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Abstract: Recently, new high-resolution cadmium–zinc–telluride (CZT) drift strip detectors for room
temperature gamma-ray spectroscopic imaging were developed by our group. The CZT detectors
equipped with orthogonal anode/cathode collecting strips, drift strips and dedicated pulse processing
allow a detection area of 6 × 20 mm2 and excellent room temperature spectroscopic performance
(0.82% FWHM at 661.7 keV). In this work, we investigated the potentialities of these detectors for
prompt gamma-ray spectroscopy (PGS) in boron neutron capture therapy (BNCT). The detectors,
exploiting the measurement of the 478 keV prompt gamma rays emitted by 94% 7Li nuclides from the
10B(n, α)7Li reaction, are very appealing for the development of single-photon emission computed
tomography (SPECT) systems and Compton cameras in BNCT. High-resolution gamma-ray spectra
from 10B samples under thermal neutrons were measured at the T.R.I.G.A. Mark II research nuclear
reactor of the University of Pavia (Italy).

Keywords: CZT detectors; X-ray and gamma-ray detectors; BNCT

1. Introduction

Boron neutron capture therapy (BNCT) is a radiation therapy exploiting the high
probability of 10B to capture thermal neutrons through the nuclear reaction 10B(n, α)7Li.
The products of this reaction (7Li nuclides and alpha particles) are characterized by high
linear energy transfer (LET), of about 150 keV/µm for alpha particles and 175 keV/µm for
7Li nuclei, with important potentialities in destroying cancer cells. The idea of BNCT was
first proposed by Gordon Locher in 1936 [1], the first research activities were pioneered by
Kruger in 1940 [2] and the clinical tests started in the USA in 1951 [3]. Since then, several
clinical studies have been made around the world—the pioneering works in Japan [4],
Argentina [5], Finland [6], Sweden [7] and Italy [8]. The optimization of the treatment
effects in BNCT requires the knowledge of the real distribution of 10B concentration in both
tumor and healthy cells, possibly during the irradiation. For real-time measurements of the
10B distribution, the prompt gamma-ray spectroscopy (PGS) technique [9,10] is considered
the most appealing procedure. The key operation is the direct measurement of the 478 keV
prompt gamma rays emitted by 94% 7Li nuclides from the 10B(n, α)7Li reaction. Conven-
tional PGS instrumentation is based on single photon emission computed tomography
(SPECT) systems, equipped with the proper energy resolution to effectively detect the
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478 keV gamma rays from the gamma-ray background created by various (n, γ) reactions
and annihilation phenomena. Typical SPECT systems are based on scintillators [11] or
semiconductor detectors [12] matched to dedicated mechanical collimators for image re-
construction. Intense activities have been made on SPECT systems based on high-Z and
wide-bandgap compound semiconductors [12,13] in order to ensure room temperature
operation (if compared with the cryogenically cooled germanium detectors), high detection
efficiency and energy resolution better than scintillators. Among these, cadmium telluride
(CdTe) and cadmium–zinc–telluride (CdZnTe or CZT) detectors showed interesting room
temperature performance for BNCT-SPECT systems, with an energy resolution of 2–3%
at 662 keV [14–19]. High-resolution BNCT-SPECT prototypes (<2% at 662 keV), based
on CdTe Schottky detectors, have been developed [12,15]; however, to minimize the time
instability due to the bias-induced polarization [20,21], the thickness of CdTe Schottky de-
tectors must be less than 2 mm, thus limiting the detection efficiency and the detection area.
CdTe detectors with ohmic contacts allow greater thickness but poorer energy resolution
(>2% at 662 keV) [14]. CZT detectors with ohmic contacts, due to their higher resistivity
than the CdTe ones, should ensure better room temperature energy resolution; but the
presence of more charge trapping and low crystal uniformity requires more effort in both
pulse processing and crystal growth. BNCT-SPECT CZT prototypes with standard pulse
processing electronics showed energy resolution >2% at 662 keV [17–19]. In order to reduce
the limits of the mechanical collimators in BNCT-SPECT systems, in terms of sensitivity and
spatial resolution, Compton cameras were also investigated [22–24]. This approach, based
on the analysis of the kinematics of the Compton scattering, requires scatter/absorber
spectrometers with 3-D positioning and timing capabilities.

Recently, in the framework of the 3CaTS project (funded by INFN, Italy), new high-
resolution 3-D CZT drift strip detectors were developed for prompt gamma-ray spec-
troscopy in BNCT. The CZT prototypes are characterized by a detection area of 6 × 20 mm2

and equipped with custom 32-channel digital electronics able to detect and analyze single
and double events from Compton/photoelectric photon interactions. The goal of the project
was to develop new CZT detectors able to ensure room temperature energy resolution <2%
at 662 keV and 3-D spatial resolution < 1 mm, as prototypes for both BNCT-SPECT and
BNCT-Compton cameras.

In this work, we present, besides the spectroscopic capabilities of the detectors, the
first results from a 10B-enriched sample irradiated by the highly thermalized neutron beam
of the Prompt Gamma Neutron Activation Analysis (PGNAA) facility at the T.R.I.G.A.
Mark II research nuclear reactor of the University of Pavia (Pavia, Italy).

2. The 3-D CZT Drift Strip Detectors

The first CZT detectors for X-ray and gamma-ray spectroscopy were developed
in 1992 [25] and their capabilities in detecting thermal neutrons were first presented
in 1996 [26]. Since then, great efforts and successful results have been obtained in the
development of high-resolution CZT detectors, in terms of both crystal growth [27,28]
and device/electrode technology [29–32]. CZT detectors with orthogonal anode and cath-
ode strips were fabricated since 1996 [33] and important advances were obtained at the
DTU Space (Denmark) for astrophysical applications [34,35]. The strip electrode layout
and the drift strips allow charge collection enhancements and sub-millimeter 3-D spatial
capabilities. Recently, new CZT drift strip detectors with excellent room temperature
performance were developed by our group [36,37]. The detectors, based on CZT crystals
(19.4 × 19.4 × 6 mm3) grown by the traveling heather method (THM) technique [28], were
fabricated at IMEM-CNR of Parma (Italy) with the collaboration of the due2lab company
(Scandiano, Italy) [36,37]. In particular, the detectors were developed from THM-CZT
pixel detectors (Redlen Technologies, Canada) with enhanced electron charge transport
properties (µeτe > 10−2 cm2/V). The strips were realized with gold electro-less contacts
with a deposition of thin Al2O3 film between them, ensuring very low leakage currents
(<1 nA at 50 V between the strips) [38]. The gold strip electrodes were deposited from
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solution [39] and cathode and anode patterning were performed in two different steps. The
electrode configuration is based on orthogonal strips on the anode and cathode sides: the
anode strips have a pitch of 0.4 mm (strip width of 0.15 mm and inter-strip gap of 0.25 mm)
(Figure 1), whereas the cathode strips are orthogonal to the anode strips with a pitch of
2 mm (strip with of 1.9 mm and inter-strip gap of 0.1 mm). To optimize the electron charge
collection on the collecting strips (the yellow strips of Figure 1), the adjacent strips, termed
drift strips, are negatively biased, as clearly shown in Figure 1a. In particular, the drift
strips (light blue) more adjacent to the collecting strips are biased at −100 V and the central
drift strips (blue) at −200 V; the cathodes are biased at −350 V. The signal read-out of the
strips is organized as follows (Figure 1b): the collecting anode (yellow) and the cathode
(green) strips are singly read out, while the drift strips are combined together in two groups
of three strips; the drift strips (red) on the right side (RD) and the strips (violet) on the left
side (LD) of each collecting strip.
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Figure 1. (a) Electrical scheme of the bias voltage setting for the anode the cathode strips.
(b) The signal read−out setting and the irradiation geometries: planar parallel field (PPF) and
planar transverse field (PTF). The PTF geometry allows a detection area of 6 × 20 mm2 (X–Y plane)
and a photon interaction depth of 20 mm.

The detectors are divided into 12 functional strip groups, termed drift cells. Each
drift cell is characterized by a collection anode, the RD and LD strips and the 10 cathode
strips. Each drift cell is able to provide both the energy and the 3-D interaction position of
the photons, as already demonstrated in the literature [34,35]. In particular, the energy of
the photons can be given by the pulses from the collecting anodes, the x-position by the
collecting anodes related to the RD/LD anode pulses, the y-position through the relation
between the cathode and the anode pulses and the z-position by the cathode pulses. Despite
a pitch of 1.6 mm of the drift cells and 2 mm of the cathode strips, it is possible to reduce
the spatial resolution through the analysis of the pulses from the drift strips [34,35].

In order to exploit the 20 mm thickness of CZT material over the z-direction (Figure 1b),
the detectors were developed to work in the planar transverse field (PTF) irradiation
geometry (i.e., photons interacting on the X–Y plane). The energies of 478 keV and 558 keV,
shown in Figure 2, are the main prompt gamma-rays emitted by the 10B(n, α)7Li and
113Cd(n, γ)114Cd reactions, respectively.

The detector strips were connected to low-noise (equivalent noise charge ENC of
100 electrons) charge-sensitive preamplifiers (CSPs) and processed by 32-channel dig-
ital electronics. Both the CSPs and the digital electronics were developed at the Uni-
versity of Palermo (Palermo, Italy) [36,40,41]. The digital electronics allows the appli-
cation, for each CSP pulse, of fast (for event detection) and slow shaping (for energy
measurements) for the proper detection and analysis of single photoelectric and double
Compton/photoelectric events.
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Figure 2. Calculated detection efficiency versus CZT material thickness. The energies are the typical
gamma energies of the 10B(n, α )7Li and 113Cd(n, γ )114Cd reactions.

2.1. The Pulses from the Strips: Single and Double Photon Interactions

As well described in our previous work [36], the collecting anode strips mainly give
rise to collected-charge pulses, i.e., pulses due to the electrons really collected by the
strips; while induced-charge pulses characterize the drift strips: they are induced by the
motion of the electrons really collected by the adjacent collecting anode strips. The shape
of the pulses strongly depends on the photon interaction position and it is mainly related
to the particular behavior of the weighting potential and charge trapping of electrons
and holes. The details of the characteristics of these pulses are better described in our
previous work [36]. Here, to highlight the potentialities of the detectors as Compton
cameras, we focus on the shape of the pulses from the collecting anodes and the adjacent
drift strips, due to single photoelectric or double interaction by Compton/photoelectric
events. In Figure 3, the single output CSP pulses from photoelectric interaction, the double
pulses from Compton/photoelectric interactions within a single drift cell and within two
drift cells are presented. The detector, working as both scatter and absorber, is able to
detect double events from Compton/photoelectric interaction even within a single drift
cell. Generally, the double events within a single drift cell are not well detected by the
standard pulse processing electronics; the detection of these events strongly increases the
sensitivity of Compton cameras. In fact, as shown in Figure 4, the double events from
Compton/photoelectric interactions within a single drift cell are detected as false single
events by a standard pulse processing; therefore, they are wrongly detected and analyzed
as single photoelectric events. In fact, the slow shaping (blue line), optimized to analyze the
single photoelectric events, gives rise to a single pulse. While, through the fast shaping (red
line), it is possible to correctly detect the double events. This operation is allowed by our
digital electronics that perform on each CSP pulse both fast and slow shaping processing.
As already demonstrated in our previous work [36], the negative saturation levels of the
induced pulses from the drift strips are due to the trapping of the holes. It is possible to
take into account this saturation level for improvements in energy resolution. The presence
of double events is also visible in the induced pulses from the drift strips (Figure 3d).
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Figure 3. Examples of single and double interaction pulses from the collecting anodes and the related
drift strips, measured in temporal coincidence. (a) Single photoelectric collected-charge pulse from
a collecting anode and (b) the related induced-charge pulse from the drift strip. (c) Compton and
photoelectric collected-charge pulses from one collecting anode and (d) the related induced-charge
pulses from the drift strip; both pulses are detected within a single drift cell. (e) Compton and
photoelectric collected-charge pulses from two collecting anodes and (f) the related induced-charge
pulses from the drift strip; here, the pulses are detected by two different drift cells.
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keV; 0.82% FWHM at 661.7 keV). 

Figure 4. Double pulses (black line) generated on a single drift cell from Compton/photoelectric
interactions. The shaped pulse (blue line) from a standard slow shaping (pulse time with of about
4 µs), optimized and used to analyze single photoelectric pulses, gives rise to a false single pulse.
While, the shaped pulses (red line) from a fast shaping (pulse time with of about 200 ns) really
highlight the presence of the double pulses. The digital electronics allow, for each detector pulse, the
analysis with both fast and slow shaping, implemented in pipeline.
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2.2. Spectroscopic Performance

The detectors show interesting room temperature spectroscopic performance even
without the application of spectral correction techniques; in particular, the raw energy
spectra (i.e., with no spectral correction) are characterized by energy resolution FWHM
of 5.0% and 1.3% at 122.1 keV and 661.7 keV, respectively. As reported in our previous
work [36], it is possible to improve the energy resolution through the relation between the
height (i.e., the energy) of the pulses of the investigated collecting strip with some features
of the pulses from the cathode and drift strips. For example, it is possible to use the height
or the peaking time of the cathode pulses, the peaking time of the collecting anode pulses
and the negative saturation level of the pulses from the drift strips. The best results are
obtained by using the negative saturation levels from the drift strip pulses, as shown in
Figure 5.
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Figure 5. (a) Two-dimensional (2D) scatter plot of the negative saturation level of the pulses from a
drift strip versus the height of pulses from an anode collecting strip. The curvature highlights the
presence of pulses with incomplete charge collection related to high values of the negative saturation
level. (b) Measured 137Cs energy spectra after the spectral correction (black line) [36]. The events
in the tailing of the photopeak, i.e., characterized by incomplete charge collection, are well detected
and corrected.

Figure 6 shows the energy spectra from uncollimated radiation sources (241Am, 57Co,
137Cs), measured through a collecting anode after the spectral correction with the negative
saturation levels from the drift strips [36]. The detectors are characterized by excellent
energy resolution at room temperature (5.9% FWHM at 59.5 keV; 3.1% FWHM at 122.1 keV;
0.82% FWHM at 661.7 keV).



Sensors 2022, 22, 1502 7 of 11
Sensors 2022, 22, x FOR PEER REVIEW 7 of 11 
 

 

  
Figure 6. Uncollimated (a) 241Am, (b) 57Co and (c) 137Cs energy spectra measured with the CZT drift 
strip detectors. The excellent energy resolution was obtained after the application of a novel correc-
tion technique using the negative saturation levels from the drift strips [36]. 

3. Prompt Gamma-Ray Measurements in BNCT Environment 
The gamma-ray response of the detectors to 10B signal was investigated at the 

T.R.I.G.A. Mark II research nuclear reactor of the University of Pavia (Pavia, Italy). The 
T.R.I.G.A. Mark II reactor is a water-cooled and water-moderated reactor, equipped with 
several in-core and out-core irradiation channels and positions, allowing a flux along the 
core axis of 5⋅1013 cm−2 s−1 at the full power (250 kW). To measure the typical gamma-ray 
products from the 10B neutron capture reaction leading to the BNCT therapeutic effects, a 
small liquid sample containing 10B was irradiated with a highly thermalized neutron beam 
of the Prompt Gamma Neutron Activation Analysis (PGNAA) facility recently installed 
at the reactor. In particular, we used almost 1 mL liquid sample containing 10B at a con-
centration of approximately 5000 ppm and irradiated at the reactor power of 20 kW, cor-
responding to a thermal neutron flux of almost 5.3∙× 105 cm−2 s−1 at the PGNAA beam port. 

The high 10B concentration of the sample is explained as follows: at the maximum 
reactor power of 250 kW, the thermal neutron flux at the PGNAA beam port is about 5∙× 
106 n/cm2s, thus almost 3-2 orders of magnitude less than what expected in a BNCT clinical 
scenario. To balance this loss and still achieve the reaction rate of 10B expected in the clin-
ical application, we have been forced to increase the 10B concentration. The self-shielding 
effect at this level of 10B inside the sample is certainly high (preliminary estimations 
around 45%). 

The CZT drift strip detector was positioned orthogonally to the irradiation direction, 
in PTF geometry and without collimators. The expected measured gamma rays should be 
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3. Prompt Gamma-Ray Measurements in BNCT Environment

The gamma-ray response of the detectors to 10B signal was investigated at the T.R.I.G.A.
Mark II research nuclear reactor of the University of Pavia (Pavia, Italy). The T.R.I.G.A.
Mark II reactor is a water-cooled and water-moderated reactor, equipped with several in-
core and out-core irradiation channels and positions, allowing a flux along the core axis of
5 × 1013 cm−2 s−1 at the full power (250 kW). To measure the typical gamma-ray products
from the 10B neutron capture reaction leading to the BNCT therapeutic effects, a small
liquid sample containing 10B was irradiated with a highly thermalized neutron beam of the
Prompt Gamma Neutron Activation Analysis (PGNAA) facility recently installed at the
reactor. In particular, we used almost 1 mL liquid sample containing 10B at a concentration
of approximately 5000 ppm and irradiated at the reactor power of 20 kW, corresponding to
a thermal neutron flux of almost 5.3 × 105 cm−2 s−1 at the PGNAA beam port.

The high 10B concentration of the sample is explained as follows: at the maximum
reactor power of 250 kW, the thermal neutron flux at the PGNAA beam port is about
5 × 106 n/cm2s, thus almost 3-2 orders of magnitude less than what expected in a BNCT
clinical scenario. To balance this loss and still achieve the reaction rate of 10B expected
in the clinical application, we have been forced to increase the 10B concentration. The
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self-shielding effect at this level of 10B inside the sample is certainly high (preliminary
estimations around 45%).

The CZT drift strip detector was positioned orthogonally to the irradiation direction,
in PTF geometry and without collimators. The expected measured gamma rays should
be mainly represented by: (a) the 2223 keV gamma rays from the 1H(n,γ)2H reaction and
the related Compton scattered photons, (b) the annihilation gamma-rays (mainly due to
2223 keV photon interaction on shielding/collimation materials), (c) various (n, γ) reaction
products coming from the neutron activation of the walls and materials composing the
PGNAA facility and (d) the desired 478 keV gamma rays from the 10B(n, α)7Li reaction.
In CZT detectors, the 558 keV and 651 keV gamma rays from 113Cd(n, γ)114Cd neutron
capture reaction are also typically measured [26]. Figure 7 shows the measured energy
spectra from 10B under the described conditions. In particular (Figure 7a), the energy
spectra with the presence and absence of 10B, simulating tumor, tissues and background,
are presented.
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A photon-counting rate of 2.4 cps for the 478 keV gamma rays was measured. Mea-
surements with higher counting statistics are shown in Figure 7b. The 478 keV and the
558 keV peaks are well detected and resolved, with important spectral improvements
with respect to our previous results obtained with other CZT detector prototypes [18].
The high energy resolution of the detectors also allows detecting the expected different
shapes between the 478 keV and the 558 keV peaks due to the Doppler effect, since the
prompt gamma rays are emitted in flight by 7Li. In fact, the flat top of the 478 keV peak
clearly highlights the effects of the Doppler broadening. To our knowledge, this is the first
measurement, performed with room temperature CdTe/CZT detectors, clearly highlighting
this effect; generally, these different peak shapes are masked by the poor energy resolution
of the detectors and they are typically measured with high-resolution cryogenic cooled
germanium detectors [14]. These measurements confirm the capabilities of these new CZT
detectors to discriminate the 10B signal properly in BNCT despite the close proximity of
the activation peak of 113Cd. The absence of shielding/collimation materials did not allow
us to experimentally ascertain the separation of the 10B peak from the annihilation one.
Nonetheless, the extremely good energy resolution performances of the detectors strongly
support this conclusion.
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4. Conclusions

The spectroscopic potentialities of new CZT drift strip detectors for SPECT systems
and Compton cameras in BNCT are presented. The detectors, due to the application of
original spectral correction techniques, are characterized by excellent room temperature
energy resolution, about 3% FWHM at 122 keV and 0.8% FWHM at 662 keV. The detection
of both single photoelectric events and double Compton/photoelectric events allows the
detectors to work as scatter/absorber detectors for Compton cameras. In particular, the
digital electronics, through the application of both fast and slow shaping, allows the
detection of double Compton/photoelectric events within a single detection cell, with
important enhancements in terms of sensitivity for Compton cameras. Measurements
under thermal neutrons highlighted the abilities of the detectors to well detect the 478 keV
photons from the parasitic neutron activation peaks of 113Cd. The effects of the Doppler
broadening on the 478 keV peak, typically detected with cryogenic cooled germanium
detectors, are clearly visible. Ongoing activities are focused on the spatial characterization
of the detectors, by exploiting charge sharing and induced signals, for image reconstruction
of the 10B distribution during a BNCT treatment, working as SPECT and Compton camera.
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