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Abstract: In this paper, we consider some second-order effective Hamiltonians describing the inter-
action of the quantum electromagnetic field with atoms or molecules in the nonrelativistic limit. Our
procedure is valid only for off-energy-shell processes, specifically virtual processes such as those
relevant for ground-state energy shifts and dispersion van der Waals and Casimir-Polder interactions,
while on-energy-shell processes are excluded. These effective Hamiltonians allow for a considerable
simplification of the calculation of radiative energy shifts, dispersion, and Casimir-Polder inter-
actions, including in the presence of boundary conditions. They can also provide clear physical
insights into the processes involved. We clarify that the form of the effective Hamiltonian depends
on the field states considered, and consequently different expressions can be obtained, each of them
with a well-defined range of validity and possible applications. We also apply our results to some
specific cases, mainly the Lamb shift, the Casimir-Polder atom-surface interaction, and the dispersion
interactions between atoms, molecules, or, in general, polarizable bodies.

Keywords: effective Hamiltonian; quantum electrodynamics; dispersion interactions; Casimir-Polder
interactions

1. Introduction

In molecular quantum electrodynamics, that is, the quantum theory of atoms and
molecules interacting with the electromagnetic field in the nonrelativistic limit, several
processes of great interest are of a high order in atom–field coupling [1–3]. For example,
interatomic dispersion interactions such as van der Waals and Casimir-Polder interactions
between two atoms or molecules are fourth-order processes [4–6], and, in the case of
three or more atoms, many-body effects start from the sixth order [1,7,8]. Additionally,
the resonance energy transfer between molecules may involve high-order perturbative
calculations in the atom–field coupling [9]. In such cases, the number of relevant Feyn-
man diagrams rapidly grows with the perturbative order, with consequent increasing
complexity of the calculations. For this reason, the possibility of finding approximated
effective Hamiltonians allowing for the simplification of calculations is very important,
and, hopefully, this will also yield a transparent interpretation and physical insights into
the relevant physical processes involved [6,10–14]. Effective Hamiltonians can be also used
in dynamical (time-dependent) nonequilibrium situations [15]. All these possibilities have
fostered the investigation of effective Hamiltonians containing an interaction term that is
at least quadratic in the atom–field coupling, where the response of the atom is included in
quantities such as, for example, its polarizability, thus allowing for a considerable reduction
of the perturbative order required for calculating specific processes and of the number
of relevant Feynman diagrams [6]. Very recently, resummation techniques, in which the
polarizability is summed to any order, have been developed, and they could also be of
great importance for the evaluation of radiative processes such as the Lamb shift and van
der Waals interactions for nanostructured materials [16–18].
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In this paper, we obtain and review different forms of effective Hamiltonians, at the
second order in the atom–field coupling, used in nonrelativistic quantum electrodynam-
ics, stressing the range and limit of validity of each of them, as well as their physical
interpretation. Application to retarded and nonretarded dispersion interactions and to
the atom-surface Casimir-Polder interaction is also discussed. A physical interpretation
in terms of the response of the atoms or molecules to vacuum field fluctuations or to
real photons is also outlined, as well as the possible role of dissipation in the response
function. More specifically, we here present in a clear and organic way the different forms
of second-order effective Hamiltonians that can be obtained, depending on the specific
field states considered. We also show and stress that the response of the atom is different
in the case of vacuum fluctuations or when photons are present; in fact, we find that in the
first case, the atom responds through a real function of the frequency, while in the second
case through its dynamical polarizability, that has poles in the real frequency axis.

This paper is organized as follows. In Section 2, the general expression of the effective
Hamiltonian and of its matrix elements between atom+field states is obtained. In Section 3,
specific forms of the effective Hamiltonian in relevant cases are given, and their limits of
validity are stressed, as well as the response function of the atoms in the various cases
considered, and the possible role of dissipation. Application to interatomic dispersion
interactions and to the Casimir-Polder atom-surface interaction, both in the nonretarded
and retarded cases, is outlined. Finally, Section 4 is devoted to our conclusive remarks.

2. The General Expression of the Effective Hamiltonian in Molecular
Quantum Electrodynamics

We first start from the Hamiltonian of one atom, placed at R, interacting with the
quantum electromagnetic field, in the multipolar coupling scheme and within dipole
approximation [5]. Extension to the case of two or more atoms is straightforward, at the
order considered. The Hamiltonian of the system is

H = H0 + HI ,

H0 = ∑
kλ

h̄ωka†
kλakλ + ∑

`

E`|φ`〉〈φ`|,

HI = −µ · E(R) = −∑
`m

eq`m · E(R)|φ`〉〈φm|, (1)

where states |φ`〉 are a complete set of atomic states with energies E`, and a†
kλ and akλ

are, respectively, creation and annihilation operators relative to the field mode (kλ), with
λ = 1, 2 being the polarization index and satisfying the usual bosonic commutation
relations, and ωk = ck; µ = eq is the electric dipole moment operator of the atom, with
q being the electron coordinate. For simplicity, we assume only one atomic electron is
taking part in the radiative process considered, and q`m = 〈φ`|q|φm〉 is its matrix element
between atomic states. Although this simplification, which is strictly valid for hydrogen-
like systems, is not essential in the present calculation, it allows one to include one-electron
dipole moment matrix elements only and simplify the discussion of the results; it can,
however, be simply overtaken by introducing a full dipole moment operator.

Finally, E(r) is the electric field operator

E(r) = ∑
kλ

E(kλ; r) = ∑
kλ

(
fkλ(r)akλ + f∗kλ(r)a†

kλ

)
, (2)

where E(kλ; r) is a Fourier component of the electric field, with fkλ(r) the field mode
functions taking into account the boundary conditions present. In the free space, we have

fkλ(r) = i

√
2πh̄ωk

V
êkλeik·r, (3)
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where êkλ (λ = 1, 2) are polarization unit vectors, such that êkλ · êkλ′ = δλλ′ , êkλ · k̂ = 0,
and V is the quantization volume.

The multipolar-coupling Hamiltonian (1) contains also a term equal to 2π
∫

d3r(P⊥(r))2,
where P⊥(r) is the transverse part of the polarization field P(r) = ∑i erδ(r− ri), with ri
being the position of an atomic electron [1,19,20]. This is a second-order term in the electric
charge that, although it is important for the Lamb shift, does not contribute to the dispersion
interactions [1,6,20,21], and for this reason we do not include it, except whenever necessary.

We now follow and briefly review the standard general procedure used in nonrela-
tivistic quantum electrodynamics to obtain a second-order effective Hamiltonian, which
consists of applying the following transformation to the Hamiltonian (1)

T = exp (iez/h̄), (4)

where z is an Hermitian operator (with some limitations on the state space where it is
defined, as specified later on), chosen in such a way to eliminate, in the transformed
Hamiltonian, the first-order terms in the electron charge e [10,13,14]. Up to the second
order in e, we have

T−1HT = exp (−iez/h̄)H exp (iez/h̄) = H0 − eq · E(R) + [−iez/h̄, H0]

+[−iez/h̄,−eq · E(R)] +
1
2
[−iez/h̄, [−iez/h̄, H0]] + O(e3). (5)

The operator z is chosen in such a way to make vanishing the first-order terms in the
transformed Hamiltonian (5), that is

− eq · E(R)− ie
h̄
[z, H0] = 0, (6)

so that the transformed Hamiltonian becomes

H̃ = T−1HT = H0 +
ie2

2h̄
[z, q · E(R)] = H0 + H̃e f f , (7)

with the effective Hamiltonian, expressed in terms of the Hermitian operator z, given by

H̃e f f =
ie2

2h̄
[z, q · E(R)]. (8)

This Hamiltonian is at the second order in the atom–field coupling. A second-order
energy shift of the system due to the atom–field coupling is then given by the average value
of H̃e f f on the state of the system at hand. Fourth-order corrections, as in the evaluation
of interatomic dispersion interactions, can be obtained by a second-order approach if the
effective Hamiltonian is used, as explicitly discussed in the next section.

Equation (6) is an implicit relation defining the operator z of the transformation.
From this relation, we can obtain its matrix elements between atom+field states of the
generic form |{p}, φP〉, {p}, and φP, denoting, respectively, generic field and atom states
({p} denotes a general set of number states of the field for all the modes allowed by the
boundary conditions), with energy Ep =∑i h̄ωi pi and EP, respectively. We obtain

〈{m}, φM|q · E(R)|{n}, φN〉

= − i
h̄
〈{m}, φM|z|{n}, φN〉(En − Em + EN − EM) (9)

Assuming En − Em + EN − EM 6= 0, that is, that the matrix element is taken between
unperturbed states with a different energy, we get the matrix elements of the operator z

〈{m}, φM|z|{n}, φN〉 = ih̄
〈{m}, φM|q · E(R)|{n}, φN〉
(En + EN)− (Em + EM)

(10)
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Equation (10) defines all matrix elements of z, except those on the energy shell, that
are undefined; thus, the transformation (4) with the matrix elements (10) is not defined
on the energy shell. Therefore, the effective Hamiltonian so obtained is not valid when
energy-conserving processes are relevant, unless some regularization procedure of the
vanishing energy denominators, taking into account dissipation, is used [22–24]. This
regularization can be done by adding an imaginary part to the energy denominators shifting
the poles to the lower complex frequency half-plane, in agreement with the causality
requirement; in our case, this can be done only phenomenologically because we are
working within a second-order perturbative approach for a closed system. Because we will
obtain effective Hamiltonians mainly to calculate atomic energy shifts and (many-body)
dispersion interactions for ground-state systems, where only virtual processes are involved,
or when resonant processes are suppressed (in a cavity, for example), in general, this is
not a strong limitation for our purposes. However, we wish to point out that our results
cannot be directly extended to the case of excited atomic states when resonant processes
are present.

For the reasons mentioned above, substitution of the matrix elements (10) of z into (5)
allows us to obtain only the off-energy-shell matrix elements of the effective Hamiltonian
and not its full expression as an operator in the Hilbert space of the system. For this reason,
we can obtain different expressions in terms of field operators, according to the type of
field states at hand. The matrix elements of the effective Hamiltonian are

〈{m}, φM|H̃e f f |{n}, φN〉

= −1
2

e2 ∑
{`}L
〈{m}, φM|q · E(R)|{`}, φL〉〈{`}, φL|q · E(R)|{n}, φN〉 (11)

×
(

1
EL − EM + ∑s(`s −ms)h̄ωs

− 1
EN − EL + ∑s(ns − `s)h̄ωs

)
,

where the index s indicates photonic modes with frequency ωs = cks, and the sum over
s runs over all field modes. Using the mode expansion (2) for the electric field operator,
the matrix elements appearing in the RHS of (11) can be cast in the form

〈{m}, φM|q · E(R)|{`}, φL〉〈{`}, φL|q · E(R)|{n}, φN〉

= ∑
L

∑
kλk′λ′

〈{m}, φM|q ·
(

fk′λ′(R)ak′λ′ + f∗k′λ′(R)a†
k′λ′

)
|{`}, φL〉 (12)

×〈{l}, φL|q ·
(

fkλ(R)akλ + f∗kλ(R)a†
kλ

)
|{n}, φN〉.

From Equation (12), it is easy to see that, in order that the quantity above be non-
vanishing, it is necessary that the total number of photons in {m} and {n} (that is, the
photon number summed over all field modes) must be equal or differ by two. There are
thus three possibilities: (i) {n} = {m}, that is elements diagonal in the photon space state;
(ii) the difference in {n} and {m} is all in a single mode (k̄λ̄), and thus mk̄λ̄ = nk̄λ̄ ± 2,
with all other modes containing the same number of photons; (iii) the difference is by one
photon in each of the two modes (k̄λ̄) and (k̃λ̃), with (k̄λ̄) = nk̄λ̄ ± 1 and (k̃λ̃) = nk̃λ̃ ± 1
(upper or lower sign for both modes), while all other modes in {m} and {n} have the same
photon number.

In the next section, we will explicitly find the form of the effective Hamiltonian for
some specific cases, which is relevant in molecular quantum electrodynamics, in particular
for atom-surface and (many-body) atom–atom interactions for ground-state atoms or
molecules. On the basis of the results obtained in this section, we will now find the
relative effective Hamiltonians in the various cases, according to the relevant photon states
involved, and point out the range and limit of application of the specific forms obtained.
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3. Diagonal and Off-Diagonal Matrix Elements of the Effective Hamiltonian

We now evaluate the matrix elements of the effective Hamiltonian introduced in the
previous section. As mentioned in the previous section, the expression of the effective
Hamiltonian operator that we obtain, which acts only in the field space, and of its matrix
elements, can differ according to the subspace of photon states considered. We work in the
Schrödinger representation, and the energy shifts are to be evaluated by time-independent
perturbation theory. Related effective Hamiltonians for evaluating energy shifts and
dispersion interactions have been also used with a different approach, specifically in the
Heisenberg representation in terms of time-dependent field operators, and by separating
free and source (scattering) fields [25–29].

We now separately consider different cases; we obtain the relative explicit expressions
of the effective Hamiltonian operator (off the energy shell), and apply them to some rele-
vant physical systems, mainly van der Waals and Casimir-Polder dispersion interactions.
The possible role of dissipation will be also discussed. The results we obtain are relative to
a microscopic description of the system; however, we argue that some aspects of our results
could be highly relevant also for macroscopic polarizable bodies and Casimir interactions
between macroscopic dielectric bodies in the vacuum.

3.1. Diagonal Elements of the Effective Hamiltonian and Ground-State Systems (Zero Photons)

Let us first consider the unperturbed ground state of the system, that is, |{0kλ}, g〉,
where |{0kλ}〉 denotes the photon vacuum state and |g〉 is the atom’s ground state. Due to
the atom–field coupling, this state is not an eigenstate of the interacting Hamiltonian, and,
as it is well known, the interaction leads to a second-order energy shift that, after mass
renormalization, yields the nonrelativistic Lamb shift of the ground-state atom [5,19,30,31].
This energy shift is a second-order effect in the electron charge.

Using our effective Hamiltonian (11), this energy shift can be obtained just through a
simple first-order calculation, namely, as the expectation value of the effective Hamiltonian
on the unperturbed state [14]. In fact, from (11), and using (2), we immediately obtain
(Einstein’s convention of summation over the repeated indices i, j is assumed)

〈{0kλ}, g|H̃e f f |{0kλ}, g〉

= −1
2

e2 ∑
kλ

∑
L

2〈{0kλ}, g|q · E(R)|1kλ, φL〉〈1kλ, φL|q · E(R)|{0kλ}, g〉
ELg + h̄ωk

(13)

= −1
2 ∑

kλ

∑
L

2µ
gL
i µ

Lg
j

ELg + h̄ωk

〈{0kλ}|Ei(kλ; R)Ej(kλ; R)|{0kλ}〉,

where |1kλ〉 are one-photon states, |φL〉 are intermediate atomic states, and ELg = EL − Eg;
also, ELg > 0, and therefore the quantity in the round brackets in (13) has no poles.
It involves off-energy-shell processes only. Thus, in (13) there is no need to introduce
dissipation, and, very importantly, the real quantity

β
g
ij(ωk) = ∑

L

2µ
gL
i µ

Lg
j

ELg + h̄ωk
(14)

appears, not the atomic dynamic polarizability (see also the following discussion). All
relevant properties of the atom are embedded in this function. Equation (13) is the average
value on the vacuum state of the electromagnetic field {0kλ} of the following field operator

H0
e f f = −

1
2 ∑

kλ

β
g
ij(ωk)Ei(kλ; R)Ej(kλ; R), (15)

that we can take as our effective Hamiltonian within the zero-photon subspace, as specified
by the apex 0.
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By taking the average value of (15) on the field vacuum state |{0kλ}〉, we immediately
obtain the second-order energy shift due to the atom–field interaction

∆Eg = 〈{0kλ}|H0
e f f |{0kλ}〉 = −

1
2 ∑

kλ

β
g
ij(ωk)[f

∗
kλ(R)]i[fkλ(R)]j, (16)

where fkλ(R) are the appropriate mode functions for the system at hand, as introduced in
Equation (2), evaluated at the position R of the atom. For example, in the case of an atom in
the unbounded space, Equation (16) yields its ground-state Lamb shift [14] (as previously
mentioned, the second-order term proportional to P2

⊥(r) should be added in this case),
while for an atom in front of a reflecting plate it yields the atom–surface Casimir-Polder
interaction energy at zero temperature [32].

The effective Hamiltonian (15) has a clear physical interpretation. Vacuum electric
field fluctuations with wavevector k induce a dipole moment on the atom given by

(µ0
ind)i(k) ∼ β

g
ij(ωk)Ej(kλ; R), (17)

and, in turn, this fluctuating dipole moment interacts with the vacuum field fluctuations
yielding (we assume that a vacuum expectation value is taken)

∆E ∼ −1
2 ∑

kλ

(µ0
ind)i(k)Ei(kλ; R), (18)

finally yielding (15) and (16). In this case, it is as if a Fourier component of the induced
dipole moment with a given k interacts only with the Fourier component of the electric
field having the same k. As we will show in the next subsection, this does not occur when
off-diagonal elements of the effective Hamiltonian are relevant, as in the case of two- and
many-body dispersion interactions between atoms or molecules.

A very important point is that the response of the atom to the vacuum field fluc-
tuations is not through its dynamical polarizability but through the function β

g
ij(ωk),

as defined by (14), which is a real quantity at any frequency without poles and related
dissipative properties. This does not contrast with the fluctuation-dissipation theorem and
the Kramers–Krönig dispersion relations, which indeed consider the response of a system
to an external applied field (linear response theory), while in our case only vacuum field
fluctuations act, which cannot induce real transitions. This result could be important also
for macroscopic polarizable bodies and their role as boundary conditions in the Casimir
effect, as well as for the long-lasting dispute in the literature about the most appropriate
dielectric model (plasma or Drude model, for example) to be used in the Casimir effect for
dielectrics [33–35]. We will address this point in a forthcoming publication.

From Equations (11) and (12), we can also obtain diagonal matrix elements of the
effective Hamiltonian in the case of one mode populated with nkλ photons, with all other
field modes being in their vacuum state, obtaining

〈nkλ, φN |H̃e f f |nkλ, φN〉

= −1
2 ∑

L
|µNL · E(kλ; R)|2

(
2nkλ

2ELN

E2
LN − (h̄ωk)2

+
2

ELN + h̄ωk

)
(19)

= −1
2

Ei(kλ; R)Ej(kλ; R)
(
2nkλαij(ωk) + βij(ωk)

)
,

where

αij(ωk) = ∑
L

2ELNµNL
i µLN

j

E2
LN − (h̄ωk)2

(20)
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is the ground-state atomic dynamic polarizability, with poles at h̄ωk = ELN and obeying
the dispersion relations, and

βN
ij (ωk) = ∑

L

2µNL
i µLN

j

ELN + h̄ωk
(21)

is a function analogous to (14) for the generic atomic state N. Equation (21) has no poles
if N is the ground state, as already discussed, while it can have poles in the case of other
atomic states. We wish to point out and stress that Equation (19) clearly shows that the
atom responds to real photons through its dynamical polarizability αij(ωk) and to the
vacuum fluctuating field through the βN

ij (ωk) function.

For atoms or molecules with a random orientation, being 〈µgL
i µ

Lg
j 〉 =| µgL |2 δij/3,

Equation (15) becomes

H(0)
e f f = −

1
2 ∑

kλ

β
g
av(ωk)(E(kλ; R))2, (22)

with

β
g
av(ωk) =

2
3 ∑

L

| µLg |2
ELg + h̄ωk

. (23)

If the relevant frequencies of the field are such that ωk � ELg/h̄, then β
g
av(ωk) '

β
g
av(0) = αg, where αg is the isotropic static polarizability of the ground-state atom. Then,

Equation (22) reduces to H(0)
e f f ' −

1
2 αE2(R); we wish to stress that only in this limiting

case, ωk → 0, our β function coincides with the (static) polarizability of the atom. This
form of the effective Hamiltonian has been used, for example, for evaluating the far-zone
(retarded) dispersion interaction of an atom placed near a conducting wall [27].

3.2. Off-Diagonal Elements of the Effective Hamiltonian

We now consider the off-diagonal elements of the effective Hamiltonian between
atom–field states, which we can obtain from (11) and (12); as mentioned at the end of the
previous section, in this case the total number of photons in the two states must differ by
two. We find

〈{p}, nkλ + 1, mk′λ′ + 1, φM|H̃e f f |{p}, nkλ, mk′λ′ , φN〉

= −1
2

e2 ∑
L
〈φM|qi|φL〉〈φL|qj|φN〉

√
nkλ + 1

√
mk′λ′ + 1(f∗kλ(R))i(f∗k′λ′(R))j (24)

×
(

1
ELM + h̄ωk

− 1
ENL + h̄ωk′

)
+
(
kλ↔ k′λ′

)
,

where {p} indicates all modes different from kλ and k′λ′, kλ 6= k′λ′.
We can specialize Equation (24) to the case nkλ = mk′λ′ = 0, {p} = {0} (vacuum

state for all other field modes), φM = φN , relevant for the calculation of two- or three-
body dispersion interactions between atoms or molecules in the vacuum space at zero
temperature, allowing one to reduce, respectively, a fourth or sixth-order calculation to a
second- or third-order calculation [10],

〈{0}, 1kλ, 1k′λ′ , φN |H̃e f f |{0}, 0kλ, 0k′λ′ , φN〉

= −1
2
(f∗kλ(R))i(f∗k′λ′(R))j ∑

L

(
2ELNµNL

i µLN
j

E2
LN − (h̄ωk)2

+
2ELNµNL

i µLN
j

E2
LN − (h̄ωk′)2

)
(25)

= −1
2
(f∗kλ(R))i(f∗k′λ′(R))j

(
αij(ωk) + αij(ωk′)

)
,

where the symmetry between primed and non primed (kλ)s has been exploited, and the
atomic matrix elements µLN can be taken real without loss of generality. This quantity is the
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matrix element on the field states considered, |{0}, 0kλ, 0k′λ′ , φN〉 and |{0}, 1kλ, 1k′λ′ , φN〉
of the following operator

H′e f f = −
1
2 ∑

kλ

αij(ωk)Ei(kλ; R)Ej(R), (26)

that we can take as the effective Hamiltonian in the field subspace spanned by the states
considered. The properties of the atoms or molecules relevant for the processes involved
are contained in their dynamical polarizability, αij(ωk), and the effective Hamiltonian acts
on the photon subspace only.

The effective Hamiltonian (26) is different from (15), and its physical interpretation is
different. The response of the atom in the present case is not through the βij(ωk) function
but through its dynamical polarizability, and the interaction of the k Fourier component of
the induced dipole moment is with the total electric field and not with only its k component,
as in the previous diagonal case (18).

If the frequency of the (virtual) photons involved is much smaller than the relevant
atomic transition frequencies, we can approximate the dynamical polarizabiblity with the
static one, αij(ωk) ' αij(0) = αij, and (26) reduce it to

Hst
e f f = −

1
2 ∑

kλ

αijEi(kλ; R)Ej(R) = −1
2

αijEi(R)Ej(R), (27)

which can be used to obtain retarded far-zone dispersion interactions, where only the
contribution of low-frequency virtual photons is relevant [13].

A straightworward application of the effective Hamiltonian (26) is the evaluation of
dispersion (van der Waals and Casimir-Polder) interactions between two ground-state
atoms in the vacuum (zero temperature), even when boundary conditions are present.
In this case, we have two atoms, labeled as A and B, respectively, located at RA and Rb.
The standard quantum electrodynamical calculation of their dispersion interaction involves
a fourth-order perturbative calculation [4,21], while the use of the effective Hamiltonian (26)
allows us to reduce it to a much simpler second-order calculation. The Hamiltonian of the
system is H = HA + HB + HF + H′e f f (A) + H′e f f (B), where HA and HB are, respectively,
the Hamiltonian of atoms A and B; HF is the free field Hamiltonian; and H′e f f (A) and
H′e f f (B) are the effective Hamiltonian relative to atoms A and B, respectively. The second-
order energy shift in the polarizabilities, including only terms containing the position of
both atoms (the other terms do not contribute to their interaction energy), is

∆EAB = ∑
kλk′λ′

〈{0kλ}|H′e f f (A)|1kλ1k′λ′〉〈1kλ1k′λ′ |H′e f f (B)|{0kλ}〉
−h̄(ωk + ωk′)

+ (A↔ B). (28)

We wish to point out that, although our effective Hamiltonian is a second-order
one in the atomic dipole moments (see Equation (5)), in the present case of two atoms
we can take the two dipole moments µA and µB as independent expansion parameters,
and thus (28) is a second-order quantity in µA and in µB. Fourth-order terms in µA and in
µB, which would yield the fourth-order correction to the Lamb shift (not depending from
the interatomic distance), would require a fourth-order effective Hamiltonian and are here
of course neglected, coherently with our approximations.

Taking into account the form (26) of the effective Hamiltonian, and using (2), we get

∆EAB = − 1
4h̄ ∑

kλk′λ′

αA(ωk)αB(ωk)

ωk + ωk′

[
fkλ(RA) · fk′λ′(RA)f∗kλ(RB) · f∗k′λ′(RB)

+fkλ(RB) · fk′λ′(RB)f∗kλ(RA) · f∗k′λ′(RA)
]
, (29)

where αA(ωk) and αB(ωk) are, respectively, the dynamic polarizability of atoms A and B.
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For atoms in the free space and using the mode functions (3), we obtain

∆EAB = −2π2h̄
V2 ∑

kλk′λ′

αA(ωk)αB(ωk)

ωk + ωk′
(êkλ · êk′λ′)

2ei(k+k′)·R, (30)

where R = RA −RB is the distance between the two atoms or molecules (we have assumed
real polarization unit vector). Explicit evaluation of (30), using ∑λ(êkλ)i(êkλ)j = δij − k̂i k̂ j

for the polarization sums and in the continuum limit ∑k → (V/(2π)3)
∫

d3k, yields
the well-known dispersion interaction energy between two isotropic atoms as obtained
through standard fourth-order perturbation theory, by summing the contributions of the
twelve relevant time-ordered Feynman diagrams [4,6,21]. It scales as R−6 in the near
zone (nonretarded regime: R � c/ω0, ω0 being a main transition angular frequency of
the atom) and as R−7 in the far zone (retarded Casimir-Polder regime, R � c/ω0); thus,
the (attractive) force between the two atoms scales as R−7 and R−8 in the near and far
zone, respectively. Typical values of the dispersion force between two hydrogen atoms
are: ∼10−30 N for R = 10−7 m (near zone) and ∼10−37 N for R = 10−6 m (far zone). If
the appropriate mode functions are used, Equation (29) can be also exploited to evaluate
the dispersion interaction in the presence of generic metallic boundaries, for example, a
reflecting mirror [36,37]. These results could in principle be extended to generic electrically
polarizable bodies. For systems of three or more macroscopic bodies, the non-additivity
of dispersion interactions should, however, be taken into account [27,38], and effective
Hamiltonians can be very useful in dealing with nonadditive interactions.

4. Conclusions

In this paper, we have considered second-order effective Hamiltonians in nonrelativis-
tic quantum electrodynamics, which are very useful to obtain several radiative processes
through simpler calculations, compared to the usual evaluations based on the multipolar-
coupling Hamiltonian. Examples are energy shifts and Casimir-Polder atom–surface
interactions, as well as two- and many-body dispersion interactions between atoms or
molecules, in both the nonretarded (near zone) and the retarded (far zone) regime, even in
the presence of reflecting boundary conditions. We have reviewed and analyzed different
expressions of the effective Hamiltonian, according to the specific system considered and
the field states, stressing their limit of validity. The presence or absence of poles in the
response function of the atoms has been carefully analyzed, showing that in the case of the
photon vacuum the response function has no poles and it is a real function, while in the
other cases it is the atomic dynamical polarizability, obeying the Kramers–Krönig disper-
sion relations. In a forthcoming publication, we will address possible extensions of these
results to macroscopic polarizable bodies and Casimir interactions between macroscopic
dielectric bodies, stressing in particular their relevance for the dielectric model to be used
for the evaluation of such interactions between macroscopic bodies.
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