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Abstract: Although there are recent developments for the analysis of first and

second-order characteristics of point processes on networks, there are very few at-

tempts in introducing models for network data. Motivated by the analysis of crime

data in Bucaramanga (Colombia), we propose a spatio-temporal Hawkes point process

model adapted to events living on linear networks. We first consider a non-parametric

modelling strategy, for which we follow a non-parametric estimation of both the back-

ground and the triggering components. Then we consider a semi-parametric version,

including a parametric estimation of the background based on covariates, and a non-
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parametric one of the triggering effects. Our model can be easily adapted to multi-

type processes. Our network model outperforms a planar version, improving the

fitting of the self-exciting point process model.

Key words: Covariates; Crime data; Hawkes processes; Linear networks; Self-

exciting point processes; Spatio-temporal point processes

1 Introduction

Point processes are stochastic processes defining a natural and convenient mathe-

matical tool to describe the process of discrete events that occur in a continuous

space, time or a space-time domain; examples, spanning many scientific branches, are

found with forest fires, crimes, earthquakes, diseases, tree locations, animal locations

or communication network failures, to name just a few. Depending on the domain

where the events occur, we can talk about spatial, temporal or spatio-temporal point

processes. When time is present, the process has an evolution in time, and the events

can be sorted according to their chronological order, sharing some common features

with time series. When a property or a characteristic can also be attached to each

event, such as the magnitude of an earthquake or the burned area of a wild fire, the

point process is then called a marked point process.

A number of papers have dealt with the analysis of crime data using self-exciting point

process theory, after the analogy drawn by Mohler et al. (2011) between aftershock

ETAS models and crime. In particular, several papers have proposed a Hawkes-type

point process modelling framework for crime data, as this type of data is usually



Submitted to Statistical Modelling 3

clustered (Reinhart, 2018; Park et al., 2021). Recently, Zhuang and Mateu (2019)

proposed a spatio-temporal Hawkes-type point process model, which includes a back-

ground component with daily and weekly periodisation, and a clustering component

that is triggered by previous events. Their model is used to describe the occurrences

of violence or robbery cases in a urban environment during two years, and their re-

sults show that robbery crime is highly influenced by daily life rhythms, revealed by

its daily and weekly periodicity, and that about 3% of such crimes can be explained

by clustering.

As crime events are naturally constrained to occur on the streets structure of a city,

in this paper, we advocate the use of the theory of point processes on linear networks.

A network, or a graph, is a collection of vertices joined by edges (Newman, 2010). A

linear network is a union of finitely many line segments in the plane where different

edges only possibly intersect with each other at one of their vertices (see Anderes

et al. (2020) for spatio-temporal covariance functions on generalised linear networks).

Point processes on linear networks are recently considered to analyse events occurring

on particular network structures (e.g. traffic accidents). They were firstly introduced

in the spatial context and then extended to the spatio-temporal case, focusing on the

analysis of first- and second-order summary statistics (Ang et al., 2012; McSwiggan

et al., 2017; Rakshit et al., 2017; Moradi et al., 2019; Rakshit et al., 2019a; Moradi

and Mateu, 2019; D’Angelo et al., 2021a,b). Most of the literature about spatial and

spatio-temporal point processes on networks is concerned with non-parametric estima-

tion of the first-order intensity (Moradi et al., 2019; Moradi and Mateu, 2019; Mateu

et al., 2019); however, only a recent paper by D’Angelo et al. (2021a) has dealt with

parametric intensity specification of inhomogeneous first-order intensities on networks

to analyse the spatio-temporal distribution of visitors’ stops by touristic attractions
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in Palermo (Italy). The authors fitted a Gibbs point process model with mixed ef-

fects for the purely spatial component, as well as a spatio-temporal log-Gaussian Cox

process, adapting them to the underlying road network. This latter paper only con-

sidered inhomogeneous Poisson models and did not take into account the potential

self-exciting behaviour of points. Other recent papers that deal with model building

of non-Poisson models are the following. Baddeley et al. (2017) adapt to linear net-

works popular procedures for constructing a point process, such as the Switzer-type

pseudostationary process, Cell process, and Cluster processes. van Lieshout (2018)

defines nearest-neighbour point processes on graphs with Euclidean edges and lin-

ear networks, which can be seen as analogues of renewal processes on the real line.

Rasmussen and Christensen (2021) adapt the so-called conditional intensity function

used for specifying point processes on the time line to the setting of directed linear

networks, considering specific classes of point process models as Poisson processes,

Hawkes processes, non-linear Hawkes processes, self-correcting processes, and marked

Hawkes processes, used in that paper to analyse simulated and neurological data.

Following these considerations, as none of the above-mentioned papers about point

process modelling of crime have proposed models taking into account the road net-

work geometry, the aim of this paper is to analyse crime data with self-exciting point

processes, while also accounting for the underlying network structure where events

occur. Statistical analysis of network data presents severe challenges (Baddeley et al.,

2021). A network is not spatially homogeneous, which creates geometrical and com-

putational complexities and leads to new methodological problems, with a high risk

of methodological error. Real network data, as crime data, can also exhibit an ex-

tremely wide range of spatial scales. These problems pose a significant challenge to

the classical methodology of spatial statistics based on stationary processes, which
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is largely inapplicable to data on a network. Note also that the choice of distance

metric on the network is pivotal in the theoretical development and in the analy-

sis of real data. This is thus a key aspect when treating robberies that happen on

the streets of a city to better model and understand the true spatial and temporal

structures underpinning such type of crimes. Indeed, regarding the intensity esti-

mation issue addressed in this paper, considering the geometry of the network into

the fitting procedure represents a reasonable choice, given the increasing availability

of road networks data and computational resources nowadays. For instance, from a

practical point of view, the predicted intensity could be obtained only where events

are driven to occur. Of course, crimes are an obvious example of constrained point

patterns, and therefore, the impact of considering the road network structure into

the inference procedure potentially reflects on more detailed information, which may

then drive policy actions. In detail, we analyse robbery crimes occurred in the city

of Bucaramanga (Colombia) in 2018. We fit a model similar to the semi-parametric

specification employed in Zhuang and Mateu (2019) into the network case. There-

fore, the first main contribution of our paper regards the proposal of an extension of

the Hawkes model proposed by Zhuang and Mateu (2019). We do not only include

the network geometry into the fitting procedure, but also draw conclusions on the

scale of shortest-path distances, typically more appropriate when dealing with point

processes occurring on linear networks. We find that our proposed model achieves

a much better fit when compared to the planar counterpart, allowing us to better

interpret the results.

Examples of applications incorporating the external information in self-exciting mod-

els can be found in Schoenberg (2016); Reinhart (2018); Adelfio and Chiodi (2020).

In particular, Park et al. (2021) modelled gang-related violent crimes in Los Angeles
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(California) using spatio-temporal Hawkes processes, proposing an algorithm to esti-

mate the spatio-temporally varying background rate non-parametrically as a function

of demographic covariates. Therefore, the second contribution of our paper concerns a

further extension of our proposed model by including external covariates in the purely

spatial background component, following the specification of self-exciting models that

Meyer et al. (2012) proposed in an epidemiological context. In spatial point process

theory, the spatial covariates are referred to as those variables with observable values,

at least in principle, at each spatial location in the spatial window. For inferential

purposes, their values must be known at each point of the data point pattern and

at least at some other locations. Therefore, in the crime data context, those would

comprehend socio-economic characteristics of the analysed regions, as in Park et al.

(2021) such as education level, illiteracy, access to public services like water, elec-

tricity, sewerage, and unemployment, housing quality, socio-economic status. Other

available covariates could be related to the distance to and density of facilities per

street (such as police station, hospitals, schools), environmental characteristics (slope,

PM10), and street characteristics (direction, type, structures). In this paper, we con-

sider spatial covariates in the background component, even though the specification

of the proposed model would also allow for the inclusion of marks in the triggered

component (see Adelfio and Chiodi (2020) for their proposal in the seismic context,

and Chiodi et al. (2021) for an application).

We find that the inclusion of some spatial covariates in the background component

further improves the fitting of the model, and therefore it lays the bases for future

developments in this promising direction, such as the inclusion of individual-related

covariates into the triggering component.
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All the codes are written in the R Core Team (2021) software language and are

available through the link http://www.statmod.org/smij/archive.html, together

with the data analysed.

The structure of the paper is as follows. Section 2 presents the data and the moti-

vating problem. Section 3 provides an overview of self-exciting spatio-temporal point

processes. The novel methods introduced in the paper are detailed in Section 4.

Section 5 presents the data analysis, and Section 6 is devoted to conclusions.

2 Crimes in Bucaramanga

Reports of crimes from January 2010 to September 2020 in Bucaramanga (Colombia)

were collected by the city Home Secretariat and the Mayor’s Office of Security and

Defense. The reports contain spatial location and time of occurrence of crimes that

happened in Bucaramanga, together with some further information such as type of

crime, severity, victim characteristics, victimiser’s crime weapon, and transportation.

The data aims primarily to study the behaviour in space and time of reported crimes

in Bucaramanga to define location and population-based public policies to mitigate

the city’s reported crime rates. Further information about the data can be found at

the Municipal Digital Observatory of Bucaramanga1.

We note that in crime data, there are naturally unreported crimes and some false

reported crimes. The latter is not our case (or at least there potentially are very few

false cases) as the data we work with were double checked by the Home Secretary

before releasing this info to public instances. It is an aspect that we have to live with

1Municipal Observatory of Bucaramanga: Crimes in Bucaramanga

http://www.statmod.org/smij/archive.html
https://app.powerbi.com/view?r=eyJrIjoiY2MzYzgzM2YtNWUwMC00NGNjLWE1OWUtNmM3Mjk2MWQ2Yzk0IiwidCI6IjEwMzQ3NGZjLTYwYmYtNGRiYy1iZjViLTZlMzE3ZmU5MDFlYiIsImMiOjR9
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Figure 1: The black points represent the armed robberies in Bucaramanga, and the

dark grey points the crimes in the city’s downtown. In light grey, the segments of the

streets of Bucaramanga city, obtained from OpenStreetMap
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and assume that what we observe is just a noisy (subset) version of the real number of

crimes. So we are dealing with reported crimes rather than with the total population

of crimes. We also note that the events we focus on here (armed-robberies) recorded

in the datasets often respond to complex historical police-community interactions,

which means that the data collection process is possibly influencing the reported

cases. Again, this could pose a biased sampling problem and this comes back to the

fact that what we observe is a noisy, biased version of the reality.

Following Zhuang and Mateu (2019) analysis, we bounded our data to only robbery-

related reported crimes, as these type of crimes are often encountered and they make

the population and society being afraid and scare of moving freely within the city.

Furthermore, we specified spatial and temporal windows to filter the original data

for computational cost and statistical representativeness purposes. The subset data

of this study comprises a spatio-temporal point pattern consisting of 2671 armed

robberies in the downtown of Bucaramanga city from the 1st January 2018 to the 31st

December 2018. Armed robberies have sharply increased in Bucaramanga over the

last ten years, becoming the leading crime affecting the city’s inhabitants. Given this

crime frequency and situational characteristics, the local police constantly struggles to

combat and prevent their occurrence. Efforts to reduce the armed robberies burden in

Bucaramanga have been developed mainly in commercial and residential areas where

robbery rates are intimidating. For instance, the city’s downtown area accounted for

40-60% of annual reported armed robberies in Bucaramanga between 2010 and 2020.

By 2018, the figures in downtown reached almost 55% of all robbery reported crimes.

We selected armed robberies in the downtown region for 2018 as a representative

sample of robbery-related crime dynamics in Bucaramanga, as the downtown region

contains most of the city shops and facilities. Figure 1 displays the armed robberies
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for the entire city of Bucaramanga (dark grey) and its downtown (black) in 2018. In

this study, we focus on analysing the latter subregion.

Since reported crime’s locations were slightly shifted from the street configuration,

we relocated the points to the closest location on the linear network. Figure 2 shows

the georeferenced coordinates of the crimes as reported in the original database (left

panel) and the relocated coordinates matching the linear network L (right panel).

Figure 3 displays the location of the armed reported crimes per month in 2018. We

note how the number of reported crimes increases throughout the year and concen-

trates east of the city’s downtown. The linear network L is composed of 3,136 nodes

and 4,290 segments referring to Bucaramanga’s downtown. The downtown area cov-

ers 23 commercial and ten residential neighbourhoods containing most of the city’s

shops and facilities. Likewise, the Mayor’s Office of Bucaramanga estimates that at

least 60% of its inhabitants commute daily to this area for professional, academic and

touristic activities.

2.1 Spatial covariates

Demographic, socio-economic, geographical, and environmental variables were ob-

tained at the block level for the city of Bucaramanga. The data was provided by the

UN-Habitat Colombia, the United Nations program for human settlements and sus-

tainable urban development in Colombia. The UN-Habitat Colombia develops mul-

tilayered indexes to assess socio-economic and demographic aspects related to urban

planning. We used all 36 variables, including socio-economic factors such as unem-

ployment rate, education level, literacy rate, public services coverage, socio-economic

strata, and housing quality; demographic aspects, such as total population, gender
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Figure 2: (a) Original locations of points and (b) locations relocated on the linear

network

Figure 3: Armed robberies in Bucaramanga’s downtown per month, 2018
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Figure 4: Some socio-economic, demographic and environmental spatial covariates

used

ratio, and elderly population; environmental conditions, for instance, street slope and

street type; and geographical covariates such as distances to facilities, the density

of facilities per 10,000 inhabitants, among others. Some variables are of continuous

nature (such as a percentage) or others are just informing of presence /absence of

a characteristic (for example, the existence of a tunnel in a street). For reasons of

space, Figure 4 displays six out of the thirty-six variables employed in our analysis.

As shown in the figure, the covariate value is known in each segment of the linear

network under analysis. Some of them are continuous variables, such as literacy rate

in panel (a), and some are binary, such as bridges, in panel (f).

As the covariates were georeferenced at the block level, except for the geographical

ones, we translate the values into the network by assigning the median value of its
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neighboring blocks to each segment. We manually computed the values for highly

heterogeneous areas of the city. For example, the Northwestern area of Bucaramanga’s

downtown possesses the richest and poorest zones of the city; the streets of wealthy

neighborhoods can be connected to streets belonging to poverty-stricken blocks.

3 Self-exiting point processes on the Euclidean plane

3.1 Background concepts

Following Cressie (2015), we introduce point processes by a mathematical approach

that uses the definition of a counting measure on a set X ⊆ Rd, d ≥ 1, with non-

negative values in Z: for each Borel set B this Z+-valued random measure gives the

number of events falling in B.

Definition 1 Point process

Let (Ω,A, P ) be a probability space and Φ a collection of locally finite counting mea-

sures on X ⊂ Rd. Define X as the Borel σ-algebra of X, and let N be the smallest

σ-algebra on Φ generated by sets of the form {φ ∈ Φ : φ(B) = n} for all B ∈ X . A

point process N on X is a measurable mapping of (Ω,X ) into (Φ,N ). A point process

defined on (Ω,A, P ) induces a probability measure ΠN(Y ) = P (N ∈ Y ), ∀Y ∈ N .

Then, for any set B ∈ X , N(B) represents the number of points falling in B, such

that if B is the union of disjoint sets B̃1, B̃2, . . ., then N(B) =
∑
N(B̃i).

The first step in analysing a point pattern is to learn about its first-order charac-

teristics, studying the relationship of the points with the underlying environmental

variables that describe the observed heterogeneity. When the purpose of the analysis
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is to describe possible interactions among points, that is, if the given data exhibit

spatial inhibition or aggregation, second-order properties of the process are analysed.

Broadly speaking, the intensity function describes the rate at which the events occur

in the given spatio-temporal region, while the second-order product densities are used

when the interest is in describing spatio-temporal variability and correlations between

pair of points of a pattern. They represent the point process analogues of the mean

function and the covariance function of a real-valued process, respectively.

Point processes can be formally specified in several ways, for instance, by considering

the joint distribution of the counts of points in arbitrary sets or by defining a con-

ditional intensity function. Let N be a point process {(ti, xi, yi) : i = 1, . . . , n} on

a spatio-temporal domain X = W × T ⊆ R2 × R+, with area |W | > 0 and length

|T | > 0, and with t representing the time, and x and y the two spatial coordinates.

Its conditional intensity function is defined by

λ(t, x, y|Ht) = lim
∆t,∆x,∆y→0+

E[N((t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)|Ht)]

|∆t∆x∆y|
(3.1)

where Ht is the space-time occurrence history of the process up to time t, i.e. the

σ-algebra of events occurring at times up to but not including t. ∆t,∆x,∆y are time

and space increments respectively, and E[N((t, t+∆t)×(x, x+∆x)×(y, y+∆y)|Ht)]

is the history-dependent expected value of occurrence in the volume {(t, t + ∆t) ×

(x, x+ ∆x)× (y, y+ ∆y)}. Assuming such a limit exists for each point (t, x, y) in the

space-time domain and that the point process N is simple, the conditional intensity

process uniquely characterises the finite-dimensional distributions of the point process

(Daley and Vere-Jones, 2007).

To model events that are clustered, self-exciting point processes are often used. These

models are largely used to describe earthquakes characteristics, assuming that the
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occurrence of an event increases the probability of occurrence of others events in

time and space. Examples of self-exciting point processes include Hawkes models

(Hawkes, 1971a,b; Hawkes and Adamopoulos, 1973) and ETAS models (Ogata and

Katsura, 1988; Adelfio and Chiodi, 2015). The conditional intensity function of a

linear self-exciting process is defined by

λ(t, x, y|Ht) = µ(t, x, y) +

∫ t

−∞

∫
W

g(t− t′ , x− x′ , y − y′)N(dx
′ × dy

′ × dt
′
), (3.2)

being the sum of two non-negative functions: µ(t, x, y) > 0, that describes the large-

scale variation of λ(t, x, y|Ht), and g(), such that
∫∫

g(v)dv < 1, which describes its

small-scale variation due to the interaction with the events in the past. This process

can be interpreted as a generalised Poisson cluster process associating to centers, of

rate µ, a branching process of descendants. The spatio-temporal Hawkes process has

a conditional intensity of the form (Hawkes, 1971a,b)

λ(t, x, y) = µ(t, x, y) +
∑
i:ti<t

g(t− ti, x− xi, y − yi), (3.3)

where µ(t, x, y) is the background rate, and g(t, x, y) is the rate of occurrence triggered

by an event at time 0 and location at the origin. The triggering density governs the

spatial–temporal distance of triggered events from their antecedent events and is

usually modelled to decay with distance from the origin over time and space (Park

et al., 2021). In Mohler et al. (2011), the background rate µ(t, x, y) was assumed to be

a function of space and time and they used kernel functions to smooth the estimates of

both µ and g, introducing the idea of the stochastic reconstruction algorithm (Zhuang

et al., 2004; Zhuang, 2006; Marsan and Lengline, 2008) for the analysis of crime data,

by means of relaxing parameters and periodic components in the background rates.
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3.2 Hawkes model for crime data

We consider the self-exciting model in Equation (3.2), following the semi-parametric

specification proposed by Zhuang and Mateu (2019) for a spatio-temporal Hawkes

process. Therefore, the full model, that we consider here, is specified as follows

λ(t, x, y) = µ0µt(t)µw(t)µb(x, y) +A

∫ t−

−∞

∫
W

g(t− s)h(x− u, y − v)N(du× dv × ds),

(3.4)

where µt(t) and µw(t) represent the trend term and the weekly periodicity in the

temporal components of the background rate, µb(x, y) represents the spatial back-

ground rate, and g(t − s)h(x − u, y − v) represents the sub-process triggered by an

event previously occurring at time s and location (u, v). Note that this model enables

the background rate to include a spatial background pattern that can be separated

from the periodicity effects and the long-term temporal trend. We estimate the two

relaxation coefficients A and µ0, normalise to 1 the average values of µt(t), µw(t) and

µb(x, y), and define the probability density functions g and h such that
∫∞

0
g(s)ds = 1,

and
∫ ∫

X
h(u, v)dudv = 1.

In the following, we outline the modified Estimation-Maximization (E-M) algorithm

employed by Zhuang and Mateu (2019), as we do not to take into account the daily

temporal resolution, not available for the data presented in Section 2 and further

analysed in Section 5.

E-M estimation algorithm:

Step 1. Set initial values for {µ0, µt, µw, µb, A, g, h}

Step 2. Compute background and excitation components by reconstructing for each i-th
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event (i = 1, . . . , n)

w
(t)
i =µt(ti)µb(xi, yi)/λ(ti, xi, yi),

w
(w)
i =µw(ti)µb(xi, yi)/λ(ti, xi, yi),

ϕi =µ0µt(t)µw(t)µb(x, y)/λ(ti, xi, yi),

ρi,j =g(tj − ti)h(xj − xi, yj − yi)/λ(ti, xi, yi),

and by estimating the background terms

µ̂t(t) ∝
∑
i

w
(t)
i K(t− ti;ωt)/

∫ T

0

K(u− ti;ωt)du,

µ̂w(t) ∝
∑
i

w
(w)
i

bT/7c∑
k=0

K(t− ti + 7bti/7c − 7k;ωw)/

∫ T

0

K(u− ti;ωt)du,

µ̂b(x, y) ∝
∑
i

ϕi
K(x− xj + xi;ωx)K(y − yj + yi;ωy)∫ ∫

X
K(x− xj + xi;ωx)K(y − yj + yi;ωy)dudv

,

where K(x;ω) = 1√
(2π)ω

exp

(
− x2

2ω2

)
is the Gaussian Kernel, and bxc is the

largest integer not bigger than x.

The triggering terms are estimated as follows

ĝ(t) ∝
∑

i,j ρi,j ×K(t− tj + ti;ωg)/
∫ T−ti

0
K(u− tj;ωg)du∑

i I(ti + t ≤ T )
,

ĥ(x, y) ∝

∑
i,j ρi,j×K(x−xj+xi;ωhx )K(y−yj+yi;ωhy )∫ ∫
S K(u−xj+xi;ωhx )K(v−yj+yi;ωhy )dudv∑

i I{(xi + x, yi + y) ∈ S}
,

Step 3. Estimate the relaxation parameters

A(k+1) =
n−

∑n
i=1 ϕ

(k)
i

G
,

µ
(k+1)
0 =

n−
∑n

i=1A
(k)G

U
,

where

ϕ
(k)
i =

µ
(k)
0 µt(ti)µw(ti)µb(xi, yi)

µ
(k)
0 µt(ti)µw(ti)µb(xi, yi) + A(k)

∑
j:tj<ti

g(tj − ti)h(xj − xi, yj − yi)
.
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and G and U are the arguments that maximise the likelihood function with

respect to µ0 and A, respectively.

Indeed, since the likelihood function takes the form

logL =
n∑
i=1

log λ(ti, xi, yi)−
∫ T

0

∫∫
X

λ(t, x, y) dxdy dt

where

λ(t, x, y) = µ0µ(t, x, y) + A
∑
i: ti<t

g(ti − t, xi − x, yi − y),

and denoting U =
∫ T

0

∫∫
X
µ(t, x, y) dxdy dt and G =

∫ T
0

∫∫
X

∑
i: ti<t

g(t− ti, x−

xi, y − yi) dxdy dt, then the equations ∂
∂µ0

logL = 0 and ∂
∂A

logL = 0 can be

written as

n∑
i=1

µ(ti, xi, yi)

λ(ti, xi, yi)
− U = 0

n∑
i=1

∑
j:tj<ti

g(tj − ti, xj − xi, yj − yi)
λ(ti, xi, yi)

−G = 0.

Step 4. If convergence is reached, we obtain the estimates of µ0 and A. Otherwise, we

go back to Step 2.

4 New modelling approach on linear networks

Formally, a linear network L = ∪ni=1li ⊂ R2 is commonly taken as a finite union of

line segments li ⊂ R2 of positive length Ang et al. (2012). The endpoints of the

segments are called nodes and the degree of a node is the number of line segments

that share the same node (Okabe and Sugihara, 2012). A line segment is defined as

li = [ui,vi] = {kui + (1 − k)vi : 0 ≤ k ≤ 1}, where ui,vi ∈ R2 are the endpoints

of li. For any i 6= j the intersection of li and lj is either empty or an endpoint of
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both segments. The total length of all line segments in L is denoted by |L|. The

distance between two locations u and v in the network L is usually computed by the

shortest-path distance dL(u,v) which is the minimum of the length of all possible

paths between u and v. However, different possible distances have been discussed in

Rakshit et al. (2017), see also Baddeley et al. (2021) for a recent review on statistical

methods for analysing spatial point patterns on a network of lines.

4.1 Intensity estimation on linear networks

To adapt model in Equation (3.4) on the underlying spatial network, the main issue

is to choose estimators for the spatial components µ̂b(x, y) and ĥ(x−u, y− v), taking

properly into account the underlying network structure.

In this section, we review the most recent proposals for intensity estimation on linear

networks. A natural first step in analysing spatial patterns is to form a kernel density

estimate (Silverman, 1986) of the spatially-varying events rate. However, this is not

straightforward on a linear network.

Concerning intensity estimation, several kernel-based methods (Borruso, 2005, 2008;

Xie and Yan, 2008; Okabe et al., 2009; Okabe and Sugihara, 2012; McSwiggan et al.,

2017; Moradi et al., 2018; Rakshit et al., 2019a) and a resample-smoothing technique

applied to Voronoi intensity estimators (Moradi et al., 2019; Mateu et al., 2019) have

been proposed.

Obtaining good estimates for intensity functions of point processes on linear networks

has been a challenging task due to geometrical complexities and unique methodolog-

ical problems (Cronie et al., 2020). Nevertheless, there have been a few particularly
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interesting proposals. Baddeley et al. (2021) reviews the most recent approaches for

spatial kernel density estimation on linear networks. We summarise here the main

contributions

Approaches based on sums of kernels (Xie and Yan, 2008) basically assume that the

statistical basis for kernel estimation can be transferred from the real line to the

linear network. However, several authors (Okabe et al., 2009; Okabe and Sugihara,

2012; McSwiggan et al., 2017) have highlighted that translating the kernel density

estimate on the one-dimensional real line directly to the linear network, is a fallacious

estimate because it does not conserve mass. This basically means that the kernel

K(·, xi) = k(dL(·, xi)) is not a probability density on the linear network, and therefore

the corresponding density estimate is not a a probability density. The true probability

density would be roughly overestimated in the denser parts of the network.

Then, Borruso (2005, 2008) and Okabe et al. (2009) proposed several modifications

of the kernel sums estimator. Moradi et al. (2018) and McSwiggan et al. (2020)

pointed out that the bias can be removed by adapting classical edge-corrections from

spatial statistics, thus proposing some edge-corrected classical kernel-based intensity

estimators.

As per path enumeration methods, (Okabe et al., 2009; Sugihara et al., 2010; Okabe

and Sugihara, 2012) considered computational algorithms which start with a kernel k

on the real line, and progressively redistribute the mass of this kernel over the network.

These authors proposed two kernel estimators satisfying many desired properties: (a)

the “equal-split continuous” rule, which has excellent properties (symmetric, con-

serves mass, and is unbiased when the true intensity is uniform) but it is extremely

slow to compute; (b) the “equal-split discontinuous” rule, which is faster, but has less
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desirable properties (see Okabe and Sugihara (2012) and McSwiggan et al. (2017) for

the algorithms).

Another proposal is represented by the heat kernel : it is the network counterpart of

the Gaussian kernel. It was developed by McSwiggan et al. (2017) by exploiting the

connection between kernel smoothing and diffusion. Since the heat kernel estimator

is mathematically equivalent to the “equal-split continuous” estimator extended to

the Gaussian kernel, it has the same properties.

Finally, a fast kernel smoothing using two-dimensional convolutions has been recently

proposed by Rakshit et al. (2019b). It is a computationally efficient and statistically

principled method for kernel smoothing of point pattern data on a linear network.

The point locations, and the network itself, are convolved with a two-dimensional

kernel and then combined into an intensity function on the network. This can be

computed rapidly using the Fast Fourier Transform (FFT), even on large networks

and for large bandwidths, and is robust against errors in network geometry. The

estimator is consistent, and its statistical efficiency is only slightly suboptimal.

A crucial problem with kernel estimation is that if there are wide variations in inten-

sity across the spatial domain, it may be impossible to find a single fixed bandwidth

value which is satisfactory for smoothing every part of the spatial domain. Conse-

quently, the bandwidth can be spatially-varying, giving rise to a spatially “adaptive”

kernel estimator at the cost of increased complexity. Recently, there has been an

increasing interest in point patterns on linear networks. Here the matter of kernel

estimation is even more delicate due to the geometry of the underlying network.

For example, street crimes and traffic accidents tend to happen particularly in busy

streets, which may be surrounded by quiet neighbourhoods. In such cases, classical
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kernel estimation approach is often unsuitable for such types of data, and alterna-

tives based on resample-smoothing of addaptive Voronoi intensity estimators have

been proposed (Moradi et al., 2019).

4.2 A Hawkes point process on linear networks

The spatio-temporal Hawkes process model on the linear network L that we propose

has the following specification

λ(t, x, y) = µ0µt(t)µw(t)µL(x, y)+A

∫ t−

−∞

∫ ∫
L

g(t−s)hL(x−u, y−v)N(du×dv×ds),

(4.1)

where µL(x, y) and hL(x−u, y−v) are computed using the 2D convolutional Gaussian

Kernel of Rakshit et al. (2019b), which represents the best alternative for our pur-

poses. Indeed, Rakshit et al. (2019b) proposed a kernel estimator on a linear network

based on a 2D smoothing kernel. The original motivation was speed: this estimator

can be expressed in terms of 2D convolutions of the kernel, so it can be computed

very rapidly using the FFT.

Definition 2 Convolution Kernel Estimator

Let x = {x1, . . . ,xn} be a point pattern on a linear network L. Let κ denote a

bivariate kernel function, that is, a probability density on R2. The convolution kernel

estimator of the intensity is, with the uniform correction,

λ̂U(u) =
1

cL(u)

n∑
i=1

κ(u− xi), u ∈ L, (4.2)

and with Jones–Diggle correction, it becomes

λ̂JD(u) =
n∑
i=1

κ(u− xi)

cL(xi)
, u ∈ L, (4.3)
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where

cL(u) =

∫
L

κ(u− v)d1v, u ∈ L. (4.4)

The denominator cL(u), defined in Equation (4.4), is the convolution of the kernel

with the arc-length measure on the network. This function is evaluated only at

locations on the network.

It is theoretically possible to choose a kernel κ that is not isotropic, that is, not in-

variant under rotation. This seems undesirable in practice, except in situations where

the coordinate system is not isometric, such as the latitude–longitude coordinates on

a globe. We thus assume here that κ is isotropic. Unlike estimators of the intensity

based on path distances in the network, the convolution estimators are robust against

errors in the geometry of the network. If κ is uniformly continuous, the quantities

(4.2) and (4.3) are continuous functions of the point pattern x and the linear net-

work L, and the sums in (4.2) and (4.3), and the integral (4.4) can be recognised as

convolutions of the kernel κ with different measures M on R2 (Rakshit et al., 2019b).

Therefore, the fitting procedure for our model in Equation (4.1) follows the same

strategy outlined in Section 3.2 with the main modification concerning the planar

spatial intensities µb(x, y) and h(x, y) that are substituted by their network counter-

parts µL(x, y) and hL(x, y), computed using the 2D convolutional Gaussian Kernel of

Rakshit et al. (2019b), and implemented in Baddeley and Turner (2005) package of

the software R Core Team (2021).
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4.3 Further extensions: dependence on external covariates

The model in Equation (4.1) can be extended by including external spatial covariates

in µL(x, y). In the context of spatial point processes, if Z(x, y) is referred to a spatial

covariate, this means that its value is assumed to be observable, at least in principle,

at each location (x, y) in the region of interest. For inferential purposes, its values

must be known at each point of the data point pattern and at least at some other

locations. This specification gives rise to

λ(t, x, y) = µ0µt(t)µw(t)µL(x, y,βback)+A

∫ t−

−∞

∫ ∫
L

g(t−s)hL(x−u, y−ν)N(du×dν×ds),

(4.5)

where βback denotes the parameters associated to the spatial covariates Z(x, y) in-

cluded in the model.

Note that if the main interest would be focused on the selection of the covariates, the

algorithm in Section 3 would have been modified in order to maximise the likelihood

also with respect to the parameters of the external covariates. Otherwise, as we are

interested in achieving the best fitting, we use the same algorithm, and the selection

of the variables can be performed during the setting of the first guesses, and those

can be held fixed in the E-M.

As all the available covariates are continuous in space, these can be included linearly

by choosing a basis function. If bi(x) is the ith such basis function, then the function

f is assumed to have a representation

f(x) =

q∑
i=1

bi(x)βi, (4.6)

for some values of the unknown parameters, βi.
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The degree of smoothing is controlled by the basis dimension. In this paper, we keep

the basis dimension fixed at a size a bit larger than it is believed could reasonably

be necessary. After having compared different number of knots, these are chosen to

be equal to 5 for the available external covariates, and equal to 30 for the spatial

coordinates, estimated here through thin plate regression splines.

5 Data analysis

5.1 Model selection

As presented in Section 2, we analyse 2671 armed robberies in the city of Bucara-

manga, Colombia, in 2018. We fitted Zhuang and Mateu (2019) model (recall this is

on the Euclidean plane) and our proposed extensions (Equations (4.1) and (4.5)) to

the data. Table 1 displays the bandwidths of the background events and the windows

of the triggered events that were adopted for the models. These values are identical

in every model to ensure comparability and inference. Note that we omitted the daily

periodicity term µt(t), and thus its bandwidth, as our data lacks hourly crime data in-

formation. The weekly periodicity and long-term bandwidths were selected to secure

the resolution requirements of the temporal components. We chose the spatial and

temporal extent (15 days and 2.5 km, respectively) to restrict the spatio-temporal

domain in which we expect non-spontaneous events to occur.

We estimated the relaxation coefficients µ̂ and Â through a 40-loops iterative algo-

rithm as in Zhuang and Mateu (2019). We also computed the log-likelihood to assess

the fit of the three space-time point process models. Table 2 reports the estimates
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Table 1: Temporal bandwidths for the background events and spatial and temporal

windows for the triggered events

Background Bandwidth

Weekly periodicity 0.4 days

Long-term 0.6 days

Triggered Window

Temporal 15 days

Spatial 2.5 km

of the relaxation coefficients and the corresponding log-likelihood. µ̂ and Â values

reached convergence after the 25th iteration in all approaches (Figure 5). The con-

vergence threshold was established as the iteration on which the difference between

the values of the kth and kth − 1 iteration is smaller than 0.0001 units.

The estimates of µ̂ have similar magnitudes in the planar model and linear network

model without background covariates. The effect of the covariates in the estimation of

µ̂ is evident; the value in the model with covariates, model in Equation (4.5) decreases

significantly compared to its counterparts. A higher value of µ̂ for the linear network

model in Equation (4.1) compared to the model in the planar case, reflects the change

of spatial support, that is, the expected number of events increases when estimated

per linear segment instead of per surface. Nonetheless, the inclusion of covariates

adjusts for the change of support forcing µ̂ to drop. Note that the convergence rate

of µ̂ for model in Equation (4.5) is smoother than the one of the model without

covariates.

Â changes noticeably from specifications (3.4) to specifications (4.1) and (4.5). In the
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(a)

(b)

Figure 5: Relaxation coefficients convergence: (a) Model (4.1) and (b) Model (4.5)
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Table 2: Comparative results for the three fitted models

Model µ̂ Â log(L)

Model on the plane (3.4) 0.204 0.639 -706.47

Model on the network (4.1) 0.292 0.014 -353.35

Model on the network plus covariates (4.5) 0.085 0.016 -319.70

former, almost 64% of the crimes are triggered, while the latter inform that only 1.4%

and 1.6% (respectively) of armed robberies are provoked by previous crimes. The Â

estimate of our models better resembles Bucaramanga’s robbery offenses scenario:

robberies typically obey the crime opportunity theory, to wit, a robber’s motivation

arises from the context and factors involved in the environment they are situated

(Larrota et al., 2017). One would expect a low triggering effect as the offenders

rather exploit the situational factors (spontaneous events) than premeditate their

crimes’ circumstances (non-spontaneous events).

The log-likelihood shows that our models fit better the armed robberies data with a

difference of 353.12 and 386.77 units for models (4.1) and (4.5), respectively. We fit

both the background and the triggering effect directly on a linear network, and we

get accurate estimates and model the data appropriately. Furthermore, introducing

covariates in the background rate improves the estimation of the relaxation coefficients

and the overall fitting of the model.

To demonstrate the advantages of the linear network models (4.1) and (4.5), we com-

pare their spatial results with the ones of the planar model (Equation (3.4)). Figure 6

displays the spatial background rate for the three self-exciting point process models.

The spatial background rates share similarities in every model. Although the models’
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background rates present close resemblance, the rates in the linear network models

are higher than those in the planar one. As we discussed before, the rates increase in

the linear network models due to the reduction of the area unit. The distribution of

the intensities in Bucaramanga’s city center is equivalent in all models. However, the

linear network models provide larger estimated intensities in the central and north-

western regions of the study area. In particular, the specification from Equation (4.5)

displays larger and rougher high-intensity areas. This is primarily attributed to the

covariates effects as these affect the estimates per segment rather than per unit of

space. Also, note that the planar model indeed captures the “network” nature of the

data, but the clustering effect extends to areas instead of street segments. This might

lead to misinterpreting low-crime rate streets as dangerous ones when these connect

to neighbouring streets with high crime rates. Furthermore, as the planar model is

defined over continuous space, it generates artificial intensities in locations lacking

events.

One of the main differences between Zhuang and Mateu (2019) model and our pro-

posed approaches is the definition of the spatial triggering component. Figure 7 com-

pares the spatial response function of the planar and network models. The spatial

response function of the planar model remains constant across events. The occurrence

of an armed robbery in a specific location will excite future armed robberies within

a radial distance of approximately 100 meters. This is an unrealistic assumption for

events located in a linear network as the extent of the spatial triggering effect depends

intrinsically on the street topology. Figure 7(b) shows the triggering function for four

armed robberies. In our approach, hL(x, y) adapts to the street configuration on

which each event lies. The triggering window on the linear network varies from event

to event, preserving the geometrical properties of network structure, for example, the
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Figure 6: Spatial background rate: (a) planar model µb(x, y) (Equation (3.4)), (b)

linear network model µL(x, y) (Equation (4.1)) and (c) linear network model with

background covariates µL(x, y,βback) (Equation (4.5)). Rates are reported on the

log-scale
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shortest path distance between events.

Figure 8 displays the temporal components of the linear network models. The tempo-

ral results in both models were identical. The long-term trend (Figure 8(a)) indicates

that the armed robberies occur primarily in the second semester of the year. The crime

rates increase from June onwards and reach their maximum value in December. In

Colombia, the period from June to December comprises most of the annual public and

school holidays. As the number of tourists increases in the commercial and touris-

tic areas of the country’s main cities (such as Bucaramanga), local surveillance and

security weaken, promoting higher crime rates. The weekly periodicity implies that

robberies occur mainly on Wednesdays, Fridays, and Saturdays. The original data

also reports these days as the days with the highest frequencies in armed robberies.

On Wednesdays, the city center’s main venues such as restaurants, bars, and cinemas

offer discounts on their services, attracting many locals. Fridays and Saturdays are

naturally the days when most people commute to the city center for recreational ac-

tivities. People leaving venues in late hours and limited public transport provide the

offenders the ideal circumstances to take advantage of. The temporal response func-

tion (Figure 8(c)) suggests that after an armed robbery occurs, subsequent armed

robberies are triggered within the coming ten days. However, the triggering effect

lessens after one week.

5.2 Covariates results

As previously introduced, we select the covariates to include in model in Equation

(4.5) prior to the E-M procedure. Among the significant external covariates affecting

the background spatial intensity, we have cycleway, pedestrian, primary, residential,
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Figure 7: Spatial triggering function: (a) planar model h(x, y) and (b) linear network

model hL(x, y)

Figure 8: Temporal outputs: (a) Long-term function µt(t); (b) weekly periodicity

µw(t); (c) temporal response function g(t)
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secondary, service, and tertiary highways, bridges and steep slope. Indeed, all of these

binary variables are significant in explaining the crime pattern and their estimated

coefficients are all positive meaning that the crimes are most likely to occur in those

places. Only oneway street and flat slope coefficients are estimated as negative values,

meaning that crimes are less likely to occur there.

In Figure 9, we show the marginal relationship among the significant continuous

covariates and the intensity of the point pattern under study. The non-parametric

combination of these variables plus the event coordinates best explains (based on the

Akaike criteria) the linear network point pattern.

5.3 Residual analysis

As stated in some previous papers (Adelfio et al., 2020; Adelfio and Schoenberg, 2009),

the main problem when dealing with residual analysis for point processes is to find

a correct definition of residuals, since the one used in dependence models cannot be

used for point processes.

For the temporal domain diagnostics of the fitted model, the marginal time process

can be obtained by integrating the estimated intensity function with respect to the

observed spatial region (Adelfio and Chiodi, 2015). Indeed, given a point process N =

{(ti, xi, yi), i = 1, . . . , n} which is determined by a conditional intensity λ(t, x, y|Ht),

the transformation

ti → τi =

∫ ti

0

∫
X

λ(u, x, y|Ht)dxdydu

transforms N into a stationary Poisson process N ′ with unit rate (Vere-Jones and

Schoenberg, 2004). The resulting process is called the transformed time sequence
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Figure 9: Non-parametric estimate of the intensity of the analysed point pattern,

as a function of the available variables for the crime data: literacy rate (a), housing

quality score (b), water coverage (c), unemployment rate (d), number of hospitals per

street population (e), and number of police stations per street population (f). The

considered smoothing procedure is based on fixed-bandwidth kernel density estima-

tion
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(Ogata and Katsura, 1988). Then, a plot of τi versus i can give insight about the

quality of the fitting in time, concluding that the model has a good fit to the data

if the transformed time sequence does not deviate significantly from the standard

Poisson process. In particular, this plot, together with a plot of the estimated time

intensities, informs on the time at which departures from model assumptions are more

evident. See Schoenberg (2002) for details for the bands construction.

We thus consider this type of residual analysis for the best fitted model in the previous

section, i.e. the model based on Equation (4.5). Figure 10 depicts both the cumulative

frequencies of the original time sequence, and the transformed time for the data for all

three models for comparison purposes. We, in particular, follow the recommendation

by Zhuang and Mateu (2019) which compare the real and the transformed rates of

event occurrences.

Inspecting Figure 10, we note that model (4.5) provides the best fit, with the cumula-

tive frequencies lying within the confidence interval at 95%. Although the transformed

times deviate from the average rate of occurrence in some points, the overall trend

remains consistent. Transformed times diverge from the actual time, mostly in low

crime rates periods, for example, in the first months of the year when just a few armed

robberies were reported. Furthermore, the fluctuation in the rate of occurrence of the

transformed times could be attributed to the kernel estimation.

Similarly to the time component, one of the mostly used methods for diagnostics of

spatial point processes are the smoothed raw residuals, which follow the same line of

reasoning. For an inhomogeneous Poisson process model, with fitted intensity λ̂(u)

in space, the predicted number of points falling in any region D is
∫
D
λ̂(u)du. Hence,

the residual in each region D ⊂ R2 is the observed minus predicted number of points
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Figure 10: Cumulative frequencies of armed robberies events: (a) original occurrence

times; (b) transformed times for model (3.4); (c) transformed times for model (4.1);

and (d) transformed times for model (4.5). The 95% confidence bands under a Poisson

process are also shown in dashed lines
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falling in D (Alm, 1998), that is, R(D) = n(x ∩ D) −
∫
D
λ̂(u)du, where x is the

observed point pattern, n(x∩D) the number of points of x in the region D, and λ̂(u)

is the intensity of the fitted model. A simple visualisation of these residuals can be

obtained by smoothing. The smoothed raw residual fields are defined as

s(u) = λ̃(u)− λ†(u) (5.1)

where λ̃(u) = e(u)
∑n(x)

i=1 κ(u−xi) is the non-parametric, kernel estimate of the fitted

intensity λ̂(u), while λ†(u) is a correspondingly smoothed version of the (typically

parametric) estimate of the intensity of the fitted model, λ†(u) = e(u)
∫
D
κ(u −

v)λ̂(v)dv. Here, κ is the smoothing kernel and e(u) is the correction for edge ef-

fects in the window D given by e(u)−1 =
∫
D
κ(u − v)dv (Baddeley et al., 2005).

The smoothing bandwidth for the kernel estimation of the raw residuals is selected

by cross-validation, as such value that minimises the Mean Squared Error criterion

defined by Diggle (1985), by the method of Berman and Diggle (1989). See Diggle

(2013) for further details. We employ the same reasoning, knowing that λ†(u) is the

smoothed version of the estimate of the intensity of the fitted models, and of course

u ∈ L. The difference in Equation (5.1) should be approximately zero when the fitted

model is close to the real one. Therefore, the best model is the one with the lowest

values of the smoothed raw residuals.

Figure 11 depicts the smoothed raw residuals for the two models fitted on the network,

and for the model in the planar case, along with their distributions. Even though

smoothed raw residuals are most appropriate for parametric specifications of fitted

models, we still manage to obtain useful information. Indeed, it appears evident that

both models on the network achieve a good fit to the data, if compared to their planar

version, which tends to overestimate the intensity in several areas. Furthermore, the
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Figure 11: Maps and histograms of smoothed raw residuals for models (3.4), (4.1),

and (4.5), respectively
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model with covariates provides residuals with a lower range and magnitude compared

to the model wit no covariates. All in all, the smoothed raw residuals of the model

with covariates are overall better than the ones of the model with no covariates, even

though both models still represent good competitors if compared to the planar version.

We note that there were other options for carrying out diagnostics in this paper. First,

superthinned residuals (Clements et al., 2012), which have the disadvantage of being

less straightforwardly applicable, as they require a tuning parameter to be chosen.

Another possible option could have been using the weighted spatio-temporal second

order statistics, as in Adelfio et al. (2020), which do not require any transformation of

the data. However, we opted for diagnostic procedures separated in space and time,

due to the separable specification of the models employed in the paper. Nevertheless,

the chosen diagnostics allows us to interpret separately the contribution of the space

specification into the network, as evident from Figure 11.

6 Conclusions and future developments

In this paper, we analyse robbery crimes as events of a spatio-temporal point pattern

living on a linear network structure. We first fit a Euclidean planar model following

Zhuang and Mateu (2019) providing two parameters related to the background and

triggered occurrence rates. We further propose an extension of that model in order

to take into account the linear network. This allows us both to include the network

geometry into the fitting procedure, but most importantly, to draw conclusions on the

scale of shortest-path distances, more appropriate when dealing with point processes

occurring on linear networks. Furthermore, starting from the specification of this
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second model, we are also able to include the dependence on external covariates

rightly constrained onto the spatial support of the road network. We find that our

proposed models on the network achieve a much better fit when compared to the

planar counterpart.

As future work, we draw different lines of research, both methodological and applied.

From a methodological perspective, the proposed self-exciting model could be ex-

tended by including external covariates in the triggered components, as proposed by

Meyer et al. (2012) in an epidemiological context, and Adelfio and Chiodi (2020) in

the seismic one. Indeed, the model could include individual-specific covariates in the

triggered component of the conditional intensity function, by means of an exponen-

tial linear predictor. This would allow for including the dependence on some specific

characteristics of the event i.e. the crime, such as gender, or age of the victim.

Another main issue is related to the fitting procedure. Indeed, the proposed algorithm

could be modified in order to include the estimation of the covariates parameters

at each iteration of the Expectation-Maximization procedure. This would allow to

consider only the crimes most likely to be background events when selecting the

spatial covariates, as done by Park et al. (2021), since, in principle, only background

crimes should be used. The best model, and therefore the best set of covariates, could

be selected by comparing some information criterion of the fitted competitor models.

Finally, we could follow a multivariate specification analysing several types of crimes

in only one modelling strategy.
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