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Abstract
We present a general framework to tackle the problem of finding time-independent dynamics
generating target unitary evolutions. We show that this problem is equivalently stated as a set of
conditions over the spectrum of the time-independent gate generator, thus translating the task into
an inverse eigenvalue problem. We illustrate our methodology by identifying suitable
time-independent generators implementing Toffoli and Fredkin gates without the need for ancillae
or effective evolutions. We show how the same conditions can be used to solve the problem
numerically, via supervised learning techniques. In turn, this allows us to solve problems that are
not amenable, in general, to direct analytical solution, providing at the same time a high degree of
flexibility over the types of gate-design problems that can be approached. As a significant example,
we find generators for the Toffoli gate using only diagonal pairwise interactions, which are easier to
implement in some experimental architectures. To showcase the flexibility of the supervised
learning approach, we give an example of a non-trivial four-qubit gate that is implementable using
only diagonal, pairwise interactions.

1. Introduction

Let us consider the synthesis of a quantum operation G (a gate) from the underlying dynamics of a
quantum system. Unitarity of G implies the existence of a Hermitian generator HG such that G = eiHG (we
assume units such that the simulation time t is dimensionless, and rescale it so that the desired gate is

successfully achieved at t = 1). Such generator will typically contain highly non-local interactions, which
can be difficult to realize in a given physical setup. However, for a choice of the platform to use for the
implementation of G, it is generally possible to single out a subset Γ of physical interactions that can be
realized relatively easily and inexpensively. The question that we address here is thus: is it possible to
synthesize G from an HG comprising operations drawn only from an assigned Γ?

This question is very relevant, for instance, in the context of quantum simulation, where the problem of
general reachability of a target dynamics given a set of allowed physical interactions is pivotal [1]. However,
it is also important for the realization of large-scale quantum computation [2, 3], which relies on the
capability of implementing entangling gates between many qubits with high fidelity. A notable case is the
quantum Toffoli gate, which is the quantum counterpart of the universal reversible classical Toffoli gate [4].
When paired with a single-qubit gate, the quantum Toffoli gate is universal for quantum computation [5].
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Moreover, it is optimal for quantum error correction [6–9], and is a key component for reversible
arithmetic operations such as modular exponentiation [10]. Unfortunately, the natural dynamics generating
a Toffoli gate involves non-local three-qubit interactions, which are not easily implemented in experimental
architectures. Other important gates, such as the Fredkin gate, share the same problem. Common strategies
to overcome these limitations include a suitable use of the additional processing power offered by larger
Hilbert spaces encompassing ancillary information carriers [11], and the embedding of quantum control
techniques [12, 13]. The identification of suitable alternatives to such expensive strategies for gate synthesis
and simulation would represent a significant contribution to the ongoing effort towards the translation of
theoretical protocols to the production line of quantum technologies [14]. It is worth stressing that the
strategies put forward in this paper differ substantially from techniques such as quantum control and gate
compilation. Quantum control techniques allow for time-dependent Hamiltonians, whereas gate
compilation foregoes dealing directly with Hamiltonians, looking instead for sequences of gates whose
combined action results in the target operation. We, on the other hand, aim to find strategies that involve a
single, time-independent Hamiltonian. These are sometimes referred to as single-shot strategies. This
constraint changes the task substantially, making most techniques used in the context of quantum control
not seamlessly applicable. On the other hand, gate compilation requires the underlying assumption that the
elements of the set to be used in order to decompose a given unitary are all reliably implementable in the
architecture under consideration. This fully bypasses any concern about the dynamics necessary to actually
implement a given gate. In addition, gate compilation is combinatorial in nature. Our approach to the
learning of a quantum gate, instead, makes use of a set of continuous parameters which determine the final
operation only through a matrix exponential operation.

In this paper we show how the interplay between analytical results and efficient numerics—as enabled
by the supervised learning paradigm—provides a powerful and flexible tool to explore a wide variety of gate
design and simulation scenarios.

More specifically, we identify three analytical conditions that, when met, provide a Hamiltonian H̃
comprising only operations drawn from Γ and such that G = exp(iH̃) for a given target G. While these
conditions do in principle allow to solve the problem in its generality, the corresponding equations soon
become practically intractable. Even in this case, however, our framework provides an improved ansatz,
which can be used to perform numerical optimization via supervised learning.

For the numerical optimization, we showcase an original application of supervised machine learning
that allows to obtain results more efficiently than alternative methods. The context in which supervised
learning is commonly explored is roughly the following: given a training dataset consisting of pairs
(xi, �i) ∈ X × L and a parametrized function (usually referred to as the model) fλ : X �→ L, find λ0 such
that fλ0 (xi) � �i, ∀i. This is usually done by minimising the empirical loss function, that is, by solving the
optimization problem arg minλ {

∑
iL( fλ(xi), �i)} for some loss function L quantifying the distance between

expected and obtained outputs (typical choices being the L2 distance and the delta function). In other
words, the goal is to approximate an unknown g : X �→ L from a finite number of samples. In this sense,
supervised learning is akin to function fitting. Notably, this is not the kind of problem naturally
encountered in gate design. The design of a time-independent Hamiltonian generating a target G, given a
parametrization H̃λ for the Hamiltonian, fits into the standard scenario of solving argminλ{L(λ)} with
L(λ) the operatorial distance between exp(iH̃λ) and G. However, as we will show here, supervised learning
techniques can be fruitfully applied to this kind of problems.

Optimizing L(λ) is a daunting task, as the evaluation of eiH̃ requires up to O(d3) operations [15] for
each iteration (d is the dimension of the Hilbert space). Nonetheless, one finds that L(λ) can be expressed
as an average over random states [16]. This suggests the use of stochastic optimization techniques,
commonly employed in machine learning, where one optimizes an estimated empirical loss function, rather

than the exact one. For gate design, the resulting estimated loss is L(λ) �
∑

iD
(

exp
(

iH̃λ

)
|ψi〉,G|ψi〉

)
with D a state distance and |ψi〉 a set of random states. As in supervised learning, the latter are used to train
the quantum system so that its dynamics reproduces the expected action G|ψi〉. As typically H̃ is sparse, the

computation of eiH̃λ |ψi〉 is efficient [17], unlike the full operator exponential. Moreover, stochasticity also
helps to avoid local minima. When an analytic solution is not available, our framework gives a
lower-dimensional representation of the loss function, which is then optimized via stochastic gradient
descent (SGD) [18, 19]. Such representation is then embedded into an automatic differentiation (AD)
protocol [20–23], to efficiently compute the gradients without numerical approximations. This
significantly increases the efficiency of the optimization, allowing for the exploration of previously
out-of-reach scenarios, and a systematic analysis of gate design and simulation problems. While the use of
SGD to tackle gate design was also present in [16], our work achieves both analytical and numerical steps
forwards. In particular, no analytical framework was developed in [16], and thus exact solutions could not
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be found. Moreover, our use of AD represents a drastic improvement in efficiency, which enables the
exploration of scenarios such as the generation of Toffoli and Fredkin gates without ancillae and
with only experimentally feasible interactions, and the training of four-qubit gates. Finally, we remark that
our use of supervised learning for gate design also avoids some common hurdles of standard machine
learning tasks: the availability of large training sets, and overfitting. As we know the target gate, generating
training data is as easy as generating random states and evolving them through a gate. Furthermore, there is
no risk of overfitting: an average unit fidelity ensures that the network will work on arbitrary input
states.

To demonstrate such framework, we apply it to find exact and approximated gate-design strategies. In
particular, we use it to devise exact Hamiltonians generating Toffoli and Fredkin gates via pairwise
interactions. The same conditions provide enhanced numerical ansatzs for the design of arbitrary N-qubit
gates. We present a supervised-learning optimization technique to train qubit networks, and demonstrate
algorithm-training instances of three-qubit Toffoli and Fredkin gates. We find that the training
algorithm can quickly find solutions with almost-perfect fidelities, when allowing only pairwise
interactions. We then present an extensive exploration of training scenarios with more restrictive sets of
interactions, finding approximate generators for Toffoli and Fredkin gates with good fidelities. We go
beyond the three-qubit scenario by designing a four-qubit gate using only two-qubit interactions. A
significant boost in performance is here made possible by the use of AD [20–23], which allows to speed-up
gradient-descent-based optimization techniques in a flexible way, at the same time avoiding numerical
errors and instabilities arising from numerical differentiation techniques. We also discuss the implications
of our framework for problems extending beyond the field of quantum computing, and address in its
potential applications to quantum communication via perfect state-transfer approaches [24, 25]. Finally, we
present a systematic exploration of the possibility of finding generators for Toffoli and Fredkin gates with
experimentally viable interactions, focusing on circuit-QED platforms. Remarkably, even in such restrictive
scenario, we find generators with good fidelities that use interaction strengths compatible with the
capabilities of state of the art technologies [26, 27].

The remainder of this paper is organized as follows. In section 2 we illustrate the general methodology
underlying our approach. Section 3 is dedicated to the application of such methods to the paradigmatic
cases of quantum Toffoli and Fredkin gates. In section 4 we illustrate the supervised learning approach that
we have devised in order to tackle the general cases of the problems addressed by our work (which are
usually not amenable to analytic solutions). Section 5 reports our conclusions and forward look, while we
delegate to a set of technical appendices the details of our analytical derivations and numerical
studies.

2. General methodology

We start by computing an Hamiltonian HG generating the target gate G = eiHG . Using the spectral
decomposition of G, we have HG = −iU log(Λ)U†, where G = UΛU†, log denotes the principal branch of
the logarithm, and Λ is the diagonal matrix with the eigenvalues of U. Fixing a branch for the logarithm
makes it single-valued, and HG uniquely determined from G. To distinguish this particular Hamiltonian
from the other possible generators for G, we will refer to it as the principal generator. In general, the
generator HG will contain both physical interactions, that can be realized easily in a given physical setup,
and unphysical ones, i.e. dynamics that are not naturally achieved in the chosen platform. Our goal is to
construct a new Hamiltonian H̃G , comprising only physical interactions, such that G = exp(iHG)
= exp(iH̃G).

We assume that H̃G depends on a quantity λ that parametrizes the set of physical interactions to be
used. For instance, in a spin system, the physical interactions can be a certain subset of the possible
two-body and single-body interactions, like the set of coupling strengths and local magnetic fields. In
general, H̃G(λ) may also model a system where the register is coupled to auxiliary degrees of freedom,
though we will focus on the case without ancillary qubits. The following three conditions are necessary and
sufficient for H̃G to satisfy our requirements

H̃G contains only physical interactions, (1a)

[H̃G ,HG] = 0, (1b)

Eig(H̃G − HG) = {2πni} (ni ∈ Z). (1c)
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Equations (1b) and (1c) ensure that G = exp(iH̃G − iHG) exp(iHG) and exp(iH̃G − iHG) = 𝟙, while (1a)
reiterates the constraints on H̃G . While equation (1b) may seem too restrictive, this turns out to
not be the case. To see this, consider the decomposition G =

∑
k λk

∑
j Pkj of a general gate G. Here, Pkj is

the jth trace-1 projector in the kth degenerate subsector of the eigenspace7. It follows that HG and
H̃G can be written as HG = −i

∑
k log(λk )Ik and H̃G = HG + 2π

∑
k,j νkj Pkj. Here Ik =

∑
j Pkj,

which is not (in general) an identity (or diagonal) matrix, and we have used the expression
logλ = logλ+ 2πiν (ν ∈ Z), applied to every term of the spectral decomposition of G. For any H̃G we
thus have [H̃G ,HG] = 0.

Equations (1a–1c) considerably simplify the problem of gate synthesis, and can be used in several ways.
First, they can be analytically solved in at least some situations of physical interest. Second, they can be used
to produce an efficient starting point for numerical optimization techniques. The general procedure is to
start from a parametrized expression for H̃G(λ) satisfying the condition stated in equation (1a), and then
use equation (1b) to both reduce the set of possible interactions and impose constraints on the
parameters. The problem then reduces to the enforcing of the constraints set by equation (1c). This is the
non-trivial step in the procedure, which we will however show to be analytically solvable in at least some
cases. This strategy thus reduces the task of constrained gate design into an inverse eigenvalue problem, a
topic well studied in the field of numerical analysis [28]. More generally, we develop a numerical supervised
learning technique to avoid having to solve directly the non-trivial eigenvalue problem posed by
equation (1c). It is worth noting that, while H̃G produces the same unitary evolution given by HG at t = 1,
the dynamics will in general be different at 0 < t < 1.

3. Applications: Toffoli and Fredkin gates

3.1. Quantum Toffoli gate
The quantum Toffoli gate UToff is a control-control-NOT that flips the state of the target qubit (the third
qubit in our case) when the state of the two controls (first and second qubits) is |1〉1 ⊗ |1〉2, and acts
trivially on the target qubit otherwise. Its realization is an important step towards the construction of
quantum computers [9, 29–31]. A time-independent two-body Hamiltonian that simulates UToff with four
qubits has been obtained in [16] using numerical optimization, while three qubits have only been found to
make approximate and classical Toffoli gates [32]. Here, following the construction in equation (1), we find
an analytic solution that requires only three qubits.

The principal generator of UToff, obtained by taking the principal value of its logarithm, is

HToff = (π/8)(1 − σz
1)(1 − σz

2)(1 − σx
3), (2)

whose only three-qubit term is σz
1σ

z
2σ

x
3 , where σα

i is the α Pauli matrix acting on the ith qubit. We now
parametrize H̃Toff as

H̃Toff = h0𝟙+
∑

i

hα
i σ

α
i +

∑
i,j

Jα,β
i,j σα

i σ
β
j , (3)

where h0, hα
i , Jα,β

i,j are real parameters. The above expression, containing 37 parameters, automatically

satisfies equation (1a) in that it corresponds to an H̃Toff without three-qubit interactions. Imposing the
condition in equation (1b) removes 12 parameters, leaving us with 25 of them. These are still too many to
solve the inverse eigenvalue problem of equation (1c). We thus impose physically plausible assumptions on
the coefficients in order to obtain a generator with a small enough number of parameters, so that
equation (1c) is satisfied and the resulting equations solved. In particular, we set

Jxz
12 = Jzx

12 = Jxx
13 = Jxx

23 = 0,
Jzx

13 = Jzx
23 = π/8, Jzz

23 = −Jzz
13, hz

1 = hz
2 = −π/8.

(4)

The rationale behind these assumptions is to look for a generator that is diagonal with respect to the first
two qubits, does not use σy

i operators, and does not introduce new off-diagonal interactions, on top of the
ones already in the principal generator. This last assumption is useful because it implies a reduced number
of parameters in H′

Toff ≡ H̃Toff −HToff, which is the operator on which we have to impose equation (1c).

7 The projectors are such that
∑

jPkj=𝟙k, PkjPkj′ = 0 if j �= j′, and PkjPk′j′ = 0 if k �= k′ for any j, j′.

4
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Note that different assumptions, leading to different solutions, are possible. Imposing the above constraints
we obtain

H′
Toff =(π/8)σz

1σ
z
2σ

x
3 + (h0 − π/8)𝟙+ (hx

3 + π/8)σx
3 + (Jzz

12 − π/8)σz
1σ

z
2 + Jzz

13(σz
1 − σz

2)σz
3. (5)

The problem is now to find values for the coefficients in equation (5) such that exp(iH′
Toff) = 𝟙, which is

equivalent to finding coefficients such that all the eigenvalues of H′
Toff are integer multiples of 2π. Solving

for h0, hx
3, Jzz

12, Jzz
13 gives several solutions. For example, we find that

H̃Toff(ν) =
π

8

[
1 + 4|ν| − 2σx

3 − σz
1 − σz

2 + (σz
1 + σz

2)σx
3 +(1 − 4|ν|)σz

1σ
z
2 +

√
16ν2 − 1(σz

2 − σz
1)σz

3

]
(6)

is a class of generators for UToff, satisfying exp(iH̃Toff(ν)) = UToff for all non-zero integers ν. In appendix A3
we present a larger class of generators for the Toffoli, as well as provide an in-depth analysis of how these
generators produce the Toffoli gate. Moreover, in appendix A4, we discuss a possible line of reasoning to
arrive to one of these generators via direct algebraic manipulation. While with this ad hoc reasoning we
cannot recover the full set of generators obtainable via our framework, we still gather insight on the way
non-trivial interaction coefficients emerge. Moreover, it showcases the type of sophisticated analysis needed
to solve these problems without using our framework. Thus, a highly non-trivial gate such as Toffoli’s,
which in principle requires three-body interactions as in equation (2), can be obtained exactly without
three-qubit interactions. Notably, although the generators for the Toffoli gate found here contain
non-diagonal σz –σx interactions, which may be hard to implement, we will show in section 4 that this can
be overcome using a supervised learning approach.

3.2. Quantum Fredkin gate
On a similar note, it is possible to use the framework provided by equations (1a–1c) to find a Hamiltonian
that does not contain three-qubit interaction terms, and generates the Fredkin gate at suitable times. The
quantum Fredkin gate UFred is a three-qubit gate which swaps two qubits conditionally to the first qubit
being in the |1〉 state, and is of use for a number of quantum information protocols [33, 34]. A
time-independent two-body Hamiltonian simulating UFred with four qubits has been found in [16] using
numerical optimization. We find an analytic solution that requires as few as three qubits. Explicitly

HFred =
π

8

(
𝟙− σz

1

) [
𝟙−

∑
α

σα
2 σ

α
3

]
, (7)

where qubit 1 is the control. We now write down the general parametrization H̃G(λ) for a three-qubit
Hamiltonian containing only pairwise diagonal interactions, and imposing equation (1b) we cut the
number of parameters λ down to 22. Imposing additional physically plausible conditions, like the
symmetry of second and third qubit, we manage to reduce the number of parameters enough to solve the
eigenvalue problem, finding

H̃Fred =
π

8

(√
143

5
𝟙+ 5

√
3σx

1

)
(σx

2 + σx
3) − 3π

8

∑
α=x,y,z

σα
2 σ

α
3 +

3π

4

√
7

5
σz

1(σz
2 + σz

3) +
π

2
σz

1 +
3π

8
𝟙. (8)

Therefore, also a non-trivial gate of crucial relevance such as the Fredkin gate can be implemented without
time-dependent dynamics using only at most two-qubit interactions. The physical reason behind this
simplification can be understood from the study of the spectral properties. For example, the gate UFred has
only two eigenvalues, λ± = ±1 with λ+ having a sevenfold degeneracy. Such degeneracy makes the
propagator generated by HFred operate in a two-level subspace. On the other hand, the spectrum of
H̃Fred −HFred is {−4π,−2π, 0, 0, 0, 2π, 2π, 4π}, showing that the degeneracy in the spectrum of HFred is
partially lifted when considering H̃Fred −HFred, and the dynamics thus occurs in an larger effective Hilbert
space. Although exp(itH̃Fred) is non-symmetric for most of the evolution times, all the symmetries are
restored at t = 1 and any subsequent integer times. This shows that breaking the symmetries of G and
exploiting its degenerate space can help the gate design when restricting the set of viable interactions.

5
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Algorithm 1. Stochastic gate design.

1: Choose values for the set λ0 for H̃G , such that equation (1a) is satisfied.
2: Use equation (1b) to find a reduced set λ (linearly related to λ0).
3: repeat � Iteratively solve equation (1c)
4: Generate a random set of Nb input states {|ψk〉} with Nb the size of the mini-batches

chosen beforehand.
5: For each k, compute ∇λF(λ,ψk). Machine learning frameworks like Theano [38],

TensorFlow [39], or PyTorch [40] (among others) enables the calculation of gradients automatically
from the chain rule. This avoids numerical errors arising from numerical differentiation.

6: Update the coupling strengths λ. We do this using the so-called momentum gradient
descent method [41], corresponding to the following updating rule

v → γv + η∇λF(λ,ψk), λ→ λ+ v. (9)

Here the learning rate η and the momentum term γ are hyperparameters to be chosen
beforehand. The value of η should decrease with the iteration number.

7: until a satisfactory value of the fidelity is obtained.

4. Supervised learning approach

We now describe a different methodology to solve the difficult part of equation (1). While the direct
algebraic approach fails as soon as we consider more than a few parameters, and for example already fails to
find solutions for the Toffoli gate with only diagonal interactions, the method we present here scales
better with the number of interactions and is easily generalized to any kind of structure of the qubit
network. The idea is to adopt a supervised learning approach to solve the optimization problem of finding
the set of Hamiltonian parameters generating a target evolution.

The problem we address can be stated as follows. Given a target gate G and a parametrized Hamiltonian
H(λ) =

∑
iλiOi, where λ = {λi} is a set of real parameters and Oi are Hermitian operators, we look for

the set λ0 such that exp(iH(λ0)) = G. This can be reframed as an optimization problem by considering the
fidelity function F(λ,ψ) ≡ 〈ψ|G† exp(iH(λ))|ψ〉, for an arbitrary state |ψ〉. Clearly, F(λ0,ψ) = 1 for all
|ψ〉 iff exp(iH(λ0)) = G. A possible approach to find such λ0 is to consider the average fidelity function
F̄(λ), defined as the average of F(λ,ψ) over all ψ8. Explicit formulas for F̄ are known [35, 36], so that
standard optimization methods can be used. This method is however inefficient for the problem at hand,
due to the size of the parameter space. We thus turn to a different technique, exploiting how the
fidelity landscape changes when changing |ψ〉 [16]. We use the fact that the only values of λ for which the
fidelity is 1 regardless of |ψ〉 are those corresponding to our solution. Using the SGD algorithm [18, 19, 37],
we implement the procedure in algorithm 1. A more detailed presentation of this algorithm is given in
appendix B.To find the interaction parameters implementing a Toffoli gate, using only one-qubit
evolutions and two-qubit diagonal interactions (i.e. interactions of the form σα

1 σ
α
2 ), we start the numerical

training from the Hamiltonian obtained by imposing equation (1b) on the parametrized Hamiltonian
containing the required interactions, which has the form

H̃Toff =
∑
j=1,2

Jzz
j3 (𝟙+ σz

j )σz
3 + Jyy

12(σx
1σ

x
2 + σ

y
1σ

y
2) + Jzz

12σ
z
1σ

z
2

+ hz
1σ

z
1 + hz

2σ
z
2 + hx

3σ
x
3 + (Jxx

13σ
x
1 + Jxx

23σ
x
2)(𝟙+ σx

3). (10)

Starting from equation (10), many solutions can be found, depending on the chosen initial conditions and
the random states that are used at each run. In figure 1(a), several solutions are shown, proving that it is
possible to implement a Toffoli gate using only pairwise diagonal interactions. This analysis can be extended
to a Fredkin gate, whose generator with only diagonal pairwise interactions and commuting with the
principal generator of the Fredkin is found to have at most two-body terms. Using this model as starting
point for the training we again obtain several solutions, some of which are shown in figure 1(b). We then
test our supervised learning framework by exploring numerically the possibility of implementing Toffoli
and Fredkin gates using a more restrictive set of interactions. The results provide a series of
physically-feasible interaction parameters that realize Toffoli and Fredkin gates with good fidelities, as
further detailed in appendix B4.

8 Note that in principle a more reliable figure of merit to evaluate the performance of a gate would be the diamond distance. How-
ever, in all the instances we considered, the two quantities are actually equivalent since we always obtain unit fidelity (within numerical
errors).
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Figure 1. Eight different sets of interaction parameters generating the Toffoli gate [panel (a)] and the Fredkin one [panel (b)].
For each shown solution the training was started from the ansatz provided by equation (10), and the analogous equation for the
Fredkin, respectively. Panel (c): eight sets of interaction parameters for the ‘double Fredkin’ gate. Each one of the shown
solutions corresponds to unit fidelity up to numerical precision (that is, fidelities greater than 1 × 10−16). We refer to appendix
B4 for the details of the optimizations. To use a more uniform the notation, we denote with Jijk the coefficient of the interaction
parameter σi

1σ
j
2σ

k
3, and similarly for interactions between more than three qubits. For example, J033 ≡ Jzz

23, J200 ≡ hy
1, and

J1010 ≡ Jxx
13 .

There is no need to stick to the training of three-qubit networks. To illustrate this, we provide another
example of successful application of our framework, this time to implement a non-trivial unitary evolution
over four qubits. In particular, we train a four-qubit network to implement the doubly-controlled Fredkin
gate UFF ≡ |0〉〈0| ⊗ UFred + |1〉〈1| ⊗ UFred, where UFred denotes a Fredkin gate where the control
qubit is the third one, and the first two are the targets. Such a gate can be implemented using no more than
two-qubit interactions, and such set can be further restricted to only diagonal ones. Some instances are
shown in figure 1(c). Note that these results require no ad hoc approach or ansatz, differently from
the approach used to derive equations (6) and (8). In particular, this simplifies the test of questions
as ‘can gate X be implemented using only a set of interaction Y’ without resorting to extra ad hoc
calculations.

5. Conclusions

We have presented a general framework to approach constrained gate-synthesis problems. We have showed
that the procedure is amenable to direct analytical solution, providing time-independent Hamiltonians
generating Toffoli and Fredkin gates using only undemanding diagonal interactions and no ancillary qubits.
To our knowledge, no previous attempt at such a decomposition has been reported so far. Generality
can be added to our approach by powerful techniques of supervised learning of the interaction parameters,
which allowed to find Hamiltonians with specified sets of interactions producing target unitary evolutions.
Our approach and results are potentially of great interest to optimize experimental implementations of
quantum algorithms in architectures such as linear optics and superconducting qubits. Moreover, it might
open new avenues for the exploration of related problems such as Hamiltonian learning [42–44], which
might be seen as addressing a question complementary to the one tackled here. In particular, it will be
interesting to address whether it is possible to design a supervised-learning approach to the data
available for a class of Hamiltonians that should be learnt, in line with the strategy put forward with our
method, and thus devise a strategy that is competitive with respect to recently proposed Bayesian
approaches [45].
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Appendix A. Analytical approach

In this section we provide a detailed description of how to apply the framework introduced in section 2 to
approach gate design problems analytically.

In appendix A1 we show how our framework can be applied to tackle generic perfect state transfer
problems. In appendix A2 we prove that a CNOT gate cannot be implemented using only single-qubit
interactions. While this is an obvious result, the calculation can be interesting to show, in a simple case, how
the eigenvalue conditions given in equation (1c) can be used to rule out that a gate can be implemented
with a specific set of interactions. In section 3 we showed how to use our framework to derive
Hamiltonians implementing the Toffoli gate using only one- and two-qubit interactions. In appendix A4 we
will show how one of the solutions obtained in appendix A3 could have been obtained via direct analytical
reasoning, without prior knowledge of our solution framework. This provides some insight into how the
solutions actually generate the Toffoli gate, and illustrates the kind of ad hoc non-trivial reasoning that,
without the use of equation (1), would have been necessary to find such solutions.

For notational convenience, we will in this section denote Pauli matrices with Xi, Yi, Zi, instead of σx
i ,σy

i ,
and σz

i as in the main text.

A1. Perfect state transfer
A one-dimensional quantum walk is described by the Hamiltonian HW =

∑N−1
k=1 Jk|k〉〈k − 1|+ Bk|k〉〈k|,

where N is the length of the lattice upon which the walk takes place, Jk the transition rates between adjacent
sites, Bk the local energies and |k〉 defines the state where the ‘walker’ is at the kth site. A quantum walk
Hamiltonian HW admits perfect state transfer (PST) at time t, i.e. the initial state of the walker initially at
site k is perfectly retrieved at site N − j + 1 if e−itHW = Ξ, where Ξkj = δk,N−j+1 is the reflection matrix.
Necessary and sufficient conditions for PST are well understood [24, 25]: firstly, HW has to be
‘mirror-symmetric’, that is [HW,Ξ] = 0, and secondly the eigenvalues {Ek} of HW should to satisfy the
condition eiEkt = (±1)k.

We show now that finding the parameters {Jk, Bk} for PST is a particular case of the Hamiltonian design
problem for gate simulation. Specifically, the conditions for PST can be obtained from the construction in
equation (1). In a 1D quantum walk, the ‘physical’ couplings are the nearest neighbour interactions, but
HΞ = i log(Ξ) = π(Ξ− 𝟙)/2 is long range. Using HW as Hphys(λ), where λ = {Jk, Bk}, and defining
H′ = HW −HΞ following condition equation (1c), where the physical interactions in HΞ have been
reabsorbed into the definition of HW, one finds that: (i) condition (1b) is equivalent to the
mirror-symmetry request [HW,Ξ] = 0; (ii) from condition (1c) and the definitions of HW and HΞ, one
finds that the spectrum of HW satisfies eiEkt = (±1)k—indeed the eigenvalues of Ξ are {0,π}, so
Ek = π(2nk + 1) for integer nk. It is straightforward to extend the above proof for more general transfers,
such as with long-range interactions [46], or for perfect fractional revivals [47, 48].

A2. Proof that CNOT needs two-qubit terms
We here show how to use our framework to prove that a CNOT gate cannot be implemented using only
one-qubit interactions. While this result is trivial, it is nonetheless interesting to show how the framework
can be used to obtain this kind of impossibility results.

The spectral decomposition of the CNOT reads

CNOT = Z+
1 + Z−

1 X+
2 − Z−

1 X−
2 , (S1)

where we made a canonical choice for the basis of the three-fold degenerate eigenspace corresponding to the
eigenvalue +1, and defined Z±

i ≡ (1 ± Zi)/2, and similarly for X±
i . More explicitly, we are considering the

basis set {Z+
1 Z+

2 , Z+
1 Z−

2 , Z−
1 X+

2 } made out of trace-1 projectors for the degenerate space, whereas the fourth
projector is bound to be Z−

1 X−
2 . The corresponding principal Hamiltonian HCNOT, obtained by directly

taking the logarithm of equation (S1), is

HCNOT = πZ−
1 X−

2 . (S2)

Let us now consider what happens when the multivaluedness of the logarithm is taken into account, but no
rotation of the degenerate eigenspace is performed. Considering only the factors with two-qubit
interactions, the following expression is found:

8



New J. Phys. 22 (2020) 065001 L Innocenti et al

HCNOT/2π ∼ ν12Z1Z2 + 2π(1/2 + ν43)Z1X2, (S3)

where here ν ij ≡ ν i − ν j, and νi ∈ Z is the integer produced by application of the logarithm to the ith
projector. Note how the Z1X2 factor cannot be removed by any choice of ν i, which could be interpreted as a
proof that two-qubit interaction terms are indeed necessary to implement the CNOT gate. This, however,
does not in principle preclude the possibility that an appropriate rotation of the degenerate space allows to
obtain a generator with only local terms. To verify that this is not the case, we would have to consider a
generic rotation R of the degenerate space, that is, an operator of the form R =

∑3
i,j=1 rij|+ 1i〉〈+1j|, with

|+ 1i〉 the ith eigenvector in a fixed base of the degenerate space. The problem is thus to find a unitary R
and integers ν i such that

ν1R(Z+
1 Z+

2 )R† + ν2R(Z+
1 Z−

2 )R† + ν3R(Z−
1 X+

2 )R† + (ν4 + 1/2)Z−
1 X−

2

does not contain two-qubit interactions. The solution of this problem is non-trivial, mostly due to the
many (nine in this case) parameters characterising a general unitary R. To avoid searching solutions for
such a system, we try a different approach to the problem. Let us denote with H̃ a generator with the
required properties: one that generates the same unitary as HCNOT and contains only one-qubit interaction
terms. Its general form will be

H̃ = h0 +

3∑
α=1

(hα
1σ

α
1 + hα

2σ
α
2 ). (S4)

As discussed in section 2, for H̃ to correctly generate the CNOT gate, it must commute with the principal
generator HCNOT. Imposing this commutativity removes most of the parameters hα

i , leaving us with the
following simplified expression:

H̃ = h0 + h1,3Z1 + h2,1X2. (S5)

The only missing step is now to impose the eigenvalues of HCNOT − H̃ to be integer multiples of 2π. This
gives the following system of equations:

2πν1 = (−π + 4h0 − 4h1,3 − 4h2,1)/4,

2πν2 = (+π + 4h0 + 4h1,3 − 4h2,1)/4,

2πν3 = (+π + 4h0 − 4h1,3 + 4h2,1)/4,

2πν4 = (−π + 4h0 + 4h1,3 + 4h2,1)/4,

(S6)

with νi ∈ Z. The above system can be seen to have no solution for h0, h1,3, h2,1, therefore definitively proving
that there is no rotation of the degenerate space, and integer parameters ν i, that allow to generate the
CNOT gate using only one-qubit interactions.

A3. Toffoli gate: derivation through conditions
We show here the details of how, using equation (1), we can obtain a family of Hamiltonian generators for
the Toffoli gate, containing only single- and two-qubit interactions. This is a more detailed version of the
analysis given in section 3.1.

The Toffoli gate can be written as

UToff = Z+
1 + Z−

1 [Z+
2 + Z−

2 (X+
3 − X−

3 )], (S7)

where we defined Z±
i ≡ (1 ± Zi)/2, and similarly for X±

i . The principal generator of UToff is
HToff = πZ−

1 Z−
2 X−

3 , that is, highlighting the three-qubit interaction term,

HToff = (1- and 2-qubit terms) − π/8 Z1Z2X3. (S8)

We start by writing down the general parametrization of an Hamiltonian containing only one- and
two-qubit interactions:

9
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H̃Toff = h0𝟙+
∑

hi,ασ
α
i +

∑
Jα,β

i,j σα
i σ

β
j . (S9)

Assuming for simplicity that H̃Toff does not contain Yi components, and imposing the commutativity with
HToff, we get the following expression

H̃Toff =h0𝟙+ hx
3X3 + hz

1Z1 + hz
2Z2 + Jzx

13Z1X3 + Jzx
23Z2X3 + Jzz

12Z1Z2

+ (Jxx
13X1 + Jxx

23X2)(1 + X3) + (Jzx
12X2 + Jzz

13Z3)(1 + Z1)

+ (Jxz
12X1 + Jzz

23Z3)(1 + Z2). (S10)

As can be directly verified, the above satisfies [H̃Toff,HToff] = 0 while also containing only one- and
two-qubit interactions, and no Pauli Y matrices. We could now directly try and find the set of parameters
making the eigenvalues of H̃Toff −HToff all integer multiples of 2πi, but the associated calculations are made
hard by the many parameters involved. However, it turns out that we can make further assumptions on the
form of H̃Toff and still obtain a viable family of solutions. One of them, leading to a satisfying family of
solutions, is Jxz

12 = Jzx
12 = 0, Jzx

13 = Jzx
23 = π/8, Jxx

13 = Jxx
23 , Jzz

23 = −Jzz
13, and hz

1 = hz
2 = −π/8. With these

assumptions equation (S10) becomes

H̃Toff = h0𝟙+ hx
3X3 − π/8(Z1 + Z2)(1 − X3) + Jzz

12Z1Z2 + Jxx
13(X1 + X2)(1 + X3) + Jzz

13(Z1 − Z2)Z3.
(S11)

Finally, we impose that the generator is diagonal on the first two qubits, that is, Jxx
13 = 0. Using this

simplified expression, H′
Toff = H̃Toff −HToff becomes

H′
Toff = π/8 Z1Z2X3 + (h0 − π/8)𝟙+ (hx

3 + π/8)X3 + (Jzz
12 − π/8)Z1Z2 + Jzz

13(Z1 − Z2)Z3. (S12)

With the above simplified expression it is now possible to directly solve the eigenvalue problem. This results
in the following family of solutions

H̃Toff =
π

8

[
1 + 4

(
ν1 + ν2 + 2ν3 +

√
(ν3 − ν4)2

)
− (Z1 + Z2)(1 − X3) + X3(−2 − 8ν1 + 8ν2)

+ 4Z1Z2

(
1/4 + ν1 + ν2 − 2ν3 −

√
(ν3 − ν4)2

)
+ (Z2 − Z1)Z3

√
c(ν1, ν2, ν3, ν4)

]
, (S13)

with c(ν1, ν2, ν3, ν4) = (4ν34)2 − (1 + 4ν12)2, for all integer values of ν i such that c(ν1, ν2, ν3, ν4) � 0. The
corresponding spectrum of H′

Toff = H̃Toff −HToff is

λ1 = λ2 = 2πν1,

λ3 = λ4 = 2πν2,

λ5 = λ6 = 2πν3,

λ7 = λ8 = 2π(ν3 + |ν3 − ν4|),

(S14)

while the spectrum of H̃Toff changes only in that λ2 = 2π(ν1 + 1/2). Consistently with this, λ2 is also the
eigenvalue corresponding to the non-degenerate eigenspace of HToff, while all the other eigenvalues
correspond to eigenvectors orthogonal to this one. More specifically, we have

|λ1〉 = |0, 0,−〉, |λ2〉 = |1, 1,−〉,

|λ3〉 = |1, 1,+〉, |λ4〉 = |0, 0,+〉,

|λ5〉 = |1, 0〉 ⊗ N5

[
(a − b)|0〉+ |1〉

]
,

|λ6〉 = |0, 1〉 ⊗ N6

[
(a + b)|0〉+ |1〉

]
,

|λ7〉 = |1, 0〉 ⊗ N6

[
(a + b)|0〉 − |1〉

]
,

|λ8〉 = |0, 1〉 ⊗ N5

[
(a − b)|0〉 − |1〉

]
,

(S15)

10
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Table A1. Toffoli.

P1 = Z+
1 Z+

2 X−
3 , P2 = Z−

1 Z−
2 X−

3 , P3 = Z+
1 Z+

2 X+
3 , P4 = Z−

1 Z−
2 X+

3 ,

P5 = Z−
1 Z+

2

1

2|ν̄34|

[
|ν̄34|+ (1 + ν̄12)X3 −

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
,

P6 = Z+
1 Z−

2

1

2|ν̄34|

[
|ν̄34|+ (1 + ν̄12)X3 +

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
,

P7 = Z−
1 Z+

2

1

2|ν̄34|

[
|ν̄34| − (1 + ν̄12)X3 +

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
,

P8 = Z+
1 Z−

2

1

2|ν̄34|

[
|ν̄34| − (1 + ν̄12)X3 −

√
−(1 + ν̄12)2 + ν̄2

34Z3

]
.

P1 + P2 =
1

4
(1 + Z1Z2)(1 − X3), P3 + P4 =

1

4
(1 + Z1Z2)(1 + X3).

P5 + P6 =
1

4|ν̄34|

[
(1 − Z1Z2)|ν̄34|+ (1 − Z1Z2)X3(1 + ν̄12) + (Z1 − Z2)Z3

√
ν̄2

34 − (1 + ν̄12)2

]
,

P7 + P8 =
1

4|ν̄34|

[
(1 − Z1Z2)|ν̄34| − (1 − Z1Z2)X3(1 + ν̄12) − (Z1 − Z2)Z3

√
ν̄2

34 − (1 + ν̄12)2

]
.

It is easily verified from the above that

P1 + P2 + P3 + P4 =
1
2 (1 + Z1Z2), P5 + P6 + P7 + P8 =

1
2 (1 − Z1Z2),

so that the sum of the projectors gives the identity as it should.On the other hand, multiplying by the appropriate ν i factors, we get

2π [ν1(P1 + P2) + ν2(P3 + P4)] = (. . .) +
π

2
(ν2 − ν1)Z1Z2X3,

2π [ν3(P5 + P6) + ν4(P7 + P8)] = (. . .) +
π

2
(ν1 − ν2)Z1Z2X3 +

π

8
Z1Z2X3,

with the last identity holding for ν3 �= ν4.

with

a =
|ν̄34|

1 + ν̄12
, b =

√
ν̄2

34 − (ν̄12 + 1)2

1 + ν̄12
, (S16)

It is worth noting that the orthogonality of these eigenvectors follows from the easily verified property of
the above coefficients: a2 − b2 = 1. Furthermore, we note that c(ν1, ν2, ν3, ν4) � 0 cannot be satisfied
unless ν3 �= ν4. This in turn, looking at equation (S15), reveals that all the solutions are made possible by a
non-trivial lifting of the degeneracy of the subspaces |0, 1〉〈0, 1| and |1, 0〉〈1, 0|. Let us now try to
understand how and why the derived H′

Toff works. Let us use the notation Pi ≡ |λi〉〈λi|, and consider the
projector over the last two eigenvectors. Highlighting the three-qubit terms, we find

P7 � −N2
6

Z1Z2

4

[(
(a + b)2 − 1

) Z3

2
− (a + b)X3

]
,

P8 � −N2
5

Z1Z2

4

[(
(a − b)2 − 1

) Z3

2
− (a − b)X3

]
.

(S17)

The term in the Hamiltonian to which these two projectors contribute is 2πν3,4(P7 + P8), with
ν3,4 = ν3 + |ν3 − ν4|. Recalling the definitions of a, b, N5, N6, we see that the coefficient of Z1Z2Z3 vanishes,
and the resulting expression becomes

P7 + P8 � Z1Z2X3
1 + 4(ν1 − ν2)

16|ν3 − ν4|
. (S18)

Substitution of the appropriate values of ν i shows that the above term can be used to generate the
three-qubit factor π/8 Z1 Z2 X3, without introducing additional three-qubit factors. In table A1 are given the
full expressions for the projectors and the found solutions for the Toffoli gate. It is also interesting to note
that all of the above still holds if the Xi operators are replaced with Yi operators. That is, the expressions
found solving for the Toffoli, by simple substitution Xi → Yi, also give a generator with only two-qubit
interactions for the CCY gate (that is, the gate that applies Y to the third qubit conditionally to the first two
qubits being in the |1〉 state).

11
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A different way to understand H̃Toff is to analyse the four two-dimensional subspaces on the main
diagonal, exploiting the fact that H̃Toff acts diagonally on the first two qubits. Straightforward calculations
lead to

〈00|H̃Toff|00〉 = π [(ν1 + ν2) − (ν1 − ν2)X] ,

〈01|H̃Toff|01〉 = 2πν3 + π|ν34|(1 − σ01),

〈10|H̃Toff|10〉 = 2πν3 + π|ν34|(1 − σ10),

〈11|H̃Toff|11〉 = π

2
[(1 + 2(ν1 + ν2)) − (1 + 2ν12)X] ,

where

σ01 ≡ (1 + 4ν12)X +
√

cZ

4|ν34|
, σ10 ≡ (1 + 4ν12)X −

√
cZ

4|ν34|
. (S19)

It can be verified that for all values of ν1, ν2, ν3, ν4, the two-dimensional identity and X are correctly
generated in the |00〉 and |11〉 spaces, respectively. On the other hand, in the |01〉 and |10〉 spaces, the
two-dimensional identity is generated as long as ν3 �= ν4, as was also derived before. In particular, the class
of solutions given by ν1 = ν2 = ν3 = 0 is

H̃ =
π

8

[
1 + 4|ν4| − 2X3 − Z1 − Z2 + (Z1 + Z2)X3 + Z1Z2(1 − 4|ν4|) + (Z2 − Z1)Z3

√
16ν2

4 − 1

]
,

(S20)
for all ν4 �= 0. It is interesting to look at the explicit form of the exponentials generated by this class
generators. Computing using equation (S20), we get

exp(iH̃t) =

⎛
⎜⎜⎝
𝟙2 𝟘 𝟘 𝟘
𝟘 S(t, ν4) 𝟘 𝟘
𝟘 𝟘 S(t, ν4) 𝟘
𝟘 𝟘 𝟘 X(t)

⎞
⎟⎟⎠ , (S21)

where

S(t, ν4) =

(
a + b c

c a − b

)
, (S22)

a =
1 + e2iπtν4

2
, c =

1 − e2iπtν4

8ν4
,

b =
(−1 + e2iπtν4 )

√
16ν2

4 − 1

8ν4
,

(S23)

and

X(t) =
1

2

(
(1 + eiπt) (1 − eiπt)
(1 − eiπt) (1 + eiπt)

)
. (S24)

For large (in modulus) values of ν4, a + b → e2iπtν4 , a − b → 1 and c → 0, so that the exponential becomes

exp(iH̃t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝟙2

e2iπtν4

1
e2iπtν4

1
X(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (S25)

which very closely resembles the matrix obtained by exponentiating the principal generator
HToff = πZ−

1 Z−
2 X−

3 , that is

exp(iHTofft) =

⎛
⎜⎜⎝
𝟙2

𝟙2

𝟙2

X(t)

⎞
⎟⎟⎠ . (S26)

A different solution derived from equation (S13) is

H̃Toff =
9π

8
+

3π

4
X3 −

π

8
(Z1 + Z2) +

π

8
Z1Z2 +

π

8
(Z1 + Z2)X3 −

√
7π

8
(Z1 − Z2)Z3. (S27)
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Moreover, it is worth noting that equation (S13) is only one possible family of solutions, and that different
assumptions will lead to different ones. For example, a similar reasoning as above, starting however from
the assumptions Jzz

23 = Jzz
13 will lead to solutions such as [note the use of (Z1 + Z2) terms here, making this

solution not derivable from equation (S13)]

H̃Toff =
9π

8
− 7π

8
X3 +

√
15π

8
Z3 +

π

8
Z1Z2

+
π

8
(Z1 + Z2)

(
−1 +

5

2
X3 +

√
15

2
Z3

)
. (S28)

A4. Toffoli gate: an example of direct a posteriori derivation
We will here show a line of thought that could have conceivably led to equation (S20) (in the case ν4 = 1),
by direct analysis, and without using any of the tools shown in the paper. It will be useful to keep in mind
the expressions of Z1 ± Z2:

Z2 + Z1 = diag(2, 2, 0, 0, 0, 0,−2,−2),

Z2 − Z1 = diag(0, 0,−2,−2, 2, 2, 0, 0).
(S29)

Given that we want to generate a CC-X gate, and remembering that exp
[

iπ
2 (1 − X)

]
= X, it is reasonable to

start building our Hamiltonian as

H1 = −π

(
Z1 + Z2

2

)(
1 − X3

2

)
, (S30)

which however will generate an X evolution both in the |00〉 and in the |11〉 sectors, while we want it only in
the latter sector: H1

.
= diag(−X−, 0, 0, X−). We can remove the term in the |00〉 sector exploiting the sign

difference introduced by Z1 + Z2, by directly adding an appropriate one-qubit interaction term:

H2 =
1

2

[
H1 +

π

2
(1 − X3)

]
= π diag(0, X− /2, X− /2, X−), (S31)

with exp(iπX−) = X. Equation (S31) now correctly reproduces the evolution on |00〉 and |11〉, but also
wrongly evolves |01〉 and |10〉. To remove these additional terms while at the same time leaving the others
unaffected we use the fact that exp(iπ(1 ± σ)) = 𝟙, for any normalized vector of sigma matrices:
σ ≡

∑3
i=1 niσi with n2

1 + n2
2 + n2

3 = 1. To convert the central terms in equation (S31) into something like
this we observe that we can rewrite the second term in the above equation as

π/4(1 − X3) = π/8(2 − 2X3) = π/8(5 − 3 − 2X3). (S32)

As Z1Z2 = diag(1,−1,−1, 1), we substitute the above with π/8(5 − 3Z1Z2 − 2X3). This change affects only
the central terms, converting the expression into: πdiag(0, 1 − X/4, 1 − X/4, X−). The reason this form is
preferable is that we can now simply add a factor in the central terms to convert them into an expression of
the form 1 − σ. Adding an interaction of the form πα(Z2 − Z1)Z3 gives

π diag(0, 1 − X/4 − 2αZ, 1 − X/4 + 2αZ, X−). (S33)

For the central terms to exponentiate to the identity we need them to become of the form 1 − σ with
normalized σ. This is easily achieved by choosing α = ±

√
15/8. The final expression is thus

8/π H3 =− (Z1 + Z2)(1 − X3) ±
√

15(Z2 − Z1)Z3 + (5 − 3Z1Z2 − 2X3). (S34)

Note that instead of πα(Z2 − Z1)Z3 we could have equivalently chosen πα(Z2 − Z1)O3 for any
O3 = aY3 + bZ3 and a2 + b2 = 1. The above reasoning explains the origin of the weird

√
15 factor: it comes

as the coordinate necessary to make the vector unitary: for X/4 + xZ/4 to be normalized, x =
√

15 must be
satisfied.
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Figure B1. Examples of AD in backpropagation mode. (a) Schematic representation of AD of a function with one output and
two inputs. Starting from numerical values for x1 and x2, one computes g(x1, x2) and then f(g(x1, x2)). To get ∇f(g(x1, x2)), one
then computes f ′(g(x1, x2))∂ ig(x1, x2). Note that all components of this expression are known: f ′ and ∂ ig are known by
assumption, and the value of g(x1, x2) has been computed and cached in the forward propagation phase. (b) Example of
application of AD to compute the gradient of cos(x1x2). (c) Using the same example function as (b), we give an example of the
actual number computed at all stages when the inputs are (x1, x2) = (π/2, 2).

Appendix B. Supervised learning approach

We here study more in depth the following problem: given a target gate G and a parametrized Hamiltonian
H(λ) =

∑
k λk σk, with λk ∈ R and σk Hermitian operators, what is the set of parameters λ0 such that

exp(iH(λ0)) = G? We present a supervised learning approach to numerically solve this problem,
considerably extending the ideas presented in reference [16]. Thanks to a number of numerical
optimization techniques, and in particular the use of AD [20–23], we can explore a variety of different
scenarios, optimizing over potentially hundreds of Hamiltonian parameters. On top of this, condition (1b)
is used to further speed-up the numerical training, removing many interaction parameters that are known
not to lead to the target gate.

B1. Supervised learning
Supervised learning is the task of inferring or approximating a function, given a set of pre-labeled data [18,
49]. A supervised learning algorithm starts with some model—a functional relation gλ parametrized by a
set of parameters λ—and finds a λ0 making gλ0 as close as possible to a target function f. To do this, a set
of pre-labeled training data {(x1, y1), (x2, y2), . . .} is used, where here yk = f(xk) is the output that we want
the algorithm to associate to the input xk.

Among the most used supervised learning models are neural networks (NNs) [50, 51]. These are
parametric non-linear models which play a prominent role in many machine learning tasks, such as
dimensionality reduction, classification, and feature extraction [50, 51]. NNs have also recently proven
useful for several problems in quantum many-body theory [52–59], quantum compilation [60], quantum
stabilizer codes [61] and entanglement quantification [62].

A NN is trained by optimizing its parameters using a dataset of pre-labeled data. A common way to do
this is use variations of a gradient-descent-based technique named SGD. Gradient descent algorithms aim
to optimize a problem function f(x), starting from an initial point x0 and performing a number of small
steps towards the direction of maximum slope (that is, ∇f(x)). The optimal point xopt is thus obtained via a
sequence of small perturbations of the point x, which starting from x0 reaches the nearest local stationary
point by following the slope. In the simplest version of the algorithm, the update rule is simply
x → x − η∇f(x), with η a small real parameter commonly referred to as learning rate. SGD, on the other
hand, is suitable for a situation in which one is given a parametrized functional relationship of the form
f(x;w), and asked for a set of ‘parameters’ w0 such that f(x;w0) is minimum (maximum) for all inputs x.
Such a case can be handled via SGD, which in its simplest form involves picking a random x1, executing a
number of gradient descent iterations over w, then picking a new x2 and iterating the procedure. The
updating rule for SGD is therefore of the form

w → w − η∇wf (x;w). (S35)
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Figure B2. Training histories for the Toffoli gate with only diagonal interactions. In each plot are reported the values of the nine
network parameters during the training process, for each training epoch te. Each training process was left running until
convergence to unit fidelity, therefore, the number of epochs in the horizontal axes differs for different trainings instances. The
histories shown here correspond to training instances in which the parameters were initialised at various values, as seen from the
leftmost values in each plot.

While standard gradient descent, being a local optimization algorithm, is liable to getting stuck in local
minima, SGD can at least partially avoid this issue, in that generally a local minimum for an input x is not a
local minimum for a different input x′. Many variations of SGD are used in different circumstances. For
example, in the so-called mini-batch SGD, instead of updating with a single input x, one uses a batch of
inputs {x1, . . . , xM}, and updates the parameters using the averaged gradient:
w → w − η

∑M
k=1 ∇wf (xk;w)/M. More sophisticated updating rules are used to increase the training

efficiency in different circumstances. Common techniques involve dynamically updating the learning rate,
or using momentum gradient descent [37, 41] techniques.

To see how this class of optimization problems is relevant to us, consider the fidelity function F defined
as

F(λ,ψ) ≡ 〈ψ|G† exp(iH(λ))G|ψ〉, (S36)

with G the target gate, λ the set of parameters, and ψ an input state. The gate design problem is then
equivalent to finding λ such that F(λ,ψ) is maximised (that is, equal to 1) for all ψ. One possibility to
solve this problem is to consider the average fidelity F̄(λ), for which explicit formulas are known [63–65].
Standard optimization methods, like standard gradient descent or differential evolution, can be applied
directly on F̄(λ). This, however, reveals to be impractical, due to the complexity of the associated
parameter landscapes. On the other hand, SGD allows to use a simple and efficient local maximisation
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Figure B3. Training histories for the Fredkin gate with only diagonal interactions. In each plot are reported the values of the nine
network parameters during the training process, for each training epoch te. Each training process was left running until
convergence to unit fidelity, therefore, the number of epochs in the horizontal axes differs for different trainings instances. The
histories shown here correspond to training instances in which the parameters were initialised at various values, as seen from the
leftmost values in each plot.

method, while at the same time being less prone to getting stuck in local maxima. This works
particularly well in this case, because we know that the sets of parameters corresponding to the target gate
are all and only those such that for all inputs ψ the fidelity is unitary. Despite this, the supervised learning
approach becomes more efficient when more states are used: using only states belonging to a basis
would allow the optimizer to only operate on a small number of curves. Using an overcomplete set of states
makes the algorithm much more robust and efficient.

A crucial step, efficiency-wise, in gradient descent algorithms, is the evaluation of the gradient.
Numerically approximating the gradient, as done in previous works [16], is generally inefficient and scales
badly with the number of optimized parameters. Here we will instead make use of the powerful
technique of automatic differentiation (AD) [21, 23], described in appendix B2. AD dramatically improves
the training efficiency, allowing to explore a richer variety of circumstances.

B2. Backpropagation
The gradient evaluation phase is efficiency-wise crucial for the training of a neural network. Computing the
partial derivatives of the cost function with a standard method, like finite differences, has a complexity
O(N3

w), with Nw the number of parameters to differentiate [18]. This inefficiency can however be avoided
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Figure B4. Training histories for the double-Fredkin gate with only diagonal interactions. In each plot are reported the values of
the 18 network parameters during the training process, for each training epoch te. Each training process was left running until
convergence to unit fidelity, therefore, the number of epochs in the horizontal axes differs for different trainings instances. All the
histories shown here correspond to training instances in which the parameters were initialised to four.

using error backpropagation via AD. With this technique, the complexity of the gradient evaluation phase
can be cut down to O(N2

w) [18]. This works by first decomposing the cost function of the model in
terms of elementary operations, that is, functions the gradient of which is known analytically. In this way
the computational graph representing the functional relation between input and output is built. A
computational graph is a directed acyclic graph, whose nodes represent the operations, and edges the
flowing direction of inputs into outputs (see figure B1). Once the computational graph is built, the
gradients with respect to the model parameters can be computed efficiently. This happens in two stages, as
schematically illustrated in figure B1. At first, every node of the computational graph is progressively
computed, starting from the inputs (the current values of the model parameters) up to the final value
of the error function. During this process, the intermediate values of the elementary operations are cached.
This is the so-called feed-forward phase. The second phase (so-called backpropagation phase) starts from the
output, and consists of progressively computing the gradients of the error function with respect to the
independent variables.

To better understand AD, let us consider a simple example. Suppose the error function of the model is
of the form g(w) ≡ f( f (2)( f (1)(w))), where w is a set of parameters, and f (i) are intermediate ‘elementary’
functions, the gradients of which are supposed to be known analytically. Making use of the chain rule, the
gradient of g reads

∇g(w) =
∑

k

∂kf (y(2))∇f (2)
k (y(1)), (S37)
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Figure B5. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the Toffoli gate. The five test states ψ are sampled
randomly. (a) Global relative variations of λ, that is, plotting the fidelity against αλ for 0.9 � α � 1.1. Note that this is
equivalent to studying how the fidelity changes with respect to uncertainties in the evolution time, that is, how much does
exp(iHt ′) differ from exp(iHt). (b) Same as (a) but with 0 � α � 1.2. (c) Plot of Fλ(ψ) against absolute variations of a single
element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like (c) but for λ2.

Figure B6. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the Fredkin gate. The five test states ψ are sampled
randomly. (a) Global relative variations of λ, that is, plotting the fidelity against αλ for 0.9 � α � 1.1. Note that this is
equivalent to studying how the fidelity changes with respect to uncertainties in the evolution time, that is, how much does
exp(iHt ′) differ from exp(iHt). (b) Same as (a) but with 0 � α � 1.2. (c) Plot of Fλ(ψ) against absolute variations of a single
element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like (c) but for λ2.

where y(2) = f (2)( f (1)(w)) and y(1) = f (1)(w). During the feed-forward phase the values of y(1) and then y(2)

are progressively computed and cached. Using y(2), and the known expression for ∂kf, ∂kf(y(2)) is then
efficiently computed. The process continues by evaluating ∇f (2)

k , which is written as

∇f (2)
k (y(1)) =

∑
j

∂jf
(2)

k (y(1))∇f (1)
j (w). (S38)

Again, being y(1) already computed during the feed-forward, ∂jf
(2)

k (y(1)) is readily computed. The last

component needed for the full gradient is ∂if
(1)

j (w), all parts of which are known. This method therefore
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Figure B7. Fidelity Fλ(ψ) vs variations of λ, for different test states, for the double Fredkin gate. The five test states ψ are
sampled randomly. (a) Global relative variations of λ, that is, plotting the fidelity against αλ for 0.9 � α � 1.1. Note that this is
equivalent to studying how the fidelity changes with respect to uncertainties in the evolution time, that is, how much does
exp(iHt ′) differ from exp(iHt). (b) Same as (a) but with 0 � α � 1.2. (c) Plot of Fλ(ψ) against absolute variations of a single
element of λ, in this case the first one, i.e. we take λ1 ∈ [−10, 10]. (d) Like (c) but for λ2.

allows to efficiently evaluate numerical the gradient of complicated functions, without approximating the
derivatives.

In the context of training neural networks, the function to be derived is the cost function of the network,
that is, roughly speaking, the (Euclidean) distance between the result obtained for an input and the
corresponding training output. For the gate design problem, we will use another notion of distance between
output obtained and output expected. For quantum states, the fidelity between these turns out to work
well.

B3. Implementation details
We used Python as language of choice for the implementation of the supervised learning. Being Python
language of widespread use in the machine learning community, many libraries and frameworks are
available to build computational graphs over which AD can be used. In particular, we used Theano [38],
together with the QuTiP library for the simulation of the dynamics of quantum systems [66, 67].

Our implementation allows the training of an arbitrary target gate, parametrized via a time-independent
Hamiltonian H(λ). The parametrization is completely arbitrary (provided the dependence on the
parameters is linear), so that the Hamiltonian can be chosen as H(λ) =

∑
iλiAi for any set of matrices Ai

and number of parameters λi. This is made possible by the flexibility of AD, which allows to automatically
build an efficiently differentiable computational graph, without needing to hardcode the structure of the
Hamiltonian.

The goal of the algorithm is, given a target gate G and a parametrization for the Hamiltonian H(λ), find
the λ0 such that exp(iH(λ0)) = G. We use for the purpose mini-batch SGD with momentum. The
mini-batch version of SGD involves computing the gradient, at every iteration, averaging over the gradients
computed for a number of states. Making such batches of states larger or smaller allows to enhance or
decrease the variance of the gradients with respect to the input state. The use of momentum [37, 41]
involves using a modified version of equation (S1). The updating rule is instead given by

v → γv + η∇λF(ψ,λ),

λ→ λ+ v,
(S39)

where here η is the learning rate and γ the momentum. The use of the auxiliary parameter v during the
training discourages sudden changes of direction, and can make the training significantly more efficient
[41].
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Figure B8. Training results for the Fredkin gate with a generator containing one-qubit interactions and two-qubit interactions of
the form Jij(XiXj + YiYj). Every point shows the final fidelity obtained at the end of a training procedure. The hyperparameters,
as well as the total number of training iterations, are kept the same in all the training instances shown here. The initial
parameters’ values are the same within each horizontal sector, but changed between different sectors. The initial parameters’
values within each sector have been chosen as all equal to c (that is, λi = c for all i). The values of c are 0, 1, . . . , 10, with c = 0 in
the leftmost sector and c = 10 in the last to rightmost one. The rightmost sector contains the results of training attempts with the
initial values chosen at random (that is, with λi sampled according to the uniform normal distribution, independently for each i).
The greatest reached fidelity, obtained with initial parameters’ values λi = 3, is F � 0.94.

While the cost function F is always real, some of the intermediate calculations needed to compute it
involve complex numbers. While this poses no fundamental problems, many of the machine learning (ML)
libraries do not support AD over functions with complex inputs or outputs. We worked around this
problem using a similar trick to the one reported in [68]. In particular, to use the existing framework, we
mapped the problem into one involving only real numbers. To do this, we map complex matrices into
real ones via the bijection A �→ Re(A) ≡ 𝟙⊗ AR − iσy ⊗ AI, where AR and AI are the real and imaginary
parts of A, respectively. At the same time, state vectors are to be mapped to Ψ �→ Re(Ψ) ≡ (ΨR,ΨI)T. It is
easy to verify that with this mapping AΨ �→ Re(AΨ) = Re(A)Re(Ψ), so that all calculations can be
equivalently be carried out with the real versions of matrices and vectors.

More specifically, the employed algorithm involves the following steps:

(a) Choose an initial set of parameters λ (randomly, or specific values if one has an idea of where a
solution might be). A number of other hyperparameters have to be decided at this step, depending on
the exact SGD method used. In particular, for mini-batch SGD with momentum and decreasing
learning rate, one has to decide the momentum γ, the initial value of η, the rate at which η

decreases during the training, and the size Nb of the batches of states used for every gradient descent
step.

(b) Repeat the following loop Ne times, or until a satisfactory result is obtained. Each such iteration is
conventionally named an epoch. Another hyperparameter to be chosen beforehand is the number of
training states Ntr to be used in each epoch. Once this is fixed, every epoch will involve a number
Ntr/Ne of gradient descent steps, each one using Ne states for a single gradient calculation. Ne random
training states are sampled, to be used during the epoch.

1. Pick Nb of the Ne training states.

2. Forward-propagate each state of the sample, and then backpropagate the gradients, thus computing
the average gradient over the mini-batch ∇λF(λ).

3. Update the coupling strengths λ as per equation (S5).

4. Return to point (1).

B4. Results
A sample of training results for Toffoli, Fredkin, and ‘double Fredkin’ gates are given in figure 1. In
figures B2–B4 are shown the training histories of the parameters for eight different solutions for Toffoli,
Fredkin and double Fredkin, respectively. These illustrate how quickly the networks converge for different
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Figure B9. Training results for the Fredkin gate with a generator containing all one-qubit interactions and two-qubit
interactions of the form J(1)

ij XiXj + J(2)
ij YiYj . The initial conditions are chosen as in figure B8. The maximum fidelities obtained are

F � 0.999, obtained in multiple instances c = 3 and c = 4 sectors.

Figure B10. Training results for the Toffoli gate with a generator containing all one-qubit interactions and two-qubit
interactions of the form Jij(XiXj + YiYj). The initial conditions are chosen as in figure B8. The maximum fidelities obtained are
F � 0.94, obtained in the c = 3 sector.

initial values of the parameters. In all the shown cases the target gates are obtained with unit fidelity up to
numerical precision (that is, all fidelities are between 1 × 10−16 and 1). Different sets of optimization
hyperparameters are found to give acceptable solutions. For the trainings shown in this paper we used a
dynamically updated learning rate given, for the kth epoch, by η = 1/(1 + kα) with the decay rate
α = 0.005. The other hyperparameters were chosen as γ = 0.5, Nb = 2, Ntr = 200. Different initial values
for the parameters were tested, but in most cases we started the training with either vanishing or random
(following a normal distribution) parameters. For the training of the four-qubit gate we found the network
to converge sooner to a solution when the parameters were initialised to a positive value (often with all
parameters initialised to 4).

In figures B5–B7 we report the behaviour of the fidelity upon changes of the learnt Hamiltonian
parameters, for Toffoli, Fredkin and double Fredkin gates, respectively. As shown in these plots, the
stability of the implemented gates with respect to variations of time and interactions values greatly varies
between different solutions, as well as between different parameters in the same solutions.
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Figure B11. Training results for the Toffoli gate with a generator containing all one-qubit interactions and two-qubit
interactions of the form J(1)

ij XiXj + J(2)
ij YiYj . The initial conditions are chosen as in figure B8. The maximum fidelities obtained are

F � 0.98, obtained in the c = 4 and c = 5 sectors.

To assess the feasibility of non-trivial gates in more restrictive experimental scenarios, we performed a
systematic analysis of the reachability of Fredkin and Toffoli gates when allowing only for single-qubit and
XiXj + YiYj two-qubit interactions, and in the less restrictive setting of allowing for all XiXj and YiYj

interactions. The results are shown in figures B8–B11. For the Fredkin gate, in the more restrictive XX
interactions setting, the biggest fidelity obtained was F � 0.94, while when allowing for all XX
and YY interactions the maximum fidelity obtained was F � 0.999. For the Toffoli gate, the maximum
fidelity obtained in the XX scenario was F � 0.94 as well, while when allowing for all XX and YY
interactions the best training results corresponded to F � 0.98. To have more consistent results, in all the
training instances shown here all the hyperparameters, except for the interaction parameters’ initial
values, were chosen to have the same value. In particular, each training instance was run for 200
epochs, each one using 200 random quantum states as inputs, divided in batches of two elements. This
choice of hyperparameters is mostly empirical, and it is possible for different values to provide better
results.

The above provides further evidence for the flexibility of the supervised learning approach, which can
produce solutions with good fidelities even in more restrictive scenarios, closer to the capabilities of state of
the art experimental architectures. Furthermore, the values of the interaction strengths for many of the
presented solutions are found to be compatible with the capabilities of state of the art circuit-QED
architectures with gate times of the order of tens of nanoseconds [26, 27]. For instance, the Hamiltonian
reported in the supplementary information (https://stacks.iop.org/NJP/22/065001/mmedia) of reference
[26], after a suitable adiabatic elimination of the field used to mediate the interaction among various
superconducting qubits, returns a model that is very close to the ansatz used in equation (10).
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