispersal. All
the above models are able to capture the uphill migration
of vegetation bands, which are believed to be observed ex-
perimentally [45,59]. Moreover, to account for the relevance
of biological inertia in plant communities to ecology of arid
ecosystems [36,42,44] as well as to provide a proper descrip-
tion of long transient pattern dynamics [60–63], hyperbolic
generalizations of Klausmeier model have been proposed in
[24,27,30,31].

The paper is outlined as follows. In Sec. II, we present the
class of hyperbolic reaction-advection-diffusion models and
characterize the phenomenon of wave instability through LSA
and WNA. In Sec. III, we compare our results of analytical
predictions to those arising from numerical simulations, car-
ried out on the hyperbolic version of the extended Klausmeier
model. Conclusions are given in the last section.

II. MODEL FORMULATION AND ANALYTICAL
INVESTIGATIONS

We consider a class of hyperbolic reaction-advection-
diffusion systems for two species u(x, t ) and w(x, t ) satisfying
the following hypotheses: dynamics takes place at time t and

along a preferred direction x; w undergoes both diffusion
and advection with a velocity denoted by ν, whereas u has a
diffusive character only; the w-by-u diffusion ratio is termed
d; the inertial times associated to the two species are denoted
by τ u and τw, which are assumed to be constant; kinetic terms
are generically indicated by f (u,w) and g(u,w). Following
the guidelines of extended thermodynamics (ET) theory [64],
we also introduce two additional field variables representing
the diffusive fluxes Ju(x, t ) and Jw(x, t ), each of them obeying
a thermodynamically consistent balance equation that, in the
parabolic limit approximation, τ u → 0 and τw → 0, recover
the classical constitutive Fick’s law.

According to these assumptions, the hyperbolic system can
be expressed in vector form as

Ut + MUx = N(U), (1)

being

U =

⎡⎢⎣ u
w

Ju

Jw

⎤⎥⎦, M =

⎡⎢⎢⎣
0 0 1 0
0 −ν 0 1
1
τ u 0 0 0
0 d

τw 0 0

⎤⎥⎥⎦, N(U) =

⎡⎢⎢⎢⎣
f (u,w)
g(u,w)

− Ju

τ u

− Jw

τw

⎤⎥⎥⎥⎦,

(2)

where the subscript stands for the partial derivative with re-
spect to the indicated variable. Note that the model (2) belongs
to a more general class of n-species hyperbolic reaction-
advection-diffusion systems deduced via ET and reported
in [31].

In the following sections, we will address LSA and WNA
on the steady states admitted by this model with particular
emphasis on the occurrence of wave instability.

A. Linear stability analysis

Let U∗ = (u∗, v∗, 0, 0) be a positive spatially homogeneous
steady state satisfying N(U) = 0. By looking for solutions of
system (1) of the form U = U∗ + Û exp(ωt + ik x), we derive
the following dispersion relation which gives the growth fac-
tor ω as a function of the wave number k:

τ uτwω4 + (Ã3 − ikντ uτw )ω3 + (Â2k2 + Ã2 + ikνb̂2)ω2

+ [Â1k2 + Ã1 + ikν(b̂1 − τwk2)]ω + Ã0 + ikνb̂0 = 0

(3)

with

Ã3 = τ u + τw − ( f ∗
u + g∗

w )τ uτw,

Â2 = dτ u + τw,

Ã2 = 1 − (τ u + τw )( f ∗
u + g∗

w ) + τ uτw( f ∗
u g∗

w − f ∗
wg∗

u),

b̂2 = τ uτw f ∗
u − τ u − τw,

Â1 = d + 1 − τwg∗
w − dτ u f ∗

u ,

Ã1 = (τ u + τw )( f ∗
u g∗

w − f ∗
wg∗

u) − ( f ∗
u + g∗

w ),

b̂1 = (τ u + τw ) f ∗
u − 1,

Ã0 = dk4 − (df ∗
u + g∗

w )k2 + f ∗
u g∗

w − f ∗
wg∗

u,

b̂0 = f ∗
u − k2, (4)
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where the asterisk denotes that the function is evaluated at the
steady state U∗.

It is straightforward to ascertain that, for homogeneous
perturbation k = 0, Eq. (3) can be easily factorized and its
solutions are

ω1 = − 1
τ u < 0, ω2 = − 1

τw < 0,

ω3,4 = 1
2

[
f ∗
u + g∗

w ±
√

( f ∗
u + g∗

w )2 − 4( f ∗
u g∗

w − f ∗
wg∗

u)
]
.

(5)

Therefore, U∗ is stable with respect to homogeneous pertur-
bation iff

f ∗
u + g∗

w < 0, f ∗
u g∗

w − f ∗
wg∗

u > 0. (6)

As far as nonhomogeneous perturbations are concerned,
we notice that a nonvanishing advection term (ν �= 0) prevents
the occurrence of Turing instability, because the expression
Ã0 + ikνb̂0 is nonzero for all values of k. Therefore, we focus
our attention on the occurrence of wave instability as a control
parameter, say B, is varied. To this aim, we look for solutions
of the characteristic equation (3) having null real part for some
k �= 0 and require the transition from negative to positive real
part to occur via a maximum. More precisely, we assume
ω = −isk, with s = s(k) ∈ R so that any perturbation can be
recast in the form of a traveling plane wave with speed s, i.e.,
Û exp[ik(x − st )]. Then, by substituting the previous ansatz
into the characteristic equation and taking the derivative of
this latter with respect to k, we obtain

k4 − δ2k2 + δ4 = 0,

δ1k2 − δ3 = 0,

2k
(
2k2 − δ2

) +
(

∂δ4

∂s
− ∂δ2

∂s
k2

)
∂s

∂k
= 0,

(δ1δ2 − 2δ3)

(
δ1

∂δ3

∂s
− δ3

∂δ1

∂s

)
− δ2

1

(
δ1

∂δ4

∂s
− δ3

∂δ2

∂s

)
= 0,

(7)

where

δ1 = ν + Â1s + νb̂2s2 − Ã3s3

(τ us2 − 1)(τws2 + ντws − d )
,

δ2 = Ã2s2 − b̂1νs + df ∗
u + g∗

w

(τ us2 − 1)(τws2 + ντws − d )
,

δ3 = ν f ∗
u − Ã1s

(τ us2 − 1)(τws2 + ντws − d )
,

δ4 = ( f ∗
u g∗

w − f ∗
wg∗

u)

(τ us2 − 1)(τws2 + ντws − d )
. (8)

System (7) defines implicitly the critical value Bc of the con-
trol parameter at which wave instability develops, together
with the critical wave number kc, the wave speed s, and its
derivative with respect to the wave number ∂s/∂k. Therefore,
we can draw a first conclusion that the presence of inertia
affects not only the instability threshold, but also the wave
number of the emerging pattern. This result differs from what
observed in the case of pure stationary Turing patterns, where
hyperbolicity does not affect such quantities but plays an
active role during transient regime [27,30].

Notice that in the limit case τ u → 0 and τw → 0 the hy-
perbolic model (1), (2) reduces to the corresponding parabolic
one. Details on the structure of the parabolic model, the char-
acteristic equation, and the locus of wave instability are given
in Appendix A.

B. Multiple-scale weakly nonlinear analysis

As it is well known, LSA is only valid for small times
and infinitesimal perturbations. For this reason, the transition
to the new spatially nonuniform state is usually investigated
by means of WNA which, by using a standard perturbative
approach, provides an approximate analytical description of
the perturbation dynamics. In this section, we shall employ
the multiple-scale method to derive the amplitude equa-
tion describing the dynamics close to the critical bifurcation
parameter Bc at which instability develops [5,6,25,27–29,
65–67].

We recast the original system (1) in the following form:

Ut + MUx = L∗U + NL∗, (9)

where the matrix L∗ and the vectors U and NL∗ are defined as

U = U − U∗, (10)

L∗ = (∇N)∗, (11)

NL∗ =
∑
k�2

1

k!
[(U · ∇)(k)N]∗, (12)

and ∇ = ∂/∂U, for a generic vector V, the expression
(V · ∇)( j) stands for the operator

V · ∇ = V1
∂

∂u
+ V2

∂

∂w
+ V3

∂

∂Ju
+ V4

∂

∂Jw
(13)

applied j times.
First, we expand the field vector U as well as the control

parameter B with respect to a small positive parameter ε � 1
and introduce two time and spatial scales as follows:

U = εU1 + ε2U2 + ε3U3 + O
(
ε4
)
,

B = Bc + ε2B2 + O
(
ε4
)
,

∂

∂t
→ ∂

∂t
+ ε2 ∂

∂T2
,

∂

∂x
→ ∂

∂x
+ ε

∂

∂X
. (14)

The use of two spatial scales is justified whenever patterns
emerge and propagate over large spatial domains in the form
of traveling wavefronts.
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Then, substituting all the above expansions into the governing system (9) and collecting terms of the same orders of ε we
obtain the following set of linear partial differential equations:

at order 1
∂U1

∂t
+ M

∂U1

∂x
= L∗

c U1,

at order 2
∂U2

∂t
+ M

∂U2

∂x
+ M

∂U1

∂X
= L∗

c U2 + 1

2

(
U1 · ∇)(2)

N|∗c ,

at order 3
∂U3

∂t
+ ∂U1

∂T2
+ M

∂U3

∂x
+ M

∂U2

∂X
= L∗

c U3 + B2
dL∗

dB

∣∣∣∣
c

U1 + (U1 · ∇)(U2 · ∇)N|∗c + 1

6

(
U1 · ∇)(3)

N|∗c , (15)

where the subscript “c” denotes that the quantity is evaluated at the critical value of the control parameter. We now look for
solution Ui = Ui(z) with z = x − st , so that the system (15) can be written as a system of ordinary differential equations:

at order 1
dU1

dz
= K∗

c U1, (16)

at order 2
dU2

dz
= K∗

c U2 + (M − sI )−1

{
1

2

(
U1 · ∇)(2)

N|∗c − M
∂U1

∂X

}
, (17)

at order 3
dU3

dz
= K∗

c U3 + (M − sI )−1

{
B2

dL∗

dB

∣∣∣∣
c

U1 + (
U1 · ∇)(

U2 · ∇)
N|∗c + 1

6

(
U1 · ∇)(3)

N|∗c − ∂U1

∂T2
− M

∂U2

∂X

}
, (18)

where I is the identity matrix and

K∗
c = (M − sI )−1L∗

c . (19)

According to WNA developed in Appendix B, the solutions of systems (16) and (17), satisfying periodic boundary conditions,
take, respectively, the following structures:

U1 = �(X, T2)eikczd(ikc ) + �(X, T2)e−ikczd(−ikc ), (20)

U2 = ∂�

∂X
eikczg + ∂�

∂X
e−ikczg + �2e2ikczq + �

2
e−2ikczq + 2q0|�|2, (21)

where the complex pattern amplitude � obeys the cubic complex Ginzburg-Landau (CCGL) equation

∂�

∂T2
= (ρ1 + iρ2)

∂2�

∂X 2
+ (σ1 + i σ2)� − (L1 − iL2)� |�|2. (22)

The coefficients appearing in (20)–(22) are given in Appendix B.

As known, two different qualitative dynamics of the CCGL
equation can be observed: L1 > 0 corresponds to the super-
critical bifurcation case while L1 < 0 to the subcritical one.
The former exists for above-threshold values of the control pa-
rameter only, exhibits a small amplitude close to onset, and the
wavelength of the excited pattern is close to the critical value
2π/kc. The latter exists for both below- and above-threshold
values, exhibits hysteresis, and has a large amplitude at onset
such that the WNA may only provide qualitative information
on the excited patterns [1,5,6].

Remark 1. The CCGL equation (22) deduced in the more
general framework of hyperbolic systems appears formally
unchanged with respect to the classical one deduced in
parabolic models [67]. It can be indeed verified that the ex-
pressions of the coefficients there appearing may be obtained
from the ones appearing in (22) by setting the inertial times
to zero. Of course, each of these coefficients encloses a de-
pendence on the inertial times which, acting as additional
degrees of freedom, offers a richer scenario of spatiotemporal
dynamics with respect to the parabolic counterpart, as it will
be shown below.

Coherent structure solutions of the CCGL equation

Let us now focus our attention on those solutions of the
CCGL equation that are referred to as coherent structures, and
in particular to the one-parameter family of solutions localized
in space characterized by features uniformly translating with
a constant velocity v [1,5,19–23], i.e.,

�(X, T2) = Q(ξ )eiφ(ξ ), ξ = X − vT2. (23)

Substituting this ansatz into the CCGL equation (22) and
indicating by κ = φξ , we get a system of three ordinary dif-
ferential equations:

Qξ = R,

ρ2Qκξ − ρ1Rξ = (v − 2ρ2κ )R + (σ1 − ρ1κ
2)Q − L1Q3,

ρ2Rξ + ρ1Qκξ = −2ρ1κR + (ρ2κ
2 − σ2 − vκ )Q − L2Q3.

(24)
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The dynamical system (24) admits two fixed points in the
form F∗ = (R∗, Q∗, κ∗) given by F∗

1 = (0, 0, κ0), with κ0 an
arbitrary constant, and F∗

2 = (0, Q̃, κ̃ ), where the constants Q̃
and κ̃ are defined by

Q̃ =
√

σ1 − ρ1κ̃2

L1
,

(ρ1L2 + ρ2L1 )̃κ2 − vL1κ̃ − (σ2L1 + σ1L2) = 0. (25)

The fixed point F∗
1 defines a null-amplitude patterned state

� = 0 that is representative of the spatially homogeneous
steady state U∗ undergoing the spatially driven destabiliza-
tion. On the other hand, the plane-wave solution of the CCGL
equation associated to the fixed point F∗

2, i.e.,

�(X, T2) = Q̃ei(̃κX+ω̃T2 ) with ω̃ = −κ̃v (26)

represents a particular case of coherent structure named
phase-winding solution [1,5,21,23,68] and describes a
traveling pattern characterized by a total wave number
ktot = kc + εκ̃ and angular frequency ωtot = kcs − ε2ω̃. If the
wave bifurcation is supercritical (L1 > 0), under the assump-
tions that σ1 > 0 and ρ1 > 0, according to the first eq. in (25),
such a solution exists if

−
√

σ1

ρ1
< κ̃ < +

√
σ1

ρ1
(27)

so that there is a band of permitted wave numbers around
κ̃ = 0 and the second-order correction of the angular fre-
quency takes the form

ω̃ = [(σ2L1 + σ1L2) − (ρ1L2 + ρ2L1 )̃κ2]/L1. (28)

Since we deal with three unknowns (̃κ , Q̃, and ω̃) and two con-
ditions arising from the CCGL equation, one parameter needs
to be estimated from numerical simulations. For instance, κ̃

can be deduced by comparing the numerically computed value
of the total wave number ktot with the theoretical critical wave
number kc, whereas the values of amplitude Q̃ and angular
frequency ω̃ can be consequently obtained via (25) and (28),
respectively.

To investigate the stability of the phase-winding solution,
we can proceed, as usual in the literature, by perturbing the
amplitude (26) as follows:

�(X, T2) = [1 + a(X, T2)]Q̃ei(̃κX+ω̃T2 ),

a(X, T2) = �(T2)ei lX + �(T2)e−ilX (29)

with l the small perturbation of the wave number κ̃ , namely,
we look for long-wave effects. After some algebraic manipu-
lations, we end up with the system

�T2 = [−l (l + 2̃κ )(ρ1 + iρ2) − Q̃2(L1 − iL2)]�

− (L1 − iL2)Q̃2�,

�T2 = [−l (l − 2̃κ )(ρ1 − iρ2) − Q̃2(L1 + iL2)]�

− (L1 + iL2)Q̃2�, (30)

where � is the complex conjugate of �.
Then, looking for the usual exponential dependence of

� and � on T2, in the limit of large wavelengths (small
l), one retrieves a necessary condition for the stability of

plane-wave structures, named Benjamin-Feir-Newell condi-
tion [1,2,6,23,67], that reads as

1 − ρ2L2

ρ1L1
> 0. (31)

Remark 2. It should be finally noticed that all the features
characterizing the phase-winding solution, i.e., amplitude Q̃,
wave number κ̃ , and angular frequency ω̃, together with its
stability, inherit the functional dependence on the inertial
times from the coefficients of the CCGL equation (22). There-
fore, it is expected that hyperbolicity effects may manifest,
not only during the transient regime from the homogeneous
steady state toward the patterned state [the heteroclinic orbit
of (24) joining F∗

1 and F∗
2], but also modifying the value of the

above-mentioned key features of the phase-winding solution
and, possibly, its stability.

III. AN ILLUSTRATIVE EXAMPLE: THE EXTENDED
KLAUSMEIER MODEL

As an illustrative example, let us take into account
the hyperbolic generalization [24,27,30,31] of the extended
Klausmeier model [57,67], whose dimensionless one-
dimensional (1D) version belongs to the class of systems (1),
(2). In this framework, the field variables u(x, t ) and w(x, t )
assume the meaning of densities of plant biomass and surface
water, respectively, at location x (positive direction being up-
hill) and time t . In this model, the motion of surface water
accounts for two different mechanisms. First, the downhill
water flow on slopes is accounted by an advection term. Sec-
ond, dispersal of surface water is mimicked via a diffusion
term that aims at capturing the movement induced by spatial
differences in infiltration rate [57]. The coefficient d is here
representative of the water-to-plant diffusion ratio whereas ν

is the water advection speed along the hill slope. The source
terms, unchanged with respect to those originally proposed by
Klausmeier [56], are given by

f (u,w) = w u2 − B u,

g(u,w) = A − w − w u2, (32)

where the dimensionless coefficients A and B are related to the
rates of average annual rainfall and plant loss, respectively.
Previous investigations suggest that realistic values of plant
loss and rainfall rate belong to the ranges B ∈ (0, 2) and
A ∈ (0, 3), respectively [47,56,69].

It is known that for A � 2B this model admits three spa-
tially homogeneous steady states given by

U∗
D = (0, A, 0, 0),

U∗
L = (uL, B/uL, 0, 0)

U∗
S = (uS, B/uS, 0, 0), (33)

where

uL = A − √
A2 − 4B2

2B
,

uS = A + √
A2 − 4B2

2B
, 0 < uL < 1 < uS (34)
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FIG. 1. Solid lines represent the loci of wave instability in the
(B, A) parameter plane obtained by solving numerically the system
(7), (8) for different values of inertial times. Symbols denote the
locus obtained in the parabolic case, resulting from integration of
Eq. (A4). The bottom dashed line defines the condition A = 2B,
below which the only desert state exists. Fixed parameters: d = 100
and ν = 182.5.

the first being representative of the desert state and the other
ones of uniformly vegetated areas. For A < 2B, the desert
state becomes the only steady state admitted by the model.

It can be easily checked that the desert state U∗
D is always

stable whereas the vegetated state U∗
L is always unstable. On

the contrary, the state U∗
S is stable with respect to homoge-

neous perturbations. Indeed, by considering that

f ∗
u = fu(U∗

S ) = B, f ∗
w = fw(U∗

S ) = u2
S,

(35)
g∗

u = gu(U∗
S ) = −2B, g∗

w = gw(U∗
S ) = −(

1 + u2
S

)
,

conditions (6) become

f ∗
u + g∗

w = B − 1 − u2
S < 0,

(36)
f ∗
u g∗

w − f ∗
wg∗

u = B
(
u2

S − 1
)

> 0,

that are fulfilled for any realistic values of B and uS .
To prove that the state U∗

S may be destabilized via non-
homogeneous perturbations, and can thus undergo wave
instability, we need to solve the system (7), (8). Unfortunately,
owing to its highly nonlinear nature, information on the lo-
cus of wave instability, together with the dependence of the
critical parameters on the inertial times, cannot be obtained
analytically. Therefore, by solving the above system numeri-
cally, we found that it admits real solutions representing the
values of the control parameter Bc, wave number kc, wave
speed s, and its derivative with respect to k, at the onset of
instability. Results of this investigation are shown in Fig. 1,
where the locus of wave instability depicted in the (B, A)
parameter plane (solid lines) is obtained by fixing the parame-
ters d = 100 [57,70] and ν = 182.5 [56] and varying the two
inertial times τ u and τw. In the same figure we also represent
by circles the locus obtained in the parabolic case, i.e., from
the numerical solution of (A4), which gives real and positive
roots by taking the plus sign. As it can be noticed, this latter

coincides with the locus deduced for very small inertial times
(black line), as expected. It is worth noticing that, when the
system moves away from the parabolic limit, the locus of
wave instability progressively shifts up so enlarging the region
where nonstationary patterns may be observed. This is con-
sistent with our previous results obtained for the hyperbolic
generalization of the original Klausmeier model, so confirm-
ing that the hyperbolicity destabilizes the system and allows
to observe oscillatory periodic patterns, i.e., uphill migrating
banded vegetation in the context of dry-land ecology, over a
wider region of the parameter plane [24].

A first check on the validity of these analytical predic-
tions has been carried out by inspecting the wave-number
dependence of the four roots of the characteristic polynomial
(3) at the three points P1, P2, and P3 indicated in the inset
of Fig. 1, for different couples of inertial times. Results are
shown in Fig. 2 [top row panels (a)–(c) correspond to P1,
middle row panels (d)–(f) to P2, and bottom row panels (g)–(i)
to P3]for the largest eigenvalue only (being the real part of the
other three roots always negative). For brevity, we refer to the
couple (τ u, τw ) = (10−5, 10−5) (whose corresponding locus
is the black curve in Fig. 1) as setup I; the couple (0.5, 1) as
setup II (blue curve in Fig. 1), and (0.5, 100) as setup III (red
curve in Fig. 1). Setup I is representative of the behavior close
to the parabolic limit, while setups II and III mimic dynamics
that progressively deviate away from it.

Let us investigate, first, the locus of roots related to P1.
Results related to setups I and II [Figs. 2(a) and 2(b)] reveal
that all roots have negative real part, denoting that the state U∗

S
is also stable with respect to nonhomogeneous perturbations.
On the contrary, in setup III [Fig. 2(c)], there exists a range
of wave number where one root has positive real part and
non-null imaginary part, so pointing out a destabilization of
the steady state. These observations are consistent with the
predictions reported in Fig. 1 because, in setups I and II ,
the investigated point is outside the wave instability region
but, in setup III , it is located inside. About the point P2, in
setups II and III [Figs. 2(e) and 2(f)] there exists a range
of k where the real part of the most unstable root becomes
positive. On the contrary, in setup I [Fig. 2(d)], the real part
of this root keeps negative, consistently with its location with
respect to the bifurcation loci. Finally, at point P3, for each
of the chosen setups [Figs. 2(g)–2(i)], there exists a range of k
where the real part of the most unstable root becomes positive,
consistently with the fact that this point always lies inside the
wave instability region.

Another confirmation of the analytical predictions carried
out in Sec. II A may be achieved by integrating numerically
the governing system (1), (2), (32) together with periodic
boundary conditions and using small sinusoidal fluctuations
about the steady state U∗

S as initial conditions. Simulations
have been performed by means of COMSOL MULTIPHYSICS®
[71] over a time window t ∈ [0, 50], considering a spatial do-
main of length lD = 100 (unless specified differently). Results
of this investigation, which make use of the same parameter
set as the one used in Fig. 2, are reported in Fig. 3. To provide
an immediate and intuitive view of the underlying dynamics,
the color map used for the density plots of vegetation biomass
u(x, t ) ranges between yellow (desert) and green (vegetated
areas). In agreement with the above-mentioned predictions,
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FIG. 2. Wave-number dependence of the real (left axes, continuous lines) and imaginary (right axes, discontinuous lines) parts of largest
root of (3) evaluated for A = 2.8 at the points P1 [B = 0.40, (a)–(c)], P2 [B = 0.41, (d)–(f)], and P3 [B = 0.43, (g)–(i)] indicated in Fig. 1,
for different couples of inertial times (τ u, τw ). In detail, setup I: (10−5, 10−5), (a), (d), (g); setup II: (0.5,1), (b), (e), (h); setup III: (0.5,100),
(c), (f), (i).

it is possible to notice that, when all the roots have negative
real parts, the initial perturbation dies out and the system
converges toward the stable, spatially uniform, vegetated state
U∗

S [see Figs. 3(a), 3(b), and 3(d)]. On the contrary, if there
exists a range of unstable wave numbers, then the system
evolves toward a periodic patterned state that oscillates in
time, representative of an uphill migrating vegetation band
[see Figs. 3(c) and 3(e)–3(i)].

We can also numerically verify whether the range of un-
stable wave numbers depends on inertia. It is known that,
if a nonhomogeneous perturbation is applied to a state U∗
falling within the wave instability region, the system tends
to form a traveling pattern whose wave number is close
to the one of the most unstable mode, i.e., the mode exhibiting
the largest growth rate. The range of unstable wave numbers
that is created when the control parameter is above the critical
value Bc degenerates into the single value kc at onset. To
address this point, we track the variations in the (B, k) plane
of the root of the characteristic polynomial (3) associated to
the most unstable mode, for different values of inertial times.
Results are shown in Fig. 4, where the wave number of the
mode exhibiting the largest growth rate is depicted by dashed
lines whereas the range of unstable wave numbers is delimited
by solid lines. When we move away from the parabolic limit

(from black to red curves in the figure), the role played by
inertia becomes manifold: it decreases the lowest value of the
control parameter (plant loss) at which instability may form, it
modifies the wave number of the most unstable mode and also
enlarges significantly the range of unstable wave numbers.

Furthermore, by solving numerically the system defining
theoretically the wave bifurcation locus (7), (8), we can quan-
titatively estimate the wave speed s at the onset of instability
as a function of inertial times. From the analysis of the results
depicted in Fig. 5, we infer that the values of the inertial
times affect directly and indirectly through the variation of
Bc the migrating speed at the onset of instability, as it varies
from about 0.8 (close to the parabolic limit) to 1.0 (away
from it), i.e., hyperbolicity may increase the wave speed up
to 30%. To get a validation of these results, we integrate
again numerically the governing system (1), (2), (32) over a
larger time window t ∈ [0, 200] and a larger spatial domain
lD = 200. We use the parameter set corresponding to the
points Q1 and Q2 depicted in Fig. 5 and choose the control
parameter B in such a way the distance from the threshold
is ε2 = 10−3 in both cases. Then, in order to extract the
critical values of angular frequency ωc and wave number
kc, we perform two fast Fourier Transforms (FFTs) on the
variable u(x, t ), by fixing either space or time. In detail, in
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FIG. 3. Spatiotemporal dynamics of vegetation biomass u(x, t ) corresponding to the panels shown in Fig. 2 obtained via numerical
integration of system (1), (2), (32).

FIG. 4. (Solid lines) Range of unstable wave numbers as a func-
tion of the plant loss B for different values of inertial times. (Dashed
lines) The wave number of the perturbation with the larger growth
rate. (Squares) The lowest plant loss value Bc at which that steady
state U∗

S undergoes wave instability and that identifies the critical
wave number kc.

FIG. 5. Density plot of migrating speed s at onset of instability
(B = Bc) as a function of the inertial times τ u and τw . Fixed param-
eters: ν = 182.5, d = 100, A = 2.8.
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FIG. 6. (a), (d) Snapshots of migrating vegetation patterns. (b), (e) FFT of the time-dependent solution evaluated at a fixed location within
the domain u(lD/2, t ). (c), (f) FFT of the space-dependent solution evaluated at the final simulation time u(x, tend ). Panels in the top (bottom)
row are obtained by using the parameter set corresponding to point Q1 (Q2) depicted in Fig. 5. Note that the arising FFT spectra contain some
higher-order harmonics [mainly, the component proportional to exp(2ikcz)] due to the slow modulation of the pattern close to the onset [19].

the former case, the solution u(x, t ) is evaluated at x = lD/2
while, in the latter case, it is set at t = tend. According to
the results shown in Fig. 6, each resulting spectrum contains
several peaks, the dominant of which gives information on
the angular frequency ωc and the wave number kc of the
main mode, respectively. Finally, the migrating speed value
is simply given by the ratio s = ωc/kc. Following this proce-
dure, we get for the point Q1, s = 0.301/0.376 = 0.801, in
excellent agreement with the value extracted from system (7),
(8), that is equal to s = 0.807; for the point Q2, the value
s = 0.380/0.410 = 0.926, in good agreement with the theo-
retical value s = 0.923. These results reinforce our previous
conclusion on the non-negligible role played by inertial times:
apart from affecting the migrating speed, they also alter both
angular frequency and wave number of the emerging pattern.

So far, we have validated all the theoretical predictions
connected to LSA developed in Sec. II A. Let us now focus
on those arising from multiple-scale WNA whose general
formulation has been given in Sec. II B. In the specific case of
the hyperbolic extension of the Klausmeier model, the explicit
expressions of the quantities here involved are reported in
Appendix B.

As known, the sign of the real part of the Landau coef-
ficient determines the supercritical (if L1 > 0) or subcritical
(if L1 < 0) character of the generated patterns. Here, we
aim at inspecting how such a character could be altered by
a suitable combination of inertial times. In Fig. 7 we have
addressed numerically this investigation, by using the same
set of parameters as those used to build Fig. 5. In the figure,
the colored (white) areas denote a supercritical (subcritical)
behavior. These results reveal that, for relatively small values

of the inertial times, namely, close to the parabolic limit (bot-
tom left corner of the figure), patterns exhibit a supercritical
behavior. For increasing values of inertial times, hyperbolicity
may give rise to a subcritical instability.

Let us now inspect whether these predictions may be cor-
roborated by numerical simulations. First, the supercritical
character associated to the points Q1 and Q2 can be extracted
from Fig. 6, where patterns slightly above threshold exhibit
small amplitude, do not exist for subthreshold values of the

10-1 100 101 102

 w

10-3

10-2

10-1

 u

Q
2

Q
1

Q
3

FIG. 7. Contour plot of L1 as a function of the inertial times τ u

and τw . Colored (white) areas denote positive (negative) values of
L1. The parameter set is the same as the one reported in Fig. 5.
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FIG. 8. Snapshots of spatiotemporal evolution of vegetation biomass corresponding to the point Q3 shown in Fig. 7 for (a) B = 0.403,
(b) B = 0.405, and (c) B = 0.403. The initial condition in simulations (a) and (b) is taken as a small periodic perturbation of the steady state
U∗

S whereas in (c) it is given by the final state of (b). The critical value of the control parameter is Bc = 0.404.

control parameter, and have a wave number very close to
kc. Indeed, the numerically deduced values, i.e., kc = 0.376
in Fig. 6(c) and kc = 0.410 in Fig. 6(f), are in close agree-
ment with the theoretical ones deduced from (7), (8), (B2),
i.e., kc = 0.376 and 0.403, respectively. To test whether a sub-
critical instability takes place at Q3, we perform simulations
where the initial condition is set, at first, as a small sinusoidal
perturbation of the steady state and the control parameter is
slightly smaller than the critical value. Results indicate that
the initial perturbation simply dies out and the system con-
verges towards the stable homogeneously vegetated area [see
Fig. 8(a)]. Then, we increase the control parameter slightly
above threshold and, as expected, large amplitude patterns are
generated [see Fig. 8(b)] [notice the larger scale in the color
bar in comparison with those of Figs. 6(a) and 6(d)]. Finally,
we take the final state of this latter simulation as the initial
condition of a new simulation where the control parameter is
set to the same below-threshold value as the one used to build
Fig. 8(a). Interestingly, patterns still survive, so denoting the
hysteretic behavior typical of a subcritical instability.

Finally, we investigate on the one-parameter family of
coherent structures, solutions of the CCGL equation, and ad-
dress again a comparison between the analytical predictions
reported in Sec. II B 1 and numerical simulations. We shall
limit the discussion to the supercritical regime by considering
those regions of the (τw, τ u) plane where the real part of the
Landau coefficient keeps positive (colored areas in Fig. 7).
Then, we study the sign of the necessary condition for stability
given by the Benjamin-Feir-Newell criterion (31) and report
the results in Fig. 9. Here, the white (orange) color denotes an
area where patterns are unstable (may be stable). Our results
indicate that, in a wide region enclosing the parabolic limit
(point Q1), i.e., for τw < 2 and independently of the value
of τ u, the above-mentioned criterion is always satisfied and
patterns may be stable. In this region, a slow modulation of
traveling patterns is observed, as shown in Fig. 10(a). Far
away from the parabolic limit, there exist values of inertial
times that may lead to destabilization of patterns, as it happens
in the subregion of the (τw, τ u) plane depicted in Fig. 9.
Indeed, considering the inertial times corresponding to point
Q4, the wave-train structure may break up into a sequence of
unequal pulses [5], as depicted in Fig. 10(b).

Then, we inspect the role of inertial effects on phase-
winding solutions, i.e., on the fixed points F∗

1 and F∗
2 of system

(24). In this analysis, we set the inertial times in such a way
they correspond to points Q1 and Q2 and keep the dimen-
sionless distance from the threshold fixed at ε2 = 10−2. We
integrate the governing system (1), (2), (32) over a larger time
window t ∈ [0, 1000] in order to allow transient regime to
expire and the system to reach a steady traveling patterned
configuration. These are depicted in Figs. 11(a) and 11(b) by
solid lines. To determine the extra parameter involved in the
phase-winding solution κ̃ , we compare the theoretical critical
value kc with the total wave number of the observed pattern
ktot. This value is then used in (25) and (28) to compute the
amplitude Q̃ and the second-order correction of the angular
frequency ω̃, respectively. Then, the corresponding analytical
phase-winding solutions are built via (26). Results are repre-
sented in the previously mentioned figures via dashed lines
and reveal a satisfying agreement with those arising from
numerical simulations. Moreover, we integrate system (24)
to describe the heteroclinic orbits joining the fixed points F∗

1
(unstable) and F∗

2 (stable) in the two configurations repre-
sented by the points Q1 and Q2. The initial condition is set as
a small perturbation of F∗

1 in both cases. The resulting fronts
are depicted in Fig. 11(c) and confirm that inertial effects take

7 8 9 10 11 12 13 14
 w
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FIG. 9. Plot of the Benjamin-Feir-Newell necessary condition
for stability in the supercritical regime. Colored (white) areas denote
regions where the condition (31) is (is not) fulfilled.

034206-10



OSCILLATORY PERIODIC PATTERN DYNAMICS IN … PHYSICAL REVIEW E 105, 034206 (2022)

FIG. 10. Proof of the Benjamin-Feir-Newell instability condition showing the spatial profiles of the patterned configurations obtained at
points Q1 (a) and Q4 (b) represented in Fig. 9(a). To improve the visibility of the wave-train structure breaking, the computational domain has
been enlarged to lD=400.

a relevant role, not only in modulating the duration of the
transient regime from the homogeneous steady state to the
patterned state, but also in modifying the amplitude, the wave
number, and the angular frequency of the traveling patterns.

IV. CONCLUSIONS

In this paper, we have considered a class of hyperbolic
reaction-advection-diffusion system for two species, one of
which undergoes both diffusion and advection while the other
one has a diffusive character only. The hyperbolic structure
of the model accounts for the biological inertia of both the
involved species and allows a better description of transient
phenomena characterized by waves evolving in space over
a finite time. On this general framework, we have carried
out, first, linear stability analysis to deduce the conditions un-
der which wave instability, responsible for the occurrence of
nonstationary spatial patterns, takes place. Then, by applying
multiple-scale weakly nonlinear analysis we have determined
the amplitude equation describing the slow modulation in
space and time near criticality.

All our theoretical findings enclose the parabolic limit as
particular case, when the inertial times tend to zero. In partic-
ular, it has been shown that the resulting CCGL equation is
formally unchanged with respect to the classical one obtained

in parabolic framework, but the coefficients here involved
exhibit a strong dependence on inertial times.

Moreover, to better emphasize the role of hyperbolicity, we
have also inspected coherent structures of the CCGL equation
whose fixed points are in the form of phase-winding solutions.
For this class of solutions we have determined the expressions
of the key features and established the necessary condition for
stability.

The previous theoretical predictions have been tested on
an illustrative example, the extended Klausmeier model, de-
scribing the formation and the migration of vegetation patterns
over a sloping semiarid terrain. Numerical investigations have
validated our findings and have allowed to draw several con-
clusions about the role played by inertia. It has been indeed
proven that inertial times do the following:

(1) Enlarge both the wave instability region in the param-
eter plane where traveling patterns may be observed and is
less selective on the range of unstable wave numbers. Thus,
inertia allows to destabilize the spatially homogeneous steady
state over a wider set of model parameters (see Figs. 1–4).

(2) Vary the key features associated to migrating patterns,
speed, wavelength, and angular frequency, leaving all the
other model parameters unchanged (see Figs. 5 and 6).

(3) Affect the supercritical or subcritical nature of patterns
at onset (see Figs. 7 and 8).

FIG. 11. (a), (b) Comparison between the numerical simulation arising from integration of the governing system (1), (2), (32) (solid
lines) and the analytically deduced phase-winding solution U = εU1 together with (20) and (25)–(28) (dashed lines). The set of parameters
correspond to the points Q1 (a) and Q2 (b) with ε2 = 10−2. (c) Results of numerical integration of system (24) representative of the heteroclinic
orbits joining the fixed points F∗

1 and F∗
2 [black (red) curve stands for dynamics around point Q1 (Q2)]. The initial condition is set as a small

perturbation of F∗
1.
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(4) Exert influence on localized coherent structures, and
in particular on the fronts connecting the plane-wave state to
the unstable spatially homogeneous steady state. In particular,
it has been shown that inertia takes a role, not only during
transient regime, but also modifies the amplitude, the wave
number, the angular frequency, and the stability of the phase-
winding solution associated to the plane wave (see Figs. 9 and
11).

In the light of the above statements, it has to be emphasized
that hyperbolic models provide additional degrees of freedom
that can be used to better modeling experimental observa-
tions. We plan to extend our hyperbolic framework to the
case in which both species undergo diffusion and advection,

so enabling the possibility of exploring an even richer set of
dynamics.
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APPENDIX A: WAVE INSTABILITY IN PARABOLIC REACTION-ADVECTION-DIFFUSION MODELS

In this Appendix we give some details on the occurrence of wave instability in parabolic reaction-advection-diffusion models.
In this framework, diffusion occurs through Fick’s laws, Ju = −ux and Jw = −dwx, and the governing system is cast as

Ũt + M̃Ũx + DŨxx = Ñ(Ũ), (A1)

with

Ũ =
[

u
w

]
, M̃ =

[
0 0
0 −ν

]
, D =

[−1 0
0 −d

]
, Ñ

(
Ũ
) =

[
f (u,w)
g(u,w)

]
. (A2)

The resulting spatially homogeneous steady states are denoted by Ũ∗ = (u∗, v∗) and the dispersion relation reduces to a quadratic
equation

ω2 + [
k2(d + 1) − ( f ∗

u + g∗
w ) − ikν

]
ω + Ã0 + ikνb̂0 = 0 (A3)

with Ã0 and b̂0 given in (4). Conditions (6) for the stability of Ũ∗ against homogeneous perturbations hold for both hyperbolic
and parabolic models.

By applying the same procedure as the one discussed in Sec. II A in the hyperbolic framework, but exploiting the lower
complexity of the characteristic equation (A3) with respect to (3), the locus of wave instability can be defined implicitly via the
following equation:

(4χ3
2 + 2χ0χ2 + χ1)(4χ3

2 + 2χ0χ2 − χ1) = 0, (A4)

whereas the critical wave number is given by

k2
c = −χ3

χ4
± χ2 (A5)

and the wave speed obeys

s = ν
(

f ∗
u − k2

c

)/[
k2

c (d + 1) − f ∗
u − g∗

w

]
. (A6)

The expressions of the coefficients χi (i = 0, . . . , 4) appearing in (A4) and (A5) are given by

χ0 = 8χ4χ8 − 3χ2
3

8χ2
4

, χ1 = 8χ2
4 χ9 − 4χ4χ3χ8 + χ3

3

8χ3
4

, χ2 = 1

2

√
−2

3
χ0 + 1

3χ4

(
χ5 + χ6

χ5

)
,

χ3 = dν2 − (d + 1)2(g∗
w + df ∗

u ) − 2d (d + 1)( f ∗
u + g∗

w ), χ4 = d (d + 1)2, (A7)

where

χ5 =
3

√√√√χ7 +
√

χ2
7 − 4χ3

6

2
, χ6 = 12χ4χ10 − 3χ3χ9 + χ2

8 ,

χ7 = 27χ4χ
2
9 − 72χ4χ8χ10 + 27χ2

3 χ10 − 9χ3χ8χ9 + 2χ3
8 ,

χ8 = d ( f ∗
u + g∗

w )2 + 2(d + 1)
(

f ∗
u + g∗

w − ν2
)
(g∗

w + df ∗
u ) + (d + 1)2( f ∗

u g∗
w + f ∗

wg∗
u),

χ9 = ν2 f ∗
u g∗

w − (g∗
w + df ∗

u )( f ∗
u + g∗

w )2 − 2(d + 1)( f ∗
u + g∗

w )( f ∗
u g∗

w + f ∗
wg∗

u),

χ10 = ( f ∗
u + g∗

w )2( f ∗
u g∗

w + f ∗
wg∗

u). (A8)
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Note that, in the parabolic case, the critical value of the control parameter Bc is defined implicitly by the sole highly nonlinear
equation (A4), which results to be decoupled from the others. Moreover, the sign in (A5) has to be chosen in such a way it gives
real and positive values for Bc and kc.

APPENDIX B: DERIVATION OF CUBIC COMPLEX GINZURG-LANDAU EQUATION

In this Appendix we fully describe the procedure to deduce the CCGL Eq. (22) for the hyperbolic reaction-advection-diffusion
model (1), (2).

First of all, substituting the expansion (14) into the governing system (9) and looking for solution Ui = Ui(z) with z = x − st ,
the set of ordinary differential equations (16)–(18), to be solved sequentially, is obtained. At the first perturbative order, the
system reads as

dU1

dz
= K∗

c U1, (B1)

where the matrix K∗
c , defined in (19), admits four complex eigenvalues given by

λ1,2 = ∓ikc with k2
c = δ3

δ1

∣∣∣∣
c

(B2)

and

λ3,4 = α ∓ iβ with α = − δ1

2

∣∣∣∣
c

and β =
√(

δ1δ4

δ3
− δ2

1

4

)∣∣∣∣∣
c

(B3)

to which there correspond the following right eigenvectors:

d(± i kc ) =

⎡⎢⎣r1 ± îr1

r2 ± îr2

r3 ± îr3

r4 ± îr4

⎤⎥⎦, d(α±i β ) =

⎡⎢⎣y1 ± îy1

y2 ± îy2

y3 ± îy3

y4 ± îy4

⎤⎥⎦. (B4)

The general solution of the homogeneous linear system (B1) can be expressed as

U1 = PeQzP−1C(T2), (B5)

where the vector C(T2) is determined by boundary conditions, whereas P and Q are, respectively, the eigenvectors and
eigenvalues matrices of K∗

c given by

P =

⎡⎢⎣r1 + îr1 r1 − îr1 y1 + îy1 y1 − îy1

r2 + îr2 r2 − îr2 y2 + îy2 y2 − îy2

r3 + îr3 r3 − îr3 y3 + îy3 y3 − îy3

r4 + îr4 r4 − îr4 y4 + îy4 y4 − îy4

⎤⎥⎦, Q =

⎡⎢⎣ikc 0 0 0
0 −ikc 0 0
0 0 α + iβ 0
0 0 0 α − iβ

⎤⎥⎦. (B6)

Then, solution of (B1) reads as

U1 = �(X, T2)eikczd(ikc ) + �(X, T2)e−ikczd(−ikc ), (B7)

where the complex pattern amplitude � remains undetermined at this stage and � denotes its complex conjugate.
At the second order, the governing system is the following:

dU2

dz
− K∗

c U2 = (M − sI )−1

{
1

2

(
U1 · ∇)(2)

N|∗c − M
∂U1

∂X

}
(B8)

whose general solution is given by

U2 = PeQzP−1C(T2) + PeQz
∫

e−Qz(MP)−1F dz, (B9)

where F is the nonhomogeneous term at the right-hand side of (B8).
Now, taking into account (B9) and inserting (B7) into the nonhomogeneous linear system (B8), the solution at the second

perturbative order satisfying periodic boundary conditions reads as

U2 = ∂�

∂X
eikczg + ∂�

∂X
e−ikczg + �2e2ikczq + �

2
e−2ikczq + 2q0|�|2, (B10)
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where the vectors

g =

⎡⎢⎣g1 + îg1

g2 + îg2

g3 + îg3

g4 + îg4

⎤⎥⎦, q =

⎡⎢⎣q1 + iq̂1

q2 + iq̂2

q3 + iq̂3

q4 + iq̂4

⎤⎥⎦, q0 =

⎡⎢⎣q01

q02

0
0

⎤⎥⎦ (B11)

fulfill the linear systems

[L∗
c − ikc(M − sI )]g = Md(ikc ),

[L∗
c − 2ikc(M − sI )]q = − 1

2 (d(ikc ) · ∇)(2)N|∗c ,
L∗

c q0 = − 1
2 (d(ikc ) · ∇)(d(−ikc ) · ∇)N|∗c (B12)

with

lMd(ikc ) = 0,

l[L∗
c − ikc(M − sI )] = 0, (B13)

whereas g and q are the complex conjugate of g and q, respectively.
Finally, by substituting (B7) and (B10) into (18), from the removal of secular terms, we deduce that the pattern amplitude

�(X, T2) satisfies the CCGL equation

∂�

∂T2
= (ρ1 + iρ2)

∂2�

∂X 2
+ (σ1 + iσ2)� − (L1 − iL2)� |�|2, (B14)

where:

ρ1 + iρ2 = [(n1e1 + n2e2) + i(n2e1 − n1e2)]/
(
e2

1 + e2
2

)
,

σ1 + iσ2 = B2[(m1e1 + m2e2) + i(m2e1 − m1e2)]/
(
e2

1 + e2
2

)
,

L1 − iL2 = (p1 − ip2)/
(
e2

1 + e2
2

)
(B15)

with

n1 = [(g4 − νg2) f ∗
u − g3g∗

u]E1r + [(g4 − νg2) f ∗
w − g3g∗

w]E2r + ( f ∗
u g∗

w − f ∗
wg∗

u)(dg2E4r − g1E3r ),

n2 = [(g4 − νg2) f ∗
u − g3g∗

u]E1i + [(g4 − νg2) f ∗
w − g3g∗

w]E2i + ( f ∗
u g∗

w − f ∗
wg∗

u)(dg2E4i − g1E3i ),

m1 = −(s1r1 + s2r2)(E1r f ∗
u + E2r f ∗

w ) + (s1̂r1 + s2̂r2)(E1i f ∗
u + E2i f ∗

w )

+ (h1r1 + h2r2)(E1rg∗
u + E2rg∗

w ) − (h1̂r1 + h2̂r2)(E1ig
∗
u + E2ig

∗
w ),

m2 = −(s1r1 + s2r2)(E1i f ∗
u + E2i f ∗

w ) − (s1̂r1 + s2̂r2)(E1r f ∗
u + E2r f ∗

w )

+ (h1r1 + h2r2)(E1ig
∗
u + E2ig

∗
w ) + (h1̂r1 + h2̂r2)(E1rg∗

u + E2rg∗
w ),

p1 = (b1 f ∗
u − a1g∗

u)(E1re1 + E1ie2) − (b2 f ∗
u − a2g∗

u)(E1ie1 − E1re2)

+ (b1 f ∗
w − a1g∗

w )(E2re1 + E2ie2) − (b2 f ∗
w − a2g∗

w )(E2ie1 − E2re2),

p2 = (b1 f ∗
u − a1g∗

u)(E1ie1 − E1re2) − (b2 f ∗
u − a2g∗

u)(E1re1 + E1ie2)

+ (b1 f ∗
w − a1g∗

w )(E2ie1 − E2re2) − (b2 f ∗
w − a2g∗

w )(E2re1 + E2ie2),

e1 = (r1g∗
u − r2 f ∗

u )E1r − (̂r1g∗
u − r̂2 f ∗

u )E1i + (r1g∗
w − r2 f ∗

w )E2r − (̂r1g∗
w − r̂2 f ∗

w )E2i

+ ( f ∗
u g∗

w − f ∗
wg∗

u)(τ ur3E3r − τwr4E4r − τ ur̂3E3i + τw r̂4E4i ),

e2 = (r1g∗
u − r2 f ∗

u )E1i + (̂r1g∗
u − r̂2 f ∗

u )E1r + (r1g∗
w − r2 f ∗

w )E2i + (̂r1g∗
w − r̂2 f ∗

w )E2r

+ ( f ∗
u g∗

w − f ∗
wg∗

u)(τ ur3E3i − τwr4E4i + τ ur̂3E3r − τw r̂4E4r ),

E1r + iE1i = r̂4(y1̂y3 − y3̂y1) + r̂3(y4ŷ1 − y1̂y4) + r̂1(y3̂y4 − y4ŷ3)

+ i[r4(y1̂y3 − y3̂y1) + r3(y4ŷ1 − y1̂y4) + r1(y3̂y4 − y4ŷ3)],

E2r + iE2i = r̂4(y2ŷ3 − y3̂y2) + r̂3(y4ŷ2 − y2ŷ4) + r̂2(y3̂y4 − y4ŷ3)

+i[r4(y2ŷ3 − y3̂y2) + r3(y4ŷ2 − y2ŷ4) + r2(y3̂y4 − y4ŷ3)],

E3r + iE3i = r̂4(y2ŷ1 − y1̂y2) + r̂2(y1̂y4 − y4ŷ1) + r̂1(y4ŷ2 − y2ŷ4)

+i[r4(y2ŷ1 − y1̂y2) + r2(y1̂y4 − y4ŷ1) + r1(y4ŷ2 − y2ŷ4)],

E4r + iE4i = r̂3(y2ŷ1 − y1̂y2) + r̂2(y1̂y3 − y3ŷ1) + r̂1(y3̂y2 − y2ŷ3)

+i[r3(y2ŷ1 − y1̂y2) + r2(y1̂y3 − y3ŷ1) + r1(y3̂y2 − y2ŷ3)], (B16)
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h1 = dfu

dB
|∗c , h2 = dfw

tdB
|∗c , s1 = dgu

dB
|∗c , s2 = dgw

dB
|∗c ,

and

a1 + ia2 = fuu|∗c{r1(2q01 + q1) + r̂1q̂1 + i[̂r1(2q01 − q1) + r1q̂1]}
+ fuw|∗c{r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1 + i[̂r1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1]}
+ fww|∗c{r2(2q02 + q2) + r̂2q̂2 + i[̂r2(2q02 − q2) + r2q̂2]}

+ 1
2 fuuu

∣∣∗
c i
¯
g(r2

1 + r̂2
1 i
¯
g)(r1 + i r̂1) + 1

2
fwww|∗c (r2

2 + r̂2
2 )(r2 + i r̂2)

+ 1

2
fuuw

∣∣∗
c

{
2r1̂r1̂r2 + r2

(
3r2

1 + r̂2
1

) + i
[
2r1̂r1r2 + r̂2

(
r2

1 + 3̂r2
1

)]}
+ 1

2
fuww

∣∣∗
c

{
2r2̂r1̂r2 + r1

(
3r2

2 + r̂2
2

) + i
[
2r1̂r1r2 + r̂1

(
r2

2 + 3̂r2
2

)]}
,

b1 + ib2 = guu|∗c{r1(2q01 + q1) + r̂1q̂1 + i[̂r1(2q01 − q1) + r1q̂1]}
+ guw|∗c{r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1

+i[̂r1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1]}
+ gww|∗c{r2(2q02 + q2) + r̂2q̂2 + i[̂r2(2q02 − q2) + r2q̂2]}

+ 1

2
guuu

∣∣∗
c (r2

1 + r̂2
1 )(r1 + i r̂1) + 1

2
(gwww )|∗c (r2

2 + r̂2
2 )(r2 + îr2)

+ 1

2
guuw

∣∣∗
c

{
2r1̂r1̂r2 + r2

(
3r2

1 + r̂2
1

) + i
[
2r1̂r1r2 + r̂2

(
r2

1 + 3̂r2
1

)]}
+ 1

2
guww

∣∣∗
c

{
2r2̂r1̂r2 + r1

(
3r2

2 + r̂2
2

) + i
[
2r1̂r1r2 + r̂1

(
r2

2 + 3̂r2
2

)]}
. (B17)

In the particular case of the hyperbolic extension of the Klausmeier model, taking into account

f ∗
u = B, f ∗

w = u2
S, g∗

u = −2B, g∗
w = −(

1 + u2
S

)
,

f ∗
uu = 2B/uS, f ∗

uw = 2uS, f ∗
ww = 0,

g∗
uu = −2B/uS, g∗

uw = −2uS, g∗
ww = 0,

f ∗
uuu = f ∗

uww = f ∗
www = 0, f ∗

uuw = 2,

g∗
uuu = g∗

uww = g∗
www = 0, g∗

uuw = −2, (B18)

the components of the right eigenvectors d(±ikc ) and d(α±iβ ) reported in (B4) become

r1 = 1, r̂1 = 0,

r2 = k2
c − Bc − (τ u)2k2

c s2Bc

u2
Sc

[
k2

c s2(τ u)2 + 1
] , r̂2 = −kcs[1 + k2

c τ
u(τ us2 − 1)]

u2
Sc

[
k2

c s2(τ u)2 + 1
] ,

r3 = k2
c sτ u

k2
c s2(τ u)2 + 1

, r̂3 = − kc

k2
c s2(τ u)2 + 1

,

r4 = kcd (̂r2 + kcsr2τ
w )

1 + (τw )2k2
c s2

, r̂4 = kcd (−r2 + kcŝr2τ
w )

1 + (τw )2k2
c s2

,

y1 = 1, ŷ1 = 0,

y2 = (αsτ u − 1)l1 + βsτ ul2
u2

Sc

[
(αsτ u − 1)2 + β2s2(τ u)2

] , ŷ2 = (αsτ u − 1)l2 − βsτ ul1
u2

Sc

[
(αsτ u − 1)2 + β2s2(τ u)2

] ,
y3 = α(αsτ u − 1) + β2sτ u

(αsτ u − 1)2 + β2s2(τ u)2 , ŷ3 = − β

(αsτ u − 1)2 + β2s2(τ u)2 ,

y4 = d[(αy2 − β ŷ2)(αsτw − 1) + βsτw(βy2 + αŷ2)]

(τwαs − 1)2 + β2s2(τw )2 , ŷ4 = d[(βy2 + αŷ2)(αsτw − 1) + βsτw(β ŷ2 − αy2)]

(τwαs − 1)2 + β2s2(τw )2 , (B19)
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where

l1 = (α2 − β2)(1 − s2τ u) + αs(1 − Bcτ
u) + Bc, l2 = 2αβ(1 − s2τ u) + βs(1 − τ uBc). (B20)

Moreover, the coefficients occurring in (B17) reduce to

a1 + ia2 = 2Bc/uSc[r1(2q01 + q1) + r̂1q̂1] + 2r1̂r1̂r2 + r2(3r2
1 + r̂2

1 ) + 2uSc[r1(2q02 + q2) + r̂1q̂2 + r2(2q01 + q1) + r̂2q̂1]

+ i{2Bc/uSc [̂r1(2q01 − q1) + r1q̂1]+2r1̂r1r2 + r̂2(r2
1 + 3̂r2

1 ) + 2uSc [̂r1(2q02 − q2) + r1q̂2 + r̂2(2q01 − q1) + r2q̂1]},

b1 + ib2 = −(a1 + ia2). (B21)
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