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Abstract

In many fields of science, it is crucial to monitor and understand the evolution of phe-

nomena over time. Mediation analysis is widely used for understanding how the effect

of an exposure on a response propagates, and longitudinal data are acknowledged to

be the most suited to answer mediational questions, since they take into account

the dynamic nature of most phenomena. Indeed, the effect of a treatment/exposure

on an outcome of interest may take more or less time to unfold and, as claimed by

many authors, ignoring the temporal aspect may lead to severely biased estimates

and to misleading conclusions about the evolution and the ‘mechanism’ regulating

phenomena under investigation.

Over time, several models and approaches have been proposed to address lon-

gitudinal mediation and a kind of dichotomy seems to have emerged. Social and

behavioural scientists generally privilege models including latent variables, such as

structural equation models or multilevel models, while epidemiologists have tradition-

ally been interested in causal questions, and latent variables are hardly ever included

in their models. This thesis aims to reconcile some of these approaches, showing how

they can be combined and the reasons why this is advantageous.

The thesis starts with a literature review of models and approaches proposed

over years to address discrete-time longitudinal mediation analysis. The focus is

on both associational and causal approaches: for each we discuss the main features

and highlight strengths and limitations. In the final discussion, we remark differences
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between the two frameworks and point out some issues which will be addressed in

the following chapters.

Next, we propose a formal unification of structural and multilevel mediation models

for longitudinal settings. Such a unified framework overcomes some of the limitations

of traditional multilevel mediation models, for example the impossibility to include

effects from subject-level variables to cluster-level variables (the so called ‘bottom-up

effects’), or the fact that multilevel mediation models are not simultaneous. We give

also a detailed discussion of all multilevel mediational designs which can be addressed

from a structural equation perspective.

In the following, we address two popular associational models for longitudinal me-

diation analysis, mixed-effect and latent growth models, from a causal perspective

by means of the separable effects approach. Assumptions for identifiability of the

effects and estimation g-formulas are derived. In addition, a simulation study to eval-

uate the impact of model misspecification on the estimates of separable mediational

effects is carried out. This part concludes with a discussion of possible extensions

to more general settings, including baseline and time-varying covariates and time-

varying treatments.

The last chapter presents an application of the separable effects approach proposed

in the thesis to data from the COVCO-Basel study, carried out in Switzerland between

July 2020 and August 2021. The analysis focuses on the estimation of direct and

indirect effects of income on depression in a phase of acute spreading of Covid-19.

The mediators of interest are worries concerning different aspects of life: economy,

health, social and cultural life. The findings show that having a higher monthly

income has always a beneficial direct effect on depression, while only some kinds of

worries play a mediating role.

ii



There is nothing permanent

except change.

–Heraclitus

Omnia aliena sunt,

tempus tantum nostrum est.

All things are external,

only time is ours.

–Seneca





Acknowledgments

This thesis is the result of an individual effort, but it has benefited from a great deal

of support and assistance from several people.

I would first like to thank my supervisor, Professor Gianfranco Lovison, for his

invaluable guidance over these years. He has been a mentor to me and, because of his

deep and broad knowledge of statistics and his ‘humanistic’ approach towards it, also

an inexhaustible source of inspiration. I cannot remember a single occasion when, at

the end of a conversation of ours, I did not feel that I had learned something. His

insightful comments and great confidence in my abilities played a key role in writing

this dissertation.

My deepest gratitude goes also to my co-supervisor, Dr. Antonino Abbruzzo, who

was my first statistics teacher and definitely the one who pushed me to follow this

path. I want to thank him for all the hours he spent talking with me and his useful

suggestions. His advice about this thesis and, more generally, about the different

aspects of academia has been really helpful for my training as a researcher.

I wish to thank Professor Vanessa Didelez, who gave me the opportunity to join

her research group at the Leibniz Institute for Prevention Research and Epidemiology

in Bremen. She has been extremely kind to me since the first day, and her extensive

knowledge of causal inference had a great impact on my education. My stay in

Bremen, although short, was crucial for the development of a part of this dissertation.

Many thanks also to Professor Nicole Probst-Hensch and Dr. Ayoung Jeong from

the Swiss Tropical and Public Health Institute in Basel for allowing me to use data

from the COVCO-Basel study – the analysis of which is the object of the last chapter

of the thesis – and for their useful feedback and suggestions.

I cannot fail to mention and thank all other PhD fellows from the DSEAS at the

University of Palermo. I am grateful for the stimulating conversations, the sense

of community and, of course, for all the funny and carefree moments we shared

(especially during lunches!).

I also wish to thank my family for their unwavering support and love. They have

always given me the motivation and encouragement to pursue this project, and I

could not be luckier for being part of such a wonderful family.

Finally, all my gratitude goes to Rodi, an unexpected gift along the way, for whom

no thanks would ever be enough. He has given me the strength to hold on even in

the most difficult times, and has constantly encouraged me to believe in myself. We

shared every moment of this PhD journey since the very beginning, and now that it

is coming to an end, my greatest hope is that it provided us with the awareness and

the tools to face a much more challenging journey called life. Hand by hand, always

together.

v





Contents

1 Introduction 1

1.1 Motivation and aims . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Literature Review 38

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Associational framework . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Causal framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4 General discussion and conclusions . . . . . . . . . . . . . . . . . . . 71

3 Structural and multilevel mediation models: a unification 74

3.1 Mixed-effect models as SEMs . . . . . . . . . . . . . . . . . . . . . . 74

3.2 Introduction to the RAM notation . . . . . . . . . . . . . . . . . . . 78

3.3 Unified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4 Multilevel SEM approach to mediation models through definition vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Inference and software implementation . . . . . . . . . . . . . . . . . 112

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4 Causal multilevel and LG models: a separable effects approach 117

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Separable mediational effects . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Mixed-effect models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Latent growth models . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

vii



5 An application: the COVCO-Basel study 146

5.1 Data collection and description . . . . . . . . . . . . . . . . . . . . . 146

5.2 Objective of the study . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Exploratory analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6 Conclusions and future directions 167

A A note on causal interpretation of associational models 171

B Proofs of formulas in Chapter 4 176

B.1 Proof of Equation (4.7) . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.2 Proof of Equation (4.15) . . . . . . . . . . . . . . . . . . . . . . . . . 178

C The COVCO-Basel study: an alternative decomposition of income 180

Bibliography 183

Outputs of the research activity 204

viii



List of Tables

2.1 Summary of associational models and causal approaches. . . . . . . . 73

4.1 Coefficients of the mixed-effect and latent growth models used to gen-

erate data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2 Results of simulations for data generated from a mixed model with

uncorrelated random effects. . . . . . . . . . . . . . . . . . . . . . . . 135

4.3 Results of simulations for data generated from a latent growth model

as in Figure 2.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Fortnights considered in the analysis and corresponding dates. . . . . 150

5.2 Variables in the linear predictors for each worry type. . . . . . . . . . 158

5.3 Results of the mediator and the outcome models for each type of worry.159

5.4 Point estimates, standard errors and confidence intervals of separable

direct and indirect effects of income on depression mediated by one

kind of worry at a time, under an intervention changing income from

5,000 CHF to 10,000 CHF. . . . . . . . . . . . . . . . . . . . . . . . 161

5.5 Point estimates, standard errors and confidence intervals of separable

direct and indirect effects of income on depression mediated by one

kind of worry at a time, under an intervention changing income from

0 to 5,000 CHF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.1 Point estimates, standard errors and confidence intervals of separable

direct and indirect effects of income on depression mediated by one

kind of worry at a time, under an intervention changing income from

5,000 CHF to 10,000 CHF, using an alternative decomposition of income.181

C.2 Point estimates, standard errors and confidence intervals of separable

direct and indirect effects of income on depression mediated by one

kind of worry at a time, under an intervention changing income from

0 CHF to 5,000 CHF, using an alternative decomposition of income. . 182

ix





List of Figures

1.1 Example of SEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The basic mediation model. . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Association versus causation. . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Example of a DAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Markov equivalent DAGs. . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Example of back-door adjustment. . . . . . . . . . . . . . . . . . . . . 13

1.7 Illustration of the front-door criterion. . . . . . . . . . . . . . . . . . 14

1.8 Causal DAG where the total effect of X on Y is identified through the

adjustment criterion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Example of DAGs where natural mediational effects are not identified. 22

1.10 Example of identification of path-specific effects. . . . . . . . . . . . . 24

1.11 A DAG with unobserved variables and its latent projection. . . . . . 25

1.12 Example of the kernel factorisation. . . . . . . . . . . . . . . . . . . . 26

1.13 Example of identification of path-specific effects in the presence of a

latent variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.14 Separable effects via exposure decomposition. . . . . . . . . . . . . . 30

1.15 Expanded DAGs with an exposure-induced confounder. . . . . . . . . 32

2.1 Summary of the approaches described in the review. . . . . . . . . . . 41

2.2 Cross-lagged panel mediation model for three waves. . . . . . . . . . 43

2.3 Latent growth mediation model for four waves. . . . . . . . . . . . . . 46

2.4 Latent difference score model for three measurement occasions. . . . . 49

2.5 DAG including time-varying confounders. . . . . . . . . . . . . . . . . 58

2.6 Model proposed by Bind et al. (2016). . . . . . . . . . . . . . . . . . 59

2.7 A DAG and its corresponding ADMG. . . . . . . . . . . . . . . . . . 61

2.8 Causal DAG where the recanting district criterion is not satisfied. . . 62

2.9 Longitudinal mediation model discussed in VanderWeele and Tchetgen

Tchetgen (2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.10 Longitudinal separable effects mediation model (Didelez 2019b). . . . 67

xi



3.1 One-factor CFA model. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Three-process LGM with four waves. . . . . . . . . . . . . . . . . . . 88

3.3 Model in Equations (3.25) represented as an SEM. . . . . . . . . . . . 91

3.4 Graphical representation of 1-1-1 mediation in the approach of Preacher

et al. (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 1-1-1 design expressed through definition variables. . . . . . . . . . . 100

3.6 2-1-1 design expressed through definition variables. . . . . . . . . . . 102

3.7 2-2-1 design expressed in the MSEM framework. . . . . . . . . . . . . 104

3.8 1-2-1 design expressed through definition variables. . . . . . . . . . . 107

3.9 1-1-2 design expressed through definition variables. . . . . . . . . . . 109

3.10 2-1-2 design expressed in the MSEM framework. . . . . . . . . . . . . 110

3.11 1-2-2 design expressed in the MSEM framework. . . . . . . . . . . . . 111

4.1 Longitudinal separable effect model with two time points. . . . . . . . 122

4.2 Three-wave mixed effect model with separable components of X. . . . 123

4.3 Three-wave latent growth model with separable components of X. . . 129

4.4 A separable mixed-effect model and LGM including a set of observed

covariates C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5 A mixed-effect model with post-treatment confounding and the possi-

ble scenarios in a separable effects framework. . . . . . . . . . . . . . 138

4.6 Mixed-effect model with Z partition. . . . . . . . . . . . . . . . . . . 139

4.7 A latent growth model with a post-treatment confounder Z. . . . . . 140

4.8 Expanded graphs showing different scenarios related to Figure 4.7 (a). 141

4.9 A separable mixed-effect model and an LGM with a three-way decom-

position of treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.10 Latent growth model with a time-varying covariate Z. . . . . . . . . . 143

4.11 Mixed-effect model with time-varying treatment in a separable effects

framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.1 Daily new confirmed COVID-19 cases per million people in Switzer-

land, 7-day rolling average. . . . . . . . . . . . . . . . . . . . . . . . . 149

5.2 Share of daily positive Covid-19 tests in Switzerland, 7-day rolling

average. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Proportion of people having economic, social, cultural and health wor-

ries over the period of interest. . . . . . . . . . . . . . . . . . . . . . . 151

5.4 Proportion of worried subjects over the occasions of interest stratified

by income, expressed in thousands of CHF. . . . . . . . . . . . . . . . 152

5.5 Boxplot of depression by sex, income and age. . . . . . . . . . . . . . 153

xii



5.6 Depression scores by kind of worries. . . . . . . . . . . . . . . . . . . 154

5.7 Graphical representation of direct and indirect effects in the model hav-

ing economic worries as mediator, considering the intervention chang-

ing income from 5,000 to 10,000 CHF. . . . . . . . . . . . . . . . . . 162

5.8 Graphical representation of direct and indirect effects in the model hav-

ing health worries as mediator considering the intervention changing

income from 5,000 to 10,000 CHF. . . . . . . . . . . . . . . . . . . . . 162

5.9 Graphical representation of direct and indirect effects in the model hav-

ing social worries as mediator, considering the intervention changing

income from 5,000 to 10,000 CHF. . . . . . . . . . . . . . . . . . . . . 163

5.10 Graphical representation of direct and indirect effects in the model hav-

ing cultural worries as mediator considering the intervention changing

income from 5,000 to 10,000 CHF. . . . . . . . . . . . . . . . . . . . . 163

A.1 Expanded graph of Figure 2.2 in the main text. . . . . . . . . . . . . 174

xiii





Chapter 1

Introduction

In many fields of science, it is crucial to monitor and understand the evolution of

phenomena over time. Epidemiologists may be interested in the time at which a

specific disease manifests, in psychology patients are often followed over weeks or

months to keep track of their mental health, economists collect longitudinal data to

evaluate the impact of policies over time. In all these situations, the goal, more or less

explicitly stated, is to gain insight into the mechanism regulating the phenomenon

under investigation.

Mediation analysis is a statistical technique widely used for understanding how the

effect of an exposure on a response propagates, in particular, it tries to disentangle the

direct effects and the indirect effects, i.e. the effects through intermediate variables

called mediators. As a (very popular) example, consider the risk of developing lung

cancer. It is well known that this risk is affected by the presence of genetic variants

on chromosome 15q25.1. However, genetic variants do not act only directly, but

they contribute to increase also the propensity to smoke, which in turn increases the

probability of lung cancer (VanderWeele et al. 2012a).

Most phenomena, like the example just provided, are dynamic in nature and their

mechanisms may take more or less time to unravel. As a consequence, the effects of a

treatment or exposure on a certain response may not be immediately observable, but

may manifest over time. Longitudinal mediation analysis aims to assess mediational

effects in longitudinal settings and how they change over time.

1.1 Motivation and aims

The temporal aspect has paramount importance in mediation analysis, for the simple

reason that the exposure or treatment has to precede the mediator, and both have

to be antecedent to the response. The need of time ordering is motivated by the fact
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2 CHAPTER 1. INTRODUCTION

that, in most real-world situations, the effect of the treatment on the outcome is not

instantaneous. Think of a randomised trial where subjects receive a placebo or a drug

to contrast insulin resistance, a syndrome which is often the prelude of diabetes. The

drug may affect insulin levels directly, or a proportion of the effect may be mediated

by the production of adiponectin, a protein hormone involved in different metabolic

processes which is known to regulate insulin production. Researchers do not expect

to observe a sudden change in subjects’ insulin or adiponectin, indeed these kinds

of trials must be carried out for months if not years before being able to detect and

measure sizeable effects.

In such contexts, researchers collect repeated measures of the variables of interest

to follow their evolution over time, quantify the efficacy of the treatment and how it

changes over the follow-up period. Longitudinal data are crucial for the investigation

of mediational mechanisms and, in recent years, the issue of longitudinal mediation

has witnessed a remarkable development. Over the years, several approaches have

been proposed to address longitudinal mediation. Each approach has its own unique

features, strengths and limitations and their huge variety may generate confusion.

As will become clear in Chapter 2, one of the main differences between these

various approaches is how latent variables are tackled. In social and behavioural

sciences, it is quite common to address longitudinal data through a broad class of

models called structural equation models: they include several model specifications

characterising the trajectories of time-varying variables via latent factors. In contrast,

in epidemiology these models are not so frequently employed, and latent variables are

regarded as a threat for the possibility to estimate treatment effects from observed

data. This difference does not concern only the field of application of mediation

analysis, but it is deeper and involves the researchers’ conceptual framework. Indeed,

social sciences have a long associational tradition, while epidemiologists are often

interested in the causes behind phenomena under investigation and therefore they

try to make causal inference.

The present dissertation addresses longitudinal mediation analysis from both per-

spectives, associational and causal, focusing on the issue of latent variables. We revisit

established methodologies, or develop new ones, providing the following theoretical

contributions:

• we provide a comprehensive overview of associational and causal approaches to

longitudinal mediation, highlighting their differences and possible gaps which

need to be filled in the literature;

• we show the analogies between the two most commonly used associational models

for longitudinal data, i.e. multilevel and structural equation models, showing
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how they can be unified, and the advantages of such a unification;

• we endow some of these longitudinal associational models with a causal inter-

pretation within a separable effects framework.

These points will be developed throughout the thesis. The rest of the chapter is

devoted to providing the tools to understand what comes next and to present the

structure of the thesis.

1.2 Preliminary concepts

In this section we introduce the key concepts underlying mediation analysis, which

will be extensively used throughout the thesis. We start with the regression-based

approach to mediation and continue discussing the causal framework for mediation

based on counterfactuals.

1.2.1 Basics about structural equation models

Structural equation models (SEM) are a wide class of models which allows researchers

to model relationships among either observed or latent variables. In this section

we briefly review some basic concepts about SEMs which will be recurrent in the

following.

SEMs are usually expressed through the LISREL notation (Jöreskog and Sörbom

2001), which decomposes each model into two parts, the measurement model and the

structural model. The former specifies the relationship between observed variables

and latent variables
y = µy + Λy η + ε

x = µx + Λx ξ + δ
(1.1)

where y and x are p- and q-dimensional vectors of endogenous and exogenous observed

variables, respectively, η and ξ are r- and s-dimensional vectors of endogenous and

exogenous latent variables, respectively, µy and µx are p- and q-dimensional vectors

of intercept/means, Λy and Λx are p× r and q × s coefficient matrices, and ε, δ are

error vectors. The latter model specifies the relationship between latent variables

η = ν + Bη + Γξ + ζ, (1.2)

where ν is an r-dimensional vector of means, B is a r × r matrix of coefficients

showing the dependencies among endogenous latent variables, Γ is a r × s matrix of

coefficients showing how endogenous latent variables depend on the exogenous ones,
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η

Y1 Y2 Y3

ξ1

X1

X2

ξ2

X3

X4

1

ε
Y 1

ε
Y 2

ε
Y 3

δ
X1

δ
X2

δ
X3

δ
X4

ζ

Figure 1.1: Example of SEM.

and ζ is a vector of errors. It is assumed that ε is uncorrelated with η, ζ and δ are

uncorrelated with ξ, and finally that ζ, ε and δ are mutually uncorrelated.

SEMs are primarily focused on the covariance structure characterising model vari-

ables: estimation procedures aim to find the parameters which minimise the discrep-

ancy between the observed and the model-implied covariance matrix. In some cases

however, the mean structure can be of interest as well.

A useful way to visualise SEMs, especially those including many variables, is by

representing them through path diagrams. Introduced by Wright (1921), path dia-

grams are graphs showing the relationship of dependence and the covariance among

variables in the system. They are characterised by five elements:

• Squares, indicating observed variables

• Circles, indicating latent variables

• Triangles, denoting constants (generally intercepts)

• Directional arrows, denoting the effect of a variable on another one

• Bidirectional arrows, denoting covariances or variances of error terms.

Consider Figure 1.1. It represents a model with p = 3 endogenous and q = 4

exogenous observed variables, and r = 1 endogenous and s = 2 exogenous latent
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variables. The measurement model isY1

Y2

Y3


︸ ︷︷ ︸

y

=
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γ2

γ3


︸ ︷︷ ︸

Λy

η +

εY 1

ε
Y 2

ε
Y 3
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ε
X1

X2

X3

X4


︸ ︷︷ ︸

x

=


α1 0

α2 0

0 β1

0 β2


︸ ︷︷ ︸

Λx

(
ξ1

ξ2

)
︸ ︷︷ ︸
ξ

+


δ
X1

δ
X2

δ
X3

δ
X4


︸ ︷︷ ︸

δ

where η ≡ η is a scalar (i.e. a 1 × 1 vector), µy and µx are null vectors and the

coefficients linking the latent variables to their indicators are not reported in the

figure to avoid clutter. The structural model is made up by only one equation, since

there is only one endogenous latent variable

η = ν +
(
λ1 λ2

)(ξ1

ξ2

)
+ ζ.

When all the variables in the system are observed, i.e. ξ = x, η = y, structural

equation models take the name of path analytic models (Wright 1934) or simultaneous

equation models. Several mediational models in the literature are path-analytic and

several scholars have proposed methods to estimate the indirect effects, see for exam-

ple Alwin and Hauser (1975), Greene (1977), Finney (1972) and Fox (1980). Bollen

(1987) proposed a generalisation of their methods, which can be used in a wide vari-

ety of SEMs, including both observed and latent variables. We will not provide the

details here, what is important to know is that indirect effects can be obtained by ap-

propriately combining the coefficient matrices in (1.1)-(1.2). An extensive discussion

can be found in Bollen (1987) and (Bollen 1989, Chapter 8).

1.2.2 Regression-based mediation analysis

Baron and Kenny (1986) paved the way for the use of mediation analysis by re-

searchers from different fields. Although they did not address some crucial concepts

now widely recognised in mediational settings (e.g. post-treatment confounders, time

ordering) and some of their claims have proved to be incorrect (Hayes 2009, Zhao

et al. 2010), their role in spreading the use of mediation methods is unquestionable,

as witnessed by the thousands of citations of their paper.
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X

M

Y

β
X

γ
X

γ
M

Figure 1.2: The basic mediation model.

In this section, we start from their regression-based approach, which has been

extensively addressed and deepened in MacKinnon (2008) and Hayes (2018). The

basic mediation model includes an explanatory variable X, an intermediate variable

M and a response Y : X may affect Y directly and also indirectly through M , as

shown in Figure 1.2. The X variable is called treatment in experimental studies,

where researchers have a certain degree of control over it (for example, X can be the

type of medicine assigned to participants in a randomized control trial, a new drug

versus a placebo), or exposure in observational studies, where X is not manipulated

(for example, it can be the number of cigarettes smoked in a day). If the context is

not specified, we will generally refer to X as the exposure.

A first important observation to make is that, even in single-time settings, media-

tion analysis entails a time ordering, since the exposure has to precede the mediator,

which in turn has to precede the response. As already mentioned, the quantities of

interest are the direct and indirect effects. In the path-analytic approach, which is not

inherently causal, effects are obtained as combinations of coefficients lying on paths

of interest. The mediator and the response are assumed to be Normally distributed,

and all the relationships to be linear. Thus, the model equations are

M = β0 + β
X
X + ε

M
(1.3)

Y = γ0 + γ
X
X + γ

M
M + ε

Y
, (1.4)

where the first equation represents the mediator model and the last one the response

model including both the exposure and the mediator. The error terms are assumed

to be independent. For example, in the simple setting shown in Figure 1.2, the direct

effect corresponds to the arrow X → Y , and it is measured by γ
X

, while the indirect

effect is made up of the arrows X → M and M → Y , so that it can be obtained as

the product β
X
γ
M

.

From an SEM perspective, Equations (1.3)-(1.4) can be rewritten as follows

y = µ+ By + ε (1.5)
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XM
Y

 =

µXβ0

γ0

+

 0 0 0

β
X

0 0

γ
X

γ
M

0


XM
Y

+

εXεM
ε
Y

 , (1.6)

and the indirect effect can be obtained through the approach described in Bollen

(1989, 1987), not reported here for the sake of brevity. This approach entails multi-

plying the B matrix by itself,

B2 =

 0 0 0

0 0 0

β
X
γ
M

0 0

 .

The only non-null entry is the indirect effect of X on Y .

The effects defined above do not have a causal meaning, unless specific assumptions

are satisfied. In the next section, we introduce the counterfactual framework to

address causality and show how the definition of causal mediational effects differ

from the associational one just described.

1.2.3 Counterfactuals

The concept of causation has been more or less explicitly banned from the mainstream

statistical literature for all the 19th and the great majority of the 20th century, since

the predominant paradigm was that only associational relationships could be inferred

from observed data. Starting from the ’70s, a formal causal theory arose within

the potential outcome framework (Rubin 1974, 1978). Since then, a great stream of

literature has begun defining causal effects through potential outcomes, also called

counterfactuals, thanks to the fundamental contributions of many scholars, including

James Robins (Robins 1986) and Judea Pearl (Pearl 2009, 2010), although approaches

to causality not involving counterfactuals have been proposed as well (Dawid 2000).

Counterfactuals are statements referring to events or situations contrary to those

that occurred, such as “If the patient had taken the drug, he/she would be alive” (but

he/she did not receive the drug). A researcher may be interested in understanding if

the patient’s death has been caused by not assuming the drug or not. If one denotes

by X the binary variable “Taking the drug” and by Y the binary response indicating

patient’s survival, one may conceive the causal effect of X on Y as a contrast between

the outcome that would have been observed if the patient had taken the drug and

that observed if he/she had not, leaving all the rest unchanged. If the two potential

outcomes (the expression used by Holland, 1986, referring to Rubin’s work) differ,

assuming we control for all variables confounding the X-Y relationship, then X has
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a causal effect on Y . It is possible to translate these concepts in mathematical terms

by writing the individual total causal effect for subject i, on the difference scale, as

Yi(X = 1) − Yi(X = 0), where X = 1 means the patient took the drug and X = 0

he/she did not, and Yi(X = x) is the value the response for subject i would have had

if X had been set to x ∈ {0, 1}.
In fact, it is possible to observe just one counterfactual outcome, that is, the one

corresponding to the treatment taken by the patient, while the other one is an artifi-

cial construct. In general, subject-specific causal effects are not targets of inference.

Population effects are much more useful and widely employed: counterfactuals are

defined for a population of interest, then Y (x) becomes a random variable with its

own distribution P (Y (x)) if Y is discrete, f(Y (x)) if it is continuous. The average

causal effect (ACE) can be defined comparing the counterfactual distributions of Y

under two different values of X, x and x∗, for example as the expected difference

ACE = E[Y (x)]− E[Y (x∗)] = E[Y (x)− Y (x∗)]

or the causal odds ratio if Y is binary

ACEOR =
P (Y (x) = 1)/P (Y (x) = 0)

P (Y (x∗) = 1)/P (Y (x∗) = 0)
.

It is worth noting that both the expressions above entail a comparison of the same

population under two different scenarios. For example, the ACE can be read as the

difference between the outcome if all the subjects in the population of interest had

been exposed to x and the outcome if all the subjects had been exposed to x∗. This

is generally different from the associational difference

E[Y |X = x]− E[Y |X = x∗]

where a group of subjects in the population has actually been exposed to x and

the other group to x∗ (see Figure 1.3). The causal and the associational quantities

coincide under the exchangeability assumption

Y (x) ⊥⊥ X ∀x (1.7)

which says that each counterfactual is independent of X. Let us make this statement

clearer with an example. Suppose that Y is an health outcome, say blood pressure,

and X is binary, expressing the assumption of a new experimental drug X = 1 versus

a placebo X = 0. A researcher is interested in evaluating the causal effect of the

drug on blood pressure. To do so, he/she selects a group of patients suffering from
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Population

X = 1 X = 0

Association

X = 1 X = 0

Causation

X = 1 X = 0

Figure 1.3: Association versus causation.

high pressure levels and randomly assigns a group to the treatment condition and the

other group to the control condition. Since the assignment to the groups was random,

the two group of patients are equivalent or, in other words, the potential outcome

‘observed’ for the treated subjects would have been equal to that of subjects in the

control group, if they have been assigned to the treatment group and vice versa: the

two groups are exchangeable (Hernán and Robins 2020).

The hypothetical experiment we have just described is an example of randomized

control trial (RCT). RCTs represent a golden standard in the causal inference liter-

ature, since they ensure that the relationship between X and Y is not confounded,

i.e. affected by other, possibly unmeasured, covariates. If exchangeability holds, then

causation coincides with association and

E[Y (x)] = E[Y (x) |X = x] = E[Y |X = x]

the last equality holding by consistency: Y (x) = Y if X = x, i.e. a potential outcome

coincides with the observed outcome if the value of X is that actually observed. When

a counterfactual quantity can be expressed as a function of observed variables it is

said to be identifiable. Identifiability is a crucial issue in causal inference.

In observational studies, exhangeability is very unlikely to hold true due to the

presence of confounders of the exposure-outcome relationship. Denoting by C these

confounders, it is however possible to achieve exchangeability within the strata of

these covariates:

Y (x) ⊥⊥ X |C. (1.8)

Assumption (1.8) is called conditional exchangeability, and allows to obtain, for ex-
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ample, the conditional counterfactual expectation as

E[Y (x) |C] = E[Y (x) |X = x,C] = E[Y |X = x,C].

It is worth remarking that identification concerns the entire counterfactual distri-

bution f(Y (x)), but generally researchers focus on specific aspects of this distribution,

like the expectation or the odds ratios.

See Rubin (2004), Pearl (2009), Morgan and Winship (2015) for more details on

counterfactuals and causal inference. In the mediation setting, M(x) denotes the

value of the mediator if X is set to x, and Y (x,m) the value of the outcome if X is

set to x and M is set to m. It is also possible to consider nested counterfactuals like

Y (x, M(x∗)), i.e., the outcome value if the treatment were set to x and the mediator

to the value it would assume under X = x∗.

1.2.4 DAGs and causal models

The relationships among variables can be visualised through graphs having specific

features. These graphs should represent the model structure and the dependencies

among the variables of interest hypothesised by the researcher, and this phase comes

before the analysis of the actual data. In other words, a graph reflects the researcher’s

ideas, conjectures and questions on the phenomenon under investigation, generally

based on previous knowledge. Representing observed and unobserved confounders

in the graph allows the researcher to get an idea about which effects are of interest

and if they are identifiable, even before the analysis of observed data. In mediational

settings, the relationships among variables are directed, then we will use directed

graphs.

A directed acyclic graph (DAG) G is a couple {V ,E}, where V is the set of vertices

or nodes and E is a set of directed edges linking the nodes. DAGs are characterised

by the absence of loops, i.e. sets of subsequent edges starting and ending with the

same node. A set of successive edges is called path and, if the direction given by

arrows is respected, the path is said to be directed. For two nodes Vi, Vj ∈ V , if there

exists a directed path Vi → · · · → Vj from Vi to Vj, Vi is called an ancestor of Vj

and Vj a descendant of Vi. In particular, if Vi → Vj, Vi is called parent and Vj child.

The set of parents, ancestors and descendants of a node Vk are denoted by pa(Vk),

an(Vk) and de(Vk), respectively1. For example, in the DAG represented in Figure 1.4,

V1 → V3 ← V5 is a path and V1 → V2 → V5 is a directed path. V1 is a parent of

V2, V3 and V4, and an ancestor of V5, and V4 is child of V3
2. Given a subset of nodes

1Sometimes we will write pak, ank and dek to simplify the notation
2At this stage, the labeling of nodes is arbitrary and it does not imply any temporal ordering.
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V1

V2

V3

V4

V5

Figure 1.4: Example of a DAG.

A ⊂ V , the induced subgraph GA is the graph having vertex set A and edge set

consisting of links in E with both endpoints in A. For example, if G is the graph in

Figure 1.4 and A = {V1, V3, V5}, the induced subgraph GA is V1 → V3 ← V5.

We identify vertices with corresponding random variables, each variable Vk having

support Vk, and the edges may assume different meanings on the ground of the

assumptions a researcher is willing to make. The random vector v = (V1, V2, . . . , VK)

factorises according to DAG G if the joint distribution satisfies

P (v1, . . . , vK) =
∏
k

P (vk | pa(vk)). (1.9)

In other words, the joint distribution can be factorised as the product of the condi-

tional distribution of each node given only its parents.

Expression (1.9) can be read also in terms of conditional independence, since it

implies

Vk ⊥⊥ {nd(Vk) \ pa(Vk)} | pa(Vk)

where nd(Vk) are the non-descendants of Vk. It follows that two graphs can encode

the same set of conditional independencies, as those shown in Figure 1.5, for which

V1 ⊥⊥ V3 |V2. When two different graphs represent the same set of conditional inde-

pendencies, they are said Markov equivalent.

V1 V2 V3 V1 V2 V3

Figure 1.5: Markov equivalent DAGs.

Probabilities distributions which can be represented by a DAG, i.e. which admit

factorisation (1.9) relative to a certain DAG, can be characterised through a graphical

criterion called d-separation.

Definition 1.2.1 (d-separation criterion). In a DAG G, a path π is said to be d-

separated or blocked by a set of nodes Z if and only if

1. π contains a chain V1 → V2 → V3 or a fork V1 ← V2 → V3 such that the central

node V2 is in Z or



12 CHAPTER 1. INTRODUCTION

2. π contains a collider V1 → V2 ← V3 such that neither V2 nor any of its descen-

dants are in Z.

Two sets X and Y are said to be d-separated by Z if Z blocks any paths from a

node in X to a node in Y .

In Figure 1.4, for example, V1 is d-separated from V5 by V2, but they are not

d-separated by {V3, V4}.
It is worth remarking that d-separation has also a probabilistic implication, since

if two sets X and Y are d-separated by Z in a DAG G, then X is independent of Y

conditional on Z in every distribution represented by G. Vice versa, if X and Y are

not d-separated by Z in G, there exists at least one distribution represented by G in

which X and Y are dependent conditional on Z.

In light of what said so far, it should be clear that DAGs do not encode any causal

relationship per se, but only conditional independencies. They can be endowed with

a causal meaning if some assumptions are satisfied.

As discussed in the previous section, the concept of causality entails the idea of

manipulating or intervening on some variables in the system of interest, to see how

the distribution of the outcome changes. The distribution of the outcome under an

intervention on the exposure can be expressed through the counterfactual language

as P (Y (x)), and this contrasts with traditional associational settings based on con-

ditioning P (Y |X = x). This leads to the following definition of causal DAG

Definition 1.2.2 (Causal DAG). Let G(V ,E) be a DAG and X ⊂ V a subset of

variables on which an intervention is performed (at least hypothetically) and which

can be set to any value x in the domain ofX. G is causal for V if the joint distribution

P (·) satisfies the following:

(i) P factorises according to G;

(ii) P (vk(x)) = 1 for any Vk ∈X;

(iii) P (vk(x) | pak) = P (vk | pak) for any Vk 6∈X.

Properties (ii)-(iii) tell us that the interventional distribution P (v(x)) obtained

via an intervention setting X to x is given by

P (v(x)) =
∏

{k|Vk 6∈X}

P (vk | pak), (1.10)

which is known as truncated factorisation (Pearl 2009) or g-formula (Robins 1986).
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V1 V2

V3 V4

Figure 1.6: Example of back-door adjustment.

In causal DAGs, an arrow between two nodes is interpreted as a causal effect of

the source node on the target. However, in complex systems involving many vari-

ables and many paths among them, it can be difficult to determine if a causal effect

of interest is identified, due to the presence of confounders. As discussed in Section

1.2.3, in observational studies some degree of confounding is unavoidable, and iden-

tification can be achieved if conditional exchangeability (1.8) holds. But which are

the covariates on which one should condition to achieve conditional exchangeability?

Inspecting causal DAGs can be helpful for finding out such confounders and under-

standing which causal effects can be identified and which are unidentifiable, by means

of two graphical criterion known as the back-door and the front-door criteria.

A back-door path from Vi to Vj is a path which does not have an edge emanating

from Vi, so it has the form Vi ← . . . Vj. In Figure 1.4, the path V5 ← V2 ← V1 is a

back-door path from V5 to V1.

Definition 1.2.3 (Back-door criterion (Pearl 2009)). A set of variables Z satisfies

the back-door criterion relative to a pair of variables (Vi, Vj) in a DAG G if:

(i) no node in Z is a descendant of Vi;

(ii) Z blocks all back-door paths from Vi to Vj.

Analogously, if X and Y are two disjoint sets of nodes in G, then Z satisfies the

back-door criterion relative to (X,Y ) if it satisfies the back-door criterion relative to

any pair (Vi, Vj) such that Vi ∈X and Vj ∈ Y .

Theorem 1.2.1 (Back-door adjustment). If a set of variables Z satisfies the back-

door criterion relative to (X,Y ), then the causal effect of X on Y is identifiable and

is given by

P (Y (x) = y) =
∑
z

P (y |x, z)P (z). (1.11)

In Figure 1.4, the causal effect of V3 on V4 can be identified conditioning on V1,

since it blocks the back-door path V3 ← V1 → V4. As another example, consider

Figure 1.6: in order to identify the causal effect of V3 on V4, conditioning on V1 is

not sufficient, since it does not block the back-door path V3 ← V2 → V4. Then, the
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V1 V2

V3 V4 V5

V6 V7 V8

Figure 1.7: Illustration of the front-door criterion.

adjusting set is Z = {V1, V2}, and the interventional density of V4 is

P (V4(v3) = v4) =
∑
v1,v2

P (v4 | v3, v1, v2)P (v1, v2) =
∑
v1,v2

P (v4 | v3, v1, v2)P (v2 | v1)P (v1).

Definition 1.2.4 (Front-door criterion). A set of variables Z is said to satisfy the

front-door criterion relative to an ordered pair of variables (Vi, Vj) if:

(i) Z intercepts all directed paths from Vi to Vj;

(ii) There are no unblocked back-door paths from Vi to Z;

(iii) All back-door paths from Z to Vj are blocked by Vi.

Theorem 1.2.2 (Front-door adjustment). If Z satisfies the front-door criterion rel-

ative to (X, Y ) and P (x, z) > 0, then the causal effect of X on Y is identified and

given by

P (Y (x)) =
∑
z

P (z |x)
∑
x′

P (y |x′, z)P (x′). (1.12)

In Figure 1.7 , the effect of V6 on V8 is identified conditioning on Z = V7, since it

intercepts the only directed path between V6 and V8; all the back-door paths between

V6 and V7 are blocked since they pass through the collider V4 which is not in the

conditioning set; all the back-door paths between V7 and V8 are blocked by V6. The

causal effect of V6 on V8 is then

P (V8(v6)) =
∑
v7

P (v7|v6)
∑
v′6

P (v8 | v′6, v7)P (v′6).

The back-door and the front-door criteria are only sufficient, since there are cases

in which none of them is satisfied, still identification can be achieved. We will come

back to this point at the end of this subsection. See Pearl (2009, 2014), Didelez

(2019a), Shpitser (2012, 2019) for a broader discussion on DAGs and identifiability

of causal effects.
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DAGs can be associated to causal models, which can be defined as sets of factual

and counterfactual distributions subject to some restrictions. Such constraints allow

us to identify some counterfactual distributions from observed data (Shpitser 2019).

There exist several causal models (see Robins and Richardson 2011 for a review),

but in this thesis we will focus on the two best known: the Finest Fully Randomized

Causally Interpretable Structured Tree Graph (FFRCISTG) (Robins 1986, 2003) and

the non-parametric structural equation model with independent errors (NPSEM-IE

or simply NPSEM) proposed by Pearl (1995).

Definition 1.2.5 (FFRCISTG). Let G(V ) be a DAG with node set V = {V1, . . . , VK},
where Vi is a non-descendant of Vj if i < j. In addition, for any k = 1, . . . , K, let

vk = (v1, . . . , vk). A FFRCISTG associated with G is defined by the following as-

sumptions:

(i) All counterfactuals Vk(vk−1) exist for any value assumed by vk−1;

(ii) Vk(vk−1) depends on vk−1 only through the values of Vk’s parents in G, i.e.

Vk(vk−1) ≡ Vk(pak);

(iii) Both the observed Vk and the counterfactuals Vk(w), for any W ⊂ V , are ob-

tained recursively from Vk(vk−1), (e.g. V3 = V3(V1, V2(V1)));

(iv) For each k, any possible values of future counterfactuals, starting from k + 1, is

independent from Vk, given its history, i.e.

{Vk+1(vk), . . . , VK(vK−1)} ⊥⊥ Vk(vk−1) |V k−1 = vk−1

∀ k, vK−1 ∈ VK−1.
(1.13)

Definition 1.2.6 (NPSEM). A NPSEM associated with a DAG G(V ) assumes the

existence of unknown deterministic functions fk and mutually independent random

disturbances εk such that, for each k = 1, . . . , K, Vk = fk(pak, εk). In addition,

observed and counterfactual variables can be obtained via recursive substitution as

in (iii) of Definition 1.2.5.

For example, in the basic mediation model X := f
X

(ε
X

), M := f
M

(X, ε
M

) and

Y := f
Y

(X,M, ε
Y

).

A NPSEM implies the following independence

{Vk+1(vk), . . . , VK(vK−1)} ⊥⊥ Vk(v
∗∗
k−1) |V k−1 = v∗k−1

∀ k, vK−1 ∈ VK−1 and v∗k−1, v
∗∗
k−1 ∈ Vk−1

(1.14)

and it can be proved that
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Lemma 1.2.3. A NPSEM can be characterised by (i)-(iv) in Definition 1.2.5, with

Equation (1.13) replaced by (1.14).

It follows that NPSEMs are special cases of FFRCISTGs. Understanding the dif-

ference between (1.13) and (1.14) is crucial. In a FFRCISTG, the value of vk−1 in the

counterfactual Vk(vk−1), in the conditioning and in the set of subsequent counterfac-

tuals {Vk+1(vk), . . . , VK(vK−1)} is the same, while in NPSEM the values it can assume

are allowed to differ. As highlighted by Shpitser and Tchetgen Tchetgen (2016),

The FFRCISTG model always imposes restrictions on a set of variables

under a single set of interventions (a “single world”), while the NPSEM-IE

may also impose restrictions on variables across multiple conflicting sets of

interventions simultaneously.

While the independencies encoded by a FFRCISTG are, at least in principle, testable,

those encoded by NPSEMs in general are not. The ‘single-world’ nature of FFRC-

STGs and the ‘multiple-world’ nature of NPSEMs impacts the kinds of effects which

it is possible to identify within their framework, as will become clear in the next

section.

We conclude this section with an important result concerning the identification of

total effects in NPSEMs provided by Shpitser et al. (2010). They propose a general-

isation of the back-door criterion, called adjustment criterion, which, in contrast to

the back-door and front-door criteria, is complete.

Definition 1.2.7 (Proper causal path). Let G(V ) be a DAG and X,Y ⊂ V . A

directed path from a node X in X to a node in Y is called proper causal with respect

to X if it intersects X only at X.

Definition 1.2.8 (Adjustment criterion). The adjustment criterion holds for C with

respect to (X,Y ) if C blocks all paths from X to Y which are not proper causal

with respect to X, and if C is not a descendant of any node on a proper causal path

from X to Y (except possibly nodes in X themselves) in the graph where all arcs

pointing to X are cut.

Theorem 1.2.4. In any causal DAG G, C satisfies the adjustment criterion for

(X,Y ) if and only if in every NPSEM inducing G, P (Y (x)) =
∑

c P (Y |x, c)P (C =

c).

Theorem 1.2.5. In any causal DAG G, C satisfies the adjustment criterion for

(X,Y ) if and only if in every NPSEM inducing G, Y (x) ⊥⊥ X |C.
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C1 C2

X Y

Figure 1.8: Causal DAG where the total effect of X on Y is identified through the adjustment
criterion.

These results are very important, since they imply that in NPSEMs the adjust-

ment criterion characterises both covariate adjustment and conditional exchangeabil-

ity, which are indeed equivalent. As an example, consider Figure 1.8. In this DAG,

the back-door criterion does not hold, but the counterfactual distribution P (Y (x)) is

identified conditioning on {C1, C2} and is given by

P (Y (x)) =
∑
c1,c2

P (Y |x, c1, c2)P (c1, c2).

1.2.5 Types of mediational effects

With the background introduced in the previous sections, we are now ready to intro-

duce the different types of causal mediational effects which have been proposed over

time. Consider a simple mediation model as that shown in Figure 1.2. We denote by

M(x) the value of the mediator if the exposure have been set to x, and by Y (x,m)

the value of the outcome if the exposure has been set to x and the mediator to m.

For graphical consistency, in the next DAGs we will use squares and circles as in path

diagrams.

Natural mediational effects

Consider two values of the exposure, x and x∗, where, for example, if X is binary,

x = 1 denotes the treatment and x∗ = 0 denotes no treatment or treatment at a

baseline level. Robins and Greenland (1992) introduce four types of mediational

effects, which they call pure and (somehow confusingly) total direct and indirect

effects, and discuss the conditions for their identifiability. On the difference scale,

these effects are defined as follows:

PDE = E[Y (x,M(x∗))− Y (x∗,M(x∗))] (1.15)

TDE = E[Y (x,M(x))− Y (x∗,M(x))] (1.16)

PIE = E[Y (x∗,M(x))− Y (x∗,M(x∗))] (1.17)

TIE = E[Y (x,M(x))− Y (x,M(x∗))]. (1.18)
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The direct effects compare the values taken by the outcome when the mediator is

fixed to the natural value it would assume either under X = x∗ (PDE) or under

X = x (TDE), while the exposure changes from x∗ to x: this captures the effect

along the direct path between X and Y . In contrast, the pure and total indirect

effects compare the values of the outcome when the exposure is fixed either to x or

x∗, while the mediator changes from M(x∗) to M(x): this captures the effect of X

on Y conveyed by M .

Using composition Y (x) = Y (x,M(x)), i.e. the counterfactual Y (x) obtained

setting X to x does not differ from that obtained setting X to x and M to the value

it would have taken if X were set to x, it is easy to prove that the total effect of X

on Y can be decomposed into the sum of a pure and a total mediational effect:

TE =E[Y (x)− Y (x∗)] =

E[Y (x,M(x∗))]− E[Y (x∗,M(x∗))]︸ ︷︷ ︸
PDE

+E[Y (x,M(x))]− E[Y (x,M(x∗))]︸ ︷︷ ︸
TIE

=

E[Y (x,M(x))]− E[Y (x∗,M(x))]︸ ︷︷ ︸
PIE

+E[Y (x∗,M(x))]− E[Y (x∗,M(x∗))].︸ ︷︷ ︸
TDE

Pearl (2001) changed the nomenclature, referring to these effects as natural. The

PDE and the TIE are more widely used than the TDE and the PIE, so we will often

use the term natural effects to denote the former ones, denoting them by NDE and

NIE.

Equations (1.15)-(1.18) are all characterised by the presence of cross-world coun-

terfactuals, Y (x,M(x∗)) and Y (x∗,M(x)), which set X to different values and can

never be observed. Consider, for example, the first term of PDE, Y (x,M(x∗)). As

noted by Robins and Greenland (1992), to observe a potential outcome of the form

Y (x,M(x∗)), a researcher should assign a subject to treatment x∗, measure M(x∗),

then come back to the state of the world before the intervention, assign the same

subject treatment level x and measure the value of Y under this treatment and the

value of the mediator under the other treatment x∗, measured previously. This kind

of experimental manipulation is clearly unfeasible. For this reason, identifiability of

natural effects requires a cross-world independence assumption which has long been

debated in the literature. Sufficient assumptions for identifying natural effects are

listed below, and are discussed subsequently.

First, we assume composition and consistency Y (x,m) = Y if X = x, M = m,

i.e. if the observed exposure and mediator take values x and m, respectively, the

counterfactual Y (x,m) equals the observed Y . Second, the following ignorability (or

exchangeability) assumptions on unobserved confounders suffice for identification:
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(a) Y (x,m) ⊥⊥ X, i.e. no unmeasured confounders for the exposure-outcome rela-

tionship;

(b) Y (x,m) ⊥⊥ M |X, i.e. no unmeasured confounders for the mediator-outcome

relationship;

(c) M(x) ⊥⊥ X, i.e. no unmeasured confounders for the exposure-mediator relation-

ship;

(d) Y (x,m) ⊥⊥M(x∗).

These assumptions have long been subject of debate among scholars. Indeed,

although assumptions (a) and (c) can be satisfied at least in an experimental setting

where the treatment is randomised, (b) and (d) are much more complex to deal with.

Natural effects rely on a manipulation not only of the treatment, but of the mediator

as well, which is considered a second intervening variable. Acting on the mediator

is not always possible, and that is the reason why assumption (b), which requires

randomisation of the mediator, is generally not satisfied in a single-experiment design,

i.e. a setting where only X is randomised.

Imai et al. (2013) claim that in a single-experiment design assumptions (a) and (c)

are not sufficient to make natural effects identifiable, and for such effects it is only pos-

sible to compute sharp bounds, see also Sjölander (2009) and Robins and Richardson

(2011). For point identification, assumption (d) is crucial. In contrast to the other

assumptions, it is a cross-world independence assumption that involves counterfactu-

als corresponding to two different interventions, never observable together. For this

reason, as already said, this assumption is untestable and, clearly, it can hold only

in a NPSEM. It has traditionally been interpreted as no confounders (measured and

unmeasured) of the mediator-outcome relationship affected by the exposure, although

Andrews and Didelez (2021) show that this assumption can be violated even in the

absence of such a confounder.

Assumption (d) is even stronger than (b), since it does not require a simple inter-

vention on the mediator, but an intervention that, for each individual in the sample,

sets the mediator to the value it would assume under treatment x∗, while the out-

come assumes the value it would have under another treatment x. Imai et al. (2013)

discuss several designs alternative to the single-experiment one where it is possible to

manipulate the mediator in order to mimic nested cross-world counterfactuals of the

form Y (x,M(x∗)). Although these designs allow for identification of mediational ef-

fects without assumption (d), they nevertheless require other untestable assumptions

whose plausibility is not always trivial to conceive, as the authors themselves and the

discussants of their article acknowledge.
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See VanderWeele and Vansteelandt (2009) for a thorough discussion of all the

assumptions, and Andrews and Didelez (2021) for more insights on assumption (d)

and possible alternatives.

Proposition 1.2.6. If assumptions (a)-(d) hold, the natural mediational effects are

identified and are given by

NDE = E[Y (x,M(x∗))− Y (x∗,M(x∗))]

=
∑
m

{E[Y |x,m]− E[Y |x∗,m]}P (m |x∗) (1.19)

NIE = E[Y (x,M(x))− Y (x,M(x∗))]

=
∑
m

E[Y |x,m] {P (m |x)− P (m |x∗)} . (1.20)

Proof. First, we prove that E[Y (x,M(x∗))] is identified.

E[Y (x,M(x∗))]

=
∑
m

E[Y (x,m) |M(x∗) = m]P (M(x∗) = m) by iterated expectations

=
∑
m

E[Y (x,m)]P (M(x∗) = m |x∗) by (d) and (c)

=
∑
m

E[Y (x,m) |x]P (M = m |x∗) by (a) and consistency

=
∑
m

E[Y (x,m) |x,m]P (M = m |x∗) by (b)

=
∑
m

E[Y |x,m]P (M = m |x∗) by consistency.

From this formula, it is easy to derive E[Y (x,M(x))] and E[Y (x∗,M(x∗))], and, as a

consequence

NDE =
∑
m

{E[Y |x,m]− E[Y |x∗,m]}P (m |x∗)

NIE =
∑
m

E[Y |x,m] {P (m |x)− P (m |x∗)} .

Expression (1.20) is known as mediational g-formula (Pearl 2012). If (a)-(d) hold,

along with Normality of variables and linearity of models (1.3) - (1.4), it can be proved

(VanderWeele 2015) that mediational effects in the counterfactual framework are also
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parametrically identified and given by

NDE = γ
X

(x− x∗); NIE = β
X
γ
M

(x− x∗). (1.21)

Notice that these effects are equal to the path-analytic ones if X is binary or x and x∗

differ of one unit. The formulas in (1.21) become much more complicated if linearity

of regression models cannot be assumed, for example, if interactions are present or

regression models require a link function different from identity (VanderWeele 2015).

So far, we have written assumptions not conditioning on any additional covariate

and we have found expressions for marginal mediational effects, i.e. not conditional

on a set of covariates C. Clearly, both assumptions (a)-(d) and formulas (1.19)-(1.20)

can be rewritten conditioning on C.

As already mentioned, assumptions (a)-(d) are only sufficient for identifying causal

mediational effects, not necessary. Shpitser and VanderWeele (2011) proposed a com-

plete graphical criterion for the identifiability of natural mediational effects, which

links assumptions (a)-(d) to the adjustment criterion in Definition 1.2.8.

Theorem 1.2.7. On any causal DAG G, assumptions (a)-(d) hold for all NPSEMs

inducing G if and only if C satisfies the adjustment criterion relative to (X ∪M,Y )

and to (X,M).

Theorem 1.2.8. The adjustment formula for natural direct and indirect effects holds

if and only if C satisfies the adjustment criterion relative to (X∪M,Y ) and to (X,M).

The last result makes perfect sense, since

P (Y (x,M(x∗)) |C) =
∑
m

P (Y (x,m) |C)P (M(x∗) |C)

by (d) and

1. if C satisfies the adjustment criterion relative to (X ∪M,Y ), then

P (Y (x,m) |C = c) = P (Y |X = x, M = m, C = c),

2. if C satisfies the adjustment criterion relative to (X,M), then

P (M(x∗) |C = c) = P (M |X = x∗, C = c).

In other words, since the adjustment criterion relative to (X ∪ M,Y ) and (X,M)

makes the two terms in the product P (Y (x,m) |C)P (M(x∗) |C) separately identified,

then their product, i.e. the interventional distribution P (Y (x,M(x∗)) |C) is identified
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Figure 1.9: Example of DAGs where natural mediational effects are not identified.

as well. Notice that the adjustment criterion allows to identify the entire distribution,

not just the expectation required to estimate the natural effects.

Figure 1.9 shows two DAGs which violate assumptions (a)-(d). In the left panel, Z

is unobserved and confounds the exposure-mediator, exposure-outcome and mediator-

outcome relationship, so it violates (a)-(c), while in the right panel L violates as-

sumption (d), since it confounds the mediator-outcome relationship and is affected

by the exposure. Confounders like L are called exposure-induced or post-treatment

confounders, and they are very frequent in observational studies, especially in longi-

tudinal ones, as we will see in the next chapter.

Note that L violates (d) even when it is observed. Indeed, either conditioning and

non-conditioning induces bias and makes the indirect effect of X on Y through M

unidentifiable. Conditioning on L blocks a part of the direct effect of X on Y , i.e.

the path X → L → Y . Not conditioning, however, makes the mediator-outcome

relationship confounded. Then, any choices lead to bias. VanderWeele et al. (2014)

propose three methods to overcome the problem.

The first solution is to consider the couple (L,M) jointly as the mediator. Let

L(x) denote the value of L under an intervention setting X to x and Y (x, l,m) the

value of the outcome if X have been set to x, M to m and L to l. The natural direct

and indirect effects become

NDE = E[Y (x, L(x∗),M(x∗))− Y (x∗, L(x∗),M(x∗))]

NIE = E[Y (x, L(x),M(x))− Y (x, L(x∗),M(x∗))],

where the direct effect is the effect of X on Y not through either M or L, while

the indirect effect is the effect through L, M or both. Their identification requires a

modification of assumptions (a)-(d), which can be rewritten as follows

(a*) Y (x, l,m) ⊥⊥ X

(b*) Y (x, l,m) ⊥⊥ (L,M) |X
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(c*) (L(x),M(x)) ⊥⊥ X

(d*) Y (x, l,m) ⊥⊥ (L(x∗),M(x∗))

Notice that in Figure 1.9, assumption (d*) is satisfied, since there are no confounders

of the L-M relationship affected by X. If (a*)-(d*) hold, then

NDE =
∑
l,m

{E[Y |x, l,m]− E[Y |x∗, l,m]}P (l,m |x∗)

NIE =
∑
l,m

E[Y |x, l,m] {P (l,m |x)− P (l,m |x∗)} .

The other two methods entail changing the target of inference: with path-specific

effects (Avin et al. 2005), it is possible to identify some of the paths from X to Y ,

while interventional effects require weaker assumptions than natural effects, and allow

for exposure-induced confounders. We will see each approach in turn.

Path-specific effects

Consider Figure 1.9 (b). The cross-world counterfactual Y (x,M(x∗)) can be written

as Y (x, L(x),M(x∗, L(x∗))), which contains two counterfactual expressions for L with

X set to different values. This feature is what prevents the identification of the

indirect effect of X on Y through M in such settings: L should block the path

X → L → Y , since it conveys a part of the direct effect, but at the same time it

should not block the path X → L→M → Y , which is part of the indirect effect, so

L would assume its natural value under X = x. Clearly, L cannot be a blocking and

a non-blocking node at the same time, for this reason L is called a recanting witness.

Definition 1.2.9 (Recanting witness). Consider a DAG G(V ) and two sets of nodes

X,Y ⊂ V . Let π denote a set of proper causal paths between X and Y and π its

complement. A node L ∈ ch(X), X ∈ X, is called a recanting witness for π if there

exist a path of the form X → L → · · · → Y in π and a path X → L → · · · → Y ′ in

π, with Y, Y ′ ∈ Y not necessarily coincident.

Avin et al. (2005) proved that, in a NPSEM without hidden variables, if there are

no recanting witnesses for a path π, the π-specific effect of X on Y can be identified

and the distribution of the corresponding counterfactual, denoted by Y (π,x,x∗), Y ∈
Y , can be expressed as

P (Y (π,x,x∗) = y) =∑
V \{X∪Y }

∏
Vk∈V \X

P (Vk = vk | paπk ∩X = x, paπk ∩X = x∗, pak \X) (1.22)
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Figure 1.10: Example of identification of path-specific effects. The paths of interest are in blue.

where paπk is the set of parents of Vk along paths in π. Formula (1.22) is known as

edge g-formula (Shpitser and Tchetgen Tchetgen 2016) and it basically says that, for

each vertex V ∈ V , X can assume value x or x∗ depending on whether the path

X → V is in π or in its complement.

For example, consider the DAG in Figure 1.10 (Shpitser 2019). In such a graph

there are no recanting witnesses for π = {X → M → Y, X → M → Z → Y }, and

the counterfactual distribution P (Y (π, x, x∗)) is identified as∑
w,m,z

P (y |x∗, w,m, z)P (z |x∗, w,m)P (m |x,w)P (w).

In a graph like that in Figure 1.9 (b), L is a recanting witness which prevents the

identification of path-specific effects relative to πD = {X → Y, X → L → Y } and

πI = {X → M → Y, X → L → M → Y }. Nonetheless, it is possible to identify the

path-specific effects relative to π1 = X → Y, π2 = X → M and π3 = {X → L →
M → Y, X → L→ Y }. In counterfactual terms, they can be expressed as

Eπ1 = E[Y (x, L(x∗),M(x∗))− Y (x∗, L(x∗),M(x∗))]

Eπ2 = E[Y (x, L(x∗),M(x, L(x∗)))− Y (x∗, L(x∗),M(x∗))]

Eπ3 = E[Y (x, L(x),M(x))− Y (x, L(x∗),M(x, L(x∗)))]

and, under assumptions (a*)-(d*) they are identified as

Eπ1 =
∑
l,m

{E[Y |x, l,m]− E[Y |x∗, l,m]}P (l,m |x∗)

Eπ2 =
∑
l,m

E[Y |x, l,m] {P (m |x, l)− P (m |x∗, l)}P (l |x∗)

Eπ3 =
∑
l,m

E[Y |x, l,m]P (m |x, l) {P (l |x)− P (l |x∗)} .

The results proved so far hold true in DAGs with only observed variables. When

a DAG includes also latent variables, some difficulties arise and a new kind of graphs
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Figure 1.11: A DAG with unobserved variables and its latent projection.

is required.

Definition 1.2.10 (ADMG). An acyclic directed mixed graph (ADMG) is a triple

{V ,E,B}, where {V ,E} is a DAG and B is a collection of unordered pairs of

vertices, known as bidirected edges.

Definition 1.2.11 (Latent projection). Let G(V ∪H) a DAG with a set of observed

nodes V and unobserved nodesH . The latent projection of G is the induced subgraph

G ′ = G(V ) obtained replacing edges of the form Vi ← U → Vj, Vi ↔ U → Vj, with

Vi, Vj ∈ V , U ∈H , in G(V ∪H) with bidirected edges Vi ↔ Vj.

Figure 1.11 shows a DAG G(V ∪H), with V = {W,X, Y, Z} and H = {H1, H2}
(a), and its latent projection (b).

Definition 1.2.12. A bidirected path is a path containing only bidirected edges.

Definition 1.2.13 (District). In an ADMG G, the district of a node Z, denoted by

DisG(Z), is the set of nodes reachable from Z via bidirected paths.

The set of observed nodes of a DAG G can then be partitioned into disjoint districts.

This allows us to factorise the distribution of observed variables as follows. Let D(G)

denote the set of all districts in the latent projection of G. The marginal distribution

of observed variables in G(V ∪H) is

P (V ) =
∏

S∈D(G)

Q[S], (1.23)

where:

Q[S] =
∑

paH(S)

∏
V ∈S

P (V = v | paV (V ), paH(V ))P (paH(S)), (1.24)

paV (V ) and paH(V ) denote the set of observed and unobserved parents of V in

G(V ∪H), respectively, and the factors Q[S] are called kernels.

District factorisation extends Markov factorisation to DAGs including unobserved

variables. Consider the simple DAG in Figure 1.12, where there are two districts,
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Figure 1.12: Example of the kernel factorisation.

{X} and {M,Y }. The joint density over the observed variables factorises as

P (x,m, y) = P (Q[{X}])P (Q[{M,Y }]) = P (x)
∑
u

P (y |x,m, u)P (m |x, u)P (u)︸ ︷︷ ︸
P (y |x,m)P (m |x)

Analogously to what happens in DAGs with only observed variables, the counter-

factual distribution P (Y (x)) can be expressed as a truncated factorisation of districts

(Steen and Vansteelandt 2019)

P (Y (x) = y) =
∑

{v |V ∈Y ∗\Y }

∏
D∈D∗

P (v | pa(D) ∩X = x, pa(D) \X) (1.25)

where Y ∗ = an(Y ) in the subgraph G ′(V \ X) and D∗ = D(G ′Y ∗). Notice that the

product runs across all districts D ∈ D∗ and the sum over all the possible values

assumed by nodes in such districts, except for the outcome.

Considering again the graph in Figure 1.12, Y ∗ = {M,Y }, which is also the only

proper district in the latent projection shown in (b). P (Y (x) = y) is then identified

and given by∑
u,m

P (y |x,m, u)P (m |x, u)P (u) =
∑
m

P (y |x,m)P (m |x) = P (y |x).

In contrast, the counterfactual distribution P (Y (x,M(x∗))) cannot be identified,

since M and Y are in the same district and X should be set to x for path π = X → Y ,

to x∗ for path π = X → M → Y . Shpitser (2013) extended the recanting witness

criterion to graphs with unobserved variables, showing that cross-world distributions

like P (Y (x,M(x∗))) can be identified only in the absence of a particular kind of

districts.

Definition 1.2.14 (Recanting district). Consider an ADMG G and a set of proper

causal paths π from a set of nodes X to a set Y . Let Y ∗ = an(Y ) in G(V \X).

A district D in the ADMG GY ∗ is said recanting for π if there exist Zi, Zj (possibly

Zi = Zj) in D, such that there is X → Zi → · · · → Y in π and X → Zj → · · · → Y
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in π.

Theorem 1.2.9. Let G be an ADMG. Let X,Y be sets of nodes in G, and π a subset

of proper causal paths which start with a node in X and end with a node in Y in G.

Then the π-specific effect of X on Y is expressible as a functional of interventional

densities if and only if there does not exist a recanting district for this effect.

A path-specific counterfactual distribution can be then expressed as the product

P (Y (π,x,x∗) = y)

=
∑

V ∈Y ∗\Y

∏
D∈D∗

P (V (paπ(D) ∩X = x, paπ(D) ∩X = x∗, pa(D) \X))

(1.26)

where D∗ ≡ D(GY ∗). Notice that the product terms are counterfactuals. Their

identifiability is not in general guaranteed due to the presence of latent variables,

but, if P (Y (x) = y) is identifiable through the algorithm proposed by Tian and Pearl

(2003), it logically follows that also the kernels involved in (1.26) are identified and

the counterfactual distributions can be expressed in terms of observed variables. This

result is stated in the following theorem

Theorem 1.2.10. Let G be an ADMG. Let X,Y be sets of nodes in G, and π a

subset of proper causal paths which start with a node in X and end with a node in

Y in G. Assume there does not exist a recanting district for the π-specific effect of

X on Y . Then the counterfactual representing the π-specific effect of X on Y is

expressible in terms of the observed data if and only if the total effect P (Y (x)) is

identifiable. Moreover, the functional expressing the counterfactual is obtained from

Equation (1.26) by replacing each interventional term by a functional of the observed

data identifying that term given by Tian’s identification algorithm (Tian and Pearl

2003, Shpitser and Pearl 2008).

Then, the recanting district criterion allows for the passage from cross-world den-

sities to single world interventional densities, which can subsequently be identified

using Tian and Pearl (2003) algorithm.

Figure 1.13 shows the same graph in Figure 1.10 with the inclusion of a latent

variable U affecting Z and Y (a) and its latent projection (b). The π-specific effect

relative to path π = X →M → Y , in blue, is identified. Indeed, Y ∗ = {W,X,M,Z}
and D∗ = D(GY ∗) = {{W}, {M}, {Z, Y }}. There are no recanting districts relative

to π, since M is the only element in its district. Since, in addition, the distribution

P (Y (x)) is identifiable, the π-specific effect of X on Y can be identified as well and
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Figure 1.13: Example of identification of path-specific effects in the presence of a latent variable.
The path-specific effect in blue is identified, the one in red shows why π′ cannot be identified.

it is given by

P (Y (π, x, x∗)) =
∑
w,z,m

P (Y |x∗, w,m, z)P (z |x∗, w,m)P (m |x,w)P (w).

In contrast, if one is interested in the effect along paths π′ = {X → Y, X →M →
Y }, the π′-specific effect is not identified, since X → Y is in π, X → Z → Y is in π′

(see paths in red), and Y and Z share the same district, which is then recanting.

Interventional effects

The third approach proposed by VanderWeele et al. (2014) to overcome the problems

related to an exposure-induced confounder is to change the target of inference, so that

its identification does not require cross-world assumptions. This is the idea behind

interventional effects (Didelez et al. 2006, Geneletti 2007)

Consider again Figure 1.9(b) and assume there are other observed covariates Z.

Let md(x|z) denote a random draw (the d superscript stands for draw) from the

distribution of the mediator with exposure fixed at x conditional on Z = z. The

interventional direct and indirect effects can be defined as

IDE = E[Y (x, md(x∗|z))]− E[Y (x∗, md(x∗|z))] (1.27)

IIE = E[Y (x, md(x|z))]− E[Y (x, md(x∗|z))], (1.28)

respectively, where x and x∗ are two values of X. The IDE is the difference between

the outcome if X were set to two different values and the mediator were randomly

drawn from the distribution of the population when the exposure is at its baseline,

conditional on covariates. The IIE is the difference in the outcome setting the ex-

posure to the same value and drawing the mediator from two different distributions,

one with X = x and the other one with X = x∗, conditioning on covariates. It is easy

to see that the total effect E[Y (x, md(x|z))] − E[Y (x∗, md(x∗|z))] can be written as



1.2. PRELIMINARY CONCEPTS 29

the sum of the two. Notice that this definition of mediational effects differs from the

usual natural one since the mediator is not fixed at the subject-specific value it would

take if X were set to x, but it is a draw from the distribution of the mediator among

subjects with a particular exposure, conditional on certain values of the covariates.

VanderWeele et al. (2014) show that these effects are identified under

(a′) Y (x,m) ⊥⊥ X|Z

(b′) Y (x,m) ⊥⊥M |X,Z, L

(c′) M(x) ⊥⊥ X|Z

only. Assumption (d) is not required anymore, and, for this reason, interventional

effects can be identified also in causal models relying on weaker sets of assumptions

than NPSEMs, like FFRCISTGs. If the causal structure in Figure 1.9 holds and

additional observed confounders Z are included, the IDE and IIE are given by

(VanderWeele et al. 2014)

IDE =
∑
z,l,m

{E[Y |x, l,m, z]P (l |x)− E[Y |x∗, l,m, z]P (l |x∗)}P (m|x∗, z)P (z)

IIE =
∑
z,l,m

E[Y |x,m, l, z]P (l |x) {P (m|x, z)− P (m|x∗, z)}P (z).

The longitudinal version of interventional effects will be discussed in Section 2.3.4.

Separable effects

A different approach is that proposed by Robins and Richardson (2011). They address

the issue of identifiability of natural direct effects in four different causal models:

the agnostic model (Spirtes et al. 1993), the minimal counterfactual model (MCM,

Robins and Richardson 2011), the FFRCISTG and the NPSEM by Pearl (2009).

These models are listed from the less restrictive, which does not even assume the

existence of counterfactuals, to the one requiring the most restrictive assumptions.

An extensive discussion on each of these models goes beyond the scope of this section:

see Robins and Greenland (1992), Robins (2003) and Robins and Richardson (2011)

for further details.

The contribution by Robins and Richardson, relevant to our discussion, is the intro-

duction of expanded graphs which avoids that the NDE definition depends on nested

counterfactuals. The authors propose an alternative definition of mediational effects,

based on expanded graphs, which make them identifiable in all four counterfactual

models.
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Figure 1.14: Separable effects via exposure decomposition.

Definition 1.2.15 (Expanded graph). Given a DAG G with a single treatment or

exposure variable X, the corresponding expanded graph Gexp for X is constructed by

adding p new variables {X1, X2, . . . , Xp} representing separate components of X. In

Gexp, X has no other children than {X1, X2, . . . , Xp}, and each Vi ∈ ch(X) in G has

a subset of {X1, X2, . . . , Xp} as parents in Gexp.

Figure 1.14 shows a possible expanded graph for a simple mediation model, where

we renamed X1 and X2 as XM and XY , respectively. The bold arrows from X to

its two components indicate a deterministic relationship, i.e. X ≡ XM ≡ XY in

observed data.

In this framework, the cross-world parameter E[Y (x,M(x∗))], target of inference in

NPSEMs and a non-manipulable quantity, is equivalent to E[Y (XM = x∗, XY = x)],

which is instead single-world and manipulable. As a consequence, the direct and

indirect effects, which, using the terminology introduced by Stensrud et al. (2020),

we will call separable (SDE and SIE), are defined, respectively, as follows

SDE = E[Y (XM = x∗, XY = x)− Y (XM = x∗, XY = x∗)] (1.29)

SIE = E[Y (XM = x,XY = x)− Y (XM = x∗, XY = x)]. (1.30)

and their sum yields the separable total effect E[Y (XM = x,XY = x) − Y (XM =

x∗, XY = x∗)]. Notice that these definitions do not involve any intervention on the

mediator, and then, any cross-world intervention; thus, these effects can be identified

also in FFRCISTGs. The identification of SDE and SIE can be proved by identifying

E[Y (XM = x∗, XY = x)], which is common to both effects. The identifiability of

this expectation can, in turn, be proved starting from the counterfactual distribution

P (Y (XM = x∗, XY = x,M(XM = x∗, XY = x))) ≡ PxM=x∗, xY =x(y,m). Indeed,

PxM=x∗, xY =x(y,m) = P (y |XY = x,m)P (m |XM = x∗) (g-formula)

= P (y |XY = x,XM = x,m)P (m |XY = x∗, XM = x∗)

= P (y |X = x,m)P (m |X = x∗) (by determinism)

where the second equality holds by the conditional independence relationships en-
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coded in Figure 1.14, Y ⊥⊥ XM |XY ,M and M ⊥⊥ XY |XM .

It easily follows that

E[Y (XM = x∗, XY = x)] =
∑
y,m

yPxM=x∗, xY =x(y,m)

=
∑
y,m

yP (y |X = x,m)P (m |X = x∗)

=
∑
m

E[Y |X = x,m]P (m |X = x∗).

Robins et al. (2020) construct an interventionist theory for mediation analysis,

generalising the results discussed by Robins and Richardson (2011). In particular,

they clearly state which assumptions are required for identification of separable ef-

fects and their specific role. Consider the simplest case, shown in Figure 1.2, and

the corresponding expanded graph in Figure 1.14. First, as we have already said, the

assumption of determinism is crucial. This allows us to state the independence of

XY (x) from XM(x∗), x 6= x∗, as detailed in Robins and Richardson (2011), Robins

et al. (2020, footnote 21). Second, Robins et al. (2020) show that two sets of as-

sumptions are needed for non-parametric identification of the SDE (the same line of

reasoning can be easily applied to SIE). The first set of assumptions, corresponding

to Equations (14)-(15) in their paper, states that

- the distribution of M(xM , xY ) does not depend on xY , i.e. P (M(XM = x,XY =

x) = m) = P (M(XM = x,XY = x∗) = m);

- the distribution Y (xM , xY ) |M(xM , xY ) does not depend on xM , i.e. P (Y (XM =

x,XY = x)|M(XM = x,XY = x)) = P (Y (XM = x∗, XY = x)|M(XM =

x∗, XY = x)).

They are necessary to identify

E[Y (XM = x∗, XY = x)] =
∑
m

E[Y |XY = x,M = m]P (m |XM = x∗)

=
∑
m

E[Y |X = x,M = m]P (m |X = x∗)

the last equality following from determinism. The second set of assumptions states

that XY does not affect M directly, i.e. M(xM) = M(x, xM , xY ) and that XM does

not affect Y directly, i.e. Y (xY ,m) = Y (x, xM , xY ,m). Such assumptions are used to

prove the equality Y (x,M(x∗)) = Y (XM = x∗, XY = x).

The separable effects approach can accommodate exposure-induced mediator- out-

come confounders. Consider Figure 1.9(b). There are three possible expanded graphs
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Figure 1.15: Expanded DAGs with an exposure-induced confounder.

compatible with this DAG, represented in 1.15(a-c). The parameter E[Y (xY =

x, L(xM = x),M(xM = x∗, L(xM = x∗))] is not identified under any causal model

corresponding to these graphs, since, as we previously discussed, L is a recanting wit-

ness. Nonetheless, E[Y (x, L(x∗),M(x∗, L(x∗))], corresponding to the path X → Y ,

and E[Y (x, L(x),M(x∗, L(x))], corresponding to the set of paths {X → Y, X → L→
Y, X → L→M → Y }, can be identified, as we show below.

The parameter E[Y (x, L(x∗),M(x∗, L(x∗))] in DAG 1.9(b) corresponds to E[Y (xY =

x, L(xM = x∗),M(xM = x∗, L(xM = x∗))] in Figure 1.15(a). It is identified as

E[Y (xY = x, L(xM = x∗), M(xM = x∗, L(xM = x∗))] =∑
l,m

E[Y |X = x,m, l]P (m |X = x∗, l)P (l |X = x∗) (1.31)

since

PxM=x∗, xY =x(y,m, l)

= P (y |XY = x,m, l]P (m |XM = x∗, l)P (l |XM = x∗)

= P (y |XY = x,XM = x,m, l]P (m |XY = x∗, XM = x∗, l)P (l |XY = x∗, XM = x∗)

= P (y |X = x,m, l]P (m |X = x∗, l)P (l |X = x∗).

Analogously, the counterfactual E[Y (x, L(x),M(x∗, L(x))] in DAG 1.9(b) corre-

sponds to E[Y (xY = x, L(xY = x),M(xM = x∗, L(xY = x))] in Figure 1.15(b). It is
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identified as

E[Y (xY = x, L(xM = x), M(xM = x∗, L(xM = x))] =∑
l,m

E[Y |X = x,m, l]P (m |X = x∗, l)P (l |X = x) (1.32)

since

PxM=x∗, xY =x(y,m, l)

= P (y |XY = x,m, l]P (m |XM = x∗, l)P (l |XY = x)

= P (y |XY = x,XM = x,m, l]P (m |XY = x∗, XM = x∗, l)P (l |XY = x,XM = x)

= P (y |X = x,m, l]P (m |X = x∗, l)P (l |X = x).

In contrast, the counterfactual E[Y (XM = x∗, XY = X)] associated to graph in

1.15(c) does not correspond to any counterfactual in DAG 1.9(b), since the counter-

factual L(XM = x∗, XY = x) is equal to neither L(X = x) nor L(X = x∗). This

follows from the next more general result (Robins et al. 2020):

Lemma 1.2.11. Under an FFRCISTG corresponding to an expanded graph Gexp for

X, the intervention distribution P (V (x1 = x̃1, x2 = x̃2, . . . , xp = x̃p)) is identified by

the g-formula from data on G if, for every Vi ∈ chG(X), paGexp(Vi) belonging to the

components of X take the same value.

It should be noticed that scenarios (a), (b) and (c) are mutually exclusive, since

they correspond to different causal hypotheses, indeed the identification formulas in

(1.31)-(1.32) differ. An alternative scenario is shown in panel (d), where an additional

component XL of X is assumed to affect only L. By Lemma 1.2.11, it can be proved

that, in such a scenario, both effects E[Y (xY = x, L(xM = x∗), M(xM = x∗, L(xM =

x∗))] and E[Y (xY = x, L(xM = x),M(xM = x∗, L(xM = x))] are simultaneously

identified through (1.31) and (1.32), respectively. The former parameter corresponds

to E[Y (XY = x,XL = x∗, XM = x∗], where XL and XM are set to the same values,

the latter to E[Y (xY = x, L(xM = x),M(xM = x∗, L(xM = x))], where XL and XM

are set to the same values.

Figure 1.15(d) is a special kind of expanded DAG, called edge expanded graph for

X, where p = |chG(X)|. Gedge graphs are obtained by their corresponding DAGs G
by replacing each path X → Vi, Vi ∈ chG(X), with X → X i → Vi. Clearly, Gedge is

unique for each G.

Corollary 1.2.11.1. Under the assumptions of Lemma 1.2.11, if Gexp = Gedge for

X, then, for every assignment x̃1, . . . , x̃p, P (V (x1 = x̃1, . . . , xp = x̃p)) is identified

from data on G.
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Principal stratification

To conclude this section, we briefly address another approach that, although will not

be an object of further discussion, we believe is worth being mentioned, since it can

shed some light on mediational mechanisms and does not require any intervention on

the mediator, i.e. Principal stratification (Frangakis and Rubin 2002).

Consider a general setting with a binary treatment X whose values are denoted

by 0 and 1 for simplicity, an outcome Y and a post-treatment covariate S, not nec-

essarily regarded as a mediator. A principal stratification is a partition of statistical

units such that elements in the same subset are characterised by the same values of

(S(0), S(1)). The subsets in the partition are called principal strata. For example,

in an experimental setting where X is a binary treatment to which each subject is

randomly assigned by the researcher and S is a binary variable indicating the ac-

tual treatment assumed by the subject, there exist four principal strata: compliers

PS01 = {i : Si(0) = 0, Si(1) = 1}, never-takers PS00 = {i : Si(0) = 0, Si(1) = 0},
always-takers PS11 = {i : Si(0) = 1, Si(1) = 1}, and defiers PS10 = {i : Si(0) =

1, Si(1) = 0}. Notice that principal strata are not affected by the treatment as-

signment, then they can be considered as pre-treatment covariates. However, it is

impossible to know to which stratum each subject belongs, therefore, principal strata

are latent.

A principal causal effect (PCE) is a comparison between Yi(1) and Yi(0) within a

principal stratum. One of the most widely used PCE is the expectation

PCEs0,s1 = E[Y (1)–Y (0) |S(0) = s0, S(1) = s1].

Frangakis and Rubin (2002) called the effects within strata where s0 = s1 ‘dissocia-

tive’, and the effects within strata where s0 6= s1 ‘associative’. Following Mealli and

Mattei (2012) and VanderWeele (2011), we briefly discuss the relationship between

these effects and natural effects, trying to extend their considerations also to the other

effects introduced so far.

Let us start from dissociative effects, which are defined within strata in which S is

not affected by the value of X. In other words, X does not impact the value taken by

S and therefore it conveys its effect on Y directly. The principal strata direct effects

(PSDEs) assume then the forms:

PSDE(0) = E[Y (1)–Y (0) |S(0) = S(1) = 0]

PSDE(1) = E[Y (1)–Y (0) |S(0) = S(1) = 1].

Since the concept of direct effect is well defined in the principal stratification frame-
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work and relies on dissociative effects, one may think that also the concept of indirect

effect has an analogous in this framework, relying on associative effects. Although

associative effects are defined within those strata where the value of S(0) differs from

that of S(1), i.e. where the treatment does affect the intermediate variable, they do

not encode the concept of indirect effect. As proved by VanderWeele (2011), asso-

ciative effects can be written as the sum of both natural direct and indirect effects

within a stratum.

The lack of a principal stratification analogous of the NIE has, as one of the first

consequences, the impossibility to decompose the total causal effect of X on Y into

the sum of a direct and indirect effect. Mealli and Mattei (2012) show that the total

effect can be written as a weighted average of the PCE over principal strata, but this

decomposition differs from those we have seen to hold for all the other kinds of media-

tional effects introduced so far. Another difference between the principal stratification

framework and all the aforementioned ones is that PCEs are local, in the sense that

they are defined for subgroups of the population, while natural, interventional and

separable effects are population effects.

Among the mediational effects introduced so far, separable effects may seem the

most similar to PCEs, since both are defined without requiring an intervention on

the mediator; however, they also present some key differences. First, the concept of

indirect effect is well defined only for the former. For PCEs, this implies the absence

of a direct correspondence with natural effects: as we saw, there exists a PSDE, but,

as discussed in Mealli and Mattei (2012), it is only one of the terms in the expression

for the NDE. Indeed, a null PSDE does not imply a null NDE, while the converse

holds true (VanderWeele 2008). In contrast, there exists a direct correspondence

between natural and separable effects, since the latter prove equal to the former in

an NPSEM.

Second, as already pointed out, separable and principal effects rely on different

conceptual frameworks. The former entails a split of the treatment into components

which are regarded as independent intervening variables and this helps in under-

standing the different pathways through which the direct and indirect effects flow. In

contrast, principal stratification does not involve a separation of the treatment, but

rather, the estimation of effects in subgroups of the sample under investigation.

Finally, a note on identifiability assumptions. Separable effects require some as-

sumptions to be identified from observed data which have already been discussed and

differ from those required by PCEs, briefly addressed in Mealli and Mattei (2012).

Generally, PCEs are difficult to identify, since the stratum to which a subject belongs

is latent and even restrictive assumptions leads only to partial identification, unless
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one is willing to make distributional assumptions as well. A Bayesian approach seems,

nonetheless, a promising approach to deal with such issues and carry out sensitivity

analyses.

As remarked by VanderWeele (2011), principal stratification does not seem the

most appropriate framework to address mediation. Nonetheless, we agree with Mealli

and Mattei (2012), who claim that principal stratification can be useful in some cir-

cumstances and can still provide information about mediational settings. For ex-

ample, they show that in very specific cases it is possible to derive the NIE as the

difference between the total effect and the NDE, the latter obtained as weighted sum

of PSDEs. More generally, comparing the magnitude of associative and dissociative

effects can also provide some insights into mediational questions. Indeed, when asso-

ciative effects are larger than dissociative ones, this indicates that the treatment has a

more substantial impact on the outcome for those units for which the treatment also

affects the mediator. Conversely, associative and dissociative effects of comparable

magnitude suggest that the treatment has the same effect on the outcome regardless

of the mediator’s level, then its effect is conveyed by other variables different from

the mediator under investigation.

1.3 Structure of the thesis

The thesis is divided into four chapters structured as follows.

The second chapter provides a literature review on longitudinal mediation analysis,

addressing associational and causal approaches. We give particular relevance to model

specification and the definition of mediational effects. This aspect has a crucial role in

the causal framework, and we discuss some problems which may arise in a longitudinal

setting.3

The third chapter focuses on associational models. We show how SEMs and mul-

tilevel models can be regarded as particular cases of a more general and unique

model. We explain how the special features of SEMs can be exploited in longitudi-

nal, and more general multilevel, mediational contexts through the development of

an approach based on definition variables. The implications of such unification are

discussed.4

In Chapter 4 we apply the separable effect approach to two popular latent variable

3Co-authors’ individual contributions: Chiara Di Maria - Conceptualisation, Resources, Writing - Original draft,
Reviewing and Editing; Antonino Abbruzzo - Supervision, Writing - Reviewing and Editing; Gianfranco Lovison -
Supervision, Writing - Reviewing and Editing.

4Co-authors’ individual contributions: Chiara Di Maria - Conceptualisation, Methodology, Writing - Original draft,
Reviewing and Editing; Antonino Abbruzzo - Supervision, Writing - Reviewing and Editing; Gianfranco Lovison -
Supervision, Writing - Reviewing and Editing.
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models for longitudinal data, i.e. multilevel and latent growth models. We derive

assumptions and g-formulas for the separable effects, and conduct a simulation study

to evaluate how model misspecification can impact the estimates. Extensions to more

complex settings including baseline and time-varying confounders are discussed.5

Chapter 5 provides a real-world application of some the approaches discussed in

the previous chapters. We analyse data from the COVCO study, a longitudinal cohort

study carried out in Basel during the Covid pandemic with the goal of monitoring the

spread of the virus in Basel and population mental health. Within a separable effects

approach, we investigate the direct effects of income on depression and its indirect

effects mediated by worries concerning different aspects of life, in a phase of acute

spreading of Covid-19.6

The thesis concludes with a summary of the main results and a discussion of future

directions.

5Co-authors’ individual contributions: Chiara Di Maria - Methodology, Software, Writing - Original draft, Review-
ing and Editing; Vanessa Didelez - Conceptualisation, Supervision, Writing - Reviewing and Editing.

6Co-authors’ individual contributions: Chiara Di Maria - Software, Formal analysis, Writing - Original draft,
Reviewing and Editing; Antonino Abbruzzo - Supervision, Writing - Reviewing and Editing; Gianfranco Lovison -
Supervision, Data curation, Writing - Reviewing and Editing.



Chapter 2

Literature Review

In this chapter, we discuss the main approaches proposed over the years to address

longitudinal mediation analysis. In spite of the intrinsically causal nature of medi-

ation, a great stream of literature assesses mediational mechanisms in associational

terms. This is not surprising, since the origins of mediation analysis are rooted in

regression-based methods which were not intended to provide causal explanations to

phenomena. The constant development and refinement of causal inference techniques

to deal with increasingly complex problems led to the development of a parallel lit-

erature addressing longitudinal mediation from a causal perspective.

Although we believe that mediation is related to causal mechanisms, at the same

time we are firmly convinced of the noticeable role played by the associational litera-

ture in the development of mediation analysis. For this reason, this chapter provides a

literature review addressing both associational and causal approaches for longitudinal

mediation.

The chapter is divided into two main parts: in Section 2.2, we address associational

models, i.e. SEMs and mixed-effect models, whereas Section 2.3 is devoted to causal

approaches. Each section starts with the notation and the preliminary concepts to

understand what follows, proceeds with the introduction of the relevant models or

approaches, and ends with a discussion. Finally, in the last section, we draw some

conclusions.

2.1 Introduction

For a long time, mediation analysis was primarily addressed in a cross-sectional set-

ting. However, scientists have started warning against the use of cross-sectional data

for detecting mediational effects since the early ’80s. Judd and Kenny (1981) high-

light the importance of longitudinal designs for studying mediation and emphasise

38



2.1. INTRODUCTION 39

the bias that could occur from failing to control for prior assessments of the medi-

ator and the outcome variable. Methodological articles on longitudinal mediation,

with authors arguing that empirical investigations of mediation should take time

into account, began to appear in the late 1990s (Collins et al. 1998, MacCallum and

Austin 2000, Cole and Maxwell 2003, Kenny et al. 2003). However, as remarked by

Maxwell et al. (2011), their cautions were and keep being largely ignored, not only

by substantive researchers but also by methodologists. More recently, several authors

(Maxwell and Cole 2007, Maxwell et al. 2011, O’Laughlin et al. 2018) have shown

that cross-sectional designs fail to capture true mediational processes under numer-

ous conditions. Maxwell and Cole (2007) focus on the case of complete mediation

(i.e. null direct effect), considering two different models, an autoregressive model

and a mixed-effect model, and show that the magnitude of bias in the estimates of

mediational effects can be substantial in both cases. Maxwell et al. (2011) extend

the analysis to partial mediation settings. Their findings are consistent with those of

Maxwell and Cole (2007), since they prove that cross-sectional mediation1 may lead

to severely misleading results in terms of bias in the effect estimates. Furthermore,

a variable appearing as a potential significant mediator in a cross-sectional analysis

may turn out to be almost irrelevant in a longitudinal analysis or vice versa. Since

the effect of the exposure on the mediator and the outcome, and that of the mediator

on the outcome unfold over time, cross-sectional models are not able to detect the

change and turn out to be misspecified. Thus, time plays a prominent role in the

correct estimation of effects, and this is the reason why methodological developments

of longitudinal mediation analysis appear of paramount importance.

Several approaches have been proposed to deal with longitudinal mediation anal-

ysis, and they can be divided into two main categories: discrete-time models and

continuous-time models. Discrete-time mediation models form a wide class, including

several models. Some are based on structural equation models (SEMs), like cross-

lagged panel models (MacKinnon 2008, Chapter 8, Cole and Maxwell 2003), latent

growth models (Cheong et al. 2003, von Soest and Hagtvet 2011) and latent differ-

ence score models (Selig and Preacher 2009, O’Laughlin et al. 2018), while others

include random effects (Bauer et al. 2006, Bind et al. 2016). Another broad class of

longitudinal mediation models deals with time-to-event outcomes (Lin, Young, Logan

and VanderWeele 2017, Aalen et al. 2020, Vansteelandt et al. 2019). Other methods

1Throughout the thesis, we will use the expression ”cross-sectional mediation analysis” referring to situations in
which the data generating mechanism is cross-sectional. Although questionable, this expression is widely used and
well established in the literature, see, for example, Maxwell and Cole (2007), O’Laughlin et al. (2018). By using the
adjective cross-sectional we want to remark that the variables may refer to different periods, but they are collected
at the same time and measured only once. This contrasts with a longitudinal design, where variables are measured
at multiple occasions in time.
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assume a dynamic perspective and consider variables as stochastic processes, such as

dynamic path analysis (Fosen et al. 2006). Continuous-time models are more recent

and the methodologies proposed are mainly based on derivatives (Ryan et al. 2018,

Deboeck and Preacher 2016, Albert et al. 2019).

Reviews on the topic of longitudinal mediation analysis can already be found

in the literature. Selig and Preacher (2009) and O’Laughlin et al. (2018) compare

different SEMs focusing on model specification and definition of effects. The former

analyse data using only the latent difference score model, while the latter provide an

empirical application to exemplify all described methods, similarly to what was done

by Goldsmith et al. (2017). Krull et al. (2016) give a wide overview on many issues

concerning mediation and moderation, describing popular models for longitudinal

data and how some of them can accommodate mediation and moderation. They also

discuss causal longitudinal mediation and some estimation methods proposed in the

literature, although they do not provide a formal description of these topics.

The review we provide in this chapter differs from the previous ones, since it ad-

dresses a wide range of approaches, both associational and causal. The main focus

lies on model specification and the definition and interpretation of mediational ef-

fects, while we do not deepen issues related to statistical inference, like estimation

and hypothesis testing. Furthermore, for causal approaches we discuss assumptions

required to make mediational effects (non parametrically) identifiable. We also dis-

cuss if it is possible to extend these conditions to associational models, to make them

causally interpretable, and if they suffice for identifying direct and indirect effects. In

addition, considering the variety of models discussed in this review, we give another

contribution by unifying the diverse notation present in the literature.

Figure 2.1 provides a graphical overview of this chapter and Table 2.1, at the

end of the chapter, summarises the approaches reviewed: for associational models, it

provides information about their implementability/implementation in statistical soft-

ware, if any simulation studies have been carried out and which applications have been

made; for causal approaches, it shows the estimands of interest, in which counterfac-

tual models they result identified and in which software they can be implemented.

2.2 Associational framework

This section focuses on two classes of associational models for longitudinal media-

tional analysis. They have a long tradition and are quite widespread among applied

researchers: SEMs, which date back to Wright (1934) and Haavelmo (1943) and

mixed-effect models (Henderson 1973, Laird and Ware 1982).



2.2. ASSOCIATIONAL FRAMEWORK 41

Longitudinal mediation analysis

Associational Causal

SEM Mixed-effect
models

PSE
Interventional

effects

Separable
effects

Natural
effects

CLPM

LGM

LDS

Intervention
on the mediator

Figure 2.1: Summary of the approaches described in the review.

2.2.1 Basic concepts and notation

Here and throughout the chapter, if not differently specified, the exposure is denoted

by X, the mediator by M and the response by Y . Generally, L and V indicate

time-varying and time-fixed covariates, respectively. Since the main focus of this

review is on longitudinal settings, the following notation is also introduced. The

number of sample subjects is indicated by n, and variables are measured at T time

occasions. Capital letters denote variables, lowercase letters their observed values.

In particular, for any variable W , Wt is the variable at time t, assuming value wt,

while W (t) denotes the variable considered as a stochastic process. W t indicates

the history of the variable up to time t, that is (W1,W2, . . . ,Wt), ∀ t = 1, . . . , T.

For t = T we omit the subscript and indicate W T simply by W . For representing

associational models, we will use path diagrams, where, as introduced in Chapter 1,

if both observed and latent variables are present, the former will be represented as

squares and the latter as circles. Arrows represent dependence relationships and are

marked with the corresponding coefficients in the models. We do not include error

terms, as traditionally used in the literature, to avoid clutter.

2.2.2 Structural Equation Models

In all the models introduced below we do not include covariates. This choice is

motivated only by our desire to make the presentation as easy and clear as possible,

but it is worth remarking that in real-world applications adjusting for covariates is

necessary.
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Cross-lagged panel models

A very commonly used model for longitudinal data is the cross-lagged panel model

(CLPM). The most basic specification of the CLPM entails two variables measured

at different time occasions, and each measure is assumed to depend both on itself

and the other variable at previous times (Selig and Little 2012). The effects of a

variable on itself at previous time occasions are called autoregressive, while cross-

lagged effects refer to influences among different variables. The CLPM relies on three

assumptions: stability, i.e. no difference between individuals; stationarity, that is,

the within-person variances and covariance are invariant over time; equilibrium, i.e.

the correlation among each couple of variables stays the same over time (MacKinnon

2008, Cole and Maxwell 2003, Preacher 2015).

Without loss of generality, consider a three-wave model for mediation analysis,

i.e., a model where data are collected at three different time occasions, with three

observed variables, one exposure, one mediator and one response. Variables at time

t = 1 are treated as exogenous, and the model equations, for t = 2, 3, are

Xit = α0 + α
X
Xit−1 + ε

Xit
(2.1)

Mit = β0 + β
X
Xit−1 + β

M
Mit−1 + ε

Mit
(2.2)

Yit = γ0 + γ
X
Xit−1 + γ

M
Mit−1 + γ

Y
Yit−1 + ε

Y it
. (2.3)

In this model, represented in Figure 2.2, the explanatory variable at time t depends on

itself at the previous time t−1, the mediator on itself and on X at previous time, while

the response depends on itself, X and M at time t−1. Notice that no cross-sectional

effects are present, that is, there are no relationships between variables at the same

time. This is just one of the possible CLPMs in a mediation setting: more generally,

it is possible to consider two-unit lags or more cross-lagged relationships, for example,

Mt may influence Xt+1 (see MacKinnon 2008, Maxwell et al. 2011). Notice also that

coefficients are not indexed, since they are assumed to be equal across subjects and

time-invariant, although the last feature is not required and can be relaxed (Usami

et al. 2019).

In this context there is not just a single mediated effect, but as many as the number

of paths linking X to Y through M . Selig and Preacher (2009) distinguish the time-

specific indirect effects from the total indirect effect. The former are the paths from

X at a certain time occasion to Y at a subsequent time occasion passing through M ,

while the latter is the sum of all these paths. In a model like that in Figure 2.2 we

can obtain the direct effect of Xt on Yt+1 as γ
X

and the indirect effect of Xt−1 on Yt+1,

mediated by Mt, as the product β
X
γ
M

. These effects concern observed variables and
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Figure 2.2: Cross-lagged panel mediation model for three waves.

have to be interpreted in the usual way: the direct effect as the extent to which a

change in the exposure at time t directly affects the outcome at the subsequent time,

the indirect effect as the extent to which a change in the exposure at time t affects

the outcome measured two times later indirectly, through the mediator measured at

t+ 1.

If a researcher suspects measurement errors in one or more variables, CLPMs can

be applied to latent variables of which repeated measures are (fallible) indicators. In

this formulation, the CLPM is generally addressed as factor CLPM (Usami et al.

2019) or structural CLPM (Ferrer and McArdle 2003), and each observed variable is

split into two components, a latent true score and a measurement error. The outcome,

for example, should be written as Yit = Ỹit+εYit . The autoregressive and cross-lagged

relationships among variables shown in Equations (2.1) - (2.3) now involve the latent

scores, so that, using the same notation also for the exposure and the mediator, the

model can be written as follows

X̃it = α
X̃
X̃it−1 + δ

X̃it
(2.4)

M̃it = β
X̃
X̃it−1 + β

M̃
M̃it−1 + δ

M̃it
(2.5)

Ỹit = γ
X̃
X̃it−1 + γ

M̃
M̃it−1 + γ

Ỹ
Ỹit−1 + δ

Ỹ it
. (2.6)

In this case the direct effect is given by γ
X̃

and the indirect effect by the product

β
X̃
γ
M̃

, similarly to the case with only observed variables. However, the interpretation

is different. Mediation happens at the latent score level, thus, the latent score of the

exposure can affect directly the latent score of the response at a subsequent time,

or indirectly through the latent score of the mediator. Observed variables are just

indicators of the scores, which are latent, and if a mediational mechanism exists, it

involves the latent scores.

The CLPM is commonly used in econometrics to analyse time-series, mainly due
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to its simple implementation. However, it has several drawbacks. First, the time lag

between measurements is not explicitly taken into account in the model. Second, since

autoregressive and cross-lagged coefficients do not differ among subjects, this model

is useful for interindividual change, but does not detect intraindividual change, so the

selected variables need to show some degree of stability over time for each individual,

a condition not always satisfied.

The CLPM can be implemented in STATA (sem), R (lavaan, OpenMx packages),

SAS (CALIS procedure) and Mplus. We are not aware of any simulation study in a

longitudinal mediation setting, whereas applications can be found in the behavioural

and social sciences (Lee and Stone 2012, O’Laughlin et al. 2018).

Example : Lee and Stone (2012) tried different CLPMs to study the relationship

between internalising and externalising behavioral problems and the mediating

role of negative self-concept in a sample of 2,844 Korean adolescents followed for

four years. In psychology, internalising behaviours are a set of internally-focused

behavioural symptoms including depression, anxiety and obsessive-compulsive

disorder, while externalising disorders are a broad spectrum of behaviours ex-

pressing emotional distress, such as physical aggression, bullying and vandalism.

Negative self-concept is the perception that an individual has of him/herself in

negative terms, for example the extent to which he/she feels “wrong ”or the

degree of self-criticism.

The authors found that the relationship between externalising and internalising

behaviours is entirely mediated by negative self-concept, so there are no signif-

icant direct effects, and the final model selected includes different cross-lagged

effects, so it is more complex than that shown in Figure 2.2.

Latent growth curve models

The aim of latent growth (curve) modelling (LGC or LGM) is to estimate an underly-

ing growth trajectory for each individual in the sample, highlighting “between-person

differences in within-person change” (Curran et al. 2010). The basic (linear) latent

growth model includes a response variable and two subject-specific factors, the inter-

cept factor, constant for each individual over time, and the slope factor, representing

the individual rate of change over time. Slightly modifying Bollen and Curran (2006)

notation to make it consistent with our own, the unconditional (i.e. not including
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explanatory variables) latent growth curve model can be written as follows:

Yit = θ0i + θ1iλt + ε
Y it

θ0i = µθ0 + ζθ0i

θ1i = µθ1 + ζθ1i,

(2.7)

where Yit is the value of the response variable for the i-th unit at time t, θ0i and

θ1i are the intercept and the slope for the i-th observation, respectively, and are the

sum of a fixed average (the µ’s terms) and a stochastic component ζ, λt is a time

indicator and ε represents the error term. Note that θ0 and θ1 may differ across

subjects, allowing each individual to have his/her own trajectory. Moreover, they

can depend on additional explanatory variables and in this case the LGM is called

conditional. As regards λ, it is generally coded as a discrete variable, where λ1 = 0

indicates the starting time point. Researchers can specify λ’s fixing their values to

assume a specific type of growth (e.g.: linear, quadratic), or they can estimate the λ’s

as free parameters in the model. LGMs rely on numerous assumptions, for further

details see Duncan and Duncan (2004), Bollen and Curran (2006) and Preacher et al.

(2008).

To extend LGM to mediational settings, it is necessary to fit two parallel growth

processes, one for the mediator and one for the response, by using a structural equa-

tion modelling perspective. For each subject i, the processes can be written as

mi = Λm θmi + εmi

yi = Λy θyi + εyi,

θmi = β0 + BxX + ζθmi

θyi = γ0 + ΓxX + Γθmθmi + ζθyi

(2.8)

where mi and yi are T -dimensional vectors including the repeated measures of the

mediator M and the outcome Y for subject i, θmi and θyi are vectors of p- and q-

dimensional latent factors characterising the mediator and the outcome trajectories,

respectively, and Λm and Λy are the matrices of coefficients, made up of a column of

1’s and columns containing the time components. Moreover, β0 and γ0 are vectors

of intercepts for the mediator and the outcome latent factors, respectively; Bx, Γx

and Γθm are coefficient matrices expressing the relationships of the latent factors with

themselves and with other explanatory variables X.

An example of mediation analysis in an LGM framework is the study by Cheong

et al. (2003), who carried out a mediation analysis in the context of longitudinal

randomised prevention trials. Since they assume that time enters only linearly in
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Figure 2.3: Latent growth mediation model for four waves.

the growth model, θmi and θyi are bidimensional and Λm = Λy = Λ. The mediator

process, in the extended form, can be written as
Mi1

Mi2

...

MiT

 =


1 0

1 1
...

...

1 T − 1


(
θ0Mi

θ1Mi

)
+


ε
Mi1

ε
Mi2

...

ε
MiT

 ;

the outcome process can be written analogously. Since in the model of Cheong et al.

(2003) there is only one explanatory variable X, the equations for θmi and θyi in

scalar form are

θ0Mi = βθ0
0

+ βθ0
X
Xi + ζθ0M i (2.9)

θ1Mi = βθ1
0

+ βθ1
X
Xi + ζθ1M i (2.10)

θ0Y i = γθ0
0

+ γθ0
X
Xi + ζθ0Y i (2.11)

θ1Y i = γθ1
0

+ γθ1
X
Xi + γθ1θ0M θ0Mi + γθ1θ1M θ1Mi + ζθ1Y i. (2.12)

The final model entails thus four equations, one for each of the latent factors, for both

the mediator and the outcome. Basically, the explanatory variable affects the growth

trajectory of the outcome directly and also the trajectory of the mediator, which in

turn affects the trajectory of the outcome, as shown in Figure 2.3.

von Soest and Hagtvet (2011) analyse three different model specifications, allow-

ing the explanatory variable X to affect the outcome either through the mediator

intercept or through the mediator slope, or through both, as in Cheong et al. (2003).

The model including both the mediator latent intercept and slope shows significant

differences in estimates with respect to models including only either, and the authors

discuss the reasons for preferring one model to the other. O’Laughlin et al. (2018)
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further extend the aforementioned works by allowing the exposure to vary over time,

then modelling its process and use its latent factors as predictors in the mediator and

outcome processes.

Selig and Preacher (2009) remark that modelling mediation through LGM leads

to the specification of different indirect effects: those involving only intercepts, those

involving only slopes, and those that involve intercepts and slopes. For example, the

specification in Equations (2.9)-(2.12) allows us to define the mediated effect on the

slope as a product of two coefficients, βθ1
X
γθ1θ1M as usual. The direct effect can be

defined as that of the exposure on the outcome intercept, γθ0
X

, or that on the outcome

slope, γθ1
X

. O’Laughlin et al. (2018) and von Soest and Hagtvet (2011) adopt a similar

strategy for defining mediational effects, which is consistent with path analysis, since

it entails the definition of pathways of interest and the computation of the relative

effect as the product of coefficients corresponding to arrows in the path.

The interpretation of mediational effects is strongly related to the way time is

coded. A common choice is to set λt = t − 1, t = 1, . . . , T . This implies that the

random intercept of each variable represents its expectation at the first measurement

occasion, and the random slope represents the average change over time. For example,

in the model depicted in Figure 2.3, both the initial level of mediator and its aver-

age growth mediate the relationship between the exposure and the outcome average

growth rate. The conclusion to be drawn is that there is not a unique interpretation,

but it depends on the research question and the time coding. If a researcher is not

sure about the most appropriate time coding, some of the λ’s can be freely estimated,

as mentioned previously.

The main advantage of LGM is its noticeable flexibility since it allows us to model

individual change trajectories, and the common shape chosen to model them can be

of different kinds, not necessarily polynomial, such as exponential or periodic, using

trigonometric functions. This model can accommodate both fixed and time-varying

covariates. However, some drawbacks have to be taken into account: this model is

not adequate if change is not systematically related to the passage of time. Moreover,

the way time is codified may be an issue, especially if measurement occasions differ

for mediator and outcome.

LGMs can be implemented in STATA (sem), R (lavaan, OpenMx), SAS (CALIS

procedure) and Mplus. Cheong (2011) conducts a simulation study for assessing the

accuracy of estimates and the statistical power of mediation in an LGM setting. Her

findings show that, generally speaking, a large sample (at least 1,000 observations) is

required to produce unbiased estimates and even a statistical power of 0.8 could be

demanding in terms of sample size. LGM is widely used to analyse longitudinal data
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and applications in mediational settings can be found in many fields: these models

have been applied to evaluate the effectiveness of a prevention program (Cheong et al.

2003, Liu et al. 2009, Roesch et al. 2009), in behavioural psychology (von Soest and

Hagtvet 2011) and social sciences (Ellwardt et al. 2013).

Example : Roesch et al. (2009) analysed data from a randomised clinical trial for

encouraging adolescents to do physical activity. Data were collected on a sample

of 878 adolescents aged 11-15 years at three time occasions: baseline, after six

and twelve months. Subjects were randomly assigned to the treatment or control

group: the treatment group received a Teen guide and telephonic consulting to

develop healthy behaviours related to diet and physical activity through cognitive

and behavioural strategies. The control group received consulting about sun

protection and the adoption of correct behaviours to protect skin. The outcome

variable, physical activity, was measured as the sum per day of minutes spent in

moderate or hard physical activities. Researchers were interested in testing the

hypothesis that the treatment effect on physical activity is mediated by psycho-

social measures, a composite indicator constructed combining change strategies,

decisional balance, self efficacy, family/peer support. The authors fitted a model

like that in Figure 2.3, and found a significant direct effect of treatment on

physical activity, but no mediation was detected.

Latent difference score models

Another class of models employed for analysing longitudinal data is that of latent

difference score (LDS) or latent change score models (McArdle 2001, McArdle and

Hamagami 2001, Ferrer and McArdle 2003). These models are less popular than

CLPM or LGM as regards mediation analysis, but recently they have gained some

popularity as well.

In latent difference score models, each observed score is conceived as the sum of

the true latent score and an independent error term as in factor CLPM. By defining

the first difference in latent scores as ∆Ỹit = Ỹit − Ỹit−1, it follows that Ỹit = Ỹit−1 +

∆Ỹit, so that trajectory equations rely on accumulation of latent changes Ỹit = Ỹi1 +∑t
k=2 ∆Ỹik+δYit . The latent differences can be modeled as well, for instance as a linear

function of the outcome slope and its previous measurements (Ferrer and McArdle

2003). MacKinnon (2008) considers a setting where, in addition to the mediator

and the outcome, also the exposure is time-varying. He suggests two ways to model

mediation in this framework: modelling difference scores as dependent on variables at

previous times or on other difference scores. In the first case, assuming, for example,

three waves of data, each difference score depends on the corresponding variable at
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Figure 2.4: Latent difference score model for three measurement occasions.

the previous time occasion and on additional predictors, always measured at previous

time, according to the mediation structure, for example

∆X̃it = X̃it − X̃it−1 = α
X
X̃it−1 + δ∆X̃it

(2.13)

∆M̃it = M̃it − M̃it−1 = β
X
X̃it−1 + β

M
M̃it−1 + δ∆M̃it

(2.14)

∆Ỹit = Ỹit − Ỹit−1 = γ
X
X̃it−1 + γ

M
M̃it−1 + γ

Y
Ỹit−1 + δ∆Ỹit

. (2.15)

A graphical representation for an LDS with three waves of data is given in Figure 2.4.

In the second case, each difference score will depend on difference scores relative

to previous waves, for example, ∆Ỹt may depend on ∆M̃t−1. Other kinds of models

are possible, as shown in Selig and Preacher (2009). O’Laughlin et al. (2018) consider

a model similar to the original formulation (Ferrer and McArdle 2003, McArdle and

Hamagami 2001) since the model also includes a random slope for each variable.

Analogously to CLPM and LGM, mediated effects in an LDS can be obtained as

products of coefficients along the paths of interest. Once again, the interpretation

depends on which structure is hypothesised: for instance, in Figure 2.4, the exposure

latent score at time t affects the latent difference between the outcome score at time

t+ 1 and t+ 2 indirectly, through the latent difference of the mediator. This means

that the latent construct of the exposure affects a successive change in the outcome

through the mediator construct. In a model involving just latent differences, like the

one discussed by O’Laughlin et al. (2018), the effects of changes in the exposure are



50 CHAPTER 2. LITERATURE REVIEW

mediated by changes in the mediator, which in turn affect the change in the outcome.

LDS model is less used than LGM to carry out mediation analysis; however, if the

trajectory of change is expected to modify from a time interval to the next, LDS is

an alternative to nonlinear LGM (Selig and Preacher 2009).

The LDS has been implemented in STATA (sem), R (lavaan, OpenMx), SAS

(CALIS) and Mplus. Simone and Lockhart (2019) conduct a Monte Carlo simu-

lation study in Mplus to assess the sample size required to detect mediational effects.

They simulate data considering ten LDS models and three effect sizes for the paths

connecting the exposure to the mediator and the mediator to the outcome, with a

total of 90 scenarios. They show that the complexity of the models highly affects the

required sample sizes, and large effect size pairings require smaller samples. To the

best of our knowledge, the only applications to longitudinal mediation settings can

be found in social sciences (Selig and Preacher 2009, O’Laughlin et al. 2018).

Example : Selig and Preacher (2009) analysed data from the National Institute

for Child Health and Development’s Study of Early Childcare and studied how

maternal depression affects child’s problem behaviour through maternal sensi-

tivity. All variables are time-varying and the authors showed that mothers with

higher depression levels are less sensitive and this negatively affects child’s be-

haviour.

2.2.3 Mixed effects models

Mixed effects, multilevel or hierarchical models are generally employed for data ob-

tained from nested designs, for example a sample of children nested in a sample of

schools. In longitudinal settings, repeated measurements are nested within individu-

als. The lower level units (children or time occasions) are called level-1 units, while

upper level units (schools or individuals in longitudinal settings) are called level-2

units.

The first articles about multilevel mediation analysis, not specifically focused on

longitudinal contexts, appeared in the early 2000s. Krull and MacKinnon (1999, 2001)

introduced the notation that is now well established in the literature for denoting

multilevel mediation designs. A design can be identified as lX → lM → lY , where

lW , W ∈ {X,M, Y }, denotes the level at which variable W is measured: for example,

if the exposure, the mediator and the outcome are all measured at a subject level,

the design will be denoted as 1 → 1 → 1, while if only the outcome is measured at

the cluster level, the design will be denoted as 1→ 1→ 2. In a longitudinal context,

these designs correspond to the case where all variables are time-varying, and the
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case of a response variable which does not change over time, respectively.

Krull and MacKinnon (1999, 2001) consider linear mixed models (LMMs) including

only a random intercept, and Krull and MacKinnon (2001) claim that estimation is

possible only if the mediator and the outcome are measured at the same or at a lower

level than their predictors, so for example, there cannot be an outcome measured at

the individual level (level 2) and a time-varying mediator (level 1).

Kenny et al. (2003) focus on more complex linear models including also random

slopes for a 1→ 1→ 1 design

Mit = π
0Mi

+ π
MXi

Xit + ε
Mit

π
0Mi

= β0 + b
0i

π
MXi

= β
X

+ b
Xi

(2.16)

Yit = π
0Y i

+ π
YXi

Xit + π
YMi

Mit + ε
Y it

π
0Y i

= γ0 + g
0i

π
YXi

= γ
X

+ g
Xi

π
YMi

= γ
M

+ g
Mi

(2.17)

where the π terms are subject-specific random coefficients, which can be written as

the sum of a common mean and subject-specific deviations, and the ε terms are time-

specific deviations. π are assumed to be from a multivariate Normal distribution,

with possibly non-diagonal covariance matrix
π

0Mi

π
MXi

π
0Y i

π
YXi

π
YMi

 ∼MVN




β0

β
X

γ0

γ
X

γ
M

 ,


σ2
b0

σb0bX σ2
bX

σb0g0 σbXg0 σ2
g0

σb0gX σbXgX σg0gX σ2
gX

σb0gM σbXgM σg0gM σgXgM σ2
gM




and ε terms are Normal with mean zero and are assumed to be uncorrelated.

Using the results proved by Goodman (1960), Kenny et al. (2003) show that the

indirect effect can be obtained as

E[π
MXi

π
YMi

] = β
X
γ
M

+ σb
X
g
M
, (2.18)

where σb
X
g
M

is the covariance between b
X

and g
M

. The role of this term is important,

since it can make an indirect effect non-null even if one of the two means β
X

or γ
M

is

null. In addition, according to the sign of such covariance, it can attenuate or amplify

the magnitude of the indirect effect.
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Unfortunately, the estimation of σb
X
g
M

is not straightforward in the traditional

multilevel setting and these difficulties are reflected also on software implementation.

Kenny et al. (2003) propose a two-step procedure for estimating this covariance: first

they estimate the random coefficients of the mediator and outcome models for each

level-2 unit, and then they use these estimates to compute the covariance. This

strategy is definitely not optimal, see Kenny et al. (2003) for a discussion.

To overcome the problem, Bauer et al. (2006) propose the specification of a single

model

Zit = SMit
(π

0Mi
+ π

MXi
Xit) + SYit(π0Y i

+ π
YXi

Xit + π
YMi

Mit) + ε
Zit
,

where Z is a variable obtained by stacking M and Y , SM and SY are indicator

variables equal to 1 when Z refers to the mediator or to the outcome, respectively. In

other words, this specification allows one to estimate the mediator and the outcome

model simultaneously via a single model, making it possible to estimate the covariance

between b
X

and g
M

. The authors provide formulas to quantify the precision of the

estimates and conduct a simulation study to evaluate the performance of the proposed

method.

A different approach was used by Preacher et al. (2010, 2011) within the multi-

level structural equation framework, which allows researchers to deal with any kind

of mediation design, even those including an upper-level response and a lower-level

predictor. This framework will be discussed more deeply in the next chapter.

One of the characteristics of the multilevel SEM approach is the decomposition of

effects into a within and a between component. This is related with the problem of

centering, a very serious issue in the multilevel literature in general, not only in a me-

diation setting. Indeed, in multilevel models, choosing the mean with respect to which

performing centering is not so straightforward, since there are at least three possibil-

ities: no centering, centering variables with respect to their grand-mean (CGM) or

centering each variable with respect to its cluster mean (CWC). The choice can have a

severe impact on the estimates and their meaning. Reviews and comparisons of differ-

ent centering strategies in multilevel mediation settings can be found in Asparouhov

and Muthén (2019), Tofighi (2010) and Zigler and Ye (2019). We will not focus

on centering since the topic is very broad and an extensive treatment would require

an entire chapter. Thorough and enlightening articles about centering in multilevel

models (not necessarily encompassing mediation) are Kreft et al. (1995), Paccagnella

(2006) and Enders and Tofighi (2007). The implications of centering in multilevel

longitudinal models are discussed in Curran et al. (2012), Curran and Bauer (2011),

Wang and Maxwell (2015) and Hoffman and Stawski (2009).
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Mixed effect models are quite common in longitudinal studies, and they have been

implemented in different software: STATA (me), R (lme4, nmle, glmmTMB), SAS

(GLIMMIX) and Mplus. Bauer et al. (2006) provide SAS codes to implement the

methods proposed in their work.

The first simulation studies concerning multilevel mediation were carried out by

Krull and MacKinnon (1999) and Krull and MacKinnon (2001). In the former, the

authors aim to understand the extent to which the estimates of the indirect effect ob-

tained through the product or the difference method differ, which estimation method

should be preferred and how standard errors approximations based on large sample

assumptions perform in small samples. Their results show that the average discrep-

ancy between the two estimates is close to zero and that the two estimation methods

are approximately equivalent in large sample sizes. The authors suggest, however, to

prefer the product method since it is more informative than the difference method,

especially in multiple mediator settings.

In the second study (Krull and MacKinnon 2001), the authors compared the per-

formance of single-level and multilevel mediation models in estimating and testing

mediated effects in clustered data, considering all admissible designs (1 → 1 →
1, 2→ 1→ 1, 2→ 2→ 1) and a wide variety of scenarios. They showed that single-

level models underestimate the standard error of the indirect effect, as expected. This

underestimation is often imputable to the underestimation of the standard error of a

coefficient along a 2→ 1 path (β
X

in 2→ 1→ 1, γ
M

in 2→ 2→ 1).

Other simulation studies were conducted by Blood et al. (2010) and Blood and

Cheng (2011), who compared the performance of LMMs with that of SEMs in different

longitudinal mediation settings. They showed that in many cases the two models have

similar performances. Applications of mixed models in longitudinal mediation settings

have been provided in psychology (Bauer et al. 2006) and epidemiology (Blood and

Cheng 2011).

Example : Blood and Cheng (2011) analysed data from a cohort of HIV patients

followed over four years. They were interested in the relationship between heavy

alcoholism and CD4 cell count, mediated by adherence to the anti-retroviral

therapy (ART), measured as the percentage of prescribed pills in the last three

days. Each variable was assessed every six months. The authors fitted different

models, including also a random slope for time, and compared the results, which

did not show any significant relationship among variables.
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2.2.4 Other models

The models discussed up to this point are the most common for studying mediation

in the associational setting. Nonetheless, other longitudinal mediation models have

been proposed in the literature, but they are difficult to classify into one of the

categories previously proposed. In this section, we provide a brief overview of these

other models.

Gunzler et al. (2014) propose a longitudinal SEM for mediation analysis by using

functional response models (FRMs) to make inference. FRM is a class of distribution-

free models, so they do not require any parametric assumptions on the data distribu-

tion, and they can easily handle the double role played by the mediator in the simul-

taneous equations. The authors extensively discuss inferential procedures, holding in

both cases of complete and missing data (missing completely at random, MCAR, and

missing at random, MAR). They carry out a simulation study to evaluate the per-

formance of their approach for different sample sizes and considering scenarios with

completed and missing data, in comparison with the traditional Maximum Likelihood

(ML) approach. They show that efficiency of FRM approach is quite similar to that

of ML under the complete data setting, but that it outperforms ML in the MAR case.

An example from psychology is used to show a real-world application.

Starting from the concept of ergodicity in psychology, that is, the situation where

the average of a single trajectory over time equals the average of all sample trajectories

at a single time occasion, Gu et al. (2014) point out that researchers should rethink

the way they conceive mediation. Indeed, ergodicity relies on both concepts of sta-

tionarity, which refers to a stochastic process having a time-invariant joint probability

distribution, and homogeneity, meaning that all members in a given population are

interchangeable and follow the same statistical model. Clearly, it is very unlikely that

these assumptions hold in real-world psychological processes. Therefore, the authors

suggest to focus on intra-individual variations, rather than on inter-individual ones,

and to investigate, then, single-subject time series data. This method relies on the

state-space model, i.e. an SEM where latent variables at time t depend on themselves

at previous time t−1 via a transition matrix. Parameters are estimated through a re-

cursive algorithm, the Kalman filter, and confidence intervals for the mediated effects

are obtained with nonparametric or residual-based bootstrap. A simulation study

and an application from behavioural psychology are provided.

Although not specifically targeted for longitudinal mediation, it is worth mention-

ing the paper by Zhang et al. (2009), where the authors consider three different mul-

tilevel mediation models and evaluate the bias produced by unobserved confounders,

proposing some possible solutions. This model can find application in longitudinal
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mediation settings.

2.2.5 Discussion

SEMs are very common and widely used among researchers, also due to the high

number of software where they are implemented. They are a powerful tool to carry

out longitudinal mediation analysis. However, they also have some limitations, the

main being the assumption of Normality of the variables and the linearity of models.

These two characteristics restrict the range of models which can be fitted and the

outcome variables which can be analysed.

Although in the last years several scholars have started extending SEM estimation

methods to accommodate non-Normal data, interactions among variables and other

forms of non-linearity, see for example Wall (2009), Tsai et al. (2006), Lai (2018), Lee

and Zhu (2002) and Mayer et al. (2017), these extensions have not been applied to

mediation analysis yet.

Mixed-effect models are also well known, but they allow for more flexibility in the

variables’ distribution and regression models with link functions different from iden-

tity can be estimated. However, all the approaches discussed relies on linearity as well.

One of the limitations of mixed-effect models is the impossibility of including latent

variables. This prevents their application in some fields, such as psychology or social

sciences, were measured variables are often fallible indicators of latent constructs.

In addition, as discussed in Section 2.2.3, traditional multilevel settings cannot ac-

commodate all types of multilevel mediation designs and the covariance among the

random slope of the exposure in the mediator model and that of the mediator in

the outcome model has to be estimated through ad hoc methods. We will propose a

possible solution overcoming these issues in Chapter 3.

Finally, it is worth mentioning the issue of identification traditionally arising for

SEM. It should not be confused with the identifiability issue typical of causal models,

since that of SEMs concerns the difference between the number of known and unknown

parameters. If this difference is negative, i.e if the number of unknown parameters

exceeds the number of known ones, the model is not identified. We do not address

this issue and refer the interested reader to Bollen and Curran (2006), Usami et al.

(2019), McArdle and Nesselroade (2013), who provide conditions for this kind of

identification.
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2.3 Causal framework

In this second part of the chapter we shall focus on causal approaches to longitudinal

mediation analysis. While in the associational framework we talked about models,

here we shall refer to approaches, which provide different definitions of mediational

effects, hence different estimands, and different assumptions for identifying them.

This section addresses the different types of estimands discussed in Section 1.2.5 and

extends them to a longitudinal setting, showing the advantages and drawbacks of each

and providing some examples of application. First, we introduce some key concepts

of the longitudinal causal literature.

2.3.1 Basic concepts and notation

Time-varying treatments and regimes

The definition of counterfactuals given in Section 1.2.3 needs to be extended to ac-

commodate the temporal aspect. In a longitudinal setting, if the treatment is time-

varying, the potential outcomes do not involve a comparison of just two different val-

ues of the treatment, but a comparison of two treatment strategies x = (x1, x2, . . . , xT )

and x∗ = (x∗1, x
∗
2, . . . , x

∗
T ), where xt and x∗t , for t = 1, . . . , T , are values assigned to

treatment at time t. A treatment strategy, or a emphregime, is a rule to assign

treatment at each time t. For example, in a RCT aimed to study the effectiveness

of different strategies to cope with insomnia, a group of subjects can be randomly

assigned to the treatment condition, i.e. taking sleeping tablets every night, or the

control condition, i.e. doing relaxation exercises before sleeping every night. A sleep

monitor can record the number of minutes spent before to fall asleep and how many

hours a subject slept every night for two months, say.

A regime is called static when, at each time, it depends only on previous treatment

values, dynamic, if, in addition, it depends also on previous values of the covariates

Lt. In the previous example, the two regimes compared would be static if all patients

in the treatment group were told to take the same number of pills every day, and

subjects in the control group were asked to do their relaxation exercise for thirty

minutes every day before sleeping. In contrast, they would be dynamic if the number

of pills to take or for how many minutes a subject should exercise depended on the

type of physical activity done during the day. Indeed, physical activity is known to

act as a stimulant and can make falling asleep more difficult. Individuals who do very

intense physical activity could be asked to take more sleeping pills or to do relaxation

exercises for longer time than that required for subjects practising very mild physical

activity.
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Regimes can also be distinguished into deterministic, when each subject receives a

specific value at each time, and random, when each subject is assigned a probability

of receiving a certain value of the treatment. See Young et al. (2014) and Hernán and

Robins (2020) for more details on regimes.

The average total effect of a time-varying treatment X on an outcome Y measured

at the end of the follow-up is then defined comparing two regimes x 6= x∗ as

E[Y (x)]− E[Y (x∗)]. (2.19)

If the treatment is binary, a comparison which is often of interest is that between

individuals always treated, that is, individuals with x = 1 = (1, . . . , 1) and individuals

never treated, that is, with x∗ = 0 = (0, . . . , 0), but many other strategies are actually

possible.

Analogously to cross-sectional contexts discussed in 1.2.3, the total causal effect

in (2.19) needs an exchangeability assumption for being identified. In randomised

experiments, the total effect is identified since one of the following conditions, which

are called sequential unconditional and sequential conditional exchangeability, holds,

according to whether there are time-varying confounders or not

Y (x) ⊥⊥ Xt |X t−1 = xt−1 (2.20)

Y (x) ⊥⊥ Xt |X t−1 = xt−1, Lt. (2.21)

It is worth remarking that these assumptions refer to static sequential ignorability,

since they hold for static strategies. As discussed in Hernán and Robins (2020), there

exist different forms of sequential exhangeability, and they allow one to identify the

effects of some treatment strategies, while others remain unidentified. See Hernán

and Robins (2020), Richardson and Robins (2013) for a discussion. In the following

we will always refer to static strategies.

We will denote by M(x) and Y (x) the counterfactual values of the mediator and

the outcome, respectively, under regime x. Similar concepts apply to m and Y (x, m).

Time-varying confounders

Time-varying confounding is an issue which may clearly arise in both the associational

and the causal frameworks, but in the causal one is particularly troubling.

Figure 2.5 shows a DAG including time-varying exposures Xt, mediators Mt and

confounders Lt, t = 1, . . . , 3, an outcome measured at the end of the follow-up period,

Y , and an unobserved variable U . This DAG may represent a randomised sequential

trial (notice the absence of arrows from U to X) where the treatment at time t is
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X1 X2 X3

M1 M2 M3

L1 L2 L3

Y

U

Figure 2.5: DAG including time-varying confounders.

assigned only on the basis of previous treatment and covariate history, X t−1 and Lt.

Notice that Lt confounds the relationship between Mt and Y and is affected by the

exposure at prior time, Xt−1 for t > 1. This violates assumption (d). Moreover, Lt is

a confounder of the relationship between Xt and Y , for each t. It is defined a time-

varying confounder, since it is not sufficient to condition on L at baseline (t = 1) to

block the back-door paths between the exposure and the outcome, but at each time

t the entire covariate history Lt is necessary (Hernán and Robins 2020, Chapter 19).

It is worth remarking that, even in the absence of L in Figure 2.5, the mediator

can become itself a time-varying confounder, since, for example M1 confounds the

M2 − Y relationship and is affected by X1.

In the presence of time-varying confounders, natural effects cannot be identified,

and this calls for other types of mediational effects, relying on weaker assumptions.

We are going to discuss these alternatives in the next sections.

Finally, although they do not regard the longitudinal setting specifically, we want

to point out other problems which may affect any of the methods we are going to

describe: measurement error of variables and model misspecification. Their discussion

is beyond the scope of this chapter; for some useful references see VanderWeele et al.

(2012b), le Cessie et al. (2012), Lutz et al. (2020).

2.3.2 Natural effects

Given the problems connected to the cross-world independence assumption, natural

effects are not the most used in longitudinal settings.

Bind et al. (2016) approach makes use of mixed-effect models. They consider a

setting where the exposure, the mediator and the outcome are time-varying. The ex-

posure has a cross-sectional effect on the mediator and the outcome and an autoregres-
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Figure 2.6: Model proposed by Bind et al. (2016).

sive effect on itself, while subsequent instances of the mediator and the outcome are

not linked directly, but only via the random effects ui = (bi,gi)
′, i = 1, . . . , n. Addi-

tional observed covariates L, possibly confounding the exposure-mediator, exposure-

outcome and mediator-outcome relationships are allowed, see Figure 2.6.

The natural direct and indirect effects, conditional on covariates and random ef-

fects, are given by E[Yit(x,Mit(x
∗)) − Yit(x∗,Mit(x

∗)) |L,ui] and E[Yit(x,Mit(x)) −
Yit(x,Mit(x

∗)) |L,ui], respectively. They are identified under a modified version of

(a)-(d) in Section 1.2.5, to accommodate the longitudinal setting and where the con-

ditioning is also on random effects.

To estimate natural mediational effects, the authors model the mediator and the

outcome through generalized linear mixed models, as shown below

h1(E[Mit |Lit = l, Xit = x,bi]) = (β0 + b
0i

) + (β
X

+ b
Xi

)x+ β′
L
l

h2(E[Yit |Lit = l, Xit = x,Mit = m,gi])

= (γ0 + g
0i

) + (γ
X

+ g
Xi

)x+ (γ
M

+ g
Mi

)m+ (γ
XM

+ g
XMi

)xm+ γ ′
L
l,

where h1 and h2 are known link functions, and bi and gi are subject-specific random

effects.

This approach is quite flexible since it allows for exposure-mediator interactions

and multiple mediators, and can accommodate different types of mediators and out-

comes. In the setting including a single time-varying mediator, if h1 and h2 are the

identity link function, the natural mediational effects conditional on covariates and

random effects are

NDE = (γ
X

+ g
Xi

)(x− x∗) + (γ
XM

+ g
XMi

)(x− x∗)
[
(β0 + b

0i
) + (β

X
+ b

Xi
)x∗ + β′

L
l
]
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NIE = (γ
M

+ g
Mi

)(β
X

+ b
Xi

)(x− x∗) + (γ
XM

+ g
XMi

)(β
X

+ b
Xi

)(x− x∗).

Effects conditional only on covariates can be obtained by integrating out the random

effects.

Although quite general, a limitation of this approach is the cross-world indepen-

dence assumption Yit(x,m) ⊥⊥ Mit(x
∗) |Lit,bi, gi, for each subject i and time t. As

discussed previously, this assumption may not be plausible, especially if the time lag

between exposure and outcome measurements is wide. In this case, it holds because

the authors considered only covariates not affected by the exposure, but this sounds

unnatural or at least very unlikely in real contexts. Moreover, the exposure is as-

sumed to be randomized, which is plausible when it is an environmental variable, as

in the application provided in the paper, but may generally not be satisfied.

2.3.3 Path-specific effects

Path-specific effects reveal their usefulness in complex causal graphs, like those for

multiple mediator models or longitudinal mediation models, where it is more likely

that assumption (d) is not satisfied. In the former case, researchers can be interested

in the effect conveyed by each mediator (Lin and VanderWeele 2017, Vansteelandt

and Daniel 2017), while in the latter the focus is on the propagation of effects over

time. Shpitser (2013) extended the results of Avin et al. (2005) to longitudinal me-

diation models characterised by the presence of unobserved variables, proposing a

generalisation of the recanting witness criterion, as discussed in Chapter 1.

Consider the graph in Figure 2.7(a), where there are a time-varying treatment X,

mediator M and observed confounder L and an outcome Y measured at the end of

follow-up. The relationship between L and Y is confounded by the presence of an

unobserved variable U . Panel (b) shows the corresponding latent projection. The set

of paths in blue, π = {X1 → M1 → Y, X2 → M2 → Y, X1 → M1 → M2 → Y },
represents the π-specific effect we want to estimate. Consider again two levels of X,

denoting treatment by x and no treatment (or treatment at a baseline level) by x∗.

The potential outcome corresponding to π is

Y (π, x, x∗) = Y (x∗1, x
∗
2, L1(x∗1), L2(x∗1, x

∗
2),M1(x1, L(x∗1)),M2(x2, L2(x∗1, x

∗
2)))

and, following Theorem 1.2.9, it can be expressed as a function of interventional den-

sities, since there are no recanting districts for π. Indeed, Y ∗ = {L1, L2,M1,M2, Y }
and D∗ = {{M1}, {M2}, {L1, L2, Y }} and there are no elements of the same district

lying on a blue and on a black path, then, there are no recanting districts. As a
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(b)
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Y

Figure 2.7: A DAG (a) and its corresponding ADMG (b). Blue edges denote paths of interest.

consequence, Y (π, x, x∗) can be expressed as∑
l1,l2,m1,m2

P (Y (x∗1, x
∗
2, l1, l2,m1,m2), L1(x∗1) = l1, L2(x∗1, x

∗
2) = l2)×

P (M1(x1, l1) = m1)P (M2(x2, l2) = m2)

consistently with Equation (1.26). Since P (Y (x1, x2)) is identified as well, the above

product is a function of observed variables∑
l1,l2,m1,m2

P (Y |x∗1, x∗2, l1, l2,m1,m2)P (m2 |x1, x2,m1, l2)×

P (l2 |x∗1, x∗2, l1)P (m1 |x1, l1)P (l1 |x∗1).

The causal effect of X along π can be expressed similarly to natural effects, as the

difference

E[Y (π, x, x∗)]− E[Y (x∗)] =∑
l1,l2,m1,m2

P (Y |x∗1, x∗2, l1, l2,m1,m2)P (m2 |x1, x2,m1, l2)P (l2 |x∗1, x∗2, l1)×

P (m1 |x1, l1)P (l1 |x∗1)−
∑
m1,l1

E[Y |m1, l1, x
∗
1, x
∗
2]P (m1, l1 |x∗1).

This result is an illustration of the following theorem by Shpitser (2013)

Theorem 2.3.1. Let G(V ) be an ADMG representing a causal diagram with unob-

served confounders. Let X be a set of nodes, Y a single node in G, and π a subset

of proper causal paths which start with a node in X and end in Y . If there does

not exist a recanting district for the π-specific effect of X on Y , the counterfactual

distribution P (Y (x)) is identified and P (Y (π, x, x∗)) can be expressed as in 1.26, then

the path-specific effect along the set of paths π on the mean difference scale for active
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(a)
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Figure 2.8: Causal DAG where the recanting district criterion is not satisfied.

value x and baseline value x∗ is equal to

E[Y (π, x, x∗)]− E[Y (x∗)] (2.22)

and the path specific effect along the set of paths π complementary to π as

E[Y (x)]− E[Y (π, x, x∗)]. (2.23)

Figure 2.8(a) is an example where identifiability does not hold (Shpitser 2013).

Districts in D∗ are {M1}, {L1, L2,M2, Y }. The latter is a recanting district, since

the path X2 → M2 → Y is in π, X2 → L2 → Y is in π, and M2 and L2 belong to

the same district, as can be seen from the latent projection in (b). The path-specific

effect cannot be identified.

An application of PSE can be found in Mittinty and Vansteelandt (2020), who

extend natural effects models (Lange et al. 2012, Vansteelandt et al. 2012) to longi-

tudinal settings. The authors assume a structure including a baseline exposure X,

time-varying mediators M and observed confounders L, and an outcome Y measured

at the end of follow-up. They allow for unmeasured confounders between L and Y .

They are interested in the direct effect E[Yt(x,M t(x
∗))−Yt(x∗,M t(x

∗))], correspond-

ing to PSE along paths linking X to Y directly, or through any of the time-varying

covariates, and the indirect effect E[Yt(x,M t(x))− Yt(x,M t(x
∗))], encoding the PSE

along paths connecting X to Y only through the mediators. Notice that the latter

is only a portion of the indirect effect, since the combinations of paths of the form

X → L → M → Y and X → M → Y cannot be identified. The authors limit

themselves to the estimation of the latter kind of paths, which under (a)-(d) are still

identified. Modeling the potential outcome via a natural effect model, such as

h(E[Yt(x,M t(x
∗))]) = γ0 + γ1x+ γ2x

∗ + γ3t+ γ4tx+ γ5tx
∗,



2.3. CAUSAL FRAMEWORK 63

X1

M1 L1

X2

M2 L2

Y

V

. . .

Figure 2.9: Longitudinal mediation model discussed in VanderWeele and Tchetgen Tchetgen (2017).

where h is a known link function, it can be proved that these effects correspond to

combinations of model coefficients. Specifically, if h is the identity function, x =

1, x∗ = 0, the direct effect is given by γ1 + γ4t and the indirect effect by γ2 + γ5t.

2.3.4 Interventional effects

As we have seen, in longitudinal settings assumption (d) can easily be violated. In

this section we show the extension of the interventional effects introduced in Section

1.2.5 to longitudinal settings and how they were employed in the literature.

VanderWeele and Tchetgen Tchetgen (2017) consider a setting which includes

time-varying exposures X, and mediators M , a set of baseline and time-varying covari-

ates V and L, respectively, and an outcome Y measured at the end of the follow-up.

The L variables confound the relationship between the mediators and the outcome at

each time, and they are affected by the exposure. Thus, natural direct and indirect

effects cannot be identified, and one of the solutions is to resort to interventional

effects.

Consistently with the notation introduced in Section 1.2.5, let md
t (x|v) denote a

random draw from the distribution of M t that would have been observed if X were

set to x, with baseline covariates V = v. Identification of longitudinal interventional

effects requires longitudinal analogues of ignorability assumptions (a)-(c), i.e.

(a′′) Y (x,m) ⊥⊥ Xt |X t−1 = xt−1,M t−1 = mt−1, Lt−1 = lt−1, V

(b′′) Y (x,m) ⊥⊥Mt |X t = xt,M t−1 = mt−1, Lt−1 = lt−1, V

(c′′) M(x) ⊥⊥ Xt |X t−1 = xt−1,M t−1 = mt−1, Lt−1 = lt−1, V

where variables with zero or negative subscripts are considered to be null. Under
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these assumptions, the estimand of interest is identified by

Q1(x, x∗) = E[Y (x, md(x∗|v))| v] =
∑
m

∑
lT−1

E[Y |x, m, l, v]
T−1∏
t=1

P (lt |xt, mt, lt−1, v)

×
∑
l†T−1

T∏
t=1

P (mt|x∗t ,mt−1, l
†
t−1, v)P (l†t−1|x∗t−1,mt−1, l

†
t−2, v).

(2.24)

Equation (2.24) is called mediational g-formula. The longitudinal interventional direct

and indirect effects are then given by

IDE = E[Y (x, md(x∗|v))|v]− E[Y (x∗, md(x∗|v))|v] = Q1(x, x∗)−Q1(x∗, x∗)

IIE = E[Y (x, md(x|v))|v]− E[Y (x,md(x∗|v))|v] = Q1(x, x)−Q1(x, x∗)

The authors suggest to use marginal structural models and inverse probability

weighting (Robins et al. 2000) for the estimation of each member of (2.24).

Zheng and van der Laan (2017) propose a modification of the approach just de-

scribed, based on the following observation. VanderWeele and Tchetgen Tchetgen

(2017) use marginal mediator distributions, i.e., they condition only on baseline co-

variates. Zheng and van der Laan point out that, in a survival setting, this method

may lead to ill-defined counterfactuals since “a person who is still alive under X = x,

would be allowed to draw the mediator value of someone under X = x∗ who has

died”. Instead, their proposal is based on conditional interventional counterfactuals,

where the conditioning is on each subject’s time-varying history. Consider the data

structure

O = (V0, X1, L1,M1, V1, . . . , Xt, Lt,Mt, Vt, . . . , XT , LT ,MT , VT ⊃ YT ) ∼ D0,

where V0 are baseline covariates, Lt are covariates affected by the exposure Xt and

which may affect the mediator Mt and Vt. Here, Vt are covariates affected by

Xt, Lt, Mt, and, in particular, VT , includes the final outcome YT ≡ Y .

The data structure O entails a certain time ordering, but the results obtained by

the authors can be easily adapted to other choices of temporal order. Let x and x∗

be two distinct regimens of the exposure and let

Γx
∗

t (mt| lt,mt−1, vt−1) ≡

P (Mt(x
∗) = mt |Lt(x∗) = lt,M t−1(x∗) = mt−1, V t−1(x∗) = vt−1)

indicate the conditional probabilities of the mediators at t ≥ 1 if X has been set
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to x. At any time t, the mediator is a random draw from this distribution, denote

it by md
t (Γ

x∗
t ). From this formulation and sequential ignorability assumptions, the

conditional mediation formula can be obtained as

Q2(x, x∗) = E
[
Y (x,md

t (Γ
x∗

t ))
]

=∑
l,v,m

yP (v0)
T∏
t=1

P (lt |xt, lt−1,mt−1, vt−1)P (mt |x∗t , lt,mt−1, vt−1)P (vt |xt, lt,mt, vt−1).

The interventional direct and indirect effects are identified and given by

IDE = E
[
Y (x,md

t (Γ
x∗

t )
]
− E

[
Y (x∗,md

t (Γ
x∗

t ))
]

= Q2(x, x∗)−Q2(x∗, x∗)

IIE = E
[
Y (x,md

t (Γ
x
t ))
]
− E

[
Y (x,md

t (Γ
x∗

t ))
]

= Q2(x, x)−Q2(x, x∗),

respectively. This definition leads to an additive decomposition of the total effect, as

usual. The authors propose several methods for estimating the effects, specifically,

they use efficient influence curves, and discuss three other methods, i.e. nested nontar-

geted substitution estimation, inverse probability weighting and targeted maximum

likelihood estimation, see Zheng and van der Laan (2017) for more details.

Lin, Young, Logan and VanderWeele (2017) use a similar approach, specifically

targeted for survival outcomes. They consider a setting akin to that described in

Zheng and van der Laan (2017), including a vector V of initial baseline covariates

and time-varying exposures, mediators and confounders, denoted by X, M and L,

respectively. Yt is a survival outcome taking the value 1 or 0 according to whether

the patient is alive at time t or not. Notice that, differently from previous models,

the outcome is not measured at the end of follow-up, but is itself time-varying. Since,

also in this case, the presence of time-varying confounders violates assumption (d),

the authors discuss why natural direct and indirect effects are not identifiable from

data and they propose randomised interventional analogues of mediational effects,

considering random draws from the mediator distribution, similarly to VanderWeele

and Tchetgen Tchetgen (2017) and Zheng and van der Laan (2017).

At time t = 1, define M∗
1 = M1(x∗1), md∗

1 as a random draw of M∗
1 , Y ∗1 =

Y1(x1,m
d∗
1 ). Letting M∗

t ≡ Mt(x
∗
t , m

d∗
t−1, Y

∗
t−1), where md∗

t = (md∗
1 , m

d∗
2 , . . . ,m

d∗
t )

and Y ∗t ≡ Yt(xt, m
d∗
t , Y

∗
t−1), the authors define an alternative mediation parameter2

as Q3(x, x∗) = E[Y ∗T ]. Under sequential ignorability and some consistency assumptions

not reported here for the sake of brevity, the mediation parameter can be identified

2Here we borrow the notation used by VanderWeele and Tchetgen Tchetgen (2017).
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as

Q3(x, x∗) =
∑
v,m

∑
l

T∏
t=1

E[Yt |xt, mt, lt, Yt−1 = 1, v]×
T−1∏
t=1

P (lt |xt, mt, lt−1, Yt−1 = 1, v)

×
∑
l†T−1

T∏
t=1

P (mt |x∗t , mt−1, l
†
t−1, Y t−1 = 1, v)P (l†t−1 |x∗t−1, mt−1, l

†
t−2, Y t−2 = 1, v)P (v).

This expression is called the survival mediational g-formula and the interventional

direct and indirect effects result to be identified and can be written as Q3(x, x∗) −
Q3(x∗, x∗) and Q3(x, x) − Q3(x, x∗), respectively. The authors also suggest a para-

metric method to estimate the mediational g-formula based on maximum likelihood.

Interventional effects do not have the same interpretation as natural ones. A

non null interventional indirect effect means that an intervention on the exposure

generates a change in the distribution of the mediator, which, in turn, generates a

change in the outcome. The interventional direct effect is the difference in the outcome

obtained comparing its value under treatment versus its value under no treatment,

setting the mediator to a random draw from its distribution with baseline or null

exposure. See VanderWeele and Tchetgen Tchetgen (2017) for an example about

racial health disparity. Moreover, as already remarked, VanderWeele and Tchetgen

Tchetgen (2017) and Zheng and van der Laan (2017) use different distributions of the

mediator from which to draw: the former consider the distribution of the mediator

under the intervened exposure and given baseline covariates V , the latter use instead

the distribution of the mediator under a certain intervention, conditional on the

mediator history, i.e., taking into account all its predictors, for each time t.

2.3.5 Separable effects

In recent years, the separable effect approach has been applied to longitudinal medi-

ation settings with survival outcomes (Didelez 2019b, Aalen et al. 2020).

Didelez (2019b) analyses the case of a time-to-event outcome, in particular the

counting process N(t) = δ(Y ≤ t), where Y is time to death; the mediator M(t)

is time-varying, while the exposure X is fixed at baseline and its two components

are denoted by XY and XM , the former affecting the outcome, the latter only the

mediator.

Observationally, we have X ≡ XY ≡ XM , but it is possible to conceive an in-

tervention setting the two components to different values, say x and x∗. The target

of inference is the interventional survival function P (YXM=x∗, XY =x > t)3 and the

3Just in this case, to avoid clutter, we write counterfactuals as subscripts instead of in brackets as done so far.
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Figure 2.10: Longitudinal separable effects mediation model (Didelez 2019b).

separable mediational effects can be obtained as contrasts of

P (YXM=x∗, XY =x > t) vs. P (YXM=x∗, XY =x∗ > t)

for the direct effect and

P (YXM=x,XY =x > t) vs. P (YXM=x∗, XY =x > t)

for the indirect effect.

Consider a simple scenario where the mediator and the outcome are assessed at T

distinct time points. The expanded graph is shown in Figure 2.10.

For the effects to be identifiable, it is necessary to make strict assumptions about

the independence of each exposure component from the variable it does not affect,

that is,

A1. M(t) ⊥⊥ XY |M(t− 1), N(t− 1) = 0, XM = xM

A2. N(t) ⊥⊥ XM |M(t), N(t− 1) = 0, XY = xY .

It is required that XM is independent of N(t) and XY of M(t), given past values

of the mediator and the outcome count process. Assuming also that the treatment

is randomised and that P (WXM=j,XY =j) = P (WX=j) for each variable W and ∀ j =

x, x∗, holds (property P1 in Didelez 2019b), one can derive the following

P (YXM=x∗, XY =x > t′) =
∑
m(t′)

t′∏
t=1

P (N(t) = 0 |X = x,N(t− 1) = 0,M(t) = m(t))

× P (M(t) = m(t) |X = x∗, N(t− 1) = 0,M(t− 1) = m(t− 1)),

which allows us to compute the separable effects of interest.

This approach can be extended to include exposure-induced confounders and time-

varying covariates. As noted by Didelez (2019b), if the treatment is randomised, ad-
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justing for covariates is not necessary to make the relationship between XM and XY

unconfounded, since this holds by design, but it is useful to make M(t) and N(t) in-

dependent of the opposite treatment component. Then, these variables should not be

regarded as proper confounders, but as variables which may prevent the separability

of the treatment components.

Aalen et al. (2020) apply these results in a survival setting including covariates.

They assume a linear model for the mediators and an additive hazard model for

the outcome and derive analytical expressions for survival and cumulative direct and

indirect effects.

2.3.6 Other approaches

As done for the associational models, in this section, we provide a brief overview of

other causal approaches which cannot be included in any of the categories previously

discussed.

Some recent papers (Aalen and Frigessi 2007, Aalen et al. 2012, 2016) have pointed

out the dynamic nature of mediation, as a process operating in continuous time. These

authors discuss and compare the mechanistic and the interventionist conceptualisation

of mediation, and suggest to model stochastic processes instead of variables. As

reported in Aalen and Frigessi (2007), “When thinking of direct and indirect effects,

one has in mind some process. [...] Hence, there is a need for a statistical framework

that models the effects that stochastic processes have on one another”. A method

proposed to take into account the dynamic aspect of mechanisms is dynamic path

analysis. Introduced by Fosen et al. (2006), dynamic path analysis considers a set of

covariates Z1, . . . , Zp and an outcome process Y (t). The relationships among variables

are represented by a set of time-indexed DAGs, one for each recorded time occasion,

where the vertex set is constant over time, while the edge set changes, since some links

connecting variables may appear or disappear. Direct and indirect effects are defined

as integrals of products of coefficients, somewhat similar to standard path analysis.

Under the assumptions of no-unmeasured exposure-outcome and mediator-outcome

confounders, these effects can be interpreted in a causal way, although their definition

does not rely on a counterfactual framework (Strohmaier et al. 2015).

Vansteelandt et al. (2019) discuss a methodology to address longitudinal media-

tion in a survival setting and considering a counterfactual framework. The formula

to compute the estimand of interest is partly similar to the g-formula, but, as the

authors themselves remark, it does not follow from that theory. They show that their

approach is a generalisation of dynamic path analysis since it can accommodate more

general models for the mediator and the outcome and the inclusion of time-varying
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confounders.

Finally, in recent years Bayesian inference has seen a rise, also in the field of

mediation. Yuan and MacKinnon (2009) describe the advantages of this approach and

show how to apply it in single-level and multilevel models. Indeed, Bayesian methods

allow one to make more accurate estimates by incorporating prior information into

mediation parameters, and they make it easier to compute confidence intervals for the

mediated effect, since it is possible to obtain the entire posterior distribution of the

effect. Miočević et al. (2018) and Daniels et al. (2012) propose methods to address

causality in a Bayesian mediation framework, which is further extended by Kim et al.

(2019), who explicitly address a longitudinal mediation setting through a Bayesian

dynamic model.

2.3.7 Discussion

The main difference between the approaches addressed in this section is the estimand

of interest and, as a consequence, the corresponding assumptions which ensure its

identifiability. Bind et al. (2016) are interested in natural effects, indeed their as-

sumptions are a modified version of (a)-(d), to accommodate the presence of random

effects. Thus, they assume cross-world independence, which holds in the graph in

Figure 2.6 (Fig. 1 in their paper), since there are no mediator-outcome confounders

affected by the exposure. We have already discussed that, in some contexts, this as-

sumption can be quite implausible. It is worth noting that these assumptions suffice

to ensure non-parametrical identifiability just in the case of non-correlated random

effects (see Appendix A for more details). PSE are a generalisation of natural effects,

indeed they were developed in a NPSEM framework, the only one which permits the

identification of cross-world counterfactuals.

VanderWeele and Tchetgen Tchetgen (2017), Zheng and van der Laan (2017) and

Lin, Young, Logan and VanderWeele (2017) consider settings including time-varying

confounders affected by the exposure, then, natural effects cannot be identified. All

of them use interventional effects and, as in Bind et al. (2016), they consider static

regimes. Each approach relies on its own assumptions, although the underlying logic

is similar. VanderWeele and Tchetgen Tchetgen (2017) assume static sequential ig-

norability (a′′)-(c′′), conditioning also on baseline covariates V . Zheng and van der

Laan (2017) consider a setting a bit more complex and require no unmeasured con-

founders of the relationship between Xt and all its subsequent covariates, including

mediators, conditional on observed history, and no unmeasured confounders of the

relationship between the mediator at each time Mt and all its subsequent covariates,

conditional on observed history. They also include some positivity assumptions. Fi-
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nally, the assumptions proposed by Lin, Young, Logan and VanderWeele (2017) are

specific for settings with a time-to-event outcome measured at each time, and are

probably more controversial than those in the other two works. The outcome is an

intervening variable as well, on which it is necessary to intervene to ensure that a

subject survives up to t− 1.

Natural, path-specific and interventional effects entail an intervention on the me-

diator, either at individual or population level. In contrast, the separable effect

approach does not require interventions on the mediators, just on the separate com-

ponents of the exposure(s). This approach has only recently been applied to longi-

tudinal settings and it seems a promising ground for future extensions. Robins et al.

(2020) provide intriguing contributions by extending the previous work by Robins and

Richardson (2011) in many directions: they consider the case of multiple treatments,

which is a straightforward extension of the simpler case, and discuss how to identify

PSE in the presence of hidden variables, proposing a two-step algorithm based on the

recanting district criterion introduced by Shpitser (2013). Their extensions to mul-

tiple treatment can provide insights into the issue of time-varying treatments, since

the setting is similar.

As remarked by Robins et al. (2020), the separable effects theory is very advanta-

geous from many points of view: not only it allows for identification of effects in a wide

variety of causal models, but separable components of X also have a proper causal

meaning and, for substantive researchers, it may be easier to conceive interventions

on these separable components than on the mediator.

However, this approach is not free from drawbacks. First, one should be willing

to assume that the exposure acts along two or more different pathways. This as-

sumption is plausible for some biological processes, but there are cases in which this

decomposition is not practically nor even hypothetically conceivable. Second, each

child of the exposure in the original graph should be affected by only one compo-

nent of X in the expanded graph, an assumption which can be questionable in some

applied contexts. Furthermore, in Didelez (2019b) it is assumed that the exposure

is randomised, a strong assumption difficult to satisfy in observational studies. Fi-

nally, the independence of XY from M(t) and of XM from N(t) conditionally on

history could be violated in the presence of unobserved variables, for example, if an

unobserved variable affects both M(t) and N(t). Didelez (2019b) remarks that an

insufficient number of measurements of M(t) could be another source of violation of

the assumptions.

In some of the discussed approaches, the effects can be non-parametrically iden-

tified by a version of the g-formula (Robins 1986). The g-formula is one of the
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g-methods, which enable us to estimate the causal effect of a time-varying expo-

sure on an outcome of interest taking into account time-varying confounders. The

g-formula has been implemented in many pieces of software, although some of them

are not specific for mediation. The packages currently available are gformula in Stata

(Daniel et al. 2011) and gfoRmula in R (Lin et al. 2020). VanderWeele and Tchetgen

Tchetgen (2017) and Lin, Young, Logan and VanderWeele (2017) implement SAS

codes for their g-mediation formula, the former is specific for the data set used in the

paper, the latter is more general and implements the algorithm described in Section

4 of Lin, Young, Logan and VanderWeele (2017). Aalen et al. (2020) do not develop

an R package, but they provide codes to replicate their study.

2.4 General discussion and conclusions

In this chapter, we have discussed the associational models and the causal approaches

more frequently employed for addressing longitudinal mediation analysis in discrete

time. We focused mainly on the definition of mediational effects, their interpretation,

and assumptions required to identify them when analysed in causal frameworks. In

this regard, we addressed two issues, violation of the cross-world independence as-

sumption and time-varying confounders, which may hinder identification, and review

alternative assumptions to overcome them.

Drawing causal inferences from observational data is not straightforward, and in

the longitudinal setting, this task may become quite complicated. Several assump-

tions have to be made to ensure identifiability of mediational effects. These assump-

tions must take into account the temporal dependencies among variables and carefully

ponder on which covariates to include in the model. The issue of time-varying con-

founders, as remarked many times, is of paramount importance. There exist several

definitions of causal mediational effects, and each of them requires different sets of

assumptions for being identifiable. Researchers who want to draw causal inferences

from their longitudinal mediation analyses should be aware of the assumptions needed

to identify the effects of interest and decide if they are plausible in the setting under

study.

In Section 2.2 we have discussed some models which are not inherently causal.

However, many researchers use SEMs or mixed-effect models for their analyses and

comment results in causal terms without stating explicitly conditions which ensure

such an interpretation. Usami et al. (2019) analyse the assumptions necessary to

interpret SEM parameters as causal in the presence of two variables affecting each

other reciprocally. Their considerations can be extended to the mediational setting
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and models discussed so far, in the light of the considerations on identifiability made

before. Notice, that the identifiability issues discussed at the end of Section 2.2

are not the same we are now addressing. Here, instead, we want to suggest which

assumptions are needed for interpreting associational parameters causally and making

them identifiable, parametrically or not.

It can be demonstrated that, for the CLPM shown in Figure 2.2, the natural

and the separable mediational effects are nonparametrically identified (proofs are

given in Appendix A). However, the LGM and LDS models include several latent

variables, which prevent nonparametric identification. For these models, parametric

assumptions are needed to ensure effects to be expressible as functions of observed

data. Technical details can be found in Appendix A.

Another interesting aspect emerging from this review is how differently the as-

sociational and causal approach address latent variables. In SEMs and mixed-effect

models, latent variables play a key role in defining the trajectories of change or encod-

ing the dependence among temporal occasions. In causal models, latent variables are

mainly a source of problems, since they often prevent the identification of mediational

effects. In recent years, some scholars have started addressing the issue of estimating

mediational effects in models including latent variables. Loeys et al. (2014), Loh et al.

(2020) show how to estimate the controlled direct effect when variables are measured

with errors. Muthén and Asparouhov (2015), Albert et al. (2016), Valeri et al. (2014)

provide estimation methods for the natural mediational effects when the mediator is

measured with error. Among the aforementioned studies, only the one by Loh et al.

(2020) is longitudinal. In addition, most articles use latent variables as a way to tackle

measurement error. However, given the flexibility and the richness of SEM, it would

be interesting to endow longitudinal mediation SEMs with a causal interpretation.

This issue will be addressed in Chapter 4.

To the best of our knowledge, this is the first review giving a rich overview of

methods to tackle longitudinal mediation analysis. The contribution of the chapter

is twofold: it uniforms the heterogeneous notation present in the literature on the

topic and addresses different issues related to longitudinal mediation, showing various

approaches to deal with them. However, it is worth noting some limitations. We did

not address inferential issues, such as estimation methods and hypothesis testing.

Moreover, we have discussed methods considering time as discrete and, in the causal

framework, we focused only on static regimes. Future work will be necessary to

investigate inference methods and to provide a review of continuous-time longitudinal

mediation.
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Chapter 3

Structural and multilevel

mediation models: a unification

In the previous chapter we reviewed the main approaches to deal with longitudinal

mediation analysis, distinguishing between the associational and the causal frame-

work. In this chapter, we focus on the former and show that the models we addressed

in Chapter 2, i.e. SEMs and mixed-effect models, can be seen as instances of a more

general unified model. In the first section we prove that mixed-effect models can

be written as structural equation models; in the second one we introduce the RAM

notation which will be useful to write a general model encompassing SEMs and lin-

ear mixed-effect models. In Section 3 we describe the unified model and show how

CLPMs, LGMs, LDS models and mixed-effect models can be formalised within this

framework. Section 4 focuses on how longitudinal mediation models can be addressed

in the multilevel SEM framework through definition variables. In Section 5 we discuss

inferential aspects and in Section 6 we draw some conclusions.

3.1 Mixed-effect models as SEMs

Structural equation models and mixed-effect models have traditionally been addressed

as separate and distinct models. They were developed at different times and stem

from different traditions.

SEMs have their roots in several disciplines, and their origins can be traced back

to Sewall Wright’s method of path analysis, devised to address genetic questions

(Wright 1920, 1921, 1934), to the advances of factor analysis in psychology (Lawley

1940, Harman 1960, Jöreskog 1969), and to the simultaneous equation models de-

veloped in econometrics by Haavelmo (1943) and Koopmans et al. (1950). The ’70s

represented a fundamental decade for the development of SEMs, thanks to the con-

74
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tributions of many scholars, above all Jöreskog. In some landmark papers (Jöreskog

1970, 1973, 1978), he formalised covariance analysis and specified a model encompass-

ing all the different instances proposed in the previous years, unifying simultaneous

equation models with the possibility of including latent variables. He also developed

an estimation procedure for SEM based on maximum likelihood and implemented

it in a specific program called LISREL (LInear Structural RELations, Jöreskog and

Sörbom 2001), which became so popular that its name ended up denoting the model

specification in addition to the software.

Mixed-effect models, also known as multilevel or hierarchical models, can be seen

as a generalisation of traditional regression models which can accommodate the inter-

dependence among subjects belonging to the same group, for example people living

in the same neighbourhood. These models are suited for the cases in which it is

possible to distinguish two or more levels of aggregation for units, for example in a

two-stage sampling, where first J level-2 units are randomly drawn (schools, depart-

ments, neighborhoods) and from each of them nj level-1 units are drawn (students,

employees, citizens). Mixed-effect models were introduced in the early ’50s by Charles

Henderson, an expert of genetics and animal breeding, who was trying to improve

the quantitative methods to produce the best genetic characteristics in breeds (Hen-

derson 1953). About thirty years later, Goldstein (1979) and Laird and Ware (1982)

proposed mixed-effect models for longitudinal data in the context of social sciences

and biometrics, respectively. The key characteristic of these models is the presence of

one or more random coefficients differing across clusters, which capture the between

component of units’ heterogeneity. Over the decades, researchers have developed

the theory underlying multilevel models to address more complex settings, like un-

balanced designs and non-Gaussian variables. Reviews on the topic can be found

in Verbeke and Molenberghs (2000), Raudenbush and Bryk (2002), Bickel (2007),

Gelman and Hill (2007) and Snijders and Bosker (2012).

Although SEMs and mixed-effect models may appear quite different at first sight,

they have a lot in common. The similarities between them have been known to

scholars since the end of the last century. Meredith and Tisak (1984, 1990) were

the first to acknowledge that multilevel models can be fitted in the SEM framework,

focusing on the case of LGMs. In the next years, the same topic was investigated by

several other researchers (Chou et al. 1998, Rovine and Molenaar 1998, 2000, 2001).

Bauer (2003) and Curran (2003) extensively discuss how to translate multilevel models

into the SEM notation, showing that this is possible not only for balanced data, but

even for unbalanced designs through an appropriate data managing procedure. In

what follows we summarise the main results in Bauer (2003) and Curran (2003),
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which will be useful throughout this chapter.

Consider a basic linear mixed model with a random intercept and a random slope

Yij = π0j + π1jXij + ε
Y ij
, (3.1)

where i and j denote level-1 (subjects) and level-2 (clusters) units, respectively. π0j

and π1j are the random intercept and random slope, respectively, which vary for each

cluster j and can be written as the sum of their expected (fixed) values and a random

deviation u, as shown below:

π0j = κ0 + u0j

π1j = κ1 + u1j.
(3.2)

Combining these equations yields the traditional formulation

Yij = (κ0 + u0j) + (κ1 + u1j)Xij + ε
Y ij
. (3.3)

Combining equations shown in (2.7) for LGMs, where subjects represent the clusters

and measurement occasions the individuals, the resulting equation is

Yit = (µθ0 + ζθ0i) + (µθ1 + ζθ1i)λt + ε
Y it
,

from which it immediately follows the isomorphism between mixed-effect models and

LGMs.

For the moment, let us assume that the design matrix X of the mixed-effect model

contains only variables which take the same values for each subject, for example Time

in a longitudinal balanced case. In this setting X is invariant across subjects and does

not need to be indexed. We will relax this assumption later. Rewriting both models

in matrix form, the mixed-effect model is given by the following equations:

yj = Xπj + εyj j = 1, . . . , J (3.4)

πj = κ+ uj j = 1, . . . , J (3.5)

which combined give

yj = Xκ+ Xuj + εyj. (3.6)

The covariance structure implied by Equation (3.6) is

Σy = XΦX′ + Θε, (3.7)

where Φ and Θε are the covariance matrices of uj and εyj.
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An LGM can analogously be written as (cfr. Section 2.2.2, Chapter 2)

yi = Ληi + δyi (3.8)

ηi = µ+ ζi (3.9)

which combined yield

yi = Λµ+ Λζi + δyi (3.10)

and the implied covariance structure is

Σy = ΛΨΛ′ + Θδ, (3.11)

where Ψ and Θδ are the covariance matrices of ζi and δyi.

Comparing Equations (3.5) and (3.7) with Equations (3.9) and (3.11), it is evident

that the two models share the same structure. Specifically, X corresponds to Λ, κ to

µ, Φ to Ψ and Θε to Θδ. These correspondences inform us on the way the parallelism

can be implemented. The fact that the design matrix X corresponds to the factor

loadings matrix Λ tells us that the variables assuming the role of predictors in mixed-

effect models become loadings in LGMs. The vector of fixed effect κ in mixed models

corresponds to the mean of the latent variables µ, and the vector of random effects

uj is analogous to the η’s vector of errors ζi. A concrete example will be provided in

Section 3.3.

In the balanced case, multilevel models can be written as SEMs quite straight-

forwardly. However, as soon as the number of level-1 predictors increases, the data

managing process becomes harder and more tedious, see Curran (2003). In addition,

including a continuous level-1 predictor may be troublesome, since it would imply

to treat all the values assumed by this variable, but not observed in the sample, as

missing (Curran 2003, Bauer 2003).

The difficulties increase when the design is unbalanced, as the equivalence between

mixed-effect models and SEMs is more complex to express, although not impossible,

as shown by Bauer (2003) and Curran (2003). There are two methods to address

unbalanced designs, the missing-data approach and the case-varying factor loadings

approach.

The former relies on the assumption that the number of subjects in each cluster

equals that of the most numerous one. If a cluster has less units, the remaining values

are treated as missing. For example, suppose to carry out a study on the quality of

hospital care in a given city. To do this, one may sample J city hospitals and draw

from each a number of patients ranging from nmin to nmax, who are asked to judge

the quality of their hospitalisation. The maximum number of patients sampled is
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nmax, then the missing-data approach assumes that nmax patients are sampled from

each hospital and, if hospital j presents less patients, say nmin < nj < nmax, the

information related to the remaining nmax − nj is missing. The advantage of this

approach is that it entails a unique factor loading matrix, common to all clusters,

and the model can be fitted by using a single covariance matrix and a single mean

vector. Nonetheless, the inclusion of a continuous covariate in the model can make

the estimation computationally intensive if not impossible.

To overcome this problem, it would be necessary to allow the factor loading matrix

to vary over clusters, which is exactly what the case-varying factor loadings approach

does. In order to accommodate the unbalanced design, each cluster can have its own

factor loading matrix, which therefore is no longer common to all level-2 units. As a

consequence there are as many Λ’s as the number of clusters: each Λj, j = 1, . . . , J,

has the dimension of the cluster and each of its column contains the values assumed

by the corresponding predictor in cluster j. Considering the previous example about

hospitalisation quality, it is plausible to think that the opinion on quality may depend

on the severity of a patient’s conditions. Then, if the model is assumed to include

a random intercept and a random slope for the patients’ health status, each Λj will

include a unit column and a column with cells containing the severity of condition

score of each patient sampled from hospital j. Level-1 predictors having an effect

assumed as random and which are included in Λ as loadings are called definition

variables. This concept was introduced by Mehta and West (2000), to deal with

LGMs where measurement occasions differ across subjects, and by Mehta and Neale

(2005) in the more general framework of multilevel SEM, which will be discussed later

in this chapter.

Since we showed that mixed-effect models can be written in an SEM fashion in

both balanced and unbalanced cases, we propose to see CLPMs, LGMs, LDS and

mixed-effect models as special instances of a unified model that will be described

in Section 3.3. First, we need to introduce the RAM notation, which is crucial to

understand the rest of the chapter.

3.2 Introduction to the RAM notation

The Reticular Action Model (RAM) was developed by McArdle at the end of the

’70s with the aim to generalise LISREL (Jöreskog and Sörbom 2001) and COSAN

(McDonald 1978) notations, by using a compact matrix representation (McArdle

1978, 1979a,b). The key advantage of RAM over LISREL and COSAN is that it

relies only on three matrices, and it has been proved that LISREL and COSAN are
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subcases of RAM. A formal treatment of RAM and its algebraic properties is given in

McArdle and McDonald (1984) and McArdle (2005). This section is based on these

two references, but the notation is slightly changed to be consistent with the previous

equations and those coming next.

Let η be a vector of r random variables and let

η = Γη + ζ, (3.12)

where Γ is a square matrix of coefficients γij representing the influence of column

variable ηj on row variable ηi, and ζ is a vector of residuals. We define the following

r × r matrices

Φ = E[ηη′] Ψ = E[ζζ ′] (3.13)

the elements of which, ϕij and ψij, represent the symmetric overall association be-

tween ηi and ηj, and the structural relationship between the residual variables ζi and

ζj, respectively.

Equation (3.12) can be rewritten as

ζ = η − Γη = (Ir − Γ)η,

where Ir is the r×r identity matrix. If (Ir−Γ) is non-singular, the previous equation

can equivalently be written as

η = (Ir − Γ)−1ζ,

from which it follows that Φ and Ψ can be re-expressed as

Φ = (Ir − Γ)−1Ψ(Ir − Γ)−1′

Ψ = (Ir − Γ)Φ(Ir − Γ)′.

The η vector can be partitioned into two subvectors o of p components and l of

q components, corresponding to observed and latent variables, respectively, so that

r = p+ q.

Defining a p× r matrix F partitioned into a p× p identity matrix and a p× q null

matrix

F = [Ip |0] ,

the vector of observed variables can be obtained as

o = Fη = [Ip |0]

[
o

l

]
. (3.14)
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F is a fixed matrix containing only 0 and 1, used as a filter to select only the observed

variables from η.

To complete the RAM model specification we can rewrite the vector of observed

variables as

o = F(Ir − Γ)−1ζ (3.15)

and its model-implied covariance matrix as

Σ = E[oo′] = F(Ir − Γ)−1Ψ(Ir − Γ)−1′F′.

Notice that, at first glance, it may seem that this specification rules out the possibil-

ity to include variable means or intercepts. In fact, they can be easily accommodated

by including a constant unit vector in η, as discussed in McArdle (2005). However, it

is often easier to consider the vector of means/intercepts as separate from the factor

loadings matrix, for this reason Equations (3.12) and (3.15) are rewritten as follows

η = µ+ Γη + ζ

o = F(Ir − Γ)−1(µ+ ζ)

(3.16)

where µ is the mean/intercept vector. This is the notation adopted by the R library

OpenMx, for example. The model-implied mean vector is then written as

E[o] = µo = F(Ir − Γ)−1µ. (3.17)

The matrices Γ,Ψ and F are the building blocks of the RAM notation.1 Γ and Ψ

are patterned matrices, since their elements can be freely estimated, constrained to

assume fixed values or to be functions of other parameters. In contrast F is fixed by

the researcher, who uses it to indicate which model variables are observed.

To clarify these concepts, let us consider a one-factor model as that represented

in Figure 3.1. The model includes a single latent factor ω and its three observed

indicators, Y1, Y2 and Y3. Equation (3.12) is given by
Y1

Y2

Y3

ω

 =


0 0 0 λ1

0 0 0 λ2

0 0 0 λ3

0 0 0 0



Y1

Y2

Y3

ω

+


ζ
Y 1

ζ
Y 2

ζ
Y 3

ζω


1In the original notation proposed by McArdle and McDonald (1984) Γ and Ψ are called A and S, respectively.

These are also the names they take in specialised software or packages, like the OpenMx and sem packages in R.
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ω

Y1 Y2 Y3

λ1 λ2 λ3

ψ2

φ21 φ22 φ23

Figure 3.1: One-factor CFA model.

and Ψ by 
φ2

1 0 0 0

0 φ2
2 0 0

0 0 φ2
3 0

0 0 0 ψ2

 .

In this case o = (Y1 Y2 Y3)′ and l contains only ω, therefore r = 4, the sum of

p = 3 and q = 1. The filter matrix is then

F =

 1 0 0 0

0 1 0 0

0 0 1 0

 .

As already mentioned, RAM notation was proved to be equivalent to LISREL

and COSAN ones (McArdle and McDonald 1984, McArdle 2005). This allows one

to rely on the same estimation theory, exploiting the RAM algebraic simplicity. Let

S denote the sample covariance matrix and let f(S,Σ) be a loss function. The

parameter estimates for Γ and Ψ belong to the set of solutions of the following first-

order partial derivative equations

∂f(S,Σ)/∂Γ = I− 2 Vec
{

[F(Ir − Γ)]′V [F(Ir − Γ)Ψ(Ir − Γ)]
}

= 0

∂f(S,Σ)/∂Ψ = Vec
{

[F(Ir − Γ)Ψ]′V [F(Ir − Γ)Ψ]
}

= 0,

(3.18)

where Vec(·) is the column operator and V = ∂f/∂Σ. Following McDonald and

Swaminathan (1972), it is possible to write a general quadratic form of a Newton-

based optimization scheme whose k-th step is

(Γ̂, Ψ̂)k+1 = (Γ̂, Ψ̂)k − αkW−1∇k

where (Γ̂, Ψ̂)k is a vector of estimates for Γ and Ψ at step k, αk is a constant in the

interval (0, 1) to prevent descent divergence, W is a square symmetric positive-definite
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matrix and ∇ is the gradient vector. If W is the Hessian matrix, i.e. W = ∂2f/∂Σ2,

the iterative procedure reduces to the traditional Newton-Raphson algorithm. A

concrete example of how the procedure works can be found in McArdle (2005).

One of the most well known loss functions is that obtained from the log-likelihood of

a multivariate Normal, i.e. when all variables are assumed to be Normally distributed,

and is given by

f(S,Σ) = FML = log |Σ|+ tr(SΣ−1)− log |S| − (p+ q), (3.19)

where | · | and tr(·) are the determinant and the trace of a matrix, respectively. Bollen

(1989) shows where this function stems from and illustrates its application to a very

simple model, see Appendix 4A and 4C of his book. We will come back to Equation

(3.19) in the next sections.

3.3 Unified model

Having introduced the RAM notation, we are now ready to show how SEMs and

mixed-effect models can be seen as special instances of a general unified model.

The CLPM, LGM and LDS models, described in the last chapter, are widespread in

the analysis of longitudinal data and the choice of the most appropriate depends on the

type of data and on the interest of the researcher. Pairwise comparisons between them

have been made in several papers (Serang et al. 2019, Curran and Bollen 2001, Usami

et al. 2015, 2016), which have highlighted common characteristics and differences. A

separate mention should be made to mixed models, which, as previously said, have

traditionally been conceived as a class of models different from SEMs. For example,

McNeish and Matta (2018) point out the differences between LGMs and mixed-effect

models.

Indeed, all these models present strengths and drawbacks and, for this reason,

researchers have tried to combine them, proposing new models. Curran and Bollen

(2001), Bollen and Zimmer (2010) introduce the autoregressive latent trajectory model

(ALT), which combines the flexibility and the capability of modelling individual tra-

jectories of LGM with the possibility of including dependencies among variables over

time as in CLPM. Hamaker et al. (2015) propose the random intercept cross-lagged

panel model (RI-CLPM), which incorporates latent variables into the factor CLPM.

Specifically for the mediation setting, Zhang et al. (2018) and Wu et al. (2018) in-

troduce similar models, called multilevel autoregressive mediation models (MAMMs)

and random effects cross-lagged panel models (RE-CLPM), respectively. They are ba-

sically autoregressive models where coefficients can be decomposed into a fixed and
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a random part, as in mixed models. Zhang and Phillips (2018) further extend this

idea to clustered data.

In this section, we propose a general unified model which encompasses CLPM,

LGC, LDS and mixed models. Usami et al. (2019) propose a unified framework for

many longitudinal models, but not for mixed effect models and not in the media-

tional case. The idea developed in this section partly relies on that in Bollen and

Curran (2004) and Bollen and Zimmer (2010), but we extend their framework to the

mediational setting and include also LDS and mixed effect models2. Although we

present the unified model in a longitudinal framework, clearly the results are quite

general and the proposed model can be used in any context with clustered data, not

necessarily including repeated measures.

Let us assume a balanced design, so that the exposure, the mediator and the

outcome are measured at the same T time occasions and rewrite Equations (3.14)-

(3.16) in a subject-specific fashion, for each subject i = 1, . . . , n:

ηi = µ+ Γηi + ζi (3.20)

oi = Fηi. (3.21)

In extended form, these equations become

xi
mi

yi
zi
x̃i
m̃i

ỹi
θ0i

θ1i


=



µx
µm
µy
µz
µx̃
µm̃
µỹ
µθ0
µθ1


+



Γxx Γxm Γxy Γxz Γxx̃ 0 0 Γxθ0 Γxθ1

Γmx Γmm Γmy Γmz Γmx̃ Γmm̃ 0 Γmθ0 Γmθ1

Γyx Γym Γyy Γyz Γyx̃ Γym̃ Γyỹ Γyθ0 Γyθ1

Γzx Γzm Γzy Γzz 0 0 0 0 0

0 0 0 0 Γx̃x̃ Γx̃m̃ Γx̃ỹ Γx̃θ0 Γx̃θ1

0 0 0 0 Γm̃x̃ Γm̃m̃ Γm̃ỹ Γm̃θ0 Γm̃θ1

0 0 0 0 Γỹx̃ Γỹm̃ Γỹỹ Γỹθ0 Γỹθ1

Γθ0x Γθ0m Γθ0y Γθ0z Γθ0x̃ Γθ0m̃ Γθ0ỹ Γθ0θ0 Γθ0θ1

Γθ1x Γθ1m Γθ1y Γθ1z Γθ1x̃ Γθ1m̃ Γθ1ỹ Γθ1θ0 Γθ1θ1





xi
mi

yi
zi
x̃i
m̃i

ỹi
θ0i

θ1i


+



εxi
εmi
εyi
εzi
δx̃i
δm̃i
δỹi
ζθ0i
ζθ1i




xi
mi

yi
zi

 =


IT 0 0 0 0 0 0 0 0

0 IT 0 0 0 0 0 0 0

0 0 IT 0 0 0 0 0 0

0 0 0 Iv 0 0 0 0 0





xi
mi

yi
zi
x̃i
m̃i

ỹi
θ0i

θ1i


2Actually, also the other aforementioned models, ALT, MAMMs, etc., could be written in this way, but they are

not the main focus of the discussion.
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where xi, mi and yi are T×1 vectors of observed exposures, mediators and outcomes,

zi is a v × 1 vector of observed covariates which may depend on the other observed

variables or may interact among themselves3, variables with tilde are the latent true

scores of the observed variables and θ0i and θ1i are vectors of random intercepts

and slopes, respectively, for the exposures, mediators and outcomes. For each pair

of variables w1 and w2 in ηi, Γw1w2 is the matrix of coefficients describing how

w2 influences w1. Finally, IT and Iv are identity matrices of dimension T and v,

respectively, and they are used to pick out the observed variables.

This general formulation allows us to express the first three models described in

the previous chapter and linear mixed-effect models by appropriately specifying ηi

and Γ. The assumption of balanced design is made just to make the treatment of the

topic easier to follow, but it is not necessary, as will be discussed at the end.

3.3.1 CLPM

Let us start with the CLPM including only observed variables described in Equations

(2.1) - (2.3). In the proposed unified framework it can be obtained as followsxi
mi

yi


︸ ︷︷ ︸

ηi

=

α0

β0

γ0


︸ ︷︷ ︸

µ

+

Γxx 0 0

Γmx Γmm 0

Γyx Γym Γyy


︸ ︷︷ ︸

Γ

xi
mi

yi


︸ ︷︷ ︸

ηi

+

εxiεmi
εyi


︸ ︷︷ ︸

ζi

,

where ηi is a 3T × 1 vector containing only observed variables, µ has the same

dimension of ηi and each entry is a T -dimensional vector ρ1T , ρ ∈ {α0 , β0 , γ0},
respectively. Γ is a 3T ×3T factor loading matrix, common to all subjects. Examples

of its submatrices are

Γxx =


0 0 0 . . . 0 0

α
X

0 0 . . . 0 0

0 α
X

0 . . . 0 0
. . .

0 0 0 . . . α
X

0

 and Γmx =


0 0 0 . . . 0 0

β
X

0 0 . . . 0 0

0 β
X

0 . . . 0 0
. . .

0 0 0 . . . β
X

0

,

where it can be noticed that the first rows are null, since X1, M1 and Y1 are assumed

to be exogenous. It is also worth mentioning that, in the model considered, Γxm,Γxy

and Γmy are null matrices. However, in more complex models including cross-lagged

effects of the mediator or the outcome on the exposure, these matrices could be

non-null.
3If the variables in z are assumed to be exogenous it is sufficient to replace the non-null matrices Γz· in the fourth

row of Γ with null matrices.
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For the factor CLPM in Equations (2.4) - (2.6), the model is instead

xi
mi

yi
x̃i
m̃i

ỹi


︸ ︷︷ ︸

ηi

=



0

0

0

µx̃
µm̃
µỹ


︸ ︷︷ ︸

µ

+



0 0 0 IT 0 0

0 0 0 0 IT 0

0 0 0 0 0 IT
0 0 0 Γx̃x̃ 0 0

0 0 0 Γm̃x̃ Γm̃m̃ 0

0 0 0 Γỹx̃ Γỹm̃ Γỹỹ


︸ ︷︷ ︸

Γ



xi
mi

yi
x̃i
m̃i

ỹi


︸ ︷︷ ︸

ηi

+



εxi
εmi
εyi
δx̃i
δm̃i
δỹi


︸ ︷︷ ︸

ζi

,

where ηi includes the latent score vectors in addition to the observed ones and µ

contains the latent score means. The loading matrices relating observed variables with

each others are null, since the relationships are at the true scores level. Γ contains

Γxx̃, Γmm̃ and Γyỹ which are T × T identity matrices linking observed variables to

their latent counterparts, and non null matrices expressing the relationships between

the latent scores, such as

Γm̃x̃ =


0 0 0 . . . 0 0

β
X̃

0 0 . . . 0 0

0 β
X̃

0 . . . 0 0
. . .

0 0 0 . . . β
X̃

0

 and Γỹm̃ =


0 0 0 . . . 0 0

γ
M̃

0 0 . . . 0 0

0 γ
M̃

0 . . . 0 0
. . .

0 0 0 . . . γ
M̃

0

 .

The error vector contains both the residuals of observed variables and the disturbances

of latent true scores.

3.3.2 LGMs

As regards LGC models, let us start with the model in (2.9)-(2.12), which in the

unified framework can be written as
Xi

mi

yi
θ0i

θ1i


︸ ︷︷ ︸

ηi

=


µ
X

0

0

µθ0
µθ1


︸ ︷︷ ︸

µ

+


0 0 0 0 0

0 0 0 Γmθ0 Γmθ1

0 0 0 Γyθ0 Γyθ1

Γθ0x 0 0 0 0

Γθ1x 0 0 Γθ1θ0 Γθ1θ1


︸ ︷︷ ︸

Γ


Xi

mi

yi
θ0i

θ1i


︸ ︷︷ ︸

ηi

+


εXi
εmi
εyi
ζθ0i
ζθ1i


︸ ︷︷ ︸

ζi

,

where θ0i = (θ0Mi θ0Y i)
′ and θ1i = (θ1Mi θ1Y i)

′, µ
θ0

= (βθ0
0

γθ0
0

)′ and µ
θ1

=

(βθ1
0

γθ1
0

)′. The submatrices in Γ assume the following forms:
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Γmθ0 =

1 0
...

...

1 0

 Γmθ1 =

 0 0
...

...

T − 1 0

 ; Γyθ0 =

0 1
...

...

0 1

 Γyθ1 =

0 0
...

...

0 T − 1

 ,

having dimension T × 2, and

Γθ0x =

βθ0X
γθ0
X

 Γθ1x =

βθ1X
γθ1
X

 ; Γθ1θ0 =

 0 0

γθ1θ0M γθ1θ0Y

 Γθ1θ1 =

 0 0

γθ1θ1M 0

 .

εmi and εyi are T × 1 error vectors for the mediator and the outcome, while ζθ0i

ζθ1i are the vectors of factor disturbances. Notice that some of these Γ submatrices

correspond to submatrices of Λ matrices in Equations 2.8.

Now, let us consider the more general case in which also the exposure is time-

varying, for example as in the model described by O’Laughlin et al. (2018):

Xit = θ
0Xi

+ θ
1Xi
λt + ε

Xit

θ0Xi = αθ0
0

+ ζ
θ0Xi

θ1Xi = αθ1
0

+ ζ
θ1Xi

Mit = θ
0Mi

+ θ
1Mi
λt + ε

Mit

θ0Mi = βθ0
0

+ ζ
θ0Mi

θ1Mi = βθ1
0

+ βθ1θ0Xθ0Xi
+ ζ

θ1Mi

Yit = θ
0Y i

+ θ
1Y i
λt + ε

Y it

θ0Y i = γθ0
0

+ ζ
θ0Y i

θ1Y i = γθ1
0

+ γθ1θ0xθ0Xi + γθ1θ1mθ1Mi + ζ
θ1Y i

.

In matrix form the model is
xi
mi

yi
θ0i

θ1i


︸ ︷︷ ︸

ηi

=


0

0

0

µθ0
µθ1


︸ ︷︷ ︸

µ

+


0 0 0 Γxθ0 Γxθ1

0 0 0 Γmθ0 Γmθ1

0 0 0 Γyθ0 Γyθ1

0 0 0 0 0

0 0 0 Γθ1θ0 Γθ1θ1


︸ ︷︷ ︸

Γ


xi
mi

yi
θ0i

θ1i


︸ ︷︷ ︸

ηi

+


εxi
εmi
εyi
ζθ0i
ζθ1i


︸ ︷︷ ︸

ζi

,

which is basically the same as before, except for the fact that xi is now a vector of
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repeated measures and the first row of Γ is no longer null. In addition, θ0i,θ1i,µθ0
and µθ0 are now 3 × 1 vectors, since they include the exposure latent factors and

their means. The matrices relating the observed variables to the corresponding latent

factors are

Γxθ0 =


1 0 0

1 0 0
...

...
...

1 0 0

 Γmθ0 =


0 1 0

0 1 0
...

...
...

0 1 0

 Γyθ0 =


0 0 1

0 0 1
...

...
...

0 0 1



Γxθ1 =


0 0 0

1 0 0
...

...
...

T − 1 0 0

 Γmθ1 =


0 0 0

0 1 0
...

...
...

0 T − 1 0

 Γyθ1 =


0 0 0

0 0 1
...

...
...

0 0 T − 1

,
while the latent factor loading matrices are

Γθ1θ0 =


0 0 0

βθ1θ0X 0 0

γθ1θ0X 0 0

 Γθ1θ1 =


0 0 0

0 0 0

0 γθ1θ1M 0

 .

A graphical representation of the model for T = 4 is given in Figure 3.2.

3.3.3 LDS

As regards the LDS models, there are two ways to express them in the unified notation.

If equations for the latent score of each variable, as discussed at the beginning of

Section 2.2.2, are combined with the equations for the latent differences (2.13) -

(2.15), one obtains

X̃it = (1 + α
X̃

)X̃t−1 + δ
X̃

(3.22)

M̃it = β
X̃
X̃t−1 + (1 + β

M̃
)M̃it−1 + δ

M̃
(3.23)

Ỹit = γ
X̃
X̃t−1 + γ

M̃
M̃it−1 + (1 + γ

Ỹ
)Ỹit−1 + δ

Ỹ
, (3.24)

which are quite similar to the factor CLPM equations, and can be written as already

shown.

Alternatively, one can consider the equations as they are, including both latent
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Figure 3.2: Three-process LGM with four waves.

scores and latent differences in η, as follows:



xi
mi

yi
x̃i
m̃i

ỹi
∆x

∆m

∆y


︸ ︷︷ ︸

ηi

=



0

0

0

µx̃
µm̃
µỹ
0

0

0


︸ ︷︷ ︸

µ

+



0 0 0 IT 0 0 0 0 0

0 0 0 0 IT 0 0 0 0

0 0 0 0 0 IT 0 0 0

0 0 0 Γx̃x̃ 0 0 Γx̃∆x 0 0

0 0 0 0 Γm̃m̃ 0 0 Γm̃∆m 0

0 0 0 0 0 Γỹỹ 0 0 Γỹ∆y

0 0 0 Γ∆xx̃ 0 0 0 0 0

0 0 0 Γ∆xx̃ Γ∆mm̃ 0 0 0 0

0 0 0 Γ∆xx̃ Γ∆mm̃ Γ∆y ỹ 0 0 0


︸ ︷︷ ︸

Γ



xi
mi

yi
x̃i
m̃i

ỹi
∆x

∆m

∆y


︸ ︷︷ ︸

ηi

+



εxi
εmi
εyi
0

0

0

δ∆x̃i

δ∆m̃i

δ∆ỹi


︸ ︷︷ ︸

ζi

,

where ∆x,∆m and ∆y are (T −1)×1 vectors containing the latent differences for X,

M and Y . As in the factor CLPM, observed variables are linked to the corresponding

latent scores through identity matrices; Γx̃x̃,Γm̃m̃ and Γỹỹ are T × T matrices which

have the same structure, and the same holds true for the T × (T − 1) matrices

Γx̃∆x ,Γm̃∆m and Γỹ∆y :

Γx̃x̃ = Γm̃m̃ = Γỹỹ =


0 0 · · · 0

1 0 · · · 0

0 1 0
...

0 0
. . . 0

0 0 0 1

 Γx̃∆x = Γm̃∆m = Γỹ∆y =


0 0 · · · 0 0

1 0 · · · 0 0

0 1
. . . 0 0

0
. . . . . . 0 0

0 · · · 0 1 0

 .
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The other matrices are (T − 1) × T non null matrices expressing the effects of

latent scores on the latent differences, for example

Γ∆mm̃ =


β
M

0 0 . . . 0 0

0 β
M

0 . . . 0 0
. . .

0 0 0 . . . β
M

0

 Γ∆ym̃ =


γ
M

0 0 . . . 0 0

0 γ
M

0 . . . 0 0
. . .

0 0 0 . . . γ
M

0

 .

3.3.4 Mixed-effect models

As regards mixed-effect models, we showed the parallelism between Equations (3.4)-

(3.5) and (3.8)-(3.9), and that between (3.7) and (3.11), highlighting that, in the

case of balanced design, it implies the equivalence between the design matrix and the

factor loading matrix. In order to deepen this issue, since a balanced design is a very

unlikely event in longitudinal frameworks, we leave aside longitudinal settings just

for a moment.

Bauer (2003) illustrates how to fit mixed-effect models as SEMs by considering a

study involving students randomly sampled from J schools, which are then regarded

as clusters. The aim of the study is to investigate differences in students’ language

proficiency and how the proficiency scores vary across schools. Suppose that six

students, three male and three female, are randomly drawn from each school. If the

mixed-effect model is assumed to include a random intercept and a random slope for

the variable Sex, the model equation can be written as

LPij = π0j + π1jSij + εij

π0j = κ0 + u0j (3.25)

π1j = κ1 + u1j,

where i = 1, . . . , 6 and j = 1, . . . , J denote students and schools, respectively, LPij

and Sij are the language proficiency score and the sex of student i in school j, re-

spectively, and π0j and π1j are the random coefficients varying at the school-level.

The errors εij have constant residual variance θ2, while u0 and u1 have the following

covariance matrix:

Ψ =

ψ2
0 ψ01

ψ01 ψ2
1

 .

Suppose to arrange the students so that the first three are male (S = 0) and the

other three are female (S = 1). In the unified notation proposed above, the model



90 CHAPTER 3. STRUCTURAL AND MULTILEVEL MEDIATION MODELS: A UNIFICATION

can be written as

LP1j

LP2j

LP3j

LP4j

LP5j

LP6j

π0j

π1j


︸ ︷︷ ︸

ηj

=



0

0

0

0

0

0

κ0

κ1


︸ ︷︷ ︸

µ

+



0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

Γ



LP1j

LP2j

LP3j

LP4j

LP5j

LP6j

π0j

π1j


︸ ︷︷ ︸

ηj

+



ε1j

ε2j

ε3j

ε4j

ε5j

ε6j

u0j

u1j


︸ ︷︷ ︸

ζj

Note that µ and Γ are not indexed, since they are constant over schools, while

ηj includes the language proficiency scores of the six students drawn from school j

and the random factors corresponding to this cluster, and ζj includes the residuals

of subjects and the random components of latent factors. It is worth remarking

that students of a given sex are arbitrarily ordered, or, in other words, they are

interchangeable within sex. This translates into a diagonal residual covariance matrix,

whose diagonal elements are all constrained to be equal to θ2.

The dependence of the outcome variable on the random factors is expressed by

the non null matrix in the top-right part of Γ, where the first column is identically 1,

since it refers to the random intercept π0j and the second column contains the sex of

each student. Thus, Sex, which would be regarded as an explanatory variable in the

traditional formulation of mixed-effect models, assumes the role of a fixed coefficient

in the SEM setting. The model can then be rewritten in a more compact way asLPj

πj

 =

0

κ

+

 06×6 [1 : S]

02×6 02×2


LPj

πj

+

εj
uj

 ,

where LPj is the vector of proficiency scores for students in school j, πj and κ are

the latent coefficient vector and its mean vector, respectively. [1 : S] is a 6×2 matrix,

where the first column contains only 1 and the second the sex of each student drawn

from school j. Since the design is balanced, [1 : S] does not differ across schools.

Figure 3.3 provides a graphical representation of the model.

This notation allows for the inclusion of level-2 predictors as well. For example,

suppose to want to include the school size in the model. It can be simply added to

η as another observed variable and it can affect either π0 and π1. In the former case
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Figure 3.3: Model in Equations (3.25) represented as an SEM.

the equation for π0 becomes

π0j = κ0 + β0 · sizej + u0j

so that the reduced-form model for language proficiency is

LPij = (κ0 + u0j) + (κ1 + u1j)Sij + β0 · sizej + εij.

Then, it is sufficient to include sizej in ηj and β0 in the factor loading matrix as

follows



sizej
LP1j

LP2j

LP3j

LP4j

LP5j

LP6j

π0j

π1j


=



µsize
0
0
0
0
0
0
κ0

κ1


+



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1

β0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0





sizej
LP1j

LP2j

LP3j

LP4j

LP5j

LP6j

π0j

π1j


+



ε
size

ε1j

ε2j

ε3j

ε4j

ε5j

ε6j

u0j

u1j


.

Notice that size is regarded as an exogenous variable. It can analogously be included

as a predictor of π1j

π1j = κ1 + β1 · sizej + u1j

and the reduced-form outcome model is

LPij = (κ0 + u0j) + (κ1 + u1j) · Sij + β0 · sizej + β1 · sizej · Sij + εij,
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where it can be noticed the presence of a cross-level interaction between sex (level 1)

and size (level 2).

As mentioned in Section 3.1, the inclusion of a continuous level-1 predictor makes

the design unbalanced, which requires the case-varying factor loading approach. Con-

tinuing the example in Bauer (2003), suppose to add verbal intelligence in the model,

as a predictor of language proficiency. Verbal intelligence, denoted by V , is a contin-

uous score measured at the subject level. Moreover, consider a more general case in

which the number of students sampled from each school varies, so that each cluster

has its own dimension nj. The model can be rewritten as

LP1j

LP2j

...

LPnjj
π0j

π1j


︸ ︷︷ ︸

ηj

=



0

0
...

0

κ0

κ1


︸ ︷︷ ︸
µj

+



0 0 0 0 0 0 1 V1j

0 0 0 0 0 0 1 V2j

...
...

...
...

...
...

...
...

0 0 0 0 0 0 1 Vnjj
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


︸ ︷︷ ︸

Γj



LP1j

LP2j

...

LPnjj
π0j

π1j


︸ ︷︷ ︸

ηj

+



ε1j

ε2j

...

εnjj
u0j

u1j


︸ ︷︷ ︸

ζj

where ηj and µj have dimension (nj + 2) × 1 and Vij, i = 1, . . . , nj, is the value of

verbal intelligence for subject i in cluster j.

So far we have then proved that both balanced- and unbalanced-design multilevel

models can be written as SEMs. Longitudinal data are very likely to show an unbal-

anced design, thus the definition variable approach is useful to deal with them in an

SEM framework. Since the results obtained within SEMs are basically equivalent to

those obtained through multilevel models, see Bauer (2003), Curran (2003), one may

ask why the translation from mixed-effect to SEM should be worth the effort. Curran

(2003) devotes a section of his paper, very appropriately entitled ‘Why bother?’, to

answer this question. He proposes two reasons why the translation is meaningful:

first, it helps us to better understand both modeling frameworks; second, it gives

hints about the way to exploit the peculiarities of each approach. This latter mo-

tivation is particularly important in the mediational framework, which we have not

addressed yet and which will be the focus of the next section. Indeed, mediation in

the multilevel framework has some limitations, already highlighted in Section 2.2.3,

i.e. the impossibility to model bottom-up effects and the difficulties connected to the

estimation of the covariance between the mediator and the outcome random factors.

These shortcomings can be effectively overcome in the SEM framework due to its ca-

pacity of incorporating latent variables in the model, as will be extensively discussed

in the next section.
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3.4 Multilevel SEM approach to mediation models through

definition variables

Our proposal for unifying SEM and multilevel models is far from being the first.

Skrondal and Rabe-Hesketh (2004) propose an extremely general framework capable

of modeling response variables belonging to the natural exponential class, with the

possibility of incorporating many hierarchical levels and either discrete or continuous

latent variables. They developed a Stata package called GLLAMM based on their

approach. More recently, inspired by Huber et al. (2004), Niku et al. (2017, 2019)

develop an approach to address the nested structure of some kinds of ecological data,

like species counts and biomass. Their model can address non-Normally distributed

variables as well, and it is implemented in the R package gllvm.

However, the most widely known approach is that of multilevel SEM (MSEM),

which capitalises on the work of McDonald and Goldstein (1989), Muthén and Satorra

(1989) and Muthén (1989, 1991, 1994). This approach relies on the decomposition of

each observed variable into two orthogonal components, a between and a within com-

ponent. This decomposition is reflected also in the sample covariance matrix, which

can analogously be written as the sum of a between and a within covariance matrix

(Muthén 1994). Preacher et al. (2010) and Preacher et al. (2011) use this framework

to construct a general approach to multilevel mediation which overcomes the tradi-

tional problems highlighted by Krull and MacKinnon (2001) about the impossibility

of fitting models with bottom-up effects (level-1 variables affecting level-2 variables),

and by Pituch et al. (2006, 2010) about the difficulties related to software implemen-

tation. The approach by Preacher et al. (2010) disentangles the within component of

the indirect effect from the between component.

In the next section we will briefly introduce the MSEM framework and show how

the approach to multilevel mediation by Preacher et al. works.

3.4.1 A brief introduction to MSEM and the approach to mediation pro-

posed by Preacher

We will use the LISREL instead of the RAM notation, since it was the one originally

employed when the MSEM approach was developed and it is that still adopted by

textbooks and scientific papers on the topic.

The measurement model is defined as

yij = Ληij + εij (3.26)
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where yij is a p×1 vector of observed variables for subject i in cluster j, ηij is a q×1

vector of latent factors, Λ is a p×q factor loading matrix and εij is the p-dimensional

residual vector.

The structural model is

ηij = ν + η
Bj

+ η
Wij
, (3.27)

where ν is the grand mean of ηij, ηBj is a random factor characterising clusters and

η
Wij

is a random factor varying over individuals in cluster j. It can be proved that

η
Bj

and η
Wij

are independent, therefore the covariance matrix of ηij can be written

as

V (ηij) = ΨT = ΨB + ΨW , (3.28)

and, in the same fashion, the residual covariance matrix can be decomposed into a

between and a within component

V (εij) = ΘT = ΘB + ΘW . (3.29)

This decomposition makes the specification of separate models for each level quite

natural, so that observed or latent variable can be included as predictors of either

between or within factors. A general two-level model can then be reformulated as

wij =

xj

yij

 = ωj + ωij =

ωxj
ωyj

+

 0

ωyij

 , (3.30)

where wij may contain either cluster-level variables xj or variables measured at the

individual level yij. Both kinds of variables can be seen as the sum of their between

and within latent components, which in turn can be modeled as follows:

ωj = α
B

+ Λ
B
η
Bj

+ ε
Bj

(3.31)

η
Bj

= ν
B

+ Γ
B
η
Bj

+ ζ
Bj

(3.32)

ωij = Λ
W
η
Wij

+ ε
Wij

(3.33)

η
Wij

= Γ
W
η
Wij

+ ζ
Wij
. (3.34)

Combining equations (3.31) and (3.33) a more general expression for wij can be

written as:

wij = α
B

+ Λ
B
η
Bj

+ ε
Bj

+ Λ
W
η
Wij

+ ε
Wij

(3.35)
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The general mean and covariance structures are given by

µ = α
B

+ Λ
B

(I− Γ
B

)−1ν
B

(3.36)

Σ
B

= Λ
B

(I− Γ
B

)−1Ψ
B

(I− Γ
B

)−1′Λ′
B

+ Θ
B

(3.37)

Σ
W

= Λ
W

(I− Γ
W

)−1Ψ
W

(I− Γ
W

)−1′Λ′
W

+ Θ
W
. (3.38)

An extensive treatment of MSEM, with graphical representations and empirical ex-

amples can be found in Heck (2009) and Heck and Thomas 2020 (Chapter 7). See

also Lee (1990), Kaplan and Elliott (1997) and Kaplan (2009) for a discussion on

estimation methods.

Preacher et al. (2010) develop multilevel mediation analysis in the MSEM frame-

work, highlighting its main advantage over the traditional multilevel setting, i.e. the

possibility to address also outcome variables assessed at the cluster level, which Krull

and MacKinnon (2001) had excluded. In addition, this allows researchers to distin-

guish the between part of the indirect effect from the within part. Below we will give a

short introduction on this approach, changing the original notation used by Preacher

et al. (2010) and Preacher et al. (2011) and employing that previously introduced in

this thesis, in order to better distinguish the between and within part of the model.

Let us consider the 1-1-1 design, where the exposure, the mediator and the outcome

are measured at level 1.

ωij = Λ
Wij
η
Wij

+ Λ
Bj
η
Bj

=

Xij

Mij

Yij

 =

1 0 0

0 1 0

0 0 1

ηXijη
Mij

η
Y ij

+

1 0 0

0 1 0

0 0 1

ηXjη
Mj

η
Y j


η
Wij

= ΓWηWij
+ ζ

Wij

=

ηXijη
Mij

η
Y ij

 =

 0 0 0

Γ
MX

0 0

Γ
YX

Γ
YM

0

ηXijη
Mij

η
Y ij

+

ζηXijζηMij

ζηY ij


η
Bj

= ν
B

+ Γ
B
η
Bj

+ ζ
Bj

=

ηXjη
Mj

η
Y j

 =

νηXjνηMj

νηY j

+

 0 0 0

γ
MX

0 0

γ
YX

γ
YM

0

ηXjη
Mj

η
Y j

+

ζηXjζηMj

ζηY j


These equations present some particular features, which will be analysed in turn.

The first equation shows that each observed variable is the sum of a within and a
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Figure 3.4: Graphical representation of 1-1-1 mediation in the approach of Preacher et al. (2010).
Error terms have been omitted to avoid cluttering.

between latent component. The second and the third equations are the within and

between structural models, respectively. Notice that the between measurement model

is missing, since there are no observed variables at level 2. The within factors have

zero mean and are linked to each other through the coefficients in matrix Γ
W

4. The

between factors have intercept ν
Bj

and their reciprocal influences are expressed in

matrix Γ
B
.

The between indirect effect is defined as the product γ
MX
γ
YM

. As regards the

within indirect effect, if the loadings in ΓW are fixed, it is simply the product

ΓMXΓYM . Vice versa, if the loadings are random, the within indirect effect is given by

µ
ΓMXj

µ
ΓYMj

+ ψζMXj−ζYMj
, where µ

ΓMXj
and µ

ΓYMj
are the means of Γ

MXj
and Γ

YMj
,

respectively, and ψζMXj−ζYMj
is the covariance between the random disturbances of

Γ
MXj

and Γ
YMj

.

Other possible multilevel mediation designs are discussed in Preacher et al. (2010)

and Pituch and Stapleton (2011).

3.4.2 The definition variable approach to longitudinal mediation

The approach proposed by Preacher et al. (2010) is very general and has the advan-

tage to decompose clearly the indirect effect in its within and between components.

Sometimes, however, this is not of interest for the researchers, which may prefer a

model more similar to the classical multilevel ones, but keeping the strengths of SEMs.

The definition variable approach seems to satisfy this need.

4Preacher et al. (2010) allow ΓW to vary at the cluster level, i.e. to include random coefficients. For the sake of
simplicity, we present a case where the within factor loadings are fixed.
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As already said in Section 3.1, the most general way to translate a mixed-effect

model into an SEM is to include the variables playing the role of predictors in mul-

tilevel models into the factor loading matrices. They become coefficients in factor

loading matrices varying at the cluster level and are called definition variables (Mehta

and Neale 2005). Basically, this entails a change of perspective: if in the traditional

mixed-effect setting there are predictors the effect of which may vary over clusters,

in the MSEM framework the latent variables, regarded as random coefficients in the

mixed-effect framework, affect the outcome, and their effect is expressed by the pre-

dictors in the classic multilevel setting. To the best of our knowledge, this approach

has never been proposed for mediation analysis, except for a brief mention in Preacher

(2011), where it is used in a three-level setting, in the very specific case of a 1-1-1

mediation.

In this section we want to develop the definition variable approach for longitudi-

nal mediation analysis, where the individuals are level-2 units and the measurement

occasions are level-1 units. In longitudinal mediation, at least one between the medi-

ator and the outcome changes over time; for this reason, traditional designs are 1-1-1,

described before, 2-1-1, where the exposure is measured at baseline, and 2-2-1, where

only the outcome changes over time. However, there are other plausible designs in

a longitudinal context, such as 1-2-1 and 1-1-2, but they have never been addressed

within the multilevel framework, since two variables playing the role of outcomes are

measured at level 2. As we will show in the next sections, this issue can be overcome

through MSEMs. In addition, although the primary focus of this thesis is longitudinal

mediation, we will address the other multilevel mediation designs as well (2-1-2, 1-2-

2), even if they are not common in longitudinal settings, in order to provide a general

approach to multilevel mediation within the SEM framework. We will not address

the 2-2-2 design, since it reduces to a simple non-longitudinal mediation model where

the sample is made up of level-2 units.

In what follows, we will use the same notation employed in Chapter 2 and Section

3.3, denoting by β’s the coefficients for the mediator model and by γ’s the coefficients

for the outcome model.

1-1-1 design

As already said, in this design all variables are measured over time. For example,

consider an observational study carried out for ten years on a sample of 500 patients to

measure the effects of air pollution on health. The average level of PM10 concentration

is measured monthly in the area where the subjects live, and some researchers are

interested in its effect on the levels of subjects’ ICAM-1 protein through their ICAM-1
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DNA methylation. This setting is similar to that described in Bind et al. (2016).

Let us consider the following models, for i = 1, . . . , n subjects and t = 1, . . . , Ti

time occasions (if Ti = T ∀ i, the design is balanced)

Mit = (β0 + b
0i

)︸ ︷︷ ︸
π

0Mi

+ (β
X

+ b
Xi

)︸ ︷︷ ︸
π
MXi

Xit + ε
Mit

(3.39)

Yit = (γ0 + g
0i

)︸ ︷︷ ︸
π

0Y i

+ (γ
X

+ g
Xi

)︸ ︷︷ ︸
π
YXi

Xit + (γ
M

+ g
Mi

)︸ ︷︷ ︸
π
YMi

Mit + ε
Y it
. (3.40)

The mediator model includes a random intercept and a random slope for the exposure,

while the outcome model includes a random intercept and two random slopes, one for

the exposure and one for the mediator. In the traditional mixed-effect perspective,

what can be read off from these models is that there are some subject-level predictors,

the effects of which vary across individuals, as shown by the presence of random

coefficients π’s. From an SEM perspective instead, there are latent variables π’s

affecting the mediator and the outcome, the effects of which are either fixed (as

is the case for random intercepts) or differ across individuals, and their values are

determined by the definition variables corresponding to the predictors in the mixed-

effect framework.

Using the RAM notation introduced in Section 3.2, the model can be written as

follows

Mi1

...

MiTi

Yi1
...

YiTi
π

0Mi

π
MXi

π
0Y i

π
YXi

π
YMi


︸ ︷︷ ︸

ηi

=



0
...

0

0
...

0

β0

β
X

γ0

γ
X

γ
M


︸ ︷︷ ︸

µi

+



0 · · · 0 0 · · · 0 1 Xi1 0 0 0
...

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 1 XiT i 0 0 0

0 · · · 0 0 · · · 0 0 0 1 Xi1 Mi1

...
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 0 1 XiT i MiT i

0 · · · 0 0 · · · 0 0 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0 0 0


︸ ︷︷ ︸

Γi



Mi1

...

MiTi

Yi1
...

YiTi
π

0Mi

π
MXi

π
0Y i

π
YXi

π
YMi


︸ ︷︷ ︸

ηi

+



εMi1

...

εMiTi

εY i1
...

εY iTi
b

0i

b
Xi

g
0i

g
Xi

g
Mi


︸ ︷︷ ︸

ζi

,

where ηi contains the repeated measures of the mediator and the outcome for subject

i, and the subject-specific random intercepts and slopes. The central top panel of

matrix Γi reports the coefficients of the mediator random factors on the mediator,

and the central panel on the left shows the outcome random factor loadings.

Using definition variables implies that, not only the factor loading, but also the
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covariance matrix is subject-specific:

Ψi =

ΨW
i 0

0 ΨB
i

 .

Ψi is a block diagonal matrix, where the first block refers to the within (level-1)

covariance matrix and the second to the between (level-2) covariance matrix. In

design 1-1-1, ΨW
i can be further decomposed into two blocksΘεMi

0

0 ΘεY i

 ,

where ΘεMi
and ΘεY i are the mediator and outcome residual covariance matrices,

respectively. They are assumed to be diagonal and the diagonal elements are con-

strained to be equal, within each matrix:

ΘεMi
= ITi ⊗ θ2

M
=


θ2
M

0
. . .

...
. . . . . .

0 · · · 0 θ2
M

 ΘεY i = ITi ⊗ θ2
Y

=


θ2
Y

0
. . .

...
. . . . . .

0 · · · 0 θ2
Y

 .

ΨB
i is the covariance matrix of the latent factor disturbances (level-2 variables) and,

contrary to the residual matrices above, it can be non-diagonal or, in other words,

disturbances of factors are free to covary:

ΨB
i =


ψ2
b0

ψb0bX ψ2
bX

ψb0g0 ψbXg0 ψ2
g0

ψb0gX ψbXgX ψg0gX ψ2
gX

ψb0gM ψbXgM ψg0gM ψgXgM ψ2
gM

 .

An interesting aspect of this approach is that the variances and covariances of

repeated measures within the same individual are functions of the predictors used as

definition variables. Following Mehta and Neale (2005), it is easy to prove that, for

each i = 1, . . . , n and s, t = 1, . . . , Ti,

V(Mit) = V(b
0i

) +X2
itV(b

Xi
) + 2XitCov(b

0i
, b

Xi
) + V(ε

Mit
)

= ψ2
b0

+X2
itψ

2
bX

+ 2Xitψb0bX + θ2
M

(3.41)
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Figure 3.5: 1-1-1 design expressed through definition variables.

Cov(Mis,Mit) = V(b
0i

) +XisXitV(b
Xi

) + (Xis +Xit)Cov(b
0i
, b

Xi
)

= ψ2
b0

+XisXitψ
2
bX

+ (Xis +Xit)ψb0bX

(3.42)

V(Yit) = V(g
0i

) +X2
itV(g

Xi
) +M2

itV(g
Mi

) + 2XitCov(g
0i
, g

Xi
)

+ 2MitCov(g
0i
, g

Mi
) + 2XitMitCov(g

Xi
, g

Mi
) + V(ε

Y it
)

= ψ2
g0

+X2
itψ

2
gX

+M2
itψ

2
gM

+ 2Xitψg0gX

+ 2Mitψg0gM + 2XitMitψgXgM + θ2
Y

(3.43)

Cov(Yis, Yit) = V(g
0i

) +XisXitV(g
Xi

) +MisMitV(g
Mi

)

+ (Xis +Xit)Cov(g
0i
, g

Xi
) + (Mis +Mit)Cov(g

0i
, g

Mi
)

+ (XitMis +XisMit)Cov(g
Xi
, g

Mi
)

= ψ2
g0

+XisXitψ
2
gX

+MisMitψ
2
gM

+ (Xis +Xit)ψg0gX

+ (Mis +Mit)ψg0gM + (XitMis +XisMit)ψgXgM

(3.44)

where it can be noticed the presence of Xit and Mit.

A graphical representation of the model is shown in Figure 3.5, where diamonds

represent definition variables. It is worth mentioning that, in spite of this somewhat

uncommon formulation of multilevel models as SEMs, the meaning of estimated co-

efficients is the same and the indirect effect can be obtained with the traditional

formula β
X
γ
M

+ ψbXgM , presented also in Bauer et al. (2006).
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2-1-1 design

Let us move to a 2-1-1 design, where the exposure is measured at baseline while

the mediator and the outcome are assessed over time. For instance, consider an

experimental setting where a group of patients suffering from vascular inflammation

are randomly assigned to a new therapy against inflammation or to the classical

therapeutic regimen. The aim of the study is to understand if the new therapy is

more effective than the old one in reducing the inflammation, measured as the level of

C-reactive protein, a marker of blood vessels inflammation. The effect of treatment

may be mediated by the levels of cholesterol, which, as the outcome, is measured

repeatedly over the study follow-up period, for example every three months.

In the multilevel framework, the mediator and the outcome models can be written

as:

Mit = (β0 + b
0i

) + β
X
Xi + ε

Mit
(3.45)

Yit = (γ0 + g
0i

) + γ
X
Xi + (γ

M
+ g

Mi
)Mit + ε

Y it
(3.46)

or, equivalently, as

Mit = π
0Mi

+ ε
Mit

(3.47)

π
0Mi

= β0 + β
X
Xi + b

0i
(3.48)

Yit = π
0Y i

+ π
YMi

Mit + ε
Y it

(3.49)

π
0Y i

= γ0 + γ
X
Xi + g

0i
(3.50)

π
YMi

= γ
M

+ g
Mi
. (3.51)

The latter formulation shows that the exposure can be seen as a predictor of the

latent intercepts π
0Mi

and π
0Y i

. It is then very easy to translate the model in SEM

terms

Xi

Mi1

...

MiTi

Yi1
...

YiTi
π

0Mi

π
0Y i

π
YMi


︸ ︷︷ ︸

ηi

=



µ
X

0
...

0

0
...

0

β0

γ0

γ
M


︸ ︷︷ ︸

µi

+



0 · · · 0 0 · · · 0 0 0 0 0

0 · · · 0 0 · · · 0 0 1 0 0
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 1 0 0

0 · · · 0 0 · · · 0 0 0 1 Mi1

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 0 0 1 MiT i

β
X

0 · · · 0 · · · 0 0 0 0 0

γ
X

0 · · · 0 · · · 0 0 0 0 0

0 0 · · · 0 · · · 0 0 0 0 0


︸ ︷︷ ︸

Γi



Xi

Mi1

...

MiTi

Yi1
...

YiTi
π

0Mi

π
0Y i

π
YMi


︸ ︷︷ ︸

ηi

+



ε
Xi

ε
Mi1

...

ε
MiTi

ε
Y i1

...

ε
Y iTi

b
0i

g
0i

g
Mi


︸ ︷︷ ︸

ζi

.
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Figure 3.6: 2-1-1 design expressed through definition variables.

Note that in this case ηi contains the exposure, which affects both latent factor

intercepts and that the only definition variable in Γi is Mit. The subject-specific

covariance matrices have basically the same structure discussed for 1-1-1 design: ΘεMi

and ΘεY i
do not vary, while ΨB

i , for this design, includes also X and can be written

as

ΨB
i =


θ2
X

0 ψ2
b0

0 ψb0g0 ψ2
g0

0 ψb0gM ψg0gM ψ2
gM

 ,

where θ2
X

is the variance of X.

Since there are only three latent factors, the expressions of the variances and

covariances simplify to

V(Mit) = V(b
0i

) + V(ε
Mit

) = ψ2
b0

+ θ2
M

Cov(Mis,Mit) = V(b
0i

) = ψ2
b0

V(Yit) = V(g
0i

) +M2
itV(g

Mi
) + 2MitCov(g

0i
, g

Mi
) + V(ε

Y it
)

= ψ2
g0

+M2
itψ

2
gM

+ 2Mitψg0gM + θ2
Y

Cov(Yis, Yit) = V(g
0i

) +MisMitV(g
Mi

) + (Mis +Mit)Cov(g
0i
, g

Mi
)

= ψ2
g0

+MisMitψ
2
gM

+ (Mis +Mit)ψg0gM

The model is represented in Figure 3.6. In this case the effect of π
YMi

on the

outcome is moderated by the time-varying values of M , or, using a more familiar

multilevel terminology, the γ
M

coefficient represents the within effect of the mediator
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on the outcome. As a consequence, the indirect effect estimated simply as the product

β
X
γ
M

represents a within indirect effect. This contrasts what stated by Preacher et al.

(2010), according to which in 2-1-1 designs the only indirect effect is at the cluster

level. Pituch and Stapleton (2012) argue that in such a design the exposure can

affect the level-1 outcome either through the individual level mediator and through

a level-2 mediator construct. These two indirect effects have a different meaning

since the mediator cluster construct may carry information on a different aspect of

the phenomenon under investigation. Both a within and a contextual effect (i.e. the

effect of a level-2 variable on a level-1 variable) are then plausible and, in fact, when

no contextual effect is present, the estimation of only a cluster level indirect effect,

as suggested by Preacher et al. (2010), can produce bias. The inclusion of a cluster

level effect would imply the inclusion of a link between π
0Mi

and π
0Y i

in Figure 3.6,

so that Equation (3.50) becomes

π
0Y i

= γ0 + γ
X
Xi + γπ

0M
π

0Mi
+ g

0i
.

The within indirect effect is always β
X
γ
M

, while the between or cluster level indirect

effect is the product β
X
γπ

0M
. An extensive discussion on the topic can be found in

Pituch and Stapleton (2012).

2-2-1 design

Consider an observational study carried out for ten months on a group of depressed

adolescents. Suppose that the outcome of interest is the number of self-destructive

behaviours, assessed monthly, the exposure is parental support, measured at the

beginning of the study and the mediator is sense of loneliness at baseline. This is an

example of 2-2-1 design, where the exposure and the mediator are measured at the

same level, then the mediator model is simply

Mi = β0 + β
X
Xi + ε

Mi
,

while the response is measured at level one, then

Yit = (γ0 + g
0i

) + γ
X
Xi + γ

M
Mi + ε

Y it

or, alternatively,

Yit = π
0Y i

+ ε
Y it

π
0Y i

= γ0 + γ
X
Xi + γ

M
Mi + g

0i



104 CHAPTER 3. STRUCTURAL AND MULTILEVEL MEDIATION MODELS: A UNIFICATION

1

Xi Mi π
0Y i

Yit

ε
Y it

ε
Mi

ε
Xi

g0i

β0 γ
0µ

X

β
X

γ
X

γ
M

1

Figure 3.7: 2-2-1 design expressed in the MSEM framework.

from which it can be seen that both Xi and Mi affect the only latent factor in the

model, i.e. the outcome random intercept.

The model can be expressed as

Xi

Mi

Yi1
...

YiTi
π

0Y i


︸ ︷︷ ︸

ηi

=



µ
X

β0

0
...

0

γ0


︸ ︷︷ ︸

µi

+



0 0 0 · · · 0 0

β
X

0 0 · · · 0 0

0 0 0 · · · 0 1
...

...
...

...
...

0 0 0 · · · 0 1

γ
X

γ
M

0 · · · 0 0


︸ ︷︷ ︸

Γi



Xi

Mi

Yi1
...

YiTi
π

0Y i


︸ ︷︷ ︸

ηi

+



ε
Xi

ε
Mi

ε
Y i1

...

ε
Y iTi

g
0i


︸ ︷︷ ︸

ζi

,

where definition variables are not present. In addition, ΨW
i reduces to ΘY i = ITi ⊗ θ2

Y

and ΨB =

θ2
X

0 θ2
M

0 0 ψ2
g0

. The outcome variance is simply V(Yit) = V(g
0i

) +

V(ε
Y it

) = ψ2
g0

+ θ2
Y

, while the covariance between any two time occasions s, t =

1, . . . , Ti reduces to Cov(Yis, Yit) = V(g0) = ψ2
g0

.

The model is represented in Figure 3.7, from which it can also be derived the

expression for the indirect effect, again simply the product β
X
γ
M
.

1-2-1 design

The designs described in this and in the next section, although plausible in a longitu-

dinal setting, have never been addressed in the standard multilevel framework, since

it is impossible to overcome the dimension mismatch between the exposure and the
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mediator, in the case of 1-2-1 design, and between the outcome and the exposure and

the mediator in the 1-1-2 design. This issue can be solved in the MSEM framework,

as we will show in the following.

In the 1-2-1 design, the exposure and the outcome are repeatedly measured over

time and the mediator is time-invariant. For example, consider an experimental study

on a group of overweight subjects. They are randomly assigned to two different dietary

regimens, the treatment group to an initial 2000-calories-per-day regime, subsequently

reduced to 1850, 1600 and 1450 calories, with a balanced intake of proteins, fats

and carbs; the control group is a 1800-calories-per-day regime, subsequently reduced

to 1700, 1600 and 1500, where subjects are free to decide what to eat provided

that they do not exceed the prescribed caloric intake. The aim of the study is to

understand which dietary regimen is more effective for weight loss, the outcome of

interest, measured bimonthly as the difference between the current weight and the

pre-treatment weight. The effect of the treatment may be mediated by the difference

between the patient’s glycemic index assessed at half of follow-up period and the

pre-intervention level. The mediator is then assessed only one time and it should be

a proxy of a metabolic change due to diet.

The outcome model can be easily written as

Yit = (γ0 + g
0i

) + (γ
X

+ g
Xi

)Xit + γ
M
Mi + ε

Y it
(3.52)

or equivalently as

Yit = π
0Y i

+ π
YXi

Xit + ε
Y it

(3.53)

π
0Y i

= γ0 + γ
M
Mi + g

0i
(3.54)

π
YXi

= γ
X

+ g
Xi
. (3.55)

The mediator model is less immediate to write, since it involves a level-2 variable

of size n affected by a level-1 variable of size
∑n

i=1 Ti. It can then be assumed that

M is influenced only by the between component of the exposure (the ηXj factor in

Preacher et al. (2010) notation), which, for notational consistency with the other

equations, will be denoted by π
0Xi

. The mediator model equations are then

Mi = β0 + βπ0X
π

0Xi
+ ε

Mi
(3.56)

π
0Xi

= α0 + a
0i
, (3.57)
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and the mediation model can be written as

Xi1

...

XiTi

Mi

Yi1
...

YiTi
π

0Xi

π
0Y i

π
YXi


︸ ︷︷ ︸

ηi

=



0
...

0

β0

0
...

0

α0

γ0

γ
X


︸ ︷︷ ︸
µi

+



0 · · · 0 0 0 · · · 0 1 0 0
...

...
...

...
...

...
...

...

0 · · · 0 0 0 · · · 0 1 0 0

0 · · · 0 0 0 · · · 0 βπ0X
0 0

0 · · · 0 0 0 · · · 0 0 1 Xi1

...
...

...
...

...
...

...
...

0 · · · 0 0 0 · · · 0 0 1 XiTi

0 · · · 0 0 0 · · · 0 0 0 0

0 · · · 0 γ
M

0 · · · 0 0 0 0

0 · · · 0 0 0 · · · 0 0 0 0


︸ ︷︷ ︸

Γi



Xi1

...

XiTi

Mi

Yi1
...

YiTi
π

0Xi

π
0Y i

π
YXi


︸ ︷︷ ︸

ηi

+



ε
Xi1

...

ε
XiTi

ε
Mi

ε
Y i1

...

ε
Y iTi

a
0i

g
0i

g
Xi


︸ ︷︷ ︸

ζi

,

where the only definition variable is X. The within covariance matrix is the following

block matrix

ΨW
i =

(
ΘεXi 0

0 ΘεY i

)
,

where ΘεXi and ΘεY i are diagonal Ti × Ti matrices with constant diagonal elements,

θ2
X

and θ2
Y

respectively, representing the variance of the exposure and the outcome

residuals. ΨB
i is instead

ΨB
i =


θ2
M

0 ψ2
a0

0 ψa0g0 ψ2
g0

0 ψa0gX ψg0gX ψ2
gX

 ,

where θ2
M

is the variance of the mediator. The variance and the covariance of Y within

the same subject are

V(Yit) = V(g
0i

) +X2
itV(g

Xi
) + 2XitCov(g

0i
, g

Xi
) + V(ε

Y it
)

= ψ2
g0

+X2
itψ

2
gX

+ 2Xitψg0gX + θ2
Y

Cov(Yis, Yit) = V(g
0i

) +XisXitV(g
Xi

) + (Xis +Xit)Cov(g
0i
, g

Xi
)

= ψ2
g0

+XisXitψ
2
gX

+ (Xis +Xit)ψg0gX

where the equations have the same structure as those derived for design 2-1-1. It is

worth remarking that, although X is affected by its between latent component, it does

not play any role in the last two formulas: since X is regarded as a definition variable,

its values are treated as fixed coefficients, not affected by any random component.

The model is represented in Figure 3.8, and the indirect effect is the product βπ0X
γ
M

.
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Figure 3.8: 1-2-1 design expressed through definition variables.

1-1-2 design

This design is typical of observational studies where the outcome is measured at the

end of follow-up, like, for example, that presented in Lin, Young, Logan, Tchetgen

Tchetgen and VanderWeele (2017). They analysed data from the Framingham Heart

Study: a cohort of 5,209 participants aged from 30 to 62 years old underwent clini-

cal examination every two years. At each occasion, several variables were assessed,

including cardiovascular risk factors, demographics, physical data and many others.

The authors focused on five time occasions (i.e. ten years) and their outcome of inter-

est was systolic blood pressure measured at the fifth visit. The exposure is smoking

status, measured as the self-reported average number of cigarettes smoked per day,

and the mediator is BMI. Both the exposure and the mediator were assessed at each

visit, then they are time-varying.

In this design, the mismatch of dimensions discussed in the last section involves

both the exposure and the mediator, which are of size
∑n

i=1 Ti, while the outcome has

size n. As before, it can be assumed that the between component of X has a direct

effect on Y , but what about the mediator? If the mediator model is the same as

that in Equation (3.39), the mediator is influenced by two latent factors, an intercept

and a slope, so one may ask which of them affects the outcome variable. A plausible

solution may be to assume the following model specification

Mit = π
0Mi

+ π
MXi

Xit + ε
Mit

(3.58)

π
0Mi

= β0 + βπ0X
π

0X
+ b

0i
(3.59)

π
MXi

= β
X

+ b
Xi

(3.60)
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Yi = γ0 + γπ
0X
π

0Xi
+ γπ

0M
π

0Mi
+ ε

Y i
, (3.61)

where the response variable depends on the latent intercept of the mediator. A graph-

ical representation of the model is given in Figure 3.9 and, in the unified notation, it

can be written as

Xi1

...

XiTi

Mi1

...

MiTi

Yi
π

0Xi

π
0Mi

π
MXi


︸ ︷︷ ︸

ηi

=



0
...

0

0
...

0

γ0

α0

β0

β
X


︸ ︷︷ ︸
µi

+



0 · · · 0 0 · · · 0 0 1 0 0
...

...
...

...
...

...
...

...

0 · · · 0 0 · · · 0 0 1 0 0

0 · · · 0 0 · · · 0 0 0 1 Xi1

...
...

...
...

...
...

...
...

0 · · · 0 0 · · · 0 0 0 1 XiTi

0 · · · 0 0 · · · 0 0 γπ
0X

γπ
0M

0

0 · · · 0 0 · · · 0 0 0 0 0

0 · · · 0 0 · · · 0 0 βπ0X
0 0

0 · · · 0 0 · · · 0 0 0 0 0


︸ ︷︷ ︸

Γi



Xi1

...

XiTi

Mi1

...

MiTi

Yi
π

0Xi

π
0Mi

π
MXi


︸ ︷︷ ︸

ηi

+



εXi1
...

εXiTi
εMi1

...

εMiTi

εY i
a

0i

b
0i

b
Xi


︸ ︷︷ ︸

ζi

,

and again the only definition variable is X. The within covariance matrix ΨW
i is a

block matrix as that showed for the previous design, but ΘY i is replaced by ΘMi =

IT i ⊗ θ2
M

and the between covariance matrix is

ΨB
i =


θ2
Y

0 ψ2
a0

0 ψa0b0 ψ2
b0

0 ψa0bX ψb0bX ψ2
bX

 ,

where θ2
Y

is the variance of the outcome. The variance and the covariance of M

within the same subject are as in Equations (3.41)-(3.42). The indirect effect is a

level-2 effect and can be estimated as the product βπ0X
γπ

0M
.

3.4.3 Other multilevel mediation designs

The designs discussed so far are the most frequently encountered in longitudinal set-

tings. Nonetheless, there are other possible multilevel designs which can be addressed

in the MSEM framework. They will be discussed in the following and, since they are

quite unusual for longitudinal data, we will use the standard notation adopted in the

multilevel literature, denoting by i level-1 units and by j level-2 units. The number

of groups is J and nj is the number of individuals in each group.
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Figure 3.9: 1-1-2 design expressed through definition variables.

2-1-2 design

Consider a study involving different schools in a region or a county, and let X be

the amount of state resources assigned to each school for extra activities, M the self-

reported motivation of teachers and Y an aggregated score measuring the proficiency

of students at the school level. It is plausible that a higher amount of funds may

increase the teachers’ motivation level and this can have a positive effects on students’

learning outcome, measured at the school level.

In this design the exposure and the outcome are measured at the cluster level,

while the mediator at the subject level, as a consequence it is impossible to use defi-

nition variables. As already explained, to overcome the problem due to the different

dimensions of the mediator and the outcome, it is necessary to consider the between

component of the mediator. The models are then

Mij = π
0Mj

+ ε
Mij

(3.62)

π
0Mj

= β0 + β
X
Xj + b

0j
(3.63)

Yj = γ0 + γ
X
Xj + γπ0M

π
0Mj

+ ε
Y j
, (3.64)
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1
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Y j
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Mij

ε
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b
0j
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X
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1

Figure 3.10: 2-1-2 design expressed in the MSEM framework.

which in matrix form can be written as

Xj

M1j

...

Mnjj

Yj
π

0Mj


︸ ︷︷ ︸

ηj

=



µ
X

0
...

0

γ0

β0


︸ ︷︷ ︸
µj

+



0 0 · · · 0 0 0

0 0 · · · 0 0 1
...

...
...

...
...

0 0 · · · 0 0 1

γ
X

0 · · · 0 0 γπ0M

β
X

0 · · · 0 0 0


︸ ︷︷ ︸

Γj



Xj

M1j

...

Mnjj

Yj
π

0Mj


︸ ︷︷ ︸

ηj

+



ε
Xj

ε
M1j

...

ε
Mnjj

ε
Y j

b
0j


.

︸ ︷︷ ︸
ζj

The cluster-specific covariance matrix is always a block matrix where the within-block

ΨW
j equals ΘMj = Inj ⊗ θ2

M
and the between covariance matrix is a diagonal matrix

containing the variances of the level-2 variables

ΨB
j =

θ2
X

0 θ2
Y

0 0 ψ2
b0

 .

The model is represented in Figure 3.10 , from which it is very easy to understand

that the indirect effect can be estimated as the product β
X
γπ0M

.

1-2-2 design

Finally, in the last design only the exposure is measured at level 1, and again no

definition variables are needed to express this model in the MSEM framework. As an

example, consider a firm with several departments: the individual-level satisfaction

of employees may affect the department social climate, which in turn can have an
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Figure 3.11: 1-2-2 design expressed in the MSEM framework.

effect on the department productivity.

The model equations are simply

Mj = β0 + βπ0X
π

0Xj
+ ε

Mj
(3.65)

Yj = γ0 + γπ0X
π

0Xj
+ γ

M
Mj + ε

Y j
(3.66)

π
0Xj

= α0 + a
0j

(3.67)

which can be rewritten as follows

X1j

...

Xnjj

Mj

Yj
π

0Xj


︸ ︷︷ ︸

ηj

=



0
...

0

β0

γ0

α0


︸ ︷︷ ︸
µj

+



0 · · · 0 0 0 1
...

...
...

...
...

0 · · · 0 0 0 1

0 · · · 0 0 0 βπ0X

0 · · · 0 γ
M

0 γπ0X

0 · · · 0 0 0 0


︸ ︷︷ ︸

Γj



X1j

...

Xnjj

Mj

Yj
π

0Xj


︸ ︷︷ ︸

ηj

+



ε
X1j

...

ε
Xnjj

ε
Mj

ε
Y j

a
0j


.

︸ ︷︷ ︸
ζj

with covariance matrix having the same structure as design 2-1-2 where ΨW
j = ΘXj =

Inj ⊗ θ2
X

and the between covariance matrix is a diagonal matrix containing the

variances of the level-2 variables

ΨB
j =

θ2
M

0 θ2
Y

0 0 ψ2
a0

.
The model is represented in Figure 3.11, where the indirect effect is again βπ0X

γ
M

.
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3.5 Inference and software implementation

In the last sections, we showed that the definition variable approach entails the use

of cluster-specific factor loading and covariance matrices. This implies that tradi-

tional maximum-likelihood estimation methods are not appropriate, since they rely

on the minimisation of the discrepancy between the sample covariance matrix and the

model-implied covariance matrix. For unbalanced designs and multilevel models with

continuous predictors, there is not a unique covariance matrix. In order to exploit

all the information present in the data, a widely used approach is that based on full

information maximum likelihood (FIML), which, for each row in the data set, filters

out the missing values and uses only the observed data. Let us consider a scenario as

that described in the previous sections, where n subjects were randomly sampled from

a population of interest and for each of them a set of variables were measured repeat-

edly over time. Some subjects may have not been assessed at every time occasion, so

that each subject i presents Ti measurements and pi observed variables.

The individual likelihood is given by

−2 logLi = pi log(2π) + log |Σi|+ (Ri − µoi )Σ−1
i (Ri − µoi )T

where Σi is the pi×pi filtered model-implied covariance matrix for observed variables,

µoi is the filtered model-implied mean vector for observed variables (Equation 3.17),

and Ri is the row corresponding to subject i in the data set. The log-likelihood for

the entire data set is obtained by summing the individual contributions

FML = −2 logL = −2
n∑
i=1

logLi.

The parameters of interest, i.e. µ, Γ and Ψ can be estimated by solving ∂FML/∂µ =

0, ∂FML/∂Γ = 0 and ∂FML/∂Ψ = 0. Generally speaking, the solutions of these equa-

tions cannot be expressed in closed form, then iterative algorithms, such as Newton-

Raphson or EM, are required.

This approach can find application not only in the MSEM framework with defini-

tion variables, but it can also be used for the estimation of the other three models

discussed. For CLPM and LDS models, FIML is useful in the presence of missing

data, which make the design unbalanced. As regards LGMs, this estimation method

is required not only in the case of balanced design (at the sampling level) with miss-

ing data, but also when the measurements occasions differ among subjects, a setting

analysed by Mehta and West (2000). In this latter case, the λ coefficients coding

time are no more common to all subjects and, as a consequence, it is not possible
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to use a unique Γ matrix for parameterising the model. Then, the definition vari-

able approach allows to fit a different factor loading matrix for each subject, where

the Time column contains the times corresponding to the individual measurement

occasions (Mehta and West 2000).

Once the model has been fitted and the parameters have been estimated, it would

be of considerable interest to measure the model goodness-of-fit and to have a criterion

for model selection. For traditional, single-level SEMs there are several alternatives,

such as the likelihood ratio test (LRT), the comparative fit index (CFI), the root mean

square error of approximation (RMSEA) and the AIC and BIC for comparing non-

nested models. These measures cannot be applied straightforwardly to a multilevel

setting, since ML estimation in SEM requires the independence of statistical units,

a condition which in multilevel models is clearly not satisfied. Yuan and Bentler

(2007) point out three limitations of the standard approach when applied to multilevel

models: first, the standard approach may not be sensitive to the goodness (or lack)

of fit at the group level, second, when the standard approach indicates lack of fit it

is not clear at what level it is detected, and finally, model specification at one level

can negatively affect the estimates at the other level.

To overcome these issues, both Yuan and Bentler (2007) and Ryu and West (2009)

propose to evaluate the model fit at each level. The former approach relies on two

steps, first they estimate a saturated covariance matrix for each level, second this is

used as input for a covariance structure analysis at that level. The latter approach

instead uses partially saturated models to assess level-specific model fit indexes. In

particular, denoting by Σk, k ∈ {B,W} the implied covariance matrix at the k-th

level and by ΣS
k , k ∈ {B,W} the covariance matrix corresponding to the saturated

model at k-th level, to assess the within (level 1) model fit FML[ΣS
B,ΣW ] is compared

to FML[ΣS
B,Σ

S
W ] (i.e. the saturated model). Analogously, to assess the between-level

goodness of fit FML[ΣB,Σ
S
W ] is compared to FML[ΣS

B,Σ
S
W ].

Assuming a balanced design where each group contains n individuals and the

number of observed variables is p, the LRT and the RMSEA can be written as

χ2
W

= FML[ΣS
B,ΣW ]− FML[ΣS

B,Σ
S
W ] RMSEAW =

√
χ2
W
− dfW

dfW × n
(3.68)

where dfW = npSW −npW and n is the total sample size. Analogously, for the between

level,

χ2
B

= FML[ΣB,Σ
S
W ]− FML[ΣS

B,Σ
S
W ] RMSEAB =

√
χ2
B
− dfB

dfB × J
, (3.69)
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where dfB = dSB − dB (d is the number of parameters). Rappaport et al. (2020)

proposes also a level-specific AIC, defined as

AICk = χ2
k + 2dk, k ∈ {B,W}, (3.70)

and implemented an algorithm in the OpenMx R package to estimate these indexes.

They carried out a simulation study for evaluating its abilities to detect level-specific

misspecification.

It is worth mentioning another fit index proposed by Lee and Song (2001). They

propose a Bayes factor to compare two non-nested models M1 and M2. Let D denote

the data, from the Bayes theorem the posterior probability of each model Mk, k = 1, 2,

is

P (Mk|D) =
P (D|Mk)P (Mk)

P (D|M1)P (M1) + P (D|M2)P (M2)
, k = 1, 2

where P (Mk) is the prior probability for model k. It follows that

P (M1|D)

P (M2|D)
=
P (D|M1)P (M1)

P (D|M2)P (M2)

where the first factor is known as the Bayes factor and can be denoted by B12.

ObtainingB12 analytically would generally require the integration of P (D|Mk), k =

1, 2 over the parameter space, a task often very difficult. For this reason, Lee and Song

(2001) propose an approximation capitalizing on the decomposition of total variance

in its between and within components typical of MSEM, but we do not report the

details here.

As regards the implementation of these methods, although there exist many SEM

specialised software and FIML is now implemented in most of them, the same does

not hold true for definition variables, which, to the best of our knowledge, are imple-

mented only in Mplus and Mx (and its R version OpenMx). The former makes use of

computationally intensive numerical integration procedures, the latter employs con-

strained optimisation methods based on Sequential Quadratic Programming (SQP).

The main advantage of OpenMx over Mplus is that it is a freely downloadable

package within the open source R software, while Mplus has a cost of about 700$.

In addition, OpenMx has a very user-friendly syntax which allows the user to choose

between a path-specification approach, where the user has to write all paths present

in the model, both directed and bidirected to represent variances/covariances, and a

matrix-specification approach, where the user specifies the three matrices character-

ising the RAM approach (Γ,Ψ and F) plus the mean vector. The latter approach

seems more appropriate when the number of variables is small. For single-level data,
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the dataset is written in the wide format, i.e. a subject for each row and a variable for

each column, while for multilevel data it is easier to use the long format, i.e. a level-1

unit for each row and a variable used to associate each unit to its cluster. In the mul-

tilevel case two models are fitted, one for level-2 variables and the other for level-1

variables. Preacher (2011) states that multilevel models fitted as SEMs through the

definition variable approach can be estimated using a single-level data structure, i.e.

a wide format. However, as the number of level-1 or level-2 units increases, the data

managing problem becomes remarkable, since a wide format requires to have a col-

umn for each observed variable and in real-world cases the data table is expected to

have hundreds of columns. For this reason, we suggest to use the multilevel approach

based on a long data format and fit a model for each level.

3.6 Discussion

In this chapter we showed how SEMs and mixed-effect models can be integrated in a

unique framework through the use of the RAM notation and the possibility to include

definition variables. Although other unifying approaches have been proposed in the

past (Skrondal and Rabe-Hesketh 2004, Niku et al. 2017, Usami et al. 2019, Heck and

Thomas 2020), so far, to the best of our knowledge, none has specifically addressed

mediation settings. Our approach is flexible enough to encompass several kinds of

SEM, not only the three on which we focused, and the possibility to include definition

variables makes unbalanced designs easy to handle.

Section 3.4 was entirely devoted to multilevel models via definition variables, an

approach almost unexplored so far, since multilevel mediation has traditionally been

restricted to cases where an upper level variable influence variables only at the same

or at a lower level (Krull and MacKinnon 2001, Pituch and Stapleton 2012, Bauer

et al. 2006) or has been addressed within the classical MSEM framework involving

the decomposition of variables in their between and within components (Preacher

et al. 2010, 2011). Preacher et al. claim the superiority of their MSEM approach over

the traditional multilevel ones, since it can address any kind of mediation design,

including those involving bottom-up effects (i.e. designs involving 1-2 components,

in the standard notation to define designs), and it is able to decompose indirect

effects in their within and between components, while traditional methods provide

only conflated estimates, using their terminology.

However, as pointed out by Pituch and Stapleton (2012), the term conflated may

generate confusion, since

casual readers may get the impression that the use of the statistical models
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associated with this approach (the standard approach) is always wrong or

somehow harmful

while, in fact, in their simulation study, Pituch and Stapleton prove that Preacher

et al. (2010) approach may be biased. In addition, for scholars more familiar with the

multilevel framework, the mediation setting proposed by Preacher et al. may appear

very different from it, while the definition variable approach we introduced is closer

in spirit to multilevel models and tries to follow the same structure from a different

perspective.

We do not claim that our approach is superior to that of Preacher et al., suggesting

instead that they are simply alternative methods to address the same issue. Both

can deal with any kind of multilevel mediation setting, but the differences between

the estimates of mediational effects in the two approaches are yet to be investigated.

Researchers are then encouraged to try both types of modeling approach and compare

them using appropriate indexes, like AIC or BIC.

Clearly, the proposed approach is not free of drawbacks. We made the traditional

assumption of multivariate Normal distribution for all variables, both observed and

latent, but in many settings this assumption is quite unrealistic. FIML proved to

be robust to non-Normality for continuous variables, but the presence of discrete

outcomes (e.g. Binomial or Poisson distributed) requires to fit nonlinear relationships

(use link functions different from identity) which standard SEM software do not allow.

Extensions of SEMs to generalized linear models have been proposed by Skrondal

and Rabe-Hesketh (2004) and Niku et al. (2017, 2019), but, at the moment, they seem

not to be well known among scholars. As regards the Skrondal and Rabe-Hesketh

(2004) approach, this may be due to the challenging theoretical framework and the

difficult notation adopted by the authors, which may discourage researchers from

studying and using GLLAMM. In addition, they implemented their approach only in

Stata, which of course prevents the approach from spreading among non-Stata users.

As regards the approach by Niku et al. (2017, 2019), it is relatively new and has been

implemented in R only recently, so it has yet to be known among applied researchers.

Moreover, although it allows to fit GLMs, the types of admitted latent variables are

limited and latent factors cannot be function of other predictors.

Integrating our approach with GLM theory and investigating the associated infer-

ential issues are tasks for future work.



Chapter 4

Causal multilevel and latent

growth models: a separable effects

approach

The focus of the last chapter was on associational models for longitudinal media-

tion analysis: we showed how they can be embedded in a unified framework and the

advantages it presents. In contrast, this chapter addresses longitudinal mediation

from a causal perspective. As discussed in Chapter 2, the causal literature has gen-

erally focused on longitudinal mediation models with survival outcomes, which are

quite common in epidemiology and play a relevant role from a causal perspective. In

Chapter 2, we also highlighted that mediation models including latent variables are

not very common in the causal inference literature, and when they are taken into

account it is generally to address unmeasured confounding.

In this chapter, we want to focus on outcomes other than survival by using mod-

els which are widely employed for longitudinal data and address latent variables as

structural components. In particular, we propose a causal interpretation of gener-

alised mixed-effect models and latent growth models in terms of separable effects.

This enables us to provide explicit assumptions for endowing mediational effects with

such an interpretation. Furthermore, these assumptions can be easily interpreted

from an interventional point of view (Robins and Richardson 2011, Robins et al.

2020). We also derive formulas for these effects and discuss their differences.

The remainder of the chapter is organised as follows. Section 1 provides a short

review of articles using mixed-effect or latent growth models in a causal framework. In

Section 2 we introduce the separable effects approach and discuss the assumptions on

which it relies. In Sections 3 and 4 we discuss mixed-effect models and latent growth

models, respectively. We show how to derive the separable mediational effects in

117



118 CHAPTER 4. CAUSAL MULTILEVEL AND LG MODELS: A SEPARABLE EFFECTS APPROACH

both cases, which assumptions are needed, and compare the two models. Section 5 is

devoted to a simulation study, where we want to assess how sensitive the estimates

obtained through the g-formula are to misspecification. In Section 6 we discuss some

possible extensions of the proposed approach and a discussion follows.

4.1 Background

In this section, we provide a brief overview on works analysing mixed-effect or latent

growth models from a causal perspective, not necessarily involving mediation.

Theoretical foundations of causal multilevel models, not restricted to longitudinal

settings, are discussed in Feller and Gelman (2015), Hill (2013), and Gitelman (2005),

Raudenbush and Schwartz (2020), the latter focusing on educational contexts. To

the best of our knowledge, there are not many examples of causal mixed models for

longitudinal data. Hong and Raudenbush (2006) and Graham et al. (2014) use a

mixed model propensity score to estimate the effect of being retained in kindergarten

versus being promoted to the first grade on the academic learning of retainees, and the

effect of road network capacity expansions on traffic volume and density, respectively.

Another example of application of propensity scores is provided by Eckardt (2012),

who investigates the causal effect of healthy eating habits on students’ BMI within

supportive school environments (SSEs) and non-SSEs. A very recent review on the

different weighting strategies for propensity scores in multilevel settings can be found

in Fuentes et al. (2021).

Shardell and Ferrucci (2018) address the issue of estimating the causal effect of a

time-varying exposure on a time-varying outcome with observed baseline confounders.

Their approach combines parametric joint mixed-effect models and g-computation.

As regards mediation more specifically, we have already introduced the work by

Bind et al. (2016), who consider a mediation setting including time-varying exposure,

mediators and outcome and propose a generalised mixed-effect modeling approach.

They assume that the exposure at time t − 1 has an autoregressive effect on itself

at time t and an effect on the mediators and the outcome at the same time, while

adjacent measurement of the mediators and the outcome are linked only through their

common random effects.

Similar models, including both random effects and autoregressive components,

have already been proposed in the literature. Schuurman et al. (2016) are interested

in modeling how two variables affect each other over time, assuming a Granger-causal

perspective. They develop a multilevel autoregressive model where the score of a

variable for each subject at each time measurement is the sum of an individual mean,
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stable over time, and an individual time-varying deviation from the mean, which

may depend both on its own previous deviations and previous deviations of the other

variable under analysis. All parameters in the model are thought of as drawn from

a multivariate distribution with a fixed mean vector and a non-diagonal covariance

matrix.

As regards LGMs, there are not many examples of their application within a causal

framework. Pakpahan et al. (2017) compare four different structural equation models,

among which LGM, and interpret them in a causal way, although no counterfactuals

are introduced. In contrast, Jo et al. (2009) make explicit use of the counterfactual

framework. They propose a two-step procedure for identifying the causal effect of a

treatment on the response when growth trajectories include latent classes. Focusing

on mediation, Cheong and MacKinnon (2012) discuss the decomposability of the total

effect into direct and indirect effects using Bollen’s theory and show how to define

mediational effects and compute standard errors and confidence intervals. They also

briefly address causal inference and some extensions of mediational LGM, as multilevel

models. In many papers, authors select LGMs to model the variables trajectories and

infer causation analysing data from RCTs, although they do not formally develop a

causal theory for LGM, see Wehmeyer et al. (2013), Zhu et al. (2021). Finally, Tofighi

et al. (2019) provide assumptions to interpret LGMs causally and they propose a

technique for performing sensitivity analyses in latent growth mediation models.

Finally, it is relevant to mention the work by De Stavola et al. (2014) that, although

does not specifically address LGMs or multilevel models, provides interesting insights

into the relationship between natural mediational effects and those obtained in an

SEM framework following a path-analytic approach. The authors discuss parametric

assumptions that make mediational effects identifiable in both settings and prove

that the estimands obtained in an SEM framework coincide with natural effects if

such assumptions are satisfied. This equivalence holds even in the presence of an

intermediate confounder.

4.2 Separable mediational effects

We discussed separable effects in Sections 1.2.5 and 2.3.5. Here we deepen some

concepts which will be then applied to mixed-effect models and LGMs.

Recall that the basic idea of separable effects is to extend the model by including

two additional variables, XM and XY , which can be thought of as two separate

components of the exposure, the former influencing directly only the mediator, the

latter only the outcome. This is graphically depicted in Figure 1.14, since only an
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arrow emanates from XM and it goes into M , likewise there is only an arrow from XY

to Y . Although these variables are not observed, since we observe only the value of X,

and in the observational regime it holds that X ≡ XY ≡ XM , it is possible to conceive

a (future) four-arm trial in which these components are randomised independently.

They turn out to be very useful to give insights into the mechanism linking X to Y .

First, they allow us to disentangle the pathways through which the exposure effects

propagate. Second, the two components of X are intervening variables and, as we

shall detail below, they allow us to define mediational effects without devising an

intervention on the mediator, as required, instead, by natural effects.

We will consider a setting with a baseline binary exposure X, and a mediator

M and a response Y measured over time for T different time occasions, where M

is measured before Y . As an example, consider an intervention on a group of over-

weight subjects to help them lose weight. They are randomised into two groups, the

treatment group, where subjects follow lectures on how to eat healthy and participate

in meetings to strengthen their motivation and self-esteem for one month, and the

control group, where subjects just receive some brochures on healthy eating. Patients

are then followed up for six months after the treatment was administered, and at each

time occasion their weight and their waist are recorded, as well as some psychological

indicators, such as the sense of self-esteem, self-efficacy and motivation.

It is expected that those in the treatment group are more likely to lose weight than

those in the control group. If Yt denotes the difference between the subject’s weight

at time t and at baseline, and Mt is the sense of self-efficacy at time t, the treat-

ment can favour weight loss directly, but also indirectly through increasing subjects’

sense of self-efficacy. Then, it may be plausible to decompose the treatment into two

components: a dietary component, which impacts eating habits and then triggers

weight loss, and a psychological component, which has a beneficial effect on subjects’

self-conception, for example increasing their self-confidence, which in turn positively

affects weight loss. In a future randomised trial, each of these two components can

be randomised, for example the XM treatment component could be the participation

in psychological meetings to develop self-esteem (XM = 1) or not (XM = 0), and the

XY component the assignment to attending lectures on healthy eating (XY = 1) or

simply to reading a pamphlet (XY = 0).

As estimand of interest for each t = 1, . . . , T , we will focus on E[Yt(X
M =

x∗, XY = x)], that is, the expectation of the response at time t under a hypotheti-

cal intervention setting the components of X to two different values x and x∗. The

mediational effects are indeed defined in terms of quantities of this kind, namely the

longitudinal separable effects, for each t = 1, . . . , T , can be defined as the differences
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(cfr. Equations (1.29)-(1.30))

SDE = E[Yt(X
M = x∗, XY = x)]− E[Yt(X

M = x∗, XY = x∗)]

SIE = E[Yt(X
M = x,XY = x)]− E[Yt(X

M = x∗, XY = x)].

As said, in contrast to the observational regime, we can conceive an interventional

regime, where XM and XY are different treatments randomised separately. However,

since we do not observe XM and XY , our aim is to identify the separable effects only

from data on X, M and Y . For the moment, we assume that X is randomised, and

this implies that

Mt(X) ⊥⊥ X, Yt(X) ⊥⊥ X for each t = 1, . . . , T

i.e. exchangeability holds. We assume also consistency

Mt(x) = Mt, Yt(x) = Yt when X = x, for each t = 1, . . . , T

and property P1 in Didelez (2019b)

P (Wt(X
M = x,XY = x)) = P (Wt(X = x)) x ∈ {0, 1}, W ∈ {M, Y }. (4.1)

As we pointed out in Section 2.3.5, the separability of the components requires,

under the interventional regime, the conditional independence of each variable from

the component of which it is not a child, so M should be independent from XY and

vice versa Y from XM .

Recalling that, for any variable W , we denote the history of Wt, i.e. the set of

variables Ws for s ≤ t, by W t, the separability assumptions in a longitudinal setting

correspond to

A1 For each time t, the mediator Mt is independent from the value of XY conditional

on its observed past, previous values of Y and XM ,

Mt ⊥⊥ XY |M t−1, Y t−1, X
M

A2 For each time t, the response Yt is independent from the value of XM conditional

on its observed past, previous values of M and XY ,

Yt ⊥⊥ XM |M t, Y t−1, X
Y .

If these assumptions are satisfied1 then, the quantity E[Yt(X
M = x∗, XY = x)],

1This can be checked directly from modified versions of expanded DAGs corresponding to a four-arm trial, where
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X

XM

XY

M1

Y1

M2

Y2

Figure 4.1: Longitudinal separable effect model with two time points.

where the components of X are set to two different values, is non-parametrically

identifiable through the mediational g-formula (Didelez 2019b)

E[Yt(X
M = x∗, XY = x)] =

∑
mt,yt−1

E[Yt |X = x, M t = mt, Y t−1 = yt−1]×

t∏
k=1

P (Mk = mk|X = x∗,Mk−1 = mk−1, Y k−1 = yk−1)× (4.2)

P (Y k−1 = yk−1|X = x,Mk−1 = mk−1, Y k−2 = yk−2).

Assume that the causal structure is as in Figure 4.1. At each time, the media-

tors have a cross-sectional effect on the response, M1 affects Y2 and Y1 affects M2.

Moreover, both the mediator and the outcome have autoregressive effects. It can

be noticed that assumptions A1-A2 are satisfied. Then, applying Equation (4.2),

E[Y2(XM = x∗, XY = x)] results identified by∑
m1,m2,y1

E[Y2 |m1,m2, y1, x]P (m2|m1, y1, x
∗)P (y1 |m1, x)P (m1|x∗).

In the next sections we apply this approach to mixed effects and latent growth

models and derive analytical expressions for the mediational effects.

4.3 Mixed-effect models

By using Laird and Ware (1982) notation, a mixed-effect model can be specified as

Yij = x′ijβ + z′ijuj + εij (4.3)

where i and j denote the subject and the cluster, respectively, Yij is the response

variable for subject i in cluster j, xij and zij are p × 1 and q × 1 vectors of known

covariates, β and u are p × 1 and q × 1 vectors of fixed and random coefficients,

XM and XY are regarded as distinguished variables and X is absent.
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Figure 4.2: Three-wave mixed effect model with separable components of X. b and g are random
effects.

respectively, with E[u] = 0 and εij an error term with null expectation. The variables

in zij are generally a subset of those in xij.

In a longitudinal mediation setting, mixed-effect models can be fitted for both the

mediator and the outcome, so that for each subject i

Mit = x′
Mit
β + z′

Mit
bi + ε

Mit
(4.4)

Yit = x′
Y it
γ + z′

Y it
gi + ε

Y it
. (4.5)

In a basic 1-1-1 setting, x
Mit

includes only the intercept and the exposure and the

same for x
Y it

with the addition of the mediator at time t. The vectors β and γ are

fixed effects common to all subjects, while b and g are subject-specific random effects.

Among articles dealing with longitudinal mediation using causal mixed-effect mod-

els, we have already mentioned that of Bind et al. (2016), who propose assumptions

for the identifiability of natural mediational effects. We consider a causal structure

similar to theirs, but slightly modified by considering a baseline exposure X and a

mediator and a response measured at different time occasions. Unlike Bind et al.

(2016), we allow subsequent measures of the mediators and the outcome to be di-

rectly linked, not just through the random coefficients in the models. In addition,

cross-lagged effects are allowed. Figure 4.2 shows the data structure for three waves.

The graph encodes some dependencies among variables: first, notice that the only

children of XM are the mediators, and the only children of XY are the outcome

measurements over time. This implies that XM is independent of the outcome condi-

tional on the mediators, and XY is independent of the mediators conditional on the

outcomes and previous mediators. Second, notice that the bidirected arrow connect-

ing random effects is dashed, meaning that they can be marginally independent or
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correlated. Whether this arrow is present or not has dramatic impacts on the identi-

fiability of separable effects. We will address the case of uncorrelated and correlated

random effects in turn.

4.3.1 Uncorrelated random effects

Let us start from the easiest case, where the two sets of random effects are uncorre-

lated, i.e. there is no dashed link in Figure 4.2. In such a model, assumptions A1 and

A2 ensure identifiability of the separable mediational effects. To show this, we start

by considering the interventional expectation of the outcome under an intervention

setting XM = x∗ and XY = x, x, with x∗ ∈ {0, 1}, x 6= x∗. Applying the law of

iterated expectation:

E[Yt(X
M = x∗, XY = x)] =∑

mt,yt−1

E[Yt(X
M = x∗, XY = x) |M t(X

M = x∗, XY = x) = mt,

Y t−1(XM = x∗, XY = x) = yt−1]×
t∏

k=1

P (Mk(X
M = x∗, XY = x) = mk | Mk−1(XM = x∗, XY = x) = mk−1, (4.6)

Y k−1(XM = x∗, XY = x) = yk−1)×

P (Yk−1(XM = x∗, XY = x) = yk−1 |Mk−1(XM = x∗, XY = x) = mk−1,

Y k−2(XM = x∗, XY = x) = yk−2)

with the assumption that variables with zero or negative subscripts are not present.

From assumption A1 and (4.1) it follows that, for each k,

P (Mk(X
M = x∗, XY = x) = mk |Mk−1(XM = x∗, XY = x),

Y k−1(XM = x∗, XY = x))

= P (Mk(X
M = x∗, XY = x∗) = mk |Mk−1(XM = x∗, XY = x∗),

Y k−1(XM = x∗, XY = x∗))

= P (Mk(X = x∗) = mk |Mk−1(X = x∗), Y k−1(X = x∗))

and, since the treatment is randomised, this equals

P (Mk = mk |X = x∗,Mk−1, Y k−1).
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The same holds for Yk by using A2 instead of A1, i.e.

P (Yk(X
M = x∗, XY = x) = yk |Mk(X

M = x∗, XY = x), Y k−1(XM = x∗, XY = x))

= P (Yk(X
M = x,XY = x) = yk |Mk(X

M = x,XY = x),

Y k−1(XM = x,XY = x))

= P (Yk(X = x) = yk |Mk(X = x), Y k−1(X = x))

= P (Yk = yk |X = x,Mk, Y k−1).

It then follows that

E[Yt(X
M = x∗,XY = x)] =∑

mt,yt−1

E[Yt |X = x, M t = mt, Y t−1 = yt−1]×

t∏
k=1

P (Mk = mk |X = x∗, Mk−1 = mk−1, Y k−1 = yk−1)×

P (Yk−1 = yk−1 |X = x, Mk−1 = mk−1, Y k−2 = yk−2).

(4.7)

A detailed proof is given in Appendix B.

Specifying parametric models for the mediator and the outcome allows us to derive

separable direct and indirect effects in terms of regression coefficients. For example,

assume a structure as shown in Figure 4.2. For each subject i = 1, . . . , n and time

occasion t = 1, . . . , T , if the mediator and the outcome are assumed to be Normally

distributed and their expectations to be linear in the direct causes, possible models

for their expectations can be

E[Mit |Xi, M it−1, Y it−1,bi] = (β0 + b0i) + β
X
Xi + β

`1(M)
Mit−1 + β

`1(Y )
Yit−1 (4.8)

E[Yit |Xi, M it, Y it−1,gi] =

(γ0 + g
0i

) + γ
X
Xi + (γ

Mt
+ g

Mi
)Mit + (γ

`1(M)
+ g

`1(M)i
)Mit−1 + γ

`1(Y )
Yit−1. (4.9)

where the subscripts `1(M) and `1(Y ) denote the coefficients referring to Mt−1 and

Yt−1 respectively (`1 stands for the lag operator of order 1), and we are assuming that

ui = (b0i, g0i, gMi
, g

`1(M)i
)′ ∼ MVN(0,Φ), with Φ diagonal.

Going back to the initial example of the randomised treatment for weight loss,

these models imply that the treatment has an effect on both self-efficacy and weight

loss over time. Subjects can show heterogeneity in the extent to which the mediator

affects the response, so that the effect of Mt and Mt−1 on weight loss at time t

may vary across subjects. The random effects g
Mi

and g
`1(M)i

are included in the

model to capture such heterogeneity. It is also plausible that the mediator and the
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outcome have autoregressive as well as cross-lagged effect, since, for example, a higher

weight loss at time t may induce an increased sense of self-efficacy at the subsequent

measurement.

To give an example, suppose that one is interested in the separable effects of the

exposure on the outcome at time t = 2. Considering the difference as contrast and two

different values of X, x and x∗, it can easily be proved that, applying the g-formula

in (4.7), the separable effects, conditional on random effects, take the form

SDE|b,g = γ
X

[
1 + β

`1(M)
(γ

M
+ g

Mi
) + γ

`1(Y )

]
(x− x∗ ) (4.10)

and

SIE|b,g = β
X

[
(γ

M
+ g

Mi
) + β

`1(M)
(γ

M
+ g

Mi
) + (γ

M
+ g

Mi
)β

`1(Y )
(γ

M
+ g

Mi
)

+ (γ
`1(M)

+ g
`1(M)i

) + (γ
M

+ g
Mi

)γ
`1(Y )

]
(x− x∗).

(4.11)

Since one is usually interested in the average causal effects, random effects in

the formulas above can be integrated out. In addition, since the random effects are

assumed to be uncorrelated, the resulting effects are obtained by simply deleting the

random coefficients, i.e.

SDE = γ
X

[
1+β

`1(M)
γ
M

+ γ
`1(Y )

]
(x− x∗ ) (4.12)

SIE = β
X

[
γ
M

+ β
`1(M)

γ
M

+ β
`1(Y )

γ2
M

+ γ
`1(M)

+ γ
M
γ
`1(Y )

]
(x− x∗). (4.13)

It is interesting, but not entirely surprising, to notice that each term of these effects

refers to a path contributing to the effect under examination: the SDE includes

products of coefficients along all the paths connecting XY to Y2, that is XY →
Y2, X

Y → Y1 →M2 → Y2 and XY → Y1 → Y2, while SIE includes all path coefficients

between XM and Y2, for instance the first two terms represent the paths XM →M2 →
Y2 and XM → M1 → M2 → Y2. This means that the separable effects are functions

of time, since the more time is elapsed between the baseline measurement and that

of interest, the more paths are involved.

It can also be noticed that the more complex the model is, the more complex the

expressions for separable effects become. However, this special case of mixed-effect

models is recursive, i.e. they do not present loops and correlated error terms. As

a consequence, exploiting the theory developed by Bollen (1987), if the models are

linear and their coefficients are arranged in a matrix B, the SDE and SIE can easily

be retrieved by inspecting B =
∑s

k=1 Bk, where s is the number of mediators and

outcomes. For example, consider models (4.10)-(4.11) for three time occasions. They



4.3. MIXED-EFFECT MODELS 127

can be rewritten as follows

XM

XY

M1

M2

M3

Y1

Y2

Y3


=



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

β
X

0 0 0 0 0 0 0

β
X

0 β
`1(M)

0 0 β
`1(Y )

0 0

β
X

0 0 β
`1(M)

0 0 β
`1(Y )

0

0 γ
X

γ
M

0 0 0 0 0

0 γ
X

γ
`1(M)

γ
M

0 γ
Y

0 0

0 γ
X

0 γ
`1(M)

γ
M

0 γ
Y

0


︸ ︷︷ ︸

B



XM

XY

M1

M2

M3

Y1

Y2

Y3


+



0

0

ε
M1

ε
M2

ε
M3

ε
Y 1

ε
Y 2

ε
Y 3


.

The separable direct and indirect effects of X on Y at each time can be found in the

submatrix of B made up of the first two columns and the last three rows. This allows

to express the separable mediational effects in closed form, at least when the models

are linear (identity link functions and no interactions).

4.3.2 Correlated random effects

The case of correlated random effects can be further divided into two sub-cases: the

non-null correlation concerns random effects related to the same variable, i.e. Φ

is block diagonal, Φ =

(
Φb 0

0 Φg

)
, or random effects are free to covary with any

element, so that Φ is a full, non-diagonal matrix.

The former case is not conceptually different from that with uncorrelated effects,

and assumptions A1-A2 are still valid. The only difference is that integrating out

random effects is less straightforward. To show how the correlation of random effects

impacts the formulas of separable effects, let us consider again Normally distributed

mediator and outcome, and models (4.8)-(4.9). Suppose that g
Mi

is correlated with

g
`1(M)i

in model (4.9), and the other random coefficients are uncorrelated.

In formulas (4.10)-(4.11) there are not paths involving both random terms, since

the time elapsed is too short. But consider the separable indirect effect of X on Y3:

among the different paths contributing to this effect, there is XM → M1 → Y2 →
M3 → Y3, which is analytically expressed by the product β

X
(γ

`1(M)
+g

`1(M)i
)β

`1(Y )
(γ

M
+

g
Mi

). Given the correlation between g
M

and g
`1(M)

, random effects cannot simply be

deleted as in the previous case.

To obtain an expression free of random terms, it is necessary to solve the integral∫∫
(γ

`1(M)
+ g

`1(M)
)(γ

M
+ g

M
) f(g

`1(M)
, g

M
) dg

`1(M)
dg

M
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where f is the joint density of the two random factors. Since f is a bivariate Normal

with zero mean and non-diagonal covariance matrix, it can be proved that the integral

above reduces to γ
`1(M)

γ
M

+ φ
g`1(M),gM

, with φ
g`1(M),gM

= Cov(g
`1(M)

, g
M

). Thus, the

g-formula in (4.7) is not non-parametrically identified, since to derive the previous

formula we assumed the Normality of random effects.

As the number of paths increases, the expressions for the separable effects become

increasingly complex and deriving their closed form is not trivial. For this reason, if

random effects are believed to be correlated and/or the mediator and the outcome

models to be non linear, one of the solutions is to implement a code for the g-formula,

without trying to solve it analytically.

Let us move to the case of non-diagonal Φ, so there is at least an element of b cor-

related to an element of g. In Figure 4.2 the dashed bidirected arrow is then present.

This simple modification makes separable effects unidentifiable, since the mediators

and the outcomes are now part of the same unique district, which is recanting, since

both treatment components affect nodes in the district. In addition, assumptions

A1 and A2 fail, since M is no more conditionally independent from XY and Y is

not conditionally independent from XM . These considerations shed light into the

nature of districts characterising mixed-effect models. Indeed, if random effects are

uncorrelated, or if they are correlated only within their ‘block’, the mediators and the

outcomes belong to two separate districts {M1, . . . , MT} and {Y1, . . . , YT}, which are

not recanting, since nodes in a district are affected by only one of the components of

X. The link between separable components and recanting districts has already been

noted by Didelez (2019b).

4.4 Latent growth models

Considering a mediational LGM as that in Equations (2.8), it is possible to notice the

differences with the mixed-effects models in Equations (4.4)-(4.5): in LGMs there is

not a direct relationship between the observed variables, that is, the repeated mea-

surements of mediator and outcome, instead they are indirectly connected through

their latent factors. Moreover, latent factors in LGMs determine the trajectories of

observed variables over time, while, in mixed-effect models, random effects explain

heterogeneity among subjects and can be viewed as deviations from a common mean.

From another point of view, mixed-effects models assume that the phenomenon hap-

pens at the level of repeated measures. In contrast, in LGMs, where a latent structure

underlying the object of investigation is assumed, observed measurements are just in-

dicators of this structure, since relationships of association and dependence involve
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Figure 4.3: Three-wave latent growth model with separable components of X.

random factors, not measurements.

The different specification impacts also the definition of intervention and the cor-

responding causal interpretation of effects. In mixed-effect models we assume that

intervening on XM produces a change on the mediator and, likewise, an intervention

on XY modifies the outcome, at each time. In contrast, in LGMs, intervening on

XM possibly leads to a change in the latent intercept θ0M and the latent slope θ1M

of the mediator model. The same holds for XY and the latent factors in the outcome

model. Then, intervening on XM and XY affects indirectly the measurements of the

mediator and the outcome, respectively. Once again, the effects of the intervention

work at a latent level and have an indirect impact on the observed variables.

Considering again the running example, the intervention for favouring weight loss

affects the mediator intercept, i.e. the average sense of self-efficacy at the beginning

of the study, and its slope, that is, self-efficacy change rate, as well as the average

weight loss at baseline and its change rate. In turn, the latent factors of self-efficacy

may have an effect on those of weight loss. This mechanism is different from that

described for the mixed-effect model, since treatment assignment does not modify

self-efficacy and weight directly, but it affects their latent determinants. So, in a

sense, the causal mechanism acts at a different, underlying level.

In contrast to what happens for mixed models with uncorrelated random effects,

the separable effects in a latent growth model are never non-parametrically identified.

Nonetheless, a modified version of assumptions A1 -A2 allows us to express the effects

in terms of model parameters. Let Θ denote the set of latent factors and ΘM , ΘY

the subsets of factors in the mediator and the outcome model, respectively. We need
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to extend consistency and exchangeability also to latent factors, i.e.:

- For each θ ∈ Θ, θ(x) = θ when X = x;

- For each θ ∈ Θ, θ(x) ⊥⊥ X.

In addition we assume that

B1.1 Each random factor in the mediator process is independent of XY conditional

on the value of XM ,

∀ θM ∈ ΘM , θM ⊥⊥ XY |XM

B1.2 Each random factor in the outcome process is independent of XM conditional

on its predictors and the value of XY ,

∀ θY ∈ ΘY , θY ⊥⊥ XM |ΘM , XY

B2 For each time t the response Yt is independent of the value of XM conditional on

ΘM and XY ,

Yt ⊥⊥ XM |ΘM , XY .

Applying again the law of iterated expectation one can derive expressions for the

mediational effects as follows:

E[Yt(X
M = x∗, XY = x)] =∑

θ̃0M , θ̃1M ,θ̃0Y ,θ̃1Y

E[Yt(X
M = x∗, XY = x) | θ0M(XM = x∗, XY = x) = θ̃0M ,

θ1M(XM = x∗, XY = x) = θ̃1M , θ0Y (XM = x∗, XY = x) = θ̃0Y ,

θ1Y (XM = x∗, XY = x) = θ̃1Y ]× (4.14)

P (θ0M(XM = x∗, XY = x) = θ̃0M) P (θ1M(XM = x∗, XY = x) = θ̃1M)×

P (θ0Y (XM = x∗, XY = x) = θ̃0Y )×

P (θ1Y (XM = x∗, XY = x) | θ0M(XM = x∗, XY = x) = θ̃0M ,

θ1M(XM = x∗, XY = x) = θ̃1M , θ0Y (XM = x∗, XY = x) = θ̃0Y )

Making use of (4.1) and assumptions B1.1, B1.2 and B2 yields

E[Yt(X
M = x∗, XY = x)] =∑

θ̃0M , θ̃1M ,θ̃0Y ,θ̃1Y

E[Yt |X = x, θ0M = θ̃0M , θ1M = θ̃1M , θ0Y = θ̃0Y ]×

P (θ0M = θ̃0M |X = x∗) P (θ1M = θ̃1M |X = x∗) P (θ0Y = θ̃0Y |X = x)×

P (θ1Y = θ̃1Y |X = x, θ0M = θ̃0M , θ1M = θ̃1M , θ0Y = θ̃0Y )

(4.15)
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A detailed proof is provided in Appendix B.

Assumptions B1.1, B1.2 and B2 do not lead to non-parametric identification.

This is evident looking at Equation (4.15), because it depends on both observed

and unobserved variables and involves quantities non-identifiable in absence of other

parametric assumptions. Then, assumptions B1.1, B1.2 and B2 are useful for ex-

pressing the interventional expectation E[Yt(X
M = x∗, XY = x)] as in (4.15), which

is a ‘pseudo’ g-formula, since it involves unobservable quantities. Parametric identi-

fication is achieved by exploiting the parametric assumptions encoded by LGMs.

Notice that in Figure 4.3, B1.1, B1.2 and B2 hold. In particular, assumption

B1.2 holds for θ0Y without conditioning on ΘM , since XY suffices to ensure condi-

tional independence from XM , while θ1Y ⊥⊥ XM |XY , θ0M , θ1M . It is important to

remark that these assumptions hold in a model like that in Figure 4.3 either if the

latent factors are uncorrelated or if the factors referring to the same process are cor-

related, for example θ0M with θ1M and θ0Y with θ1Y . However, if there are reasons

to believe that all factors are correlated, this leads to a problem of identification of

separable effects, since all factors belong to the same recanting district, similarly to

what happens for mixed-effect models with correlated b and g. Assumptions B1.1,

B1.2 and B2 are not satisfied and E[Yt(X
M = x∗, XY = x)] cannot be expressed as

in (4.15).

For a linear LGM with corresponding graph as that in Figure 4.3

Mit = θ0Mi + θ1Miλt + εMit

Yit = θ0Y i + θ1Y iλt + εY it

θ0Mi = βθ0
0

+ βθ0
X
Xi + ζθ0Mi (4.16)

θ1Mi = βθ1
0

+ βθ1
X
Xi + ζθ1Mi

θ0Y i = γθ0
0

+ γθ0
X
Xi + ζθ0Y i

θ1Y i = γθ1
0

+ γθ1
X
Xi + γθ1θ0M θ0Mi + γθ1θ1M θ1Mi + ζθ1Y i.

the separable direct effect on the difference scale is

SDE = (γθ0
X

+ γθ1
X
λt)(x− x∗) (4.17)

and the separable indirect effect

SIE = λt(β
θ0
X
γθ1θ0M + βθ1

X
γθ1θ1M )(x− x∗). (4.18)

It is easy to notice that these expressions are the same one would obtain by means
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of path analysis, since the effects are defined as sums of path-specific effects, which

are in turn obtained as products of coefficients lying on the path. For example the

direct effect is obtained by summing the effect through the path XY → θ0Y → Yt

and that through XY → θ1Y → Yt for each t. In addition, these expressions do not

depend on the correlation between random factors.

As remarked for mixed effect models, also in this case the mediational effects are

time-varying. Notice, however, that equations (4.12)-(4.13) are very different from

(4.17)-(4.18). The former show time dependence in the fact that, at each t, the

number of paths connecting variables, and thus the number of terms in the formulas,

increases. The latter encode time dependence only via λt, t = 1, . . . , T .

4.5 Simulation study

In principle, the g-formula does not require any parametric assumption. However, if

the number of variables is large, it can be difficult to apply it without recurring to

(semi-)parametric models. The parametric g-formula relies on the correct specifica-

tion of such models. In general, researchers are concerned about ignoring relevant

variables, i.e. unobserved confounders. In longitudinal settings, there is also the issue

of modeling the dynamic aspect of the phenomenon, which can be done in a wide

variety of ways, involving latent structures or not. When a latent structure is taken

into account, it is however difficult to select the most appropriate one.

In this section, we conduct a simulation study to assess how model misspecification

and the choice of an incorrect latent structure, either in the mediator or the outcome

model, affect the estimation of separable effects via the g-formula. We consider a

simple scenario consisting of a binary exposure and Normally-distributed mediator

and outcome for n = 1, 000 subjects and T = 5 measurement occasions. Data were

simulated from two different models: a linear mixed model as specified in Equations

(4.8)-(4.9) with uncorrelated random effects, drawn from a multivariate Normal dis-

tribution with zero mean vector and identity covariance matrix, and a latent growth

model as in Equations (4.16), where the ζ terms are from a standard Normal distri-

bution. The model coefficients are reported in Table 4.1.

To analyse the extent to which estimates are affected by the use of wrong models,

we considered two degrees of misspecification: moderate misspecification, where the

model is very similar to the true one, except for a term, which is missing, and severe

misspecification, where the models are completely wrong. Specifically, for the mixed-

effect model we considered a moderate misspecification in the mediator model, which

is assumed to be as in Equation (4.8) but with β
`1(Y )

= 0; for the LGM, we did not



4.5. SIMULATION STUDY 133

Table 4.1: Coefficients of the mixed-effect and latent growth models used to generate data.

Mixed-effect model LGM

Coefficient Value Coefficient Value

β0 1.3 βθ0
0

0.21

β
X

0.5 βθ0
X

0.16

β
`1(M)

0.27 βθ1
0

0.7

β
`1(Y )

0.11 βθ1
X

0.47

γ0 0.45 γθ0
0

0.3

γ
X

0.7 γθ0
X

0.14

γ
Mt

0.2 γθ1
0

0.59

γ
`1(M)

0.08 γθ1
X

0.27

γ
`1(Y )

0.34 γθ1θ0M 0.44

γθ1θ1M 0.19

include θ0M in the model for θ1Y . As regards severe misspecification, the mixed-effect

model was addressed as an LGM and, vice versa, the LGM as a mixed-effect model.

This mirrors the case in which a researcher is completely agnostic about the true

nature of the phenomenon under study.

For each generating mechanism we simulated K = 500 datasets on which we fitted

each misspecified model and estimated the separable direct and indirect effects on

the difference scale through the mediational g-formula. True values of the parameters

were obtained straightforwardly for LGMs by applying formulas (4.17)-(4.18), while

they were estimated asymptotically for mixed effect models, since the analytical form

of effects is more complex. We evaluated the relative bias defined as

Relative bias =

∑K
k=1(θ̂kt − θt)
Kθt

,

where θ̂kt is the estimate of the SDE or the SIE at time t obtained in the k-th

simulation; the root mean square error (RMSE)

RMSE =

√∑K
k=1(θ̂kt − θt)2

K
,

and the coverage rate of 95% confidence intervals, obtained through B = 500 boot-

strap samples.

The g-formula algorithm can be divided into three steps:

1. For each t = 1, . . . , T , fit parametric models for the mediator and the out-
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come conditional on the treatment and their histories, i.e. estimate densities

fM(Mt|X,M t−1, Y t−1) and fY (Yt|X,M t, Y t−1).

2. Select S ≥ 10, 000.

• Specify an intervention or a set of interventions to compare, creating two

variables XM and XY and setting them to the values of interest.

• For each s = 1, . . . , S and t = 1, . . . , T , draw a value m̃st for the mediator

from fM(Mt|xM , m̃st−1, ỹst−1) estimated in step 1, conditional on xM and its

(simulated) history. Do the same for Y , conditional on xY and its history,

i.e. draw ỹst from fY (Yt|xY , m̃st, ỹst−1). For continuous distributions whose

variance is not a function of the mean, the variance is estimated through

the model residual mean squared error (Lin et al. 2020).

3. Compute the intervention mean estimate at each time t =, . . . , T , by averaging

the outcome expectation over simulated subjects:

E[Yt(X
M = xM , XY = xY )] =

1

S

S∑
s=1

E[ỹst] (4.19)

Standard errors and confidence intervals for the average intervention effect can be

estimated through non-parametric bootstrap, by repeating steps 2 and 3 B times,

where B is the number of bootstrap samples.

The separable direct and indirect effects can easily be obtained by comparing

expressions of the form (4.19), appropriately selecting xM and xY . For example, if

one wants to estimate the SDE and X is binary, one should compare XM = 0, XY = 1

with XM = 0, XY = 0.

4.5.1 Results

Simulations were conducted in the statistical software R. Results are shown in Tables

4.2 and 4.3. As expected, for data generated from a mixed-effect model, moderate

misspecification produced an understimation of both SDE and SIE. This is consis-

tent with the fact that the term expressing the lagged influence of the outcome was

removed from the mediator model. When the misspecification is severe, the SDE is

underestimated, while the SIE is overestimated, and the estimates are progressively

farther from the true values as the amount of time elapsed increases. Both relative

bias and RMSE are smaller (in absolute values) for effects estimated through the

moderately misspecified model than for effects estimated using the severely misspec-

ified model, and those of direct effects are generally lower than those of the indirect
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Table 4.2: Results of simulations for data generated from a mixed model as in Figure 4.2 with
uncorrelated random effects. For every model, each row refers to a different time t = 1, . . . , 5.

Misspecification True Estimates Rel. bias RMSE Coverage rate

SDE SIE SDE SIE SDE SIE SDE SIE SDE SIE

Moderate

0.700 0.100 0.699 0.114 -0.001 0.140 0.100 0.029 0.866 0.832

0.956 0.257 0.902 0.245 -0.056 -0.047 0.140 0.052 0.862 0.854

1.064 0.384 0.961 0.316 -0.097 -0.178 0.173 0.096 0.784 0.668

1.123 0.527 0.978 0.348 -0.129 -0.340 0.202 0.194 0.710 0.222

1.162 0.660 0.983 0.361 -0.154 -0.453 0.229 0.309 0.622 0.320

Severe

- - 0.880 0.000 0.257 -0.999 0.251 0.100 0.814 0.000

- - 0.796 0.355 -0.167 0.383 0.261 0.137 0.886 0.868

- - 0.712 0.711 -0.331 0.849 0.448 0.378 0.738 0.632

- - 0.628 1.066 -0.440 1.023 0.613 0.610 0.690 0.542

- - 0.544 1.422 -0.532 1.154 0.769 0.851 0.696 0.486

Table 4.3: Results of simulations for data generated from a latent growth model as in Figure 2.3.
For every model, each row refers to a different time t = 1, . . . , 5.

Misspecification True Estimates Rel. bias RMSE Coverage rate

SDE SIE SDE SIE SDE SIE SDE SIE SDE SIE

Moderate

0.140 0.000 0.138 0.000 -0.017 0.000 0.078 0.000 0.966 1.000

0.410 0.160 0.479 0.089 0.169 -0.445 0.124 0.074 0.878 0.308

0.680 0.319 0.821 0.177 0.207 -0.445 0.212 0.149 0.852 0.230

0.950 0.479 1.162 0.266 0.223 -0.445 0.309 0.222 0.838 0.206

1.220 0.639 1.504 0.354 0.233 -0.445 0.407 0.297 0.832 0.210

Severe

- - 0.252 0.038 0.802 0.038 0.130 0.039 0.460 1.000

- - 0.456 0.112 0.031 -0.030 0.127 0.029 0.874 0.892

- - 0.625 0.329 -0.081 0.031 0.172 0.056 0.868 0.894

- - 0.770 0.546 -0.190 0.131 0.271 0.110 0.734 0.802

- - 0.897 0.794 -0.265 0.242 0.402 0.199 0.586 0.646

effects. In addition, they show an increasing trend over time. Coverage rates are

lower than nominal level and they decrease as time elapses, so they are higher for the

effect of X on Y at the first time occasions and tend to become smaller at subsequent

times. The SDE coverage rates are very similar in both cases of misspecification,

while for SIE they appear higher in the severe case, except for time 1.
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Results for data generated from an LGM are less clear. The indirect effects esti-

mated through the moderately misspecified model are smaller than the true ones, as

expected, since the term βθ0
X
γθ1θ0M in Equation (4.17) is missing. Setting γθ1

θ0M
= 0 influ-

ences also the estimate of SDE, which, on the contrary, is overestimated. In contrast,

in the situation with severe misspecification, the SDE is underestimated, while the

SIE is overestimated. Compared to mixed-effect model, it seems that misspecification

affects the estimates in a more severe way, even when misspecification is only modest.

Relative bias and RMSE do not show clear patterns, and, in fact, in most cases

they are smaller in the severe misspecification condition. Coverage rates for SDE are

higher in the case of moderate misspecification, although below the nominal level.

For SIE, coverage rates are better in the severe case and this may be due to the

fact that estimates are heterogeneous enough to include the true effects, while in the

moderate misspecification case the estimates are too far from the true values and the

confidence intervals are not wide enough to include them.

These results, although referring to very simple models, suggest that even a mod-

erate misspecification can have a remarkable impact on the estimates of separable

effects, as well as on their confidence intervals. Then, researchers should carefully

think about the most appropriate latent structure and model specification, especially

in a longitudinal setting, where the time dynamics can be difficult to catch and many

interactions among variables can be present.

4.6 Extensions

In sections 4.3 and 4.4, we have considered very basic, and unrealistic, scenarios for

illustrating the separable effect approach to mixed-effect and LGMs. However, real-

world settings are much more complex and may generally present additional issues. In

this section, we are going to address some possible complications of the basic settings

introduced previously.

4.6.1 Non-randomised treatment

In observational studies, the exposure cannot be assumed to be randomised, then

P (Y (X = x)) 6= P (Y |X = x). However, it is possible to achieve identification

if conditional exchangeability holds, i.e. if it is possible to found sufficient sets of

adjusting variables so that the exposure-mediator and exposure-outcome relationships

are unconfounded. Classical adjustment methods can be applied, like the adjustment

criterion discussed in Chapter 2 and the recanting witness/district criterion.
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Figure 4.4: A separable mixed-effect model (a) and LGM (b) including a set of observed covariates
C.

4.6.2 Inclusion of covariates

There are different types of covariates which may complicate the study setting and

deserve discussion.

Let us start from the typical covariates included in any study, baseline covariates

such as sex and age. Figure 4.4 shows a mixed-effect model (a) and an LGM (b)

with a vector of observed baseline covariates C. In this case, the separability of

the exposure components can be obtained by simply modifying assumptions A1-A2

and B1.1, B1.2 and B2, so that C is included in the conditioning set. Then, for

example, assumption A1 becomes Mt ⊥⊥ XY |M t−1, Y t−1, C,X
M and the others can

be rewritten analogously. As remarked by Didelez (2019b), variables in C confound

the relationship between the mediator and the outcome, but, unlike the traditional

natural effect approach to mediation analysis, conditioning on them is not necessary

to make the counterfactuals Y (x,m) andM(x) independent, since the target estimand

does not involve any intervention on the mediator. In contrast, conditioning on C

ensures the conditional independence of each variable from the opposite component

of X.

Another kind of covariates which is often present in longitudinal studies are post-

treatment confounders, which, as discussed in Section 1.2.5, can be problematic for

the estimation of some mediational effects. In a separable effect framework, the

presence of a variable confounding the mediator-outcome relationship and affected by

the treatment gives rise to different scenarios.

Let us start from the mixed-effect model in Figure 4.5 (a): X affects the observed

variable (or set of variables) Z, which is affected by the mediator and the outcome at
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Figure 4.5: A mixed-effect model with post-treatment confounding (a), and the possible scenarios
in a separable effects framework: (b) and (c) preserve separability, while it fails in scenario (d).

time 1, but affects them at the subsequent time. As already discussed in Section 1.2.5,

this setting can correspond to three different scenarios, (b) and (c) where just one of

the treatment components affects the covariate, and (d) where both the components

have an effect on Z.

In cases (b) and (c) the separability of components can be retained by using the

following assumptions, which are an expanded version of A1 and A2:

A1′ Mt ⊥⊥ XY |M t−1, Y t−1, Z,X
M

A2′ Yt ⊥⊥ XM |M t, Y t−1, Z,X
Y

A3.1 ZXM ⊥⊥ XY |M t−1, Y t−1, ZXY , XM

A3.2 ZXY ⊥⊥ XM |M t, Y t−1, ZXM , XY

where Z ≡ (ZXM , ZXY ), ZXM and ZXY being subsets of Z such that, for each t =

1, . . . , T, XM affects Yt only through M or variables in ZXM , and XY affects Mt only
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Figure 4.6: Mixed-effect model with Z partition.

through Y or variables in ZXY . If such subsets exist, they are called a Z partition

(Stensrud et al. 2021).

In Figure 4.5 (b) Z ≡ ZXM , ZXY = ∅, vice versa in (c) Z ≡ ZXY , ZXM = ∅. In

both cases, the assumptions introduced below are satisfied, then, if exchangeability

and consistency hold, the separable effects are identifiable.

In contrast, separability cannot be achieved in scenario (d). Indeed, if we assume

Z ≡ ZXM , ZXY = ∅, assumption A3.1 fails, since Z ≡ ZXM is not independent

of XY ; similarly, if we assume Z ≡ ZXY , ZXM = ∅, assumption A3.2 fails, since

Z ≡ ZXY is not independent of XM . Figure 4.6 shows a scenario in which Z is

properly partitioned into nonempty subsets, with ZXM ∩ ZXY = ∅. It is easy to see

that A1′, A2′ and both assumptions in A3 are satisfied.

Now, let us move to LGMs. There are two possible ways in which Z can be a post-

treatment confounder, as shown in Figure 4.7: by affecting the latent factors of both

the mediator and the outcome (a), or affecting the mediator and the outcome directly

(b). As shown for mixed-effect models, these settings can correspond to different

scenarios in the separable effects framework. If Z can be partitioned, separability of

the X components is preserved, while, if Z is affected by both components XM and

XY , this makes identification of separable effects impossible.

In setting (a), assumptions B1.1, B1.2 and B2 need to be modified as follows

B1.1′ ∀ θM ∈ ΘM , θM ⊥⊥ XY |XM , ZXY

B1.2′ ∀ θY ∈ ΘY , θY ⊥⊥ XM |XY , ΘM , Z

B2′ Yt ⊥⊥ XM |XY ,ΘM , Z

B3.1 ZXM ⊥⊥ XY |XM

B3.2 ZXY ⊥⊥ XM |XY
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Figure 4.7: A latent growth model with a post-treatment confounder Z, where it affects the mediator
and the outcome latent factors (a) or their observed indicators (b).

These assumptions hold in Figures 4.8 (a)-(c), but fail in (d), since if we assume

Z ≡ ZXM , ZXY = ∅, then ZXM is not independent of XY and similarly, if Z ≡
ZXY , ZXM = ∅, then ZXY is not independent of XM .

As regards the setting depicted in Figure 4.7 (b), assumptions B1.1 and B1.2

stay the same, B2 needs to be modified as follows

B2′′ Yt ⊥⊥ XM |XY ,ΘM , ZXM

and B3.1, B3.2 are added. Also in this case, if both the treatment components affect

Z, then the assumptions are violated.

It is worth remarking that, when the partition of Z is improper, in the sense that

one of its two subsets is the empty set, separability of effects does not hold completely.

Consider Figure 4.5 (b): in this case the XM separable effect encompasses both

indirect effects of the treatment on Y through the mediator, e.g. the path XM →
Z →M2 → Y2, and also direct effects not through M , e.g. the path XM → Z → Y2.

In contrast, the XY effect still quantifies the direct effect of the treatment on Y ,

although it does not capture all direct effects, since some paths start from XM . An

analogous interpretation can be given for (c), where XM captures only the indirect

effects of X on the outcome, but not all, since part of these indirect effects originate

from XY .

An alternative way to address post-treatment confounders when they cannot be

partitioned is to decompose X into three components XM , XY and XZ , the last

being the component of the treatment other than XM and XY . For example, the

graphs in Figures 4.5 (a) and 4.7 (a) can be alternatively represented as in Figure

4.9. In such settings, assumptions need to be redefined so that each component results
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Figure 4.8: Expanded graphs showing different scenarios related to Figure 4.7 (a).

independent of the other two conditioning on an appropriate set of variables. We will

not deepen this aspect. For an extensive discussion on post-treatment confounders

in a separable effect survival context, Z partitions and the way on which they affect

the identifiability and the meaning of separable effects see Stensrud et al. (2021).

If Z were time-varying, this could be easily addressed in a mixed-effect model,

and the assumptions need only moderate modifications, like including a temporal

subscript for Z and conditioning also on its history. However, the inclusion of a time-

varying confounder in an LGM is not so straightforward. Indeed, Z can affect the

observed indicators or it can be modeled as having its own underlying trajectory, so

that its latent factors have an effect on those of the mediator and the outcome. These

two cases are represented in Figure 4.10 (a) and (b), respectively. The setting in (a)

is not conceptually different from that in Figure 4.7 (b): assumption B2′′ should just
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Figure 4.9: A separable mixed-effect model (a) and LGM (b) with a three-way decomposition of
treatment.

take into account the time-varying nature of Z, i.e. Yt ⊥⊥ XM |XY ,ΘM , Zt,XM , t =

1, . . . , T , and the other assumptions do not vary.

In contrast, the situation depicted in (b) is more complex. The post-treatment

confounders in this case are the latent factors characterising the trajectory of Z. The

existence of a proper partition would imply the existence of four latent factors, two

intercepts and two slopes, where each intercept-slope pair is affected by only one

between XM and XY . Alternatively, one should assume that each component of the

treatment exerts its effect only on one of the two latent factors, for example XM on

the intercept θ0Z and XY on θ1Z . The former hypothesis is meaningless, the latter

is quite unrealistic, and it is difficult to think of a real-world context in which this

kind of partition can happen. It is much more plausible to assume that both Z latent

factors are influenced by only one of the treatment components. Assumptions are as

in B1′, B2′ and B3, where Z is substituted by its latent factors.

The same line of reasoning applies to time-varying covariates not affected by the

exposure and analogous assumptions can be derived.

4.6.3 Time-varying treatment

So far, we have addressed settings where the treatment is measured at baseline and

does not vary over time. However, in several cases estimating the effect of a time-

varying treatment may be of interest. To the best of our knowledge, this issue has not

yet been addressed in a separable effect framework, so in this section we just discuss

the possible implications of including a time-varying treatment in mixed-effect or

latent growth models.
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Figure 4.10: Latent growth model with a time-varying covariate Z. In (a) Z affects the observed
variables, in (b) two latent factors shape its trajectory and affect the latent factors of the mediator
and the outcome.

Robins et al. (2020) mention the possibility to extend the separable effects ap-

proach to multiple treatments, although they do not develop this idea. A setting

with multiple treatments is very similar to a setting with a unique treatment mea-

sured over time, for t = 1, . . . , T . At each time t, the treatment can be decomposed

into three components, XM
t and XY

t as before and XX
t , which affects the treatment at

the subsequent time. For example, a mixed-effect model with time-varying treatment

can be represented as in Figure 4.11.

In contrast, a time-varying treatment in an LGM can be addressed as in Figure

3.2, i.e. the treatment is assumed to have its own trajectory characterised by some

latent factors. These factors affect those of the mediator and the outcome. As a

consequence, the separability should involve the treatment latent factors, but this

would imply that each factor should be split into different components, each one

affecting only the factors of M or Y . We believe that this decomposition is very

counter-intuitive and it would require an intervention on latent variables, unfeasible

in practice. Thus, the separable effect approach seems not to be appropriate to

address LGMs from a causal perspective when the treatment is time-varying.

It is worth remarking that the presence of a time-varying treatment presents more

challenges than a baseline treatment, see the last chapters of Hernán and Robins

(2020). In particular, when the estimation of causal effects is done through the g-

formula as we proposed, Robins and Wasserman (1997) show that the g-formula is

always subject to misspecification, a phenomenon known as g-null paradox. To be

more precise, the authors show that if time-varying confounders are affected by the

treatment and the sharp g-null hypothesis hold, i.e. if the treatment has no causal
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Figure 4.11: Mixed-effect model with time-varying treatment in a separable effects framework.
Cross-lagged effects were not included to avoid clutter.

effect on the outcome at any time, then the parametric g-formula will falsely reject

the hypothesis of null causal effect with probability approaching one, even if all the

identifiability assumptions are satisfied.

The models used by Robins and Wasserman (1997) to introduce the g-null paradox

did not involve random effects or latent trajectory factors, so a first issue to investigate

should be if the g-null paradox occurs even when using these kinds of models. If so,

this would call for the employment of different estimation methods such as inverse

probability weighting (IPW) or g-estimation. How these methods could be applied

in a separable effects framework is still to be investigated, although IPW has already

been proposed in a survival setting by Stensrud et al. (2020).

4.7 Discussion

In this chapter, we have applied the separable effects approach for mediation analysis

proposed by Robins and Richardson (2011) to mixed-effect and latent growth models.

For each of them, we proposed a set of assumptions which suffice for the identification

of separable effects and derived formulas to estimate them using the g-formula.

When the relationships are linear, the separable effects can be expressed in closed

forms that have a direct correspondence with the graphs representing the models. As

we saw, the separable direct effect is the sum of effects along all paths starting from

XY , while the separable indirect effect is obtained as the sum of all paths having XM

as starting node. This is a connection with path analysis. Another advantage of the

separable effects approach is that the estimands do not require any intervention on the

mediator: this feature is particularly useful in LGMs, where it would be difficult to

conceive an intervention on the latent factors characterising the mediator trajectory.
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In our discussion, we limited ourselves to linear models, although mixed-effect

models have been extended to the natural exponential family. We have not addressed

this issue, but, in principle, the g-formula in (4.7) can accommodate any variables

whose distribution belongs to this class. However, the complexity of the models,

in terms of non-linearity of link functions, interaction terms and order of lagged

effects, impacts the estimation procedure in two ways: first, finding closed forms

for mediational effects becomes unpractical, so they have to be obtained through

simulation, as described in Section 4.5; second, the more complex the model, the

higher the computational intensity of the algorithm. This is one of the drawbacks of

the estimation via g-formula, mainly due to the need to use bootstrap for estimating

the effects’ confidence intervals, a highly time-consuming task.

This issue can be exacerbated when the design is unbalanced. We have not ad-

dressed this complication, and we think that it could be an interesting extension of

the present work. Unbalanced designs are the rule, not the exception in real-world

analyses, as the one discussed in the next chapter shows. We have considered bal-

anced designs to make the presentation of the approach clearer and easier to follow,

but we acknowledge that this is a limitation. A special case of unbalanced design is

given by censoring in survival analyses, which has been addressed in a separable effect

framework by Stensrud et al. (2021) and Stensrud et al. (2020). How design unbal-

ance should be addressed in other model settings is yet to be investigated, although

it should not add conceptual difficulties. Combining separable effects and definition

variables discussed in Chapter 3 could be a possible promising direction.

Finally, although this limitation has already been highlighted in the previous chap-

ters, we want to remark again that conceiving different and separate components of

X, i.e. components each having an effect only on the mediator or the outcome and

which can in principle be randomised separately, is not always feasible. When re-

searchers believe that the outcome component exerts its effect also on the mediators

or vice versa, the separable effects approach should be avoided.



Chapter 5

An application: the COVCO-Basel

study

In this chapter, we analyse a data set from a cohort study carried out in Switzerland,

the COVCO-Basel study (Keidel et al. 2021). Conducted by the Swiss Tropical and

Public Health Institute (TPH), this study provides rich information about the spread

of Covid-19 in the adult population of Basel and changes in their mental health due

to the epidemiological situation. The data set includes a high number of variables,

but just a subset of them will be used in the statistical analyses carried out in this

chapter.

In the first section we describe how data were collected and the variables included,

in the second we discuss the aim of the study, in the third we carry out an exploratory

analysis, while the fourth section is devoted to the application of causal mixed-effects

models as described in Chapter 4. In the last section we draw some conclusions.

5.1 Data collection and description

The COVCO-Basel study is an extension of the Corona Immunitas study in Basel.

Corona Immunitas is a study carried out in Switzerland at the cantonal and national

level strarting from April 2020, which aimed to assess the spread of SARS-CoV-2

infection in the general population and subgroups of interest (West et al. 2020). The

COVCO-Basel study complements this Seroprevalence cohort with another one called

Digital. In both cohorts, subjects completed a baseline questionnaire and at least one

online questionnaire per month; in addition, participants belonging to the former

cohort were tested for antibodies and they were allowed to invite family members

being at least seven years old. Assignment to either of the two cohorts is randomised.

The data collection from the Swiss TPH began in July 2020 and is still ongoing.

146
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A sample of adult subjects resident in the cantons of Basel-Stadt (BS) and Basel-

Landschaft (BL) was provided to Swiss TPH by the Swiss Federal Statistical Office.

Each subject received an invitation letter by Swiss TPH, including login credential to

access the study website. Those who gave their consent to participate received a link

to fill the baseline and the follow-up questionnaires through the RedCap platform.

Subjects in the Seroprevalence cohort were additionally asked if they wanted to par-

ticipate in the study alone or with some family member, and they were invited to the

study center to collect blood and saliva samples. Invitations were sent between July

and December 2020, so each subject entered the study in a different date.

At the time of writing, data up to August 2021 on n = 12, 048 subjects are

available. The data set includes demographic and social variables such as sex, age,

nationality, education and monthly income, which were measured at baseline, and

study-specific variables. In the online questionnaires, subjects were asked to assess

their levels of depression, stress and anxiety, whether they felt lonely or had worries

concerning different aspects of their life, like health, economic situation and the im-

pact of restrictions on their social life. These variables were assessed monthly, as well

as the positivity to a Covid test of the interviewed subject or one of his/her family

members (only for those in the Seroprevalence cohort).

Specifically, the variables depression, anxiety and stress were measured through the

Depression and Anxiety Stress Scale (DASS-21), which includes twenty-one questions,

seven for each item, whose answers are ordinal, ranging from 0 to 3. The scores are

obtained as sums of the answers to each question, thus, each variable can range

between 0 and 21, where higher scores represent more severe mental distress.

The variables related to worries involve different aspects of life. Subjects were

asked to answer questions concerning their degree of concern about: their own and

the national economic situation (worries econ); their own and their family’s health as

well as the risk of catching/spreading Covid-19 (worries health); the quality of their

relationships with family and friends/colleagues (worries social); and the possible

restrictions to holidays/travel abroad and cultural life (worries cultural). All variables

are dichotomous and measured monthly.

The sample includes 6, 531 females, 5, 509 males and 8 subjects who do not recog-

nise themselves in either category. The sample is rather balanced regarding the canton

of residence, with 49.6% of subjects living in BS and 50.4% in BL. Approximately

70% of subjects is over 50 and most participants have a monthly household income

ranging from 3,000 to 9,000 CHF (47%). As already mentioned, the study covers

the period from July 2020 to August 2021, but in this chapter we will analyse just a

subset of the data set, as detailed in the next section.
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5.2 Objective of the study

The primary goal of this study is to investigate the evolution of depression in a period

of high spread of Covid-19 in Switzerland, and its relationship with income, consid-

ered as a proxy of socio-economic status. Many studies have investigated the link

between income or socio-economic status and mental health, highlighting a negative

relationship, i.e. the lower the income the higher the risk of developing depression

and related mental disorders. This pattern seems to be consistent across countries,

see for example Freeman et al. (2016), Hoebel et al. (2017), Domènech-Abella et al.

(2018), Hudson (2005), Kourouklis et al. (2020), Osafo Hounkpatin et al. (2015), and

Patel et al. (2018) for a systematic review on the topic.

Some of the aforementioned studies (Hudson 2005, Domènech-Abella et al. 2018)

considered also intermediate variables in the pathway connecting income or socio-

economic status to mental disorders, such as life-style habits (smoke, unhealthy diet)

and psycho-social factors (loneliness, social isolation). In our analyses, we use a

similar approach: in particular, we aim to quantify the effect of income on mental

health during the pandemic, and disentangle the direct effects from the indirect ef-

fects mediated by worries concerning different aspects of life. We will focus just on

weeks between October and December 2020, which, as shown in Figures 5.1 and 5.2,

correspond to the second wave of Covid-19 spread in Switzerland.

Because of the complex design of the study, the data structure is equally complex.

Each subject has his/her own date of entry into the study and subsequent (unique)

dates of follow-up. In particular, although follow-up questionnaires were sent approxi-

mately every 28 days, subjects often answered some days after, and these delays led to

some subjects having up to three observations in the same month. As a consequence,

one of the first problems is the identification of an appropriate time interval: weeks

are too tight and would lead to an excessive number of occasions per subject, while

months are too coarse and, as mentioned before, some subjects may have multiple

measurements associated to a certain month. An adequate solution seemed then to

use fortnights, or, in other words, to use intervals of 14 days.

The period of interest includes roughly seven fortnights, whose corresponding dates

are shown in Table 5.1, and we selected subjects with at least three measurements in

this period. This restricted the sample to 3,411 individuals. There are no subjects

having variables collected at the penultimate fortnight, then our interest is actually

on six time intervals. Among the numerous variables present in the data set, our

focus is on the evolution of depression. In order to gain insights into its dynamics

and investigate if it is associated or caused by other variables, such as worries, we
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Figure 5.1: Daily new confirmed COVID-19 cases per million people in Switzerland, 7-day rolling
average. Source: Our World in Data https://ourworldindata.org/covid-cases.

Figure 5.2: Share of daily positive Covid-19 tests in Switzerland, 7-day rolling average. Source: Our
World in Data https://ourworldindata.org/covid-cases.

https://ourworldindata.org/covid-cases
https://ourworldindata.org/covid-cases
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Table 5.1: Fortnights considered in the analysis and corresponding dates.

Fortnight Dates

6 2-15 October 2020

7 16-29 October 2020

8 30 October - 12 November 2020

9 13-26 November 2020

10 27 November - 10 December 2020

11 11-24 December 2020

12 25 December - 7 January

will start by an exploratory analysis and proceed with a causal modeling approach.

5.3 Exploratory analysis

In this section, we show the results of some preliminary analyses carried out to explore

the relationship between income, depression and the different types of worries.

Figure 5.3 shows how the percentage of worried people varies over the fortnights

considered, i.e. those from the sixth to the twelfth, excluding the eleventh, according

to the coding in the data set. It is interesting to notice that, for every kind of worry,

the percentage of worried people is always lower than that of non-worried subjects,

except for cultural worries, where, at each occasion, the proportion of worried subjects

is approximately the same or even higher than the proportion of non-worried ones.

Next, we explore the relationship between worries and monthly income, using its

5-category version. As can be seen from Figure 5.4, the percentage of subjects having

cultural worries, stratified by income, is approximately the same as that of non worried

subjects. In contrast, as concerns the non-cultural worries, the majority of worried

subjects has an income lower than 9,000 CHF. As expected, subjects belonging to

the highest categories of income show less degree of worry. This seems to suggest a

possible relationship between income and worries.

Focusing on depression, Figure 5.5 shows the distribution of depression scores over

time stratified by sex (top panel), income (central panel) and age category (bottom

panel). In general, female distribution of depression is more variable than the male

one, and this holds true also for the distribution corresponding to more deprived and

younger subjects. Not surprisingly, subjects in the highest category of income have

median depression score null and the variability in their score is clearly smaller than

that of the other groups. Similar observations can be made for age, where younger

people show generally higher median and variability than older subjects.
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Figure 5.3: Proportion of people having economic, social, cultural and health worries over the period
of interest.

Figure 5.6 shows the distribution of depression by worries. For any kind of worry,

the distribution of depression scores of worried subjects has a higher variance and,

in some cases, a highest median than that of non-worried subjects, as is visible for

social worries. Cultural worries correspond to the least variable distributions, and

the median depression score generally does not differ among worried and non worried

people. These graphs suggest that investigating the relationship between income,

worries and depression may be worthy, and this will be the object of the next section.

5.4 Inference

The data set includes several variables having non-Normal distributions: there are

categorical variables, such as income and education, binary variables, such as sex or

the different worries, and numeric asymmetric variables. Given this wide variety of

distributions, the methodology proposed in Chapter 3 is not applicable straightfor-

wardly to the present data. We can however use the approach discussed in Chapter

4, and use mixed-effect models within a separable effects framework.

As already mentioned, our exposure is monthly income and we are interested in

estimating its direct effect on depression and the indirect effects through worries.

Using income as exposure poses conceptual challenges concerning the causal meaning
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Figure 5.4: Proportion of worried subjects over the occasions of interest stratified by income, ex-
pressed in thousands of CHF.

of an intervention of such a variable, and issues related to the specific approach to be

employed, i.e. what the separation of income implies and how it can be implemented.

These points will be addressed in the next two sections and will be followed by the

description of the analyses conducted and the results obtained.

5.4.1 A note on the meaning of interventions on income

In the causal inference literature, causal effects are generally defined in terms of an

intervention on or a manipulation of the exposure of interest. For some variables,

it is very easy to think to a possible intervention, while for others, like sex or race,

this does not hold true. Income is in a grey area: if you asked to an economist

and an epidemiologist whether income can be an exposure of interest for a causal

analysis, the former would answer yes, the latter would probably say no. Although it

is easier to conceive an intervention on income than one on sex or race, epidemiologists

are used to consider income as a baseline covariate, not as a manipulable exposure.

However, at least hypothetically, income could be increased through state subsidies,

or decreased indirectly through taxation.
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Figure 5.5: Boxplot of depression by sex (top panel), income (central) and age (bottom).
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Figure 5.6: Depression scores by kind of worries.

VanderWeele and Hernán (2012) discuss how to interpret non-manipulable expo-

sures from a physical point of view, without using the traditional notion of inter-

vention. They exploit the fact that gender is randomised at birth, and show that

causal effects can be defined in terms of physical laws. Income cannot be assumed

to be randomised, then we should include in the models as many variables as pos-

sible that should make the exposure-mediator and exposure-outcome relationships

unconfounded.

Income is very different from sex and race and, in particular, the pandemic pro-

duced a sort of natural intervention on it, since in many countries, such as Switzer-

land, several workers accepted a layoff scheme or lost their job, and this reduced their

monthly income. On the other hand, the Swiss government implemented several mea-

sures to contain the economic impact of Covid-19. In particular, it provided subsidies

to employees who lost their jobs due to the pandemic, giving them a monetary com-

pensation of up to 196 CHF per day1. We then believe that income is an interesting

exposure to analyse in causal terms.

1https://www2.deloitte.com/ch/en/pages/legal/articles/the-measures-being-used-to-mitigate-the-soc

ial-and-economic-impact-of-covid-19.html

https://www2.deloitte.com/ch/en/pages/legal/articles/the-measures-being-used-to-mitigate-the-social-and-economic-impact-of-covid-19.html
https://www2.deloitte.com/ch/en/pages/legal/articles/the-measures-being-used-to-mitigate-the-social-and-economic-impact-of-covid-19.html
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5.4.2 The separability of income

Having shown that interventions on income are meaningful, we can now move to

discuss the notion of separability for such a variable. In a setting as that hypothesised,

where income affects depression directly and indirectly through worries, separating

income into two components implies that one of them affects the degree of worry

but not the depression, and the other one influences depression without affecting

worry. If we were to carry out a randomised four-arm trial, we should then randomise

independently these two components. Concretely, how can this be accomplished?

So far, all papers addressing the separable effects approach, independently from the

interest in mediational questions, have considered binary treatments (Didelez 2019b,

Aalen et al. 2020, Stensrud et al. 2020, 2021). This assumption makes plausible and

intuitive the relationship

P (Y (XM = x, XY = x)) = P (Y (X = x)), x ∈ {0, 1},

corresponding to property P1 in Didelez (2019b). This equation simply says that,

when a subject receives neither of the two treatments this corresponds to the case

of no treatment, while, when a subject is randomised to both treatments, this is

analogous to take the unique treatment X. However, when the exposure or treatment

is continuous, as in the case of income, or, for example, when the treatment is a drug

whose dosage may vary, property P1 is not so trivial and needs careful consideration.

Assume we want to estimate the causal effect on depression of an intervention dou-

bling the average Basel income, i.e. of moving from 5,000 to 10,000 CHF. Translating

this intervention in terms of separable components is not straightforward. We may

follow the established approach for binary treatments and assume that

P (Y (XM = 5, 000, XY = 5, 000)) = P (Y (X = 5, 000))

P (Y (XM = 10, 000, XY = 10, 000)) = P (Y (X = 10, 000)).
(5.1)

However, in terms of analogy with a four-arm randomised trial, it may seem more

natural to interpret P (XM = x, XY = x) as if the subject got a certain amount

of money x to deal with his/her degree of worry and the same amount to address

the depression score. For example, consider economic worries as mediator. We could

conceive a (very unrealistic) intervention where the government delivers a certain

amount of money x to citizens for addressing their primary needs, such as buying

food and paying the bills. This should affect economic worries. On the other hand,

the same amount of money x could be provided to pay psychological counselling

sessions, in order to prevent the insurgence of depression or reduce its level.
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Then, in the observational regime, X does not equal x, but 2x. In other words, the

most natural conceptualisation of such an intervention is the additive one. Nonethe-

less, even under this perspective, there is no a unique way to decompose 5,000 CHF,

which, for example, can be written as XM = 0, XY = 5, 000 or XM = 2, 000, XY =

3, 000, among other ways. It is then the researcher that should choose plausible values

to assign to the different components.

Coming back to the intervention of interest, 5,000 vs 10,000 CHF, an option could

be to compare XM = 2, 000, XY = 3, 000 and XM = 4, 000, XY = 6, 000, so that the

separable direct and indirect effect are given by the contrasts

P (Y (XM = 2, 000, XY = 6, 000)) vs. P (Y (XM = 2, 000, XY = 3, 000))

P (Y (XM = 4, 000, XY = 6, 000)) vs. P (Y (XM = 2, 000, XY = 6, 000)),

respectively. This can be interpreted as an intervention shifting a monthly income

of 5,000 CHF, 2,000 of which are to address worries and 3,000 for depression, to a

monthly income of 10,000 CHF, where the two components of the income are doubled.

Since, as already mentioned, the separable effects approach has not yet been ex-

tended to continuous treatments/exposures, we do not know which conceptualisation

is the most appropriate, both in statistical and concrete terms. For this reason, we

will perform both the interventions and will compare them.

5.4.3 Model selection and estimation of effects

As already mentioned, the present analysis focuses on the period from October to

December 2020, which corresponds to the fortnights from the sixth to the twelfth in

the data set, excluding the eleventh.

The variable income is present in the data set in two different versions, both

categorical: one with eight categories, the other one with five. In order to make

income continuous, we started from the variable with eight categories and take the

mean of each class’ lower and upper bounds. Thus, for example, the first category,

corresponding to monthly incomes lower than 3,000 CHF, was linked to a monthly

income of 1,500 CHF; the second category, incomes between 3,000 and 6,000 CHF,

corresponded to an income of 4,500 CHF and so on. The highest category does not

have an upper bound, since it is the class of incomes higher than 21,000 CHF. We

then assumed 30,000 CHF as a plausible upper bound, and this category was then

linked to an income of 25,500 CHF.

We addressed all types of worries in the data set (economic, health, social and

cultural) as potential mediators. In fact, information about a fifth kind of worries,
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i.e. financial, were collected as well, but they were discarded from the analysis since

this variable was measured only at baseline. Our interest is on the effect of income

on depression mediated by a single type of worry at a time.

To estimate the separable direct and indirect effects, we used the g-formula algo-

rithm described in the previous chapter. The first step entailed fitting the mediator

and the outcome models: since both kinds of variables are time-varying, we used a

mixed-effects model for each. All worries are binary categorical variables, then we

modeled the probability of being worried through a binomial generalised linear mixed

model (GLMM). The variable depression is a non-negative score: after translating

this score of 0.1, we modeled it as a Gamma GLMM. We will denote income in its

continuous version by X, worries by M and depression by Y .

The analysis was carried out using the statistical software R, and the package

chosen to fit mixed-effects models is glmmTMB, an improved and more general ver-

sion of lme4. We fitted several models, starting from the most complex includ-

ing several variables and interactions, proceeding by including and excluding vari-

ables via AIC. At the end of the process, we selected the following mixed mod-

els with a random intercept for i = 1, . . . , 3, 411, t ∈ {6, 7, 8, 9, 10, 12} and w ∈
{economic, health, social, cultural}.

Mw
it ∼ Bern(πwit)

logit(πwit) = log

(
πwit

1− πwit

)
= xw′i β

w + bwi

(5.2)

Y w
it ∼ Gamma(µwit, ν

w)

log(µwit) = xdw′i γw + gwi

(5.3)

xwi and xwdi are pwi × 1 and pdwi × 1 vectors of predictors for worries and depression,

respectively. βw and γw are vectors of fixed effects and bwi , g
w
i are the random devi-

ations from the mediator and the outcome model intercepts, respectively. πwit is the

probability that subject i at occasion t has worries of type w. µwit is the expectation

of depression in the model including worry w as mediator and νw is the inverse of the

dispersion parameter.

Table 5.2 shows the predictors in xwi and xdwi for each w. In addition to the

continuous version of income, obtained as described before, the variables included in

the analysis are

• age, divided into four classes: 18-29 years, 30-49, 50-65 and 65+, as in the last
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Table 5.2: Variables in the linear predictors for each worry type. The first column refers to variables
in the mediator models, the second to variables in the outcome model conditioning on a single type
of worry (the mediator) at a time.

Worries xwi xdwi

Economic

income, age, occasion income, sex worries econ,

depression past, worries econ lag1, canton

worries econ lag1 age*depression past, occasion

Health

income, age, sex, income, sex, worries health,

susc covid*occasion, worries health lag1, canton

worries health lag1 age*depression past, occasion

Social

income, sex income, sex worries social,

occasion worries social lag1, canton

worries social lag1 age*depression past, occasion

Cultural

income, age income, sex worries cultural,

occasion*worries cultural lag1, worries cultural lag1, occasion,

canton age, depression past, canton, susc covid

panel of Figure 5.5;

• sex, a factor with three categories, male, female and other. Since there are only

few subjects in the last category, we limited ourselves to consider the first two.

Female is the baseline category.

• canton is the canton of residence, BS or BL, the reference category is BL;

• susc covid is a binary variable, it is ‘yes’ when the subject has comorbidities

making him/her more susceptible to Covid-19 (diabetes, cancer, hypertension,

obesity...), ‘no’ otherwise;

• depression past is a baseline variable and is the DASS-21 depression score refer-

ring to the previous year;

• all variables ending in ‘lag1’ are worries lagged of one fortnight, i.e. worries at

the previous time occasion.

The selected variables constitute almost all of the variables collected from the

surveys. We excluded only variables that did not result significant, like, for example,

subjects’ education level, their nationality, and their living status (alone or with some

relatives).
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Table 5.3: Results of the mediator and the outcome models for each type of worry. Stars refer to
p-values of coefficients: *** 0, ** 0.01, * 0.05, (.) 0.1.

Economic Health Social Cultural

M Y M Y M Y M Y

income -0.03*** -0.01* -0.02*** -0.01** -0.03*** -0.01* -0.01* -0.01**

worry − 0.23*** − 0.31*** − 0.42*** − 0.25***

worry lag1 2.58*** 0.12*** 2.83*** 0.07* 2.66*** 0.18*** 1.38*** 0.17***

sex − -0.18*** -0.14* -0.18*** -0.12* -0.18*** − -0.18***

age 30-49 0.13 -0.59*** -0.02 -0.57*** − -0.57*** 0.04 -0.26*

age 50-65 0.24(.) -0.79*** -0.31* -0.74*** − -0.73*** 0.15 -0.39***

age 65+ 0.28* -0.96*** -0.18 -0.91*** − -0.90*** 0.21(.) -0.49***

canton − 0.15** − 0.14** − 0.14** 0.23*** 0.13**

susc covid − − 0.51*** − − − − 0.08

occasion -0.02(.) 0.02*** 0.06*** 0.02*** 0.04* 0.02*** -0.04* 0.02***

depression past 0.03** 0.11*** - 0.10*** − 0.11*** − 0.26***

age 30-49:depression past − 0.12*** − 0.12*** − 0.12*** − −

age 50-65:depression past − 0.18*** − 0.19*** − 0.17*** − −

age 65+:depression past − 0.28*** − 0.28*** − 0.28*** − −

worry lag1:susc covid − − -0.32** − − − − −

worry lag1:occasion − − − − − − 0.11*** −

Intercept -1.71** 0.18 -2.49*** 0.22 -2.23*** 0.16 -1.10*** -0.28*

SD random effects 0.001 1.24 0.002 1.24 0.14 1.21 0.01 1.24

5.4.4 Results

As mentioned earlier, our aim is to estimate the separable direct and indirect effects

of an intervention changing monthly income from 5,000 to 10,000 CHF, and another

intervention changing income from 0 to 5,000 CHF. We first fitted the models in

Equations (5.2)-(5.3) with predictors specified as in Table 5.2. The parameter esti-

mates obtained from these models are used to simulate S = 10, 000 pseudo-subjects

to estimate the separable mediational effects through the g-formula (see the algo-

rithm in Section 4.5). Standard errors and confidence intervals are obtained non-

parametrically via 100 bootstrap iterations.

In Chapter 4, we have discussed the assumptions for making separable effects iden-

tifiable when applied to a mixed-effect model. We made the untestable assumption

that the mediator and the outcome random intercepts are uncorrelated, in order to

estimate the effects of interest. With this assumption, A1 and A2 are satisfied, since

the graphs corresponding to the selected models are basically a simplified version of

Figure 4.2, with the inclusion of baseline covariates.

The results of regression models are shown in Table 5.3. Income has a significant

negative effect on each type of worry and on depression, then having a higher monthly

income reduces the probability of having any kind of worries and the average score
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of depression. All worries show autoregressive effects, then being worried at occasion

t increases the probability of being worried at the subsequent occasion; as regards

depression, the effect of worries is both instantaneous and lagged, positive in either

case. Being male seems associated to lower depression scores, and men are less likely

to be worried about health and social life. The older the subjects, the lower the

depression score (in comparison to younger individuals), but middle-aged and old

people seem more likely to have economic and health worries than youngsters, while

age influences only slightly the probability of having cultural worries. The canton

of residence seems not to have any effect on worries, but people living in Basel city

have higher depression scores. The passage of time is associated to a slight increase

in depression scores and, as expected, the depression score in the previous year is

positively associated to the current score. It is interesting to notice that there is an

interaction between age and the past depression score, whose effect is positive: this

means that, although the elderly have lower depression scores than young individuals,

among subjects used to have higher depression levels in the past, the older ones

show scores higher than young subjects. Finally, having other comorbidities and

having health worries at the previous occasion seems (surprisingly) to reduce the

probability of having health worries compared to those not having comorbidities. In

the depression model considering cultural worries as mediator, subjects being worried

at the previous time have higher depression scores over time.

Let us move to the estimation of effects. We have already discussed the controver-

sies linked to a continuous exposure and the different ways to decompose income. In

this chapter, we will discuss the effects of two interventions using the decomposition

closer to the original spirit of separable effects: an intervention doubling the average

monthly income of a Basel citizen, from 5,000 CHF to 10,000 CHF, and an interven-

tion changing a null income to an average monthly income, i.e. moving it from 0 to

5,000 CHF. In the former case we estimated

SDE = E[Yt(X
M = 5, 000, XY = 10, 000)]− E[Yt(X

M = 5, 000, XY = 5, 000)]

SIE = E[Yt(X
M = 10, 000, XY = 10, 000)]− E[Yt(X

M = 5, 000, XY = 10, 000)],

in the latter

SDE = E[Yt(X
M = 0, XY = 5, 000)]− E[Yt(X

M = 0, XY = 0)]

SIE = E[Yt(X
M = 5, 000, XY = 5, 000)]− E[Yt(X

M = 0, XY = 5, 000)],

for any occasion/fortnight t, i.e. we assume that (5.1) holds. Nonetheless, we consid-

ered also the alternative decomposition discussed in Section 5.4.2 and the results are
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Table 5.4: Point estimates, standard errors and confidence intervals of separable direct and indirect
effects of income on depression mediated by one kind of worry at a time, under an intervention
changing income from 5,000 CHF to 10,000 CHF.

Worries Effect Fortnight

8 10 12

Economic

SDE
-0.105 (0.034) -0.110 (0.035) -0.113 (0.036)

(-0.174, -0.045) (-0.177, -0.045) (-0.183, -0.047)

SIE
-0.022 (0.008) -0.023 (0.007) -0.024 (0.007)

(-0.037, -0.008) (-0.038, -0.011) (-0.037, -0.012)

Health

SDE
-0.104 (0.036) -0.109 (0.036) -0.112 (0.037)

(-0.173, -0.043) (-0.179, -0.041) (-0.186, -0.039)

SIE
-0.012 (0.008) -0.012 (0.007) -0.013 (0.008)

(-0.027, 0.002) (-0.027, 0.003) (-0.030, 0.003)

Social

SDE
-0.107 (0.035) -0.112 (0.035) -0.117 (0.037)

(-0.181, -0.043) (-0.189, -0.054) (-0.200, -0.053)

SIE
-0.018 (0.012) -0.023 (0.010) -0.026 (0.010)

(-0.037, 0.003) (-0.043, -0.005) (-0.043, -0.004)

Cultural

SDE
-0.122 (0.035) -0.124 (0.037) -0.129 (0.038)

(-0.202, -0.064) (-0.205, -0.063) (-0.214, -0.065)

SIE
-0.007 (0.008) -0.007 (0.007) -0.007 (0.005)

(-0.023, 0.008) (-0.021, 0.005) (-0.016, 0.002)

reported in Appendix C.

Table 5.4 shows the separable effects of the first intervention, 5,000 vs 10,000 CHF.

It is worth remarking that the only estimable effects refers to occasions 8, 10 and 12,

since the other ones (6, 7 and 9) are baseline occasions. In other words, 6, 7 and 9

are occasions at which some subjects are assessed for the first time; for this reason,

worries at the previous time are missing for these subjects and the g-formula algorithm

cannot estimate the expected outcomes and mediators in these occasions. Notice that

this issue arises because worries are binary variables: had they been continuous, it

would have been sufficient to set the value of lagged worries to 0.

The direct effect is always significant and negative, then the average depression

score if all subjects had a monthly income of 10,000 CHF is lower than the average

score obtained if all subjects had a 5,000 CHF income. Only economic and social

worries seem to have a mediating role, and their indirect effects are negative as well.

This is consistent with the regression models results, since income has a negative
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Figure 5.7: Graphical representation of direct and indirect effects in the model having economic wor-
ries as mediator considering the intervention changing income from 5,000 to 10,000 CHF. Covariates
are not included to avoid clutter.
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-0.109

-0.112

Figure 5.8: Graphical representation of direct and indirect effects in the model having health worries
as mediator considering the intervention changing income from 5,000 to 10,000 CHF. Dashed lines
represent non significant effects. Covariates are not included to avoid clutter.

effect on worries, which in turn affects depression positively.

Figures from 5.7 to 5.10 offer a schematic representation of these effects for each

of the mediation models considered. Notice that effects appear near the arrows de-

parting from the components of income just to make the representation as simple

and clear as possible. As discussed in Chapter 4, the separable direct and indirect

effects derive from all the paths starting from the Y and the M component of the

exposure, respectively. Then, the indirect effect of income on depression at occasion

10 includes both the effects conveyed by worries at occasion 8 and worries at occasion

10. Analogously, the indirect effect on depression at the last occasion involves the

effects transmitted by worries at each occasion.

Table 5.5 shows the effects of the second intervention, i.e. 0 vs 5,000 CHF. The
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Figure 5.9: Graphical representation of direct and indirect effects in the model having social worries
as mediator considering the intervention changing income from 5,000 to 10,000 CHF. Covariates are
not included to avoid clutter.
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Figure 5.10: Graphical representation of direct and indirect effects in the model having cultural
worries as mediator considering the intervention changing income from 5,000 to 10,000 CHF. Dashed
lines represent non significant effects. Covariates are not included to avoid clutter.
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Table 5.5: Point estimates, standard errors and confidence intervals of separable direct and indirect
effects of income on depression mediated by one kind of worry at a time, under an intervention
changing income from 0 to 5,000 CHF.

Worries Effect Fortnight

8 10 12

Economic

SDE
-0.111 (0.041) -0.117 (0.043) -0.120 (0.044)

(-0.210, -0.039) (-0.203, -0.042) (-0.215, -0.050)

SIE
-0.025 (0.009) -0.026 (0.008) -0.026 (0.008)

(-0.046, -0.009) (-0.040, -0.013) (-0.042, -0.013)

Health

SDE
-0.115 (0.045) -0.120 (0.047) -0.123 (0.049)

(-0.201, -0.035) (-0.204, -0.035) (-0.213, -0.029)

SIE
-0.013 (0.008) -0.014 (0.008) -0.015 (0.008)

(-0.027, 0.002) (-0.030, -0.002) (-0.029, -0.002)

Social

SDE
-0.111 (0.036) -0.117 (0.037) -0.123 (0.036)

(-0.182, -0.045) (-0.194, -0.043) (-0.189, -0.055)

SIE
-0.021 (0.013) -0.027 (0.011) -0.030 (0.011)

(-0.045, 0.005) (-0.047, -0.009) (-0.053, -0.012)

Cultural

SDE
-0.129 (0.043) -0.132 (0.044) -0.139 (0.046)

(-0.252, -0.053) (-0.241, -0.062) (-0.257, -0.073)

SIE
-0.008 (0.019) -0.006 (0.018) -0.007 (0.019)

(-0.025, 0.008) (-0.019, 0.008) (-0.017, 0.006)

effects show approximately the same pattern as the previous ones, but with two dif-

ferences: first, the magnitude of direct effects is bigger (in absolute terms), and this

is particularly evident for cultural worries; second, health worries assume a mediat-

ing role at occasions 10 and 12. This is interesting, since it seems to suggest that

what matters in an intervention on income is not just the magnitude, since in both

interventions considered there is a 5,000 CHF increase, but also the ‘position’ of the

intervention. Apparently, an increase of 5,000 CHF in monthly income in two differ-

ent settings produces a difference in terms of the indirect effect of health worries. For

both interventions, it is also possible to notice a slight increase, in absolute values, in

the magnitude of both direct and indirect effects over time.
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5.5 Conclusions

In this chapter, we analysed data from the COVCO-Basel study, investigating whether,

during Covid-19, the relationship between income and depression in a group of Swiss

subjects is only direct or it is also mediated by worries concerning different aspects

of life.

The variables of interest cannot be assumed to follow a Normal distribution, there-

fore we could not use the structural and multilevel models discussed in Chapter 3.

We used instead the separable effects approach applied to mixed-effect models, as

described in Chapter 4. This analysis poses conceptual and practical challenges, due

to the complex nature of the sample design and of the variables collected. Sub-

jects entered the study at different time occasions, and it was impossible to estimate

mediational effects at the baseline occasions due to the nature of the mediators. In ad-

dition, the continuous version of income, not present among the collected variables,

was used as exposure and the conceptual difficulties connected to its ‘separability’

were discussed.

The results, relative to occasions 8, 10 and 12, i.e. to the period between the end

of October and the end of December 2020, show that the direct effect of income on

depression is always negative and significant, thus, if the monthly income of all partic-

ipants increased of 5,000 CHF, they would have a lower depression score. Economic

and social worries have a mediating role for both the interventions described, while

health worries play the role of mediator only when monthly income moves from 0 to

5,000 CHF.

This analysis can offer interesting clues on the evolution of mental health during the

Covid-19 pandemic and its tight relationship with socio-economic status. We focused

only on depression, but the study of anxiety and stress could give us other insights

on this issue. An analysis with multiple outcomes might show relationships which

are ignored when the focus is on a single outcome, and this call for a development of

SEMs to nonlinear cases.

Clearly, our approach is not free from limitations. First, we did not have infor-

mation about the real income of each subject in a numeric form, and we had to

derive such a variable from an 8-category version of income. This is an approxima-

tion which undoubtedly had an impact on the results of our analysis. Second, the

analysis concerns only Basel citizens: an interesting direction for future research may

be to include subjects from other Swiss cantons and analyse the relationship between

mental health and the canton epidemiological situation. Third, it is worth remark-

ing that the number of covariates included in the model is relatively small, and this
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can cast some doubts on the plausibility of assumptions A1, A2 and A3. This is

a problem affecting any observational study and can be attenuated only conducting

sensitivity analyses. Stensrud et al. (2021) proposed a type of sensitivity analysis for

separable effects in a competing risk setting, and extending it to models with ran-

dom coefficients is a challenging future direction. As already remarked, we included

almost all the variables collected in the sample, but our analysis could definitely be

improved by including more variables, especially time-varying covariates. Finally, we

have assumed that the latent structure underlying the data involves just random in-

tercepts; however, as we have seen so far, many other latent structures are possible,

but unfortunately to date their employment seems limited to linear Normal settings.

All these issues pave the way for future work.



Chapter 6

Conclusions and future directions

Time governs our life, and it is an essential aspect of any mediation analysis. However,

integrating the passage of time into mediational models can be done in several ways,

differing between associational models and causal approaches. In this dissertation,

we addressed some of these differences and proposed unifying perspectives by mean

of new methodological approaches.

In Chapter 2, we provided a comprehensive literature review on longitudinal me-

diation analysis, discussing the two main families of approaches proposed to address

this topic. The passage of time is linked to the concept of change and, in SEM,

the several dynamics of change are formalised through different latent structures, the

most popular of which were discussed in Section 2.2. Mixed-effect models present

a latent structure as well, but it does not entail an hypothesis about the type of

change. It captures instead the heterogeneity among level-2 units, indeed the use

of these models is not restricted to longitudinal settings. The main focus of causal

approaches is instead on estimands, which are inextricably linked to causal models

and to the concept of intervention underlying the causal effects.

These features may make all these models/approaches appear as opposite, and this

is quite natural, since they stem from very different traditions and backgrounds. In

this thesis, our aim was to combine some of these approaches, as shown in Chapters 3

and 4. The former gives two contributions: a unification of structural and multilevel

mediational models and a new perspective on multilevel mediation models within

this unified framework, which was demonstrated to overcome the main limitations of

the traditional multilevel setting. The latter provides formal assumptions to endow

mixed-effect and latent growth models with a causal interpretation, by means of the

separable effects approach. We also derived formulas for identifying these media-

tional effects, proving that they coincide with those from path analysis in the case of

linearity.

167
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Finally, in the fifth chapter we analysed real data collected in Switzerland between

July 2020 and August 2021. We investigated the direct effects of income on depression

and its indirect effects through different type of worries, during the last three months

of 2020 corresponding to a period of Covid-19 high spread. Although this analysis

was mainly intended as an example showing a practical application of some of the

theoretical approaches proposed in the thesis, nonetheless it posed conceptual and

practical challenges very interesting to address.

This dissertation addresses longitudinal mediation analysis from both an associ-

ational and a causal perspective, overcoming the traditional dichotomy recognisable

in the literature on the topic. In particular, Chapter 4 poses the first brick of a

bridge connecting latent variable models with causal inference. As already discussed

in Chapter 2, latent variables are generally a source of bias in the causal literature,

and SEM are not the most widely used models. We hope that this work can be the

beginning of a new stream of literature increasingly unifying SEMs and causality.

Despite the contributions of this thesis, it is worth acknowledging some limitations.

The literature review, although rich in terms of models and approaches described, fo-

cuses on model specification and does not address inference. This issue would deserve

an entire chapter, given the variety of approaches proposed to estimate latent vari-

able models and causal effects, especially in the presence of time-varying confounders.

In addition, we limited ourselves to considering static treatments: dynamic ones are

much more complex and they still are the object of an active branch of research.

In Chapter 3, the unification proposed clearly holds only for linear models. This

is a disadvantage for multilevel models, which have been extended to non-Normal

outcomes and nonlinearities through the GLMM theory. It should also be noticed

that the analogy between LGMs and mixed-effect models holds only for certain types

of mixed-effect models. For example, expressing the one depicted in Figure 4.2 in

Chapter 4 in SEM terms would be definitely not so straightforward, and the frame-

work developed would probably need to be extended. We focused on the formalisation

of the unified model and the different types of multilevel settings which can be em-

bodied within this framework, but we neglected the aspects concerning identifiability

(in the SEM terms) and inference, although the latter was briefly addressed at the

end of the chapter. Finally, we ignored issues related to centering, which have long

been discussed in the multilevel literature. This is an extremely complex topic, still

debated among scholars, and we believe that a thorough discussion would have been

beyond the scope of this dissertation.

We have thoroughly discussed difficulties related to the separable effects approach.

We restricted our discussion to binary treatments, since, as demonstrated by the
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empirical analysis, continuous treatments are definitely more challenging, from both

a conceptual and a practical point of view. The main issue connected to separable

effects applied to latent variable models is that the estimation formulas rely on a

correct model specification. Since it is impossible to know which is the true latent

structure underlying some data, separable mediational effects seem to be damned to

be considered at least questionable. This call for the development of a sensitivity

analysis, whose theoretical implementation is yet far from being completed.

The data analysis was made difficult from the complex sample design: subjects

entered the study at different points in time and some relevant variables, such as a

continuous version of income, were not collected. This analysis can be improved in

several ways: using more complex models, including more detailed variables about

subjects’ income and the epidemiological situation in Switzerland, as well as worries.

In particular, a continuous or at least numeric version of worries could allow us to

estimate separable effects for each time occasion.

All the aforementioned issues give us many hints on possible future research di-

rections. As regards the literature review, inferential methods to estimate SEM and

multilevel model are well known, while a systematic discussion of causal estimation

methods in the presence of mediation is yet to be provided. Some reviews of inferen-

tial approaches to deal with time-varying confounders were already published (Daniel

et al. 2013, Vansteelandt and Joffe 2014, Clare et al. 2019), but they do not focus

specifically on mediation. Other interesting topics to cover are dynamic treatments

and continuous-time mediation analysis, both of which are receiving increasingly at-

tention from scholars.

Moving to Chapter 3, there are numerous aspects to deepen or explore. We re-

stricted our discussion to linear models, exploiting the traditional theory underlying

SEM, i.e. that based on the multivariate Normal distribution of the variables. This

makes the estimation of effects quite natural via path analysis, but restricts the types

of variable that can be modelled, which have at least to be continuous. Although

there exist approaches to deal with binary variables in the SEM framework and they

are implemented in statistical software such as Mplus and OpenMx, they rely anyway

on Normal approximations. In addition, nonlinear path analysis is not yet well devel-

oped, and therefore a formal definition of direct and indirect effects in such settings

is missing. Concerning multilevel SEM, different aspects need further investigation,

such as identification criteria, the development of goodness-of-fit measures and hy-

pothesis testing.

The separable effects approach is quite recent, and it has been applied to longitu-

dinal mediational settings even more recently. This approach is experiencing a rapid
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development and has yet to reveal its full potential. In this thesis, it was applied to

mixed-effect and latent growth models, but our conjecture is that it can be applied

to other classes of latent variable models with appropriate assumptions. Adopting

this perspective presents several advantages, but it is in any case subject to a sound

substantive (and non testable) theory justifying the separability of exposure and the

components’ meaningfulness. Moreover, as proved by our empirical application, the

extension of this approach to non-binary exposures is not straightforward and it is

for sure an issue which deserves attention in the future.

Longitudinal mediation analysis has become a very active research area over the

last decades. Its applications are almost unlimited, since most phenomena of interest

in different fields evolve over time and longitudinal mediation analysis contributes

to unveil how the change takes place. We believe that our thesis can suggest a

direction toward a more and more tight connection of latent variable models and

causal approaches, which may exploit the strengths of both, and lead to increasingly

accurate insights into the real world surrounding us.



Appendix A

A note on causal interpretation of

associational models

At the end of Chapter 2, we claimed that associational models can be endowed with

a causal interpretation under some assumptions, which also ensure identifiability of

mediational parameters.

For example, suppose to fit a CLPM with observed variables as in Equations

(2.1)-(2.3). If one is interested in natural effects, comparing two static regimes, the

assumptions for identifiability are

C1 Consistency : if the exposure history X takes value x, then the potential outcome

Mt(x) equals the observed Mt. Analogously, if, in addition, mediator history is

set to m, then Yt(x,m) equals the observed outcome Yt.

C2 Exchangeability :

C2.1 Yt′(x,m) ⊥⊥ Xt |X t−1, M t−1, Y t−1 for each t′ > t (no exposure-outcome

unobserved confounders)

C2.2 Yt′(x,m) ⊥⊥ Mt |X t−1, M t−1, Y t−1 for each t′ > t (no mediator-outcome

unobserved confounders)

C2.3 Mt′(x) ⊥⊥ Xt |X t−1, M t−1, Y t−1 for each t′ > t (no exposure-mediator un-

observed confounders)

C2.4 Yt′(x,m) ⊥⊥ Mt(x
∗) for each t′ > t (no mediator-outcome observed and

unobserved confounders affected by the exposure)

where we suppress subject subscript to make notation clearer and we assume that

variables with a null or negative subscript are not defined. Under these assump-

tions, one can derive formulas to compute natural direct and indirect effects from

171
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observational data. In particular, the natural direct effect is given by

E[Yt(x,M(x∗))− Yt(x∗, M(x∗))] =∑
mt−1,yt−1

{
E[Yt |xt−1,mt−1, yt−1]− E[Yt |x∗t−1,mt−1, yt−1]

}
t−1∏
k=1

{
P (Yk |xk−1,mk−1, yk−1)− P (Yk |x∗k−1,mk−1, yk−1)

}
P (Mk |x∗k−1,mk−1),

(A.1)

and the natural indirect effect by

E[Yt(x,M(x))− Yt(x, M(x∗))] =∑
mt−1,yt−1

E[Yt |xt−1,mt−1, yt−1]
t−1∏
k=1

P (Yk |xk−1,mk−1, yk−1)×

{
P (Mk |xk−1,mk−1)− P (Mk |x∗k−1,mk−1)

}
.

(A.2)

To prove it, it is sufficient to estimate E[Yt(x,M(x∗))], which, under assumptions

C1-C2, is identified as

E[Yt(x,M(x∗))] =∑
mt−1,yt−1

E[Yt |xt−1,mt−1, yt−1]
t−1∏
k=1

P (Yk |xk−1,mk−1, yk−1)P (Mk |xk−1,mk−1).

(A.3)

Proof. To give the intuition behind the proof, let us start by considering three

waves of data, T = 3. Then, we have

E[Y3(x2, M2(x∗1))]

=
∑
m1

E[Y3(x2,m1,M2(x∗1)) |M1(x∗1) = m1]P (M1(x∗1) = m1)

by iterated expectations

=
∑
m1

E[Y3(x2,m1,M2(x∗1))]P (M1 = m1)

by C2.4 and M1(x∗1) = M1, since M1 is not affected by X1

=
∑
m1

E[Y3(x2,m1,M2(x∗1)) |x1]P (M1 = m1) by C2.1
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=
∑
m1

E[Y3(x2,m1,M2(x∗1)) |x1,m1]P (M1 = m1) by C2.2

=
∑
m1,y1

E[Y3(x2,m1,M2(x∗1)) |x1,m1, y1]P (Y1 = y1)P (M1 = m1)

by iterated expectations

=
∑

m1,m2,y1

E[Y3(x2,m2) |x1, x2,m1,M2(x∗1) = m2, y1]P (M2(x∗1) = m2 | x∗1,m1)×

P (Y1 = y1)P (M1 = m1) by iterated expectations, C2.1 and C2.3

=
∑

m1,m2,y1

E[Y3(x2,m2) |x1, x2,m1,m2, y1]P (M2(x∗1) = m2 |x∗1,m1)×

P (Y1 = y1)P (M1 = m1) by C2.4 and C2.2

=
∑

m1,m2,y1,y2

E[Y3(x2,m2) |x1, x2,m1,m2, y1, y2]P (Y2(x1,m1) = y2 |x1,m1, y1)×

P (M2(x∗1) = m2 |x∗1,m1)P (Y1 = y1)P (M1 = m1)

by iterated expectations, C2.1 and consistency

=
∑
m2,y2

E[Y3(x2,m2) |x2,m2, y2]P (Y2(x1,m1) = y2 |x1,m1, y1)×

P (M2(x∗1) = m2 |x∗1,m1)P (Y1 = y1)P (M1 = m1)

=
∑
m2,y2

E[Y3 |x2,m2, y2]P (Y2 = y2 |x1,m1, y1)P (Y1 = y1)×

P (M2 = m2 |x∗1,m1)P (M1 = m1) by C1

For T > 3, iterating steps shown above, one obtains

E[Yt(xt−1,M t−1(x∗t−2))]

=
∑

mt−1,yt−1

E[Yt |xt−1,mt−1, yt−1]
t−1∏
k=1

P (Yk |xk−1,mk−1, yk−1)P (Mk |x∗k−1,mk−1)

Notice that here we used sums, but they would be replaced by integrals in the case

of continuous variables. Formulas (A.1) and (A.2) immediately follow from (A.3) by

applying the definition of natural direct and indirect effects. Then, it can be proved

that, if the true model is as in (2.1)-(2.3), and data are observed at three times, then

the NDE of X on Y3 is given by γ
X

(x2 − x∗2) + γ
X
γ
Y

(x1 − x∗1), which is the sum of

effects conveyed by paths X2 → Y3 and X1 → Y2 → Y3; NIE is given by β
X
γ
Y

(x1−x∗1),

corresponding to X1 →M2 → Y3.
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X1 X2 X3

XM
1 XY

1

XX
1

XM
2 XY

2

XX
2

M1 Y1 M2 Y2 M3 Y3

Figure A.1: Expanded graph of Figure 2.2 in the main text. Bold arrows represent deterministic
relationships.

In the case of three waves, it is easy to understand along which paths direct and

indirect effects propagate, but adding just one wave makes the task more complex,

since the number of paths increases. For example, there may be direct effects conveyed

straightforwardly from X at a certain point to Y at a subsequent time and direct

effects passing through subsequent X’s. Similarly, indirect effects may be conveyed

by a single mediator or multiple mediators.

VanderWeele and Tchetgen Tchetgen (2017) show that, in a CLPM as that in

MacKinnon (2008), interventional effects are identified, under static sequential ignor-

ability. In absence of time-varying confounding they coincide with natural effects.

Thus, in a case as that discussed so far, natural and interventional effects coincide.

Now suppose to be interested in estimating separable effects for the expanded

graph shown in Figure A.1, corresponding to the path diagram in Figure 2.2 in the

main text. Notice that, since each child of X = {X1, X2, X3} in the original graph

has exactly one component of X as parent in the expanded graph, it is an edge graph,

using the same terminology as in Robins et al. (2020). Thus, using Corollary 1 in

their paper, separable effects are identified.

Here we show how path specific effects can be written in terms of counterfactuals

using separable components of X and that they are identified. For example, consider

the graph in Figure 2.2 and the paths π1 = {X2 → Y3;X1 → Y2 → Y3} and π2 =

{X1 →M2 → Y3}, which, assuming a binary exposure (x = 1, x∗ = 0), correspond to

the following counterfactuals

Y3(π1, x, x
∗) = Y3(X1 = 1, X2 = 1, Y2(X1 = 1),M2(X1 = 0))

Y3(π2, x, x
∗) = Y3(X1 = 0, X2 = 0, Y2(X1 = 0),M2(X1 = 1)),

respectively.

Notice that these counterfactuals coincide, as random variables, with Y3(XM
1 =
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0, XY
1 = 1, XM

2 = 0, XY
2 = 1) and Y3(XM

1 = 1, XY
1 = 0, XM

2 = 0, XY
2 = 0), respec-

tively. They are written in terms of the components of X shown in Figure A.1. This

follows from Proposition 3 in Robins et al. (2020), since π1 and π2 are edge-consistent,

i.e. they do not contain any recanting witness (Avin et al. 2005, Shpitser 2013). From

Theorem 2 in Robins et al. (2020), it also follows that the two random variables are

identified. Specifically,

Y3(π1, x, x
∗) = Y3(X1 = 1, X2 = 1, Y2(X1 = 1),M2(X1 = 0)) ≡

Y3(XM
1 = 0, XY

1 = 1, XM
2 = 0, XY

2 = 1) =∑
m2,y2

P (Y3 | y2,m2, x2 = 1, x1 = 1)P (y2 |x1 = 1)P (m2 |x1 = 0)

Y3(π2, x, x
∗) = Y3(X1 = 0, X2 = 0, Y2(X1 = 0),M2(X1 = 1)),≡

Y3(XM
1 = 1, XY

1 = 0, XM
2 = 0, XY

2 = 0) =∑
m2,y2

P (Y3 | y2,m2, x2 = 0, x1 = 0)P (y2 |x1 = 0)P (m2 |x1 = 1),

where we marginalised over m1 and y1.

As regards the other SEMs discussed in the manuscript, factor CLPM, LGM and

LDS, they are not non-parametrically identified, due to the presence of latent vari-

ables. We gave a detailed discussion about separable effects for LGMs in Chapter 4,

showing why a non-parametric identification is impossible. We have not addressed

the other classes of models, but the underlying logic is similar.
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Proofs of formulas in Chapter 4

In this section we provide proofs of Equations (4.7) and (4.15). We consider a hypo-

thetical randomised trial, where XM and XY are randomised independently possibly

to different values x∗ and x, respectively.

B.1 Proof of Equation (4.7)

To prove Equation (4.7), let us start from E[Y2(XM = x∗, XY = x)].

E[Y2(XM = x∗, XY = x)]

=
∑

m1,m2,y1

E[Y2(XM = x∗, XY = x) |M2(XM = x∗, XY = x) = m2,

Y1(XM = x∗, XY = x) = y1]×

P (M2(XM = x∗, XY = x) = m2 |Y1(XM = x∗, XY = x) = y1,

M1(XM = x∗, XY = x) = m1)×

P (Y1(XM = x∗, XY = x) = y1 |M1(XM = x∗, XY = x) = m1)×

P (M1(XM = x∗, XY = x) = m1)

=
∑

m1,m2,y1

E[Y2(XM = x,XY = x) |M2(XM = x,XY = x) = m2,

Y1(XM = x,XY = x) = y1]×

P (M2(XM = x∗, XY = x∗) = m2 |Y1(XM = x∗, XY = x∗) = y1,

M1(XM = x∗, XY = x∗) = m1)×

P (Y1(XM = x,XY = x) = y1 |M1(XM = x,XY = x) = m1)×

P (M1(XM = x∗, XY = x∗) = m1)
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=
∑

m1,m2,y1

E[Y2(X = x) |M2(X = x) = m2, Y1(X = x) = y1]×

P (M2(X = x∗) = m2 |Y1(X = x∗) = y1,M1(X = x∗) = m1)×

P (Y1(X = x) = y1 |M1(X = x) = m1)P (M1(X = x∗) = m1)

=
∑

m1,m2,y1

E[Y2 |X = x, M2 = m2, Y1 = y1]×

P (M2 = m2 |X = x∗, Y1 = y1,M1 = m1)×

P (Y1 = y1 |X = x,M1 = m1)P (M1 = m1 |X = x∗)

where the first equality is obtained applying the law of iterated expectations and the

second equality follows from assumptions A1 and A2 since, for example

P (M1(XM = x∗, XY = x) = m1)

= P (M1 = m1 |XM = x∗, XY = x)

= P (M1 = m1 |XM = x∗, XY = x∗) by A1

= P (M1(XM = x∗, XY = x∗) = m1),

and analogously for Y1

P (Y1(XM = x∗, XY = x) = y1 |M1(XM = x∗, XY = x) = m1)

= P (Y1 = y1 |M1 = m1, X
M = x∗, XY = x)

= P (Y1 = y1 |M1 = m1, X
M = x,XY = x) by A2

= P (Y1(XM = x,XY = x) = y1 |M1(XM = x, XY = x) = m1).

The same line of reasoning can be applied to the other terms in the formula. The

third equality follows from 4.1 and the last one from the fact that

P (Y1(X = x) = y1 |M1(X = x) = m1)

=
P (Y1(X = x) = y1,M1(X = x) = m1 |X = x)

P (M1(X = x) = m1 |X = x)
by exchangeability

=
P (Y1 = y1,M1 = m1 |X = x)

P (M1 = m1 |X = x)
by consistency

= P (Y1 = y1 |X = x,M1 = m1)

and this holds also for the other conditional densities appearing in the expression.

Iterating the same passages for any t > 2, it is easy to obtain Equation (4.7). See

Appendix B of Stensrud et al. (2021) for a similar proof for a survival outcome in a



178 APPENDIX B. PROOFS OF FORMULAS IN CHAPTER 4

competing-event setting.

B.2 Proof of Equation (4.15)

In the following we use summation just for consistency with the notation adopted

throughout Chapter 4, although we assume that the θ factors are Normally distributed

and then integrals would be the correct choice.

E[Yt(X
M = x∗, XY = x)]

=
∑

θ̃0M ,θ̃1M ,θ̃0Y ,θ̃1Y

E[Yt(X
M = x∗, XY = x) | θ1Y (XM = x∗, XY = x) = θ̃1Y ,

θ0Y (XM = x∗, XY = x) = θ̃0Y , θ1M(XM = x∗, XY = x) = θ̃1M

θ0M(XM = x∗, XY = x) = θ̃0M ]×

P (θ1Y (XM = x∗, XY = x) = θ̃1Y | θ0Y (XM = x∗, XY = x) = θ̃0Y ,

θ1M(XM = x∗, XY = x) = θ̃1M , θ0M(XM = x∗, XY = x) = θ̃0M)×

P (θ0Y (XM = x∗, XY = x) = θ̃0Y )P (θ1M(XM = x∗, XY = x) = θ̃1M)×

P (θ0M(XM = x∗, XY = x) = θ̃0M)

=
∑

θ̃0M ,θ̃1M ,θ̃0Y ,θ̃1Y

E[Yt(X
M = x,XY = x) | θ1Y (XM = x,XY = x) = θ̃1Y ,

θ0Y (XM = x,XY = x) = θ̃0Y , θ1M(XM = x,XY = x) = θ̃1M

θ0M(XM = x,XY = x) = θ̃0M ]×

P (θ1Y (XM = x,XY = x) = θ̃1Y | θ0Y (XM = x,XY = x) = θ̃0Y ,

θ1M(XM = x,XY = x) = θ̃1M , θ0M(XM = x,XY = x) = θ̃0M)×

P (θ0Y (XM = x,XY = x) = θ̃0Y )P (θ1M(XM = x∗, XY = x∗) = θ̃1M)×

P (θ0M(XM = x∗, XY = x∗) = θ̃0M)

=
∑

θ̃0M ,θ̃1M ,θ̃0Y ,θ̃1Y

E[Yt(X = x) | θ1Y (X = x) = θ̃1Y , θ0Y (X = x) = θ̃0Y ,

θ1M(X = x) = θ̃1M , θ0M(X = x) = θ̃0M ]

P (θ1Y (X = x) = θ̃1Y | θ0Y (X = x) = θ̃0Y , θ1M(X = x) = θ̃1M ,

θ0M(X = x) = θ̃0M)×

P (θ0Y (X = x) = θ̃0Y )P (θ1M(X = x∗) = θ̃1M)P (θ0M(X = x∗) = θ̃0M)

=
∑

θ̃0M ,θ̃1M ,θ̃0Y ,θ̃1Y

E[Yt |X = x, θ1Y = θ̃1Y , θ0Y = θ̃0Y , θ1M = θ̃1M , θ0M = θ̃0M ]
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P (θ1Y = θ̃1Y |X = x, θ1M = θ̃1M , θ0M = θ̃0M)×

P (θ0Y = θ̃0Y |X = x)P (θ1M = θ̃1M |X = x∗)P (θ0M = θ̃0M |X = x∗)

where the proof follows the same passages discussed for Equation (4.7). The first

equality is obtained applying the law of iterated expectations and the second equality

follows from assumptions B1.1, B1.2, and B2 since, for example

P (θ0M(XM = x∗, XY = x) = θ̃0M)

= P (θ0M = θ̃0M |XM = x∗, XY = x)

= P (θ0M = θ̃0M |XM = x∗, XY = x∗) by B1.1

= P (θ0M(XM = x∗, XY = x∗) = θ̃0M),

and analogously for any factor in ΘY by using B1.2, and for Y at any time t by B2.

The third equality follows from 4.1 and the last one from the fact that

P (θ1Y (X = x) = θ̃1Y | θ0Y (X = x) = θ̃0Y , θ1M(X = x) = θ̃1M , θ0M(X = x) = θ̃0M)

=
P (θ1Y (X = x) = θ̃1Y , θ0Y (X = x) = θ̃0Y , θ1M (X = x) = θ̃1M , θ0M (X = x) = θ̃0M |X = x)

P (θ0Y (X = x) = θ̃0Y , θ1M (X = x) = θ̃1M , θ0M (X = x) = θ̃0M |X = x)

by exchangeability

=
P (θ1Y = θ̃1Y θ0Y = θ̃0Y , θ1M = θ̃1M , θ0M = θ̃0M |X = x)

P (θ0Y = θ̃0Y , θ1M = θ̃1M , θ0M = θ̃0M |X = x)
by consistency

= P (θ1Y = θ̃1Y |X = x, θ1M = θ̃1M , θ0M = θ̃0M)

and this line of reasoning ca be extended to the other conditional densities appearing

in the expression.
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The COVCO-Basel study: an

alternative decomposition of

income

In Chapter 5, we proposed two alternative decompositions of income, but in the

main text we discussed only the one more similar to the approach used for binary

exposures. Here, we show the separable mediational effects obtained using the other

decomposition, i.e. we estimated

SDE = E[(Y (XM = 2, 000, XY = 6, 000))]− E(Y (XM = 2, 000, XY = 3, 000))

SIE = E[(Y (XM = 4, 000, XY = 6, 000))]− E[(Y (XM = 2, 000, XY = 6, 000))],

corresponding to the intervention moving monthly income from 5,000 to 10,000 CHF,

and

SDE = E[(Y (XM = 0, XY = 3, 000))]− E(Y (XM = 0, XY = 0))

SIE = E[(Y (XM = 2, 000, XY = 3, 000))]− E[(Y (XM = 0, XY = 3, 000))],

corresponding to the intervention changing monthly income from 0 to 5,000 CHF.

The tables below show the effects estimated using these decompositions.

In both cases, the direct effects are always negative and significant, as it happens

with the other decomposition, but their magnitude is smaller. This is not surprising,

since the increment in the XY component is just 3,000 CHF, not 5,000 as in the

decomposition discussed in the main text. This is likely the same reason why all

indirect effects become non-significant, except for that mediated by economic worries

at the last occasion under the intervention shifting income from 5,000 to 10,000 CHF.

Again, it is possible to observe a slight increase of the direct effects over time, and
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Table C.1: Point estimates, standard errors and confidence intervals of separable direct and indirect
effects of income on depression mediated by one kind of worry at a time, under an intervention
changing income from 5,000 CHF to 10,000 CHF, using an alternative decomposition of income.

Worries Effect Fortnight

8 10 12

Economic

SDE
-0.067 (0.026) -0.070 (0.026) -0.073 (0.027)

(-0.115, -0.012) (-0.109, -0.016) (-0.112, -0.014)

SIE
-0.010 (0.007) -0.010 (0.006) -0.011 (0.006)

(-0.023, 0.004) (-0.021, 0.001) (-0.024, -0.002)

Health

SDE
-0.074 (0.027) -0.079 (0.028) -0.080 (0.030)

(-0.123, -0.024) (-0.135, -0.027) (-0.136, -0.021)

SIE
-0.006 (0.008) -0.005 (0.007) -0.006 (0.006)

(-0.022, 0.010) (-0.019, 0.010) (-0.019, 0.004)

Social

SDE
-0.062 (0.026) -0.065 (0.025) -0.068 (0.028)

(-0.107, -0.018) (-0.109, -0.015) (-0.117, -0.012)

SIE
-0.009 (0.012) -0.012 (0.010) -0.013 (0.010)

(-0.031, 0.015) (-0.032, 0.008) (-0.029, 0.004)

Cultural

SDE
-0.076 (0.027) -0.077 (0.026) -0.081 (0.027)

(-0.128, -0.026) (-0.128, -0.028) (-0.135, -0.034)

SIE
-0.005 (0.009) -0.004 (0.007) -0.003 (0.006)

(-0.020, 0.011) (-0.017, 0.008) (-0.015, 0.011)

that the magnitude of effects under the second intervention is somewhat higher than

that of effects obtained under the first one, but this is more evident in the results

obtained following the ‘traditional’ decomposition.

These results drive us to delve more deeply into the concept of separability for

non-binary exposure/treatments. Leaving aside income, which is a very special kind

of exposure, there are many other examples of possible non-binary treatments, such

as the already mentioned dose of a drug, the number of physical activity hours or

cigarettes smoked in a day, the weekly hours of work or the daily caloric intake. All

these examples pose two problems: how to conceive two separate treatments, in order

to carry out a reference (even hypothetical) four-arm trial, and how to decompose

the unique X variable in its components. The additive way, that we described in

Chapter 5 and put in practice here, is probably the most intuitive one, but we believe

final judgement on this complex issue can only be reached through future, specifically

aimed, research work.
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Table C.2: Point estimates, standard errors and confidence intervals of separable direct and indirect
effects of income on depression mediated by one kind of worry at a time, under an intervention
changing income from 0 CHF to 5,000 CHF, using an alternative decomposition of income.

Worries Effect Fortnight

8 10 12

Economic

SDE
-0.073 (0.026) -0.075 (0.026) -0.079 (0.028)

(-0.122, -0.032) (-0.122, -0.032) (-0.126, -0.035)

SIE
-0.010 (0.007) -0.010 (0.007) -0.010 (0.007)

(-0.022, 0.002) (-0.023, 0.003) (-0.025, 0.000)

Health

SDE
-0.076 (0.026) -0.079 (0.026) -0.081 (0.027)

(-0.125, -0.025) (-0.135, -0.029) (-0.137, -0.026)

SIE
-0.006 (0.009) -0.008 (0.008) -0.006 (0.007)

(-0.024, 0.011) (-0.023, 0.008) (-0.021, 0.007)

Social

SDE
-0.064 (0.027) -0.066 (0.027) -0.068 (0.027)

(-0.121, -0.012) (-0.121, -0.021) (-0.115, -0.015)

SIE
-0.007 (0.012) -0.010 (0.012) -0.011 (0.010)

(-0.030, 0.015) (-0.030, 0.014) (-0.031, 0.006)

Cultural

SDE
-0.079 (0.029) -0.082 (0.030) -0.086 (0.030)

(-0.130, -0.023) (-0.136, -0.017) (-0.142, -0.025)

SIE
-0.004 (0.009) -0.003 (0.007) -0.003 (0.007)

(-0.019, 0.010) (-0.015, 0.009) (-0.015, 0.011)
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