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A B S T R A C T  

In this study, we evaluated the ability of five topographic indices to predict the gully trajectories 
observed in two adjacent watersheds located in Sicily (Italy). Two of these indices, named MSPI and 
MTWI, as far as we know, have never been employed to this aim. They were obtained by multiplying 
the stream power index (SPI) and the topographic wetness index (TWI), respectively, by the 
convergence index (CI). The predictive ability of the topographic indices was measured by using both 
cut-off independent (AUC: area under the receiver operating characteristic curve) and dependent 
statistics (Cohen’s kappa index κ, sensitivity, specificity). These statistics were calculated also for 
100 MARS (multivariate adaptive regression splines) and 100 LR (logistic regression) model runs, 
which used as predictors the topographic variables combined in the five indices (i.e. contributing 
area, slope steepness, plan curvature and convergence index). Performance statistics of both 
topographic indices and statistical models were calculated using 100 random samples of 2 m grid 
cells extracted only from flow concentration lines. This was done in order to focus the validation 
process where gully erosion is more likely to occur. MSPI achieved the best predictive skill (AUC > 
0.93; κ > 0.71) among the topographic indices and exhibited similar and better accuracy than local 
(i.e. trained and validated in the same watershed) and transferred (i.e. trained in one watershed 
and tested in the other one) LR models, respectively. On the other hand, MSPI performed similarly 
to transferred MARS runs (AUC > 0.92; κ > 0.71) but slightly worse than local MARS runs (AUC > 0.95; 
κ > 0.77). Based on the results of this experiment, we infer that (i) including CI helps in detecting 
hollow areas where gullies are more likely to occur and (ii) MPSI can be a valid alternative to a data 
driven approach for mapping gully erosion susceptibility in areas where a gully inventory is not 
available, which is necessary to calibrate statistical models. 
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1. Introduction 

Gully erosion causes land degradation in a wide range of environmental conditions. The 
development of gullies in agricultural watersheds may induce high soil loss and reduction of water 
availability, leading to a significant decrease of soil quality and crop yield. Moreover, gully channels 
hamper the trafficability of the fields causing extra damages and costs to farmers (Poesen et al., 
2003, 2011). 

Gullying is a threshold phenomenon that is mainly controlled by rainfall, topography, soil, 
lithology and land use. Gullies occur only after a threshold of runoff erosivity and soil erodibility is 
exceeded. In addition to rainfall, runoff erosive power depends on topography which regulates 
discharge, concentration and velocity of overland flow (e.g., Moore et al., 1988; Desmet et al., 1999; 
Poesen et al., 2003; Valentin et al., 2005; Gómez-Gutiérrez et al., 2009a; Daggupati et al., 2013; 
Conoscenti et al., 2013). Morphology, density and development of gullies in a given landscape is 
also significantly controlled by parent material (Oostwoud Wijdenes et al., 2000; Vandekerckhove 
et al., 2001; Poesen et al., 2011). Furthermore, gully occurrence is controlled by resistance of soil, 
which is influenced by soil properties such as texture, bulk density, moisture conditions, organic 
matter content (Poesen et al., 2003). Soil erosion susceptibility is also related to crop type and stage, 
as well as tillage direction and conservation practices (Parker et al., 2007). Also, several studies have 
reported triggering of gullies or increasing of gully erosion rates as being caused by land use 
changes, intensification of farming activities and overgrazing (Poesen et al., 2003; Valentin et al., 
2005; Zucca et al., 2006; Gómez-Gutiérrez et al., 2009b). 

Planning of gully erosion control in agricultural watersheds requires either quantifying soil loss 
and predicting gully location. Several process-based models have been developed to quantify gully 
erosion (e.g., CREAMS, Knisel, 1980; EGEM, Merkel et al., 1988; GLEAMS, Knisel, 1993; Sidorchuk, 
1999; REGEM, Gordon et al., 2007). However, these models require physical input variables that are 
difficult to measure at the watershed scale. Soil loss due to gully erosion can be also evaluated by 
using empirical models which are based on relationships established between volume and length of 
the gully channels (e.g., Nachtergaele et al., 2001; Capra and Scicolone, 2002; Capra et al., 2005; 
Caraballo-Arias et al., 2014, 2015). 

Prediction of gully location can be achieved by identifying a topographic threshold that has to be 
exceeded for a gully to form. A number of studies have proposed topographic threshold lines 
defined on a log-log plot of local slope gradient (S) versus upslope contributing area (A) measured 
at gully heads (e.g., Patton and Schumm, 1975; Montgomery and Dietrich, 1992; Nachtergaele et 
al., 2001b; Zucca et al., 2006; Nazari Samani et al., 2009). Both these topographic attributes are 
indeed widely considered to play the role of controlling factors in the gully formation process as 
they act as proxies for flow velocity and discharge, respectively. The approach based on S–A 
threshold lines assumes that for a given A, a critical S exists above which runoff erosivity is large 
enough to produce gully erosion. The S–A threshold can be used to predict gullies by classifying a 
study area into non-event positions (below the threshold line) and event positions (on or above the 
threshold line). However, this approach tends to overestimate the likelihood of gully occurrence 
(Svoray et al., 2012; Gómez-Gutiérrez et al., 2015), providing a high number of false positives (i.e. 
non-gullied positions classified as gullied). 

Furthermore, several topographic indices have been employed to predict gully location (e.g., 
Thorne et al., 1986; Moore et al., 1988; Vandaele et al., 1996; Desmet et al., 1999). These models 
rely on the assumption that gully formation depends on a combination of primary topographic 
attributes (Wilson and Gallant, 2000) which reflect erosivity of concentrated overland flow; gully 
erosion occurs when the topographic index exceeds a critical threshold value. Daggupati et al. 
(2013), Sekaluvu et al. (2015) and Sheshukov et al. (2018) have compared the ability to discriminate 
between gullied and non-gullied areas of several topographic indices, which were applied using 
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different thresholds. Their analyses revealed that gully predictions were not accurate without 
identifying an optimal threshold through local calibration. Indeed, they have observed that a low 
threshold causes high number of false positives whereas a high threshold produces high number of 
false negatives (i.e. gullied sites predicted as non-gullied). 

Recently, accurate predictions of gully locations have been achieved by using statistical modeling 
and data mining techniques such as logistic regression, classification and regression trees, 
multivariate adaptive regression splines, stochastic gradient treeboost, artificial neural network, 
random forest, maximum entropy, etc. (e.g., Meyer and Martínez-Casasnovas, 1999; Gómez-
Gutiérrez et al., 2009c; Eustace et al., 2011; Svoray et al., 2012; Conoscenti et al., 2014, 2018; 
Dewitte et al., 2015; Angileri et al., 2016; Pourghasemi et al., 2017; Garosi et al., 2018, 2019). These 
techniques are able to analyze and model the relationships between gully locations and spatial 
variability of a set of environmental predictors related to topography, land use, parent materials 
and soils. Based on the identified statistical relationships, these techniques allow for calculating a 
probability of gully occurrence that ranges from 0 to 1, for each position (usually grid cell) in a given 
area. However, an important drawback in these procedures, which are data-driven, is that they 
generate prediction images which efficiently explain the gully distribution in the study area but tend 
to fail when exported to other areas, even if located at a close distance (Conoscenti et al., 2018). 

This study focuses on investigating the topographic control of gully erosion caused by 
concentrated overland flow at watershed scale. The experiment was carried out in two small 
agricultural watersheds located in Sicily (Italy). The main goal of the study was to evaluate and 
compare the ability to predict the location of gullies achieved by using a set of topographic indices, 
which includes three indices previously proposed for predicting gully location and two modified 
versions of them. Predictive models of gully occurrence were prepared also by using logistic 
regression (LR; Hosmer and Lemeshow, 2000) and multivariate adaptive regression splines (MARS; 
Friedman, 1991), two statistical modeling techniques which have been successfully used to this aim 
in previous studies (e.g., Vanwalleghem et al., 2008; Gómez-Gutiérrez et al., 2009c; Svoray et al., 
2012; Conoscenti et al., 2014, 2018; Dewitte et al., 2015). To further assess the ability to predict 
gully occurrence provided by the five topographic indices, their accuracy was compared with that 
achieved by LR and MARS models. The statistical analyses were performed using the R software (R 
Core Team, 2017) with the packages “raster”(Hijmans, 2017), “usdm” (Naimi, 2015), 
“splitstackshape” (Mahto, 2018), “pROC” (Robin et al., 2011), “ROCR” (Sing et al., 2005),  “caret” 
(Wing and Kuhn, 2018) and “earth” (Milborrow, 2018). 

2. Materials and Methods 

2.1. Study area and gully inventory 

The experiment was carried out in two adjacent agricultural watersheds located in central-
western Sicily (Fig. 1), approximately 35 km south-east of the city of Palermo. The westernmost 
watershed (W1) drains an area of 621.7 ha whereas the easternmost one (W2) covers 901.4 ha. The 
study area experiences a typical Mediterranean climate with an average annual rainfall of 711 mm 
(time interval: 2002–2017; Camporeale rainfall station; Regione Siciliana – SIAS - Servizio 
Informativo Agrometeorologico Siciliano), with a minimum in July (5.6 mm) and a maximum in 
December (88.7 mm). Topography of the two investigated watersheds is slightly different (Fig. 2a–
b): elevation ranges from 185 to 576 m a.s.l. in W1 (mean = 303 m) and from 209 to 571 m a.s.l. in 
W2 (mean = 345 m), whereas average slope gradient is 10.1° (SD = 5.0°) and 9.7° (SD = 6.9°), 
respectively. Soils are mostly regosols and vertisols with fine-medium texture (Fierotti, 1988). 
Lithologies are mainly eluvial-colluvial deposits, sands of the Late Miocene Terravecchia Fm., clays 
of the Middle-Late Miocene Castellana Sicula Fm., silty-clays and sandy-silts of the Terravecchia Fm. 
(Fig. 2c). Primary land covers are arable lands (mainly cereal fields) and vineyards, which occupy 
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92% of W1 and 80% of W2 (Fig. 2d).  

 
Both watersheds are affected by gully erosion which increases soil loss, causes landscape 

dissection and hampers the movement of farm machines. Most of the gully channels in the drainage 
basins are ephemeral and are usually filled in by tillage within few months after their initiation. 
Conoscenti et al. (2018) created a gully inventory of the watersheds by analyzing a Google Earth 
image acquired on 3 May 2015 (Fig. 3). As their objective was to model gully erosion due to overland 
flow concentration, the inventory includes only gullies located on concentrated flow pathways. The 
latter were extracted from a 2-m raster Digital Elevation Model (DEM; Regione Siciliana, 2010) by 
calculating for each cell the value of upstream contributing area. To ensure consistency between 
mapped gullies and contributing area, gully trajectories have been slightly modified in order to 
exactly match flow pathways and to ensure that contributing area increases along each gully from 
head to mouth (Fig. 4). The inventory reveals that gully erosion is more severe in W1 (gully density 
= 0.73 km-1) than in W2 (0.18 km-1). Gullies mostly occur on eluvial-colluvial deposits and clays. As 
regards land cover, arable lands host most of the gully trajectories. 

2.2. Topographic indices 

In this experiment, we assessed the ability to predict gully location of five topographic indices, 
which combine two or more primary topographic attributes (Wilson and Gallant, 2000). These 
attributes were calculated for each grid cell of a LiDAR-derived 2×2 m DEM (Regione Siciliana, 2010), 
using terrain analysis tools of SAGA-GIS software (Conrad et al., 2015). 

Three topographic indices adopted here, namely stream power index (SPI), compound 
topographic index (CTI) and topographic wetness index (TWI), have been employed in previous 

Fig. 1. Location (a) and topographic map (b) of the watersheds W1 and W2. 
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studies to predict location of ephemeral gullies in cultivated watersheds (e.g., Vandaele et al., 1996; 
Parker et al., 2007; Daggupati et al., 2013, 2014; Sekaluvu et al., 2015; Sekaluvu and Sheshukov, 
2016; Sheshukov et al., 2018).  

 
 

Fig. 2. Elevation (a), slope steepness (b), lithology (c) and land cover (d) maps of the watersheds W1 and W2. 
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Fig. 3. Gully maps of the watersheds W1 and W2 and Google Earth views of two gully-prone sectors of the study area. 

Fig. 4. An example showing correspondence between gullies and flow pathways. 
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The SPI (Moore et al., 1988, 1991) is a measure of erosive power of concentrated runoff and is 
calculated as: 

 
SPI = As • S  (1) 
 
where As (m2 m-1) is the specific contributing area and S (m m-1) is the local slope gradient. As and 

S are employed as surrogates for flow discharge and velocity. As was extracted from upslope 
contributing area (A), which in turn was calculated by applying the single flow direction (also 
referred to as D8) algorithm (O’Callaghan and Mark, 1984), after filling sinks in the DEM. To obtain 
As, A has to be divided by the contour width within the pixel (Desmet and Govers, 1996). As the 
contour width can be set to the average of the grid cell width (i.e., 2.0 m) and the grid cell diagonal 
(i.e., 2.8 m), As was calculated dividing A by 2.4. 

The CTI (Thorne et al., 1986) is defined as: 
 
CTI = As • S • PLANC (2) 
 
where PLANC (m/100 m) is the curvature of the contour line (Hengl and Reuter, 2008). PLANC is 

a measure of local flow convergence and divergence and thus reflects the degree of concentration 
of the runoff. CTI is employed in the USDA Agricultural Non-Point Source (AGNPS) modelling system 
(Bingner and Theurer, 2001) to identify potential ephemeral gully locations throughout a watershed 
(Parker et al., 2007; Momm et al., 2012, 2013).  

TWI (Moore et al., 1988; 1991) is a measure of soil saturation and is calculated as: 
  
TWI = ln (As / S) (3) 
 
As TWI reflects zones of saturation in a watershed, it could also be an index of the potential 

location of ephemeral gullies. Indeed, gully heads often form where soils become very wet and lose 
their strength (Moore et al., 1988). 

In addition to SPI, CTI and TWI, we explored the ability to predict gully locations of two 
topographic indices. These indices are modified versions of SPI and CTI and are calculated as: 

 
MSPI = As • S • CI (4) 
 
MTWI = ln (As / S) • CI (5) 
 
where CI (m) is the convergence index (Köthe et al., 1996). CI measures to what extent 

neighboring cells point to the center cell and is calculated by setting a search radius. Differently 
from PLANC, which depends on local morphology, CI describes the general shape of the landscape 
up to a scale that depends from the set search radius. In this experiment, the CI value of each cell 
was calculated by averaging the values obtained by varying the search radius from 1 to 10 cells. As, 
PLANC and CI calculated by SAGA-GIS have negative values on concavities (e.g. valley bottoms) and 
positive values on convexities (e.g. ridges), a change in the sign of both parameters was performed 
before using them to calculate the topographic indices employed to predict gully location. 

2.3. Statistical modelling  

In our experiment, the location of the gullies was also predicted by employing two statistical 
techniques, namely logistic regression (LR; Hosmer and Lemeshow, 2000) and multivariate adaptive 
regression splines (MARS; Friedman, 1991). 

LR is a generalized linear model with a logistic link function. LR is among the most common 
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statistical technique for prediction of gully occurrence (e.g., Meyer and Martínez-Casasnovas, 1999; 
Lucà et al., 2011; Conoscenti et al., 2014; Dewitte et al., 2015; Selkimäki and González-Olabarria, 
2016). Conversely, MARS has been employed only recently to model gully erosion (Gómez-Gutiérrez 
et al., 2009a, 2009c, 2015; Arabameri et al., 2018; Garosi et al., 2018; Conoscenti et al., 2018). LR 
and MARS enable modelling of relationships between continuous and/or categorical independent 
variables and a dichotomous dependent variable (i.e. event or non-event). Both techniques consist 
of an additive combination of terms. LR has a linear structure with constant coefficients across the 
entire range of the predictor variables. Conversely, MARS uses piece-wise linear regressions with 
breaks at the knots to describe non-linear relationships between event occurrence and predictors. 
To reduce the complexity of the models, we prepared MARS models with terms made of single 
predictors whereas, as regards LR models, we adopted a bilateral stepwise strategy that selects only 
the most significant predictors. Please refer to Hosmer and Lemeshow (2000) and Friedman (1991) 
for further details about LR and MARS, respectively. 

LR and MARS models were prepared by using as predictor variables the primary topographic 
attributes S, As, PLANC and CI.  Since both the employed statistical techniques require absence of 
multicollinearity, the degree of correlation among these four variables was evaluated before 
running the models. To this aim, we used the variance inflation factor (VIF) (Jebur et al., 2014; 
Heckmann et al., 2014; Bui et al., 2015; Conoscenti et al., 2016; Cama et al., 2017; Rotigliano et al., 
2019; Vargas-Cuervo et al., 2019), which according to the “rule of 10” revealed absence of strong 
correlations among the predictor variables (VIF range: 1.0 – 1.1).   

Calibration of the statistical models was carried out separately in W1 and W2, where 100 learning 
samples were prepared by randomly selecting the 25% of the total number of event pixels and the 
same number of non-event pixels. This percentage was chosen in order to achieve a compromise 
between the attempt to minimize the effects of spatial autocorrelation and the effort to obtain 
robust models, by using a sufficiently large number of cases. Since 1928 and 717 gully cells were 
identified in W1 and W2, respectively, the W1 learning samples include 964 pixels (i.e. 482 non-
event + 482 event cells, the latter corresponding to 25% of 1928) whereas 358 pixels (i.e. 179 non-
event + 179 event cells, the latter corresponding to 25% of 717) form the W2 samples. The learning 
samples were employed to perform 100 LR and 100 MARS model runs in each of the watersheds. 
Hereafter, MARS1 and LR1 are used to indicate model runs calibrated in W1 whereas MARS2 and 
LR2 indicate model runs calibrated in W2. 

2.4. Validation strategy 

The ability to predict gully occurrence of topographic indices and statistical models was 
measured on a network of flow lines which were identified separately in W1 and W2 by using two 
different thresholds of contributing area. The thresholds were set equal to the minimum A of W1 
and W2 gully cells, respectively, after discarding values below the 1st percentile which were 
regarded as outliers. By using this approach, we measured and compared the predictive 
performance of topographic indices and statistical models focusing where drainage area is sufficient 
to trigger gully erosion, given the rainfall, soil, bedrock and land use characteristics which caused 
gullying in our study watersheds. 

One hundred validation samples were prepared by randomly selecting pixels from flow lines of 
both W1 and W2. Like the calibration samples, also the validation samples include the 25% of the 
gully cells and a same number of non-gully cells. The value of the topographic indices was used 
directly as a score to predict the distribution of gully cells. As regards statistical modelling, the 
probability of gully occurrence was calculated from LR and MARS ensemble models, which were 
prepared by averaging the score of the 100 model runs. This procedure was applied in order to 
generate a more stable performance of the models and to mitigate the effects of prevalence (i.e. 
different proportion of event/non-event cells in the study area) (Svoray et al., 2012). We measured 
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the predictive performance of both “local” (i.e. calibrated and validated in the same watershed) and 
“transferred” (i.e. calibrated in one watershed and validated in the other one) statistical models. 

The accuracy of the topographic indices and statistical models was assessed by plotting for each 
validation sample the receiver operating characteristic (ROC) curve (e.g., Lasko et al., 2005; 
Brenning, 2005; Frattini et al., 2010; Cama et al., 2015, 2016) and by calculating the area under the 
ROC curve (AUC). ROC curve analysis is a cut-off independent technique for assessing the 
performance of predictive models, which plots all possible values of sensitivity (i.e. true positive 
rate, TPR) against the corresponding value of 1-specificity (i.e. false positive rate, FPR). The ideal 
predictive model achieves an AUC value close to 1, whereas a value close to 0.5 reveals inaccuracy 
in the model (Nandi and Shakoor, 2009). In this experiment, accuracy of the models was interpreted 
as acceptable, excellent or outstanding if AUC values were higher than 0.7, 0.8 and 0.9, respectively 
(Hosmer and Lemeshow, 2000). In both W1 and W2, a group of 100 ROC curves and related AUC 
values, was obtained (one for each validation sample) for each topographic index and statistical 
model. Comparisons between AUC groups were performed by using box plots and the Wilcoxon 
signed-rank test, setting the level of significance at 0.01. 

Furthermore, the predictive ability of topographic indices and statistical models was evaluated 
by using cut-off dependent performance metrics such as Cohen’s kappa index (Cohen, 1960; Landis 
and Koch, 1977; Monserud and Leemans, 1992; Geissen et al., 2007; Frattini et al., 2010; Sterlacchini 
et al., 2011), sensitivity (or TPR) and specificity (i.e. true negative rate, TNR). The Cohen’s kappa 
index (κ) reflects the degree of agreement between prediction and observation and is calculated as: 

 
κ = Pobs – Pexp / (1 – Pexp) (6) 
 
where Pobs and Pexp are the observed and the expected proportion of agreement, respectively. κ 

values were interpreted according to Monserud and Leemans (1992), which evaluated the 
agreement between model prediction and observation as: 1.00, perfect; 0.85–0.99, excellent; 0.70–
0.85, very good; 0.55–0.70, good; 0.40–0.55, fair; 0.20–0.40, poor; 0.05–0.20, very poor; <0.05, null. 

To calculate κ, TPR and FPR, we first prepared the average ROC curve from each group of 100 
validation ROC curves. We then identified the optimal cut-off values of these curves by using the 
Youden’s index (J) (Youden, 1950; Angileri et al., 2016; Cama et al., 2017; Rotigliano et al., 2019), 
which corresponds to the threshold that maximizes the sum of sensitivity and specificity. Then, by 
using J as threshold (T) to classify the grid pixels as not susceptible (score < T) or as susceptible (score 
> T) to gully erosion, we prepared the contingency tables for each topographic index and ensemble 
statistical model. 

2.5. Gully prediction maps 

A gully susceptibility map of the study area was obtained from each of the topographic indices 
and the four ensemble statistical models which were prepared by averaging the score of 100 MARS 
and LR model runs. Susceptibility to gully erosion was then classified into four levels according to 
thresholds that were calculated separately in W1 and W2 by using the steps described below, which 
were repeated for each topographic index and ensemble statistical model. First, J was used to 
separate the pixels of the 100 validation samples into a low susceptibility dataset (score < J) and a 
high susceptible dataset (score > J). Then, we prepared the average ROC curve and calculated the 
Youden index for the low susceptibility dataset (Jlow) and for the high susceptibility dataset (Jhigh). 
Finally, we identified the following four levels of susceptibility to gully erosion: i) low (score ≤ Jlow); 
ii) moderate (Jlow < score ≤ J); iii) high (J < score ≤ Jhigh); iv) very high (score > Jhigh). 
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3. Results 

3.1. Predictive performance measured by using a cut-off independent statistic 

The ability of the topographic indices and statistical models to discriminate between gully and 
non-gully cells of the validation samples is graphically represented by the box plots of Fig. 5. Each 
box plot reveals the variability of a group of 100 AUC values by indicating their quartiles, as well as 
the lowest and the highest data still within 1.5 interquartile range of the lower quartile and of the 
upper quartile, respectively. Furthermore, descriptive statistics such as mean and standard 
deviation of each AUC group are reported in Table 1. 

The AUC values reflect excellent (AUC > 0.8) to outstanding (AUC > 0.9) discrimination ability of 
indices and models applied to predict gullies occurred in the studied watersheds. However, 
significant differences of accuracy can be detected. 

MSPI performed clearly better than the other indices in both watersheds. In W1, only SPI 
achieved a similar performance but still significantly lower than that obtained from MSPI. In W2, SPI 
performed better than TWI but not significantly different from CTI and MTWI. TWI performed better 
than its modified version (i.e. MTWI) in W1, whereas the opposite was observed in W2. 

As regards statistical models, MARS performed better than LR in both watersheds. Accuracy of 
MARS and LR is significantly different even in W1, where AUC values appear quite similar. A not 
significant difference was observed only in W1 between local (i.e. trained in W1) LR and transferred 
(i.e. trained in W2) MARS models (p-value = 0.284). In W1, both MARS and LR local models (i.e. 
MARS1 and LR1) exhibited higher accuracy than transferred models (i.e. MARS2 and LR2). On the 
other hand, a not significant difference of AUC was observed in W2 between local and transferred 
LR models (p-value = 0.5221). 

The AUC values and the Wilcoxon signed-rank test revealed an overall better predictive 
performance of the statistical models with respect to the topographic indices, with the exception of 
MSPI. The latter indeed achieved outstanding accuracy in both watersheds. In W1, MSPI exhibited 
the same accuracy of transferred MARS and local LR runs and better predictive ability than 
transferred LR runs. In W2, MSPI achieved higher accuracy than both local and transferred LR runs 
and the same accuracy of MARS1. Only local MARS models performed significantly better than MSPI. 
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Fig. 5. Box plots showing the variability of the 100 AUC values calculated in W1 and W2 for the topographic indices and local and 
transferred statistical models. 
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3.2. Predictive performance measured by using cut-off dependent statistics 

Fig. 6 shows the average ROC curves obtained from the validation of the topographic indices and 
statistical models in W1 and W2. These curves were employed to calculate the optimal cut-off (T) 
that maximizes the sum of sensitivity and specificity and which graphically corresponds to the 
maximum distance to the diagonal lines plotted in Fig. 6. The value of T, as well as those of kappa 
index (κ), TPR and TNR are reported in Table 2. Kappa values obtained for the five topographic 
indices vary from 0.625 to 0.795 indicating a good (κ > 0.55) to very good (κ > 0.70) ability to 
discriminate between event and non-event pixels. As revealed by AUC values, the kappa index also 
demonstrated that MSPI achieved the best predictive skill in both watersheds. SPI reached a κ value 
close that of MSPI in W1. Conversely, SPI accuracy appears similar to that of TWI and MTWI in W2, 
where CTI achieved the second best κ value. As regards sensitivity and specificity, MSPI obtained 
the highest values in W1 whereas in W2 a slightly higher TPR and TNR was observed for MTWI and 
TWI, respectively. 

Kappa index revealed approximately the same difference of performance between MARS and LR 
models which is highlighted by the AUC values. Indeed, MARS achieved higher κ values in both 
watersheds, with more enhanced difference of accuracy occurring in W2, where LR models are 
below the threshold indicating very good performance (κ > 0.7). The difference of performance 
observed in W1 appears related more to a difference in specificity than in sensitivity, which is very 
similar for MARS and LR models. On the other hand, in W2, MARS runs exhibit higher values of both 
TPR and TNR, whereas only transferred models show a similar sensitivity. 

Kappa, TPR and TNR confirm that MSPI achieves approximately the same accuracy of MARS runs. 
Furthermore, these statistics reveal that MSPI outperforms both LR local and transferred models 
which in turn show better discrimination ability when compared to the other topographic indices, 
with the exception of SPI, in W1, and CTI, in W2. 

3.3. Gully prediction maps 

Fig. 7 shows the gully prediction maps for the sectors of W1 and W2 highlighted in Fig.3, obtained 
from the topographic indices and the ensemble statistical models. To aid the assessment of the 
maps, Fig. 8 plots the relative frequency distributions of non-event and event pixels across the 
susceptibility levels. The gully erosion susceptibility maps show very low probability of gully 
occurrence in most part of the study area, with the exception of few flow lines where susceptibility 
level is from moderate to very high. Only maps derived from MTWI and LR, especially in W2, show 
slightly larger sectors with moderate to high probability of gully occurrence. This is confirmed by the 
bar plots of Fig. 8, which reveal that non-event cells occur with a frequency higher than 5% only 
over moderate probability levels of MTWI maps and of LR maps of W2. On the other hand, although 
their very low frequency, high and very high susceptibility levels of all the maps host most of the 
gully pixels. In particular, the maps derived from SPI, MSPI and MARS1 ensemble model, achieve the 
highest percentage of gully pixels within the very high level of susceptibility (Fig. 8). 

 

Table 1. Mean and standard deviation of the 100 AUC values calculated for the topographic indices and local and transferred 
statistical models.  

  MARS1 MARS2 LR1 LR2 SPI CTI TWI MSPI MTWI 

W1 
Mean 0.9605 0.9525 0.9515 0.9426 0.9445 0.9024 0.9256 0.9533 0.9131 

Std. Dev. 0.0049 0.0061 0.0059 0.0067 0.0067 0.0098 0.0081 0.0065 0.0094 

W2 
Mean 0.9222 0.9460 0.9108 0.9123 0.8907 0.8882 0.8695 0.9267 0.8908 

Std. Dev. 0.0140 0.0110 0.0143 0.0133 0.0177 0.0158 0.0172 0.0124 0.0153 
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4. Discussion 

The results of our experiment showed that the spatial distribution of gullies can be effectively 
predicted by using either topographic indices or statistical models. 

Both cut-off independent and dependent performance metrics revealed that, among the 
employed topographic indices, the best accuracy in predicting gully occurrence is achieved by MSPI 
whereas MTWI exhibited similar or worse performance than SPI, CTI and TWI. The ability of the 
latter indices to discriminate between gully and non-pixels was evaluated and compared, by 
identifying optimal thresholds and by calculating the κ index, in three previous studies (Daggupati 
et al., 2013; Sekaluvu et al., 2015; Sheshukov et al., 2018) performed in Kansas. Daggupati et al. 
(2013) estimated the thresholds of 30 – 50, 62, and 12, respectively, for SPI, CTI and TWI. Sekaluvu 
et al. (2015) and Sheshukov et al. (2018) report that the critical thresholds required by CTI to best 
predict the gullies of two watersheds of central Kansas are equal to 79.4 and 25.1. These values are 
relatively similar to the CTI thresholds estimated by Daggupati et al. (2013) and those calculated in 
our experiment (52.8 and 24.3). As regards SPI, the thresholds found in our study (270.9 and 127.0) 
are of the same order of magnitude of those calculated by Sekaluvu et al. (2015) and Sheshukov et 
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Fig. 6. Average ROC curves obtained from the validation of the topographic indices and statistical models in W1 and W2. 

Table 2. Cut-off (T) dependent statistics calculated in W1 and W2 for the topographic indices and local and transferred statistical 
models. 

  MARS1 MARS2 LR1 LR2 SPI CTI TWI MSPI MTWI 
W1 T 0.952 0.950 0.803 0.794 278.622 52.779 9.696 3245.905 147.808 

 κ 0.797 0.761 0.769 0.728 0.766 0.715 0.715 0.795 0.682 
 TPR 0.897 0.880 0.894 0.879 0.883 0.817 0.846 0.889 0.817 
 TNR 0.900 0.881 0.874 0.849 0.883 0.897 0.868 0.906 0.865 

W2 T 0.865 0.889 0.614 0.741 148.193 24.021 9.646 1024.493 80.000 
 κ 0.714 0.769 0.672 0.659 0.625 0.675 0.627 0.711 0.633 
 TPR 0.850 0.913 0.854 0.835 0.831 0.853 0.783 0.902 0.910 
 TNR 0.865 0.857 0.819 0.825 0.794 0.822 0.845 0.809 0.724 
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al. (2018) (501.2 and 158.5), but higher than the values reported by Daggupati et al. (2013). 
Furthermore, the TWI critical thresholds estimated in our experiment (9.7 and 9.4) are quite similar 
to those calculated for the Kansas areas (12.0 – 18.2). 

 

Fig. 7. Gully erosion susceptibility maps for the sectors of W1 and W2 highlighted in Fig.3. First and third columns show maps 
calculated from the topographic indices. Second and fourth columns show maps calculated from local and transferred statistical 

models. White pixels were not investigated because they intersect anthropogenic features (i.e. urban areas, artificial lakes or 
roads) or fall within a 10 m buffer around river channels. 
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Fig. 8. Relative frequency distributions of non-event and event pixels across the susceptibility levels of the gully erosion 
susceptibility maps. 
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By applying the thresholds cited above, Daggupati et al. (2013) found a poor predictive 
performance of CTI and TWI but a fair agreement between observed gullies and prediction obtained 
using SPI (κ: 0.40 – 0.55). This is in accordance with what we observed in W1 but not in W2, where 
CTI achieved a higher κ value than SPI and TWI. A similar result is reported by Sekaluvu et al. (2015) 
and Sheshukov et al. (2018), who observed a better accuracy of CTI, which achieved a κ value of 
0.29 and 0.32 in two watersheds of central Kansas. However, it is worth noting that the range of κ 
obtained in our experiment for SPI, CTI and TWI is quite higher (0.63 – 0.77) than the values 
calculated in Kansas. This could be explained by considering that the trajectory of our gullies was 
adjusted to fit lines of flow concentration extracted from the DEM. This procedure indeed prevents 
gullies to intersect cells with very low or null drainage area, which can be caused by mapping errors 
or inadequate DEM resolution, and thus may yield a stronger positive relationship between gully 
occurrence and contributing area. Furthermore, the higher values of κ achieved by topographic 
indices in predicting our gullies can be also explained by considering that validation in this 
experiment was performed at the pixel scale while a sub-watershed scale was employed in the 
studies performed in Kansas (Daggupati et al., 2013; Sekaluvu et al., 2015; Sheshukov et al., 2018). 

To explain the better accuracy of MSPI with respect to the other indices, we hypothesize that 
adding CI to the SPI formula helps in detecting areas of enhanced flow concentration and, thus, in 
identifying cells which are likely to host a gully. Moreover, since MSPI performs clearly better than 
CTI in both investigated watersheds, we infer that the contribution of CI in increasing the ability to 
discriminate between non-gully and gully cells is higher than that provided by PLANC. This 
hypothesis is corroborated by the frequency distributions of CI and PLANC measured on gully and 
non-gully cells, which are revealed by the kernel density plots of Fig. 9. These plots show that CI 
distributions measured along gully trajectories are clearly different from those calculated for non-
event cells, whereas no such difference can be observed for PLANC. Furthermore, PLANC does not 
improve appreciably the predictive ability of CTI with respect to SPI; indeed, SPI achieves higher AUC 
values in both studied watersheds and higher κ value in W1. On the other hand, CI did not improve 
the predictive skill of TWI, as MTWI performed better than TWI only in W2.  

As regards statistical modelling of gully occurrence, validation performed in our study area 
revealed a better predictive skill of MARS with respect to LR. This results is in line with other studies, 
like that of Garosi et al. (2018), which also found a better performance of MARS (AUC: 74.5–90.2) 
with respect to LR (AUC: 66.4–85.6) in predicting gully erosion susceptibility in Iran. MARS provided 
slightly better accuracy also in another Sicilian watershed (Gómez-Gutiérrez et al., 2015), where LR 
has been previously employed to predict the same gully inventory (Conoscenti et al., 2014). Also 
Rahmati et al. (2019) observed better accuracy of MARS in predicting the same gully inventory of 
this study, although performing validation on pixels selected from the entire watersheds and 
employing a quite larger number of predictors, which include land use and bedrock. The better 
performance of MARS was somewhat expected given the widely accepted assumption that gullying 
is a threshold phenomenon and the ability of MARS to model non-linear relationships between 
event occurrence and predictor variables. Indeed, MARS is able to identify, across the range of the 
predictors, different linear functions separated by knots which may correspond to potential 
thresholds for gully initiation. 

AUC and κ values revealed that, in our study area, statistical models predict the occurrence of 
gullies with better accuracy than topographic indices, with the exception of MSPI. The latter 
exhibited indeed similar or better predictive performance than local LR models and transferred LR 
and MARS models, whereas only local MARS2 model runs achieved better accuracy. Due to their 
data-driven nature, a better fit of MARS and LR to the observed gully data was expected prior to 
performing the experiment. Coefficients of local MARS and LR equations were indeed calculated on 
the basis of the observed spatial distribution of gullies within the training areas. Also transferred 
models, although calibrated in one watershed and validated in the other one, were expected to 
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achieve better accuracy than topographic indices, due to the closeness of the two areas and their 
similar environmental conditions. Therefore, the difference in performance observed between MSPI 
and the transferred statistical models suggests that where an inventory of gullies is not available, 
reliable maps of gully erosion susceptibility can be prepared by using MSPI. This holds in particular 
if only topographic data is available at high resolution. Indeed, it is worth considering that predictive 
ability of multivariate statistical models can be improved by including variables reflecting, at high 
resolution, land use, soil and bedrock characteristics. 

The gully erosion prediction maps derived from both topographic indices and ensemble statistical 
models exhibit an optimal distribution of the susceptibility levels in relation to gullies location. 
Indeed, at least 89% of observed non-gully cells fall within the lowest susceptibility level whereas 
between 53% (CTI map in W2) and 71% (SPI map in W1) of gully cells intersect the highest class of 
gully occurrence probability. We infer that, in addition to the reliability of the employed indices and 
models, the large agreement observed between prediction maps and gully spatial distribution is due 
to the method employed to identify the susceptibility classes, which was based on the Youden’s 
index (J). 
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Fig. 9. Kernel density plots of CI and PLANC calculated for gully and non-gully cells of the watersheds W1 and W2. 
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5. Concluding remarks 

In this experiment, we evaluated the ability of a set of five topographic indices to predict the 
spatial distribution of the gullies observed in two adjacent watersheds located in Sicily (Italy). Two 
of these indices, named MSPI and MTWI, as far as we know, have never been employed to this aim; 
they were obtained by multiplying the stream power index (SPI) and the topographic wetness index 
(TWI), respectively, by the convergence index (CI). The predictive ability of the topographic indices 
was measured by using both cut-off independent and dependent statistics and compared to the 
performance of multivariate statistical models, which use as predictors the same topographic 
variables of the five indices (i.e. contributing area, slope steepness, plan curvature and convergence 
index). 

The validation results revealed that topographic indices and statistical models achieved excellent 
to outstanding accuracy in predicting the spatial distribution of the gullies observed in our study 
area. Statistical models performed better than topographic indices with the exception of MPSI. Since 
the proposed index showed the best predictive performance among the topographic indices, we 
infer that the inclusion of CI helps in detecting hollow areas where gullies are more likely to occur. 
Furthermore, MSPI exhibited similar or better predictive skill than transferred statistical models (i.e. 
models calibrated in one watershed and validated in the other one). This suggests that MPSI can be 
a valid alternative to a data driven approach for identifying potential gully locations in areas where 
a gully inventory is not available, which is necessary to calibrate statistical models. 
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