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Numerical tools able to predict and explain the initiation and propagation of damage at

the microscopic level in heterogeneous materials are of high interest for the analysis and
design of modern materials. In this contribution, we report the application of a recently

developed numerical scheme based on the coupling between the Virtual Element Method
(VEM) and the Boundary Element Method (BEM) within the framework of contin-

uum damage mechanics (CDM) to analyze the progressive loss of material integrity in

heterogeneous materials with complex microstructures. VEM is a novel numerical tech-
nique that, allowing the use of general polygonal mesh elements, assures conspicuous

simplification in the data preparation stage of the analysis, notably for computational

micro-mechanics problems, whose analysis domain often features elaborate geometries.
BEM is a widely adopted and efficient numerical technique that, due to its underlying

formulation, allows reducing the problem dimensionality, resulting in substantial sim-

plification of the pre-processing stage and in the decrease of the computational effort
without affecting the solution accuracy. The implemented technique has been applied
to an artificial microstructure, consisting of the transverse section of a circular shaped

stiff inclusion embedded in a softer matrix. BEM is used to model the inclusion that
is supposed to behave within the linear elastic range, while VEM is used to model the

surrounding matrix material, developing more complex nonlinear behaviors. Numerical
results are reported and discussed to validate the proposed method.

Keywords: Fibre-reinforced Composite Materials; Computational Micro-mechanics;

Computational Homogenization; Virtual Element Method; Boundary Element Method.

1. Introduction

Employing accurate and effective computational tools is today an essential item in

the analysis and design of novel materials for various structural applications. Ef-
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fective computational tools complement experimental activities, allowing the early

selection and preliminary analysis of the most promising solutions among several

alternatives, thus speeding up and reducing the cost of the overall development

process.

Materials design is often driven by the ability to engineer their microstructure

by suitable coupling of different phases whose interaction is optimized to achieve

desired properties at the scale of the considered application. Within this framework,

computational micro-mechanics plays an important role.

This contribution reports the application of a recently developed numerical tech-

nique 1,2,3 coupling VEM with BEM for the analysis of heterogeneous materials with

damage.

VEM 4 extends the features of FEM to very general polygonal and polyhedral

mesh elements, including irregular or non-convex elements as well as elements fea-

turing curved boundaries. For such a reason, VEM provides a powerful, flexible tool

for computational micro-mechanics problems, which generally feature phases with

complex geometries that may also exhibit non-linear constitutive responses 5,6,7.

BEM 8,9 is a numerical technique widely employed for the solution of sev-

eral classes of problems in solids and materials mechanics, including computa-

tional homogenization of materials with complex morphology or constitutive behav-

ior 10,11,12,13,14,15,16,17. The technique, based on a boundary integral reformulation

of the considered problem, allows reducing the analysis dimensionality, e.g. from

volumes to surfaces, resulting in substantial simplification of the pre—processing

stage and in the decrease of the number of degrees of freedom, without penalties

on the solution accuracy.

The content of this contribution is organized as follows: i) first, a Section pro-

viding a brief overview of the employed formulation, with some details about the

two-dimensional linear elastic BEM formulation, the lowest-order VEM formulation

for two-dimensional domains exhibiting isotropic damage, and some details about

the coupling between the two techniques; ii) then a Section reporting an application

to a fiber-reinforced composite material developing damage in the matrix phase; iii)

lastly, a Section providing some concluding remarks.

2. Formulation

The multi-region two-dimensional domain Ω ⊂ <2 with external boundary Γ, shown

in Fig. 1, is considered in this study. It is assumed that no body forces act within

Ω, but either displacements or tractions can be enforced on the boundary Γ. The

problem domain Ω is the union of two sub-domains, namely ΩB and ΩV, which

represent, respectively, the transverse section of a fiber and the surrounding polymer

matrix in a polymer fiber-reinforced composite. The two sub-domains share the

interface S ≡ ΓB.

BEM is used to model the fiber inclusion, which is supposed to behave within the

linear elastic range, while VEM is used to model the surrounding matrix, developing
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Fig. 1. Sample VEM/BEM analysis domain: geometry (left) and mesh (right).

more complex non-linear behaviours. With respect to standard FEM, VEM offers

the advantage of extended flexibility in terms element topology and shapes. The

technique ensures convergence and accuracy also for highly distorted meshes and

even non-convex elements, which would be considered pathological and problematic

in standard FEM analyses. Such a feature relieves the mesh quality requirements

for the employed meshes, thus reducing the need of mesh consistency checks in the

pre-processing stage of the analysis, which may prove highly beneficial when a large

number of morphologies have to be generated and analysed, as often the case in

computational micro-mechanics 6.

For the purpose of the analysis, ΩV is partitioned into several polygons of gen-

eral shape, while the boundary S ≡ ΓB is divided into several straight segments,

which form the edges of the polygonal elements in ΩV lying in the proximity of

the interface between the two sub-domains, see Fig. 1. For further details about

the adopted meshing procedures and related convergence analyses, the interested

readers are referred to Ref. 3.

2.1. Boundary Element modeling of the inclusion

For the sub-domain ΩB with smooth boundary S = ΓB, if no body forces are

applied, the boundary integral equation (BIE) for the displacements components

uj at a boundary collocation point x0 ∈ S can be written, using tensor notation

with i, j = x, y, as in Ref. 8.

1

2
uj (x0) =

∫
S

Gij (x0,x) tj (x) ds−
∫
S

Hij (x0,x) uj (x) ds, (1)

where ui(x) and ti(x) are the displacement and traction components at the integra-

tion boundary point x, Gij(x0,x) and Hij(x0,x), respectively, are the components

of the two-dimensional elasto-static fundamental solution for displacements and
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tractions under plane strain assumptions. The numerical treatment of the bound-

ary integral formulation expressed by Eq. (1) is based on the subdivision of the

boundary S into a collection of m straight elements ∆Sk and a convenient approx-

imation of the boundary displacement and traction components in terms of shape

functions and nodal values. A linear approximation of displacements and tractions

over each boundary element

u (ξ) = N (ξ) uk, t (ξ) = N (ξ) tk (2)

is assumed, where N (ξ) ∈ R2×4 is the matrix collecting 1D linear shape functions

for the boundary segment ∆Sk, expressed as function of the natural coordinate

ξ, and uk, tk ∈ R4×1 collect, respectively, nodal components of displacements and

tractions associated with the boundary segment ∆Sk. This approach ensures a

straightforward treatment of the interface conditions between the boundary element

and the lowest-order VEM elements used to model the contiguous matrix.

Eq. (1) can be numerically integrated using the procedures described, e.g., in

Ref. 9. Such numerical integration, repeated for Eq. (1) written for the set of all the

collocation points chosen along the boundary S, leads to a global system of linear

algebraic equations of the form

H UB = G TB (3)

where the vectors UB,TB ∈ R2m×1 collect the components of displacements and

tractions of all collocation nodes identified along the boundary S and H,G ∈
R2m×2m collect the coefficients obtained from the numerical integration of Eq. (1)

associated to such collocation points. Since the BEM domain identifies an inclusion

in the analyzed domain, both UB and TB are unknown quantities that must be

determined from the analysis.

2.2. Virtual Element modeling of the matrix

The lowest-order VEM formulation is employed to model the domain ΩV, which is

here associated with the polymer matrix of a fiber-reinforced composite material.

For a general polygonal element E, the element degrees of freedom are the values

of the displacements components at each of its n vertex, which are collected into the

vector uE . Analogously to the standard FEM, it is assumed that the displacements

field u within the element can be expressed as

u = N (ξ, η) uE (4)

where N (ξ, η) is the generic matrix containing the virtual shape functions Nv (ξ, η)

associated with each vertex v. Differently from standard FEM however, such shape

functions are known only on the element edges of E, where they are globally con-

tinuous linear polynomials. Since the shape functions Nv (ξ, η) are not explicitly

known within the polygonal element, an explicit expression for the strains is not
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available. An approximated constant strain field εΠ is assumed within each element,

which can be computed from the degrees of freedom uE as

εΠ = ΠE uE (5)

where ΠE ∈ R3×2n is the matrix representation of a projection operator defined

as 18

ΠE =
1

AE

n∑
v=1

∫
ev

NE
v N (η) ds, NE

v =

[
nx 0 ny
0 ny nx

]T
(6)

where AE is the area of the polygonal element E, bounded by its n edges ev and

NE
v is the matrix containing the components nx and ny of the outward unit normal

vector over each edge. The integrals appearing at the right-hand side of Eq. (6) are

exactly computable, since the restriction of the virtual shape functions Nv to such

edges are known piece-wise linear polynomials.

The VEM elemental stiffness matrix KE is given by the sum of two terms

KE = Kc
E + Ks

E . (7)

The consistency contribution is given by

Kc
E = AE ΠT

E C0 ΠE , (8)

where C0 is the material stiffness tensor in Voigt notation. On the other hand, Ks
E is

a stabilization term that may be computed as described, e.g., in Ref. 4. Its presence

is motivated by the need to avoid zero-energy modes not associated with rigid body

motion, which may arise as a consequence of the fact that the approximate strains εΠ

are assumed constant within the element, while the displacements u are piece-wise

linear on the element edges, which in general may induce incompatibility between

εΠ and the nodal degrees of freedom uE . For such a reason, a stabilization strategy

similar to that used in the standard FEMs for elements with reduced integration

is employed in the VEM, motivating the presence of the stabilization matrix Ks
E ,

which ensures the proper rank of the matrix KE .

The equivalent nodal forces FE are computed as in the standard FEM from

specified tractions t̄ over the element boundary ∂E =
⋃
ev, i.e.

FE =

∫
∂E

NT(ξ, η) t̄ ds. (9)

Once the elemental stiffness matrices and load vectors are built, the assembly

of the VEM global matrices and vectors can be performed following the standard

FE procedures, to obtain the following sets of equations for the VEM sub-domain

KV UV = FV (10)

where KV, UV and FV are, respectively, the stiffness matrix, the nodal displace-

ment vector and the force vector, with the superscript V introduced to identify

quantities related with the VEM domain.
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2.2.1. Modeling matrix damage with Virtual Elements

The VE formulation can be extended to problems involving nonlinear material

behaviors, as detailed in Refs. 19-20. An isotropic damage model 21,22,23,24 is herein

adopted to model the matrix phase of the composite material. Accordingly, the loss

of material integrity is caused by an equal degradation of the bulk and shear moduli

and it is governed by a single internal scalar damage variable ω, which tracks and

measures the loss of stiffness of the material. Damage evolves monotonically within

its admissible range 0 ≤ ω ≤ 1, where 0 is associated with the pristine status and 1

with the fully degraded material. The constitutive equations for an isotropic damage

model are defined as

σ = (1− ω) C0 εΠ (11)

where σ and εΠ collect the Voigt components of the stress and strain respectively,

and C0 is the elasticity matrix for the pristine elastic material. Damage evolution

is triggered upon fulfillment of the condition

F (ε) = τ (ε)− r = 0, r = max
λ∈H
{τ(λ)} (12)

where τ (ε) is a suitably chosen norm of the strains, used to determine if the con-

sidered stress state belongs to the elastic domain, when F (ε) < 0, or if it induces

damage initiation or evolution, F (ε) = 0. The monotonically increasing internal

variable r represents the damage threshold at the current loading step λ and it is

a function of the loading history H. To model the onset and evolution of damage

in epoxy resins, often used as the matrix material in fiber-reinforced composites,

Melro et al. 25 proposed an expression which reads

τ (ε) =
3J̃2

Xc
mX

t
m

+
Ĩ1(Xc

m −Xt
m)

Xc
mX

t
m

, (13)

where Xt
m and Xc

m are, respectively, the tensile and compressive strengths of the

epoxy resin. Ĩ1 and J̃2 are, respectively, the first stress invariant and the second

deviatoric stress invariant, both defined using the components of the effective stress

σ̃ = C0 εΠ acting in the undamaged material. The evolution of damage is governed

by the Kuhn-Tucker flow rules, which read

F ≤ 0, ṙ ≥ 0, ṙ F = 0, (14)

and allow to distinguish between loading and unloading conditions. Unloading oc-

curs when τ̇ ≤ 0; otherwise, damage evolves and the following consistency condition

must be satisfied

Ḟ = τ̇ − ṙ = 0. (15)

The exponential softening damage evolution law defined as in Ref. 25 as

ω(r) =

[
1− r0

r
exp

(
− r − r0

rf − r0

)]
·H (r − r0) , r = max

λ∈H
{τ(λ)} (16)
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is adopted to model the evolution of the damage ω after its onset. H (·) denotes the

Heaviside step function, the parameter r0 identifies the damage initiation condition

and rf specifies the softening response behavior.

The nonlinear constitutive laws appearing in Eq. (11) can be treated, as in non-

linear finite element formulations, using standard incremental-iterative algorithms.

The stress at a generic point x and at a generic loading step λ is given by the

expression

σ = σ(λ,x, εΠ,H), (17)

where εΠ is the approximated virtual strain computed as in Eq. (5), using the

matrix projector operator Π and H contains the history variables of the damage

model. The tangent material stiffness matrix Ctan at a certain time t is consistently

computed from the constitutive law in Eq. (17) as

Ctan(t,x, εΠ,H) =
∂σ

∂εΠ
. (18)

2.3. Coupling procedure for BEM and VEM subdomains

The coupling between BEM and VEM domains is achieved according to the ap-

proach introduced in Refs. 1-2. The BEM subdomain is treated as a macro-finite

element, and the traction-displacement equations associated with it are transformed

into force-displacement equations and assembled with the VEM equations, already

expressed in terms of nodal forces and displacements.

The vectors UV and FV appearing in Eq. (10) collect the displacement and

nodal force components of all the nodes in the VEM domain. It is possible to

partition the vectors as

UV =

[
UV
S

UV
D

]
, FV =

[
FV
S

FV
D

]
, (19)

where UV
S and FV

S identify components related to nodes belonging to the interface

S. Along S, the nodal displacements and forces must satisfy the compatibility and

equilibrium conditions

UB = UV
S , FB + FV

S = 0, (20)

which have been written considering that no external nodal forces act on the nodes

belonging to S. The displacement compatibility equations can be readily written, as

the same displacement components appear in both the BEM and VEM equations.

Contrarily, while nodal forces appear in Eq. (10), related to the VEM domain,

tractions appear in Eq. (3), related to the BEM domain, so that it is necessary to

retrieve consistent nodal forces from BEM tractions before writing the equilibrium

equations appearing in Eq. (20). This may be done by resorting to appropriate
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energetic considerations, which allow associating a system of equivalent nodal forces

FB with the tractions acting over the considered boundary elements leading to

FB = MTB, (21)

where FB,TB ∈ R2m×1 and M ∈ R2m×2m, being m the total number of boundary

nodes/elements, see Refs.1-2 for details. From Eq. (3), it follows TB = G−1 H UB,

so that Eq. (21) can be rewritten as the following force-displacement equilibrium

equation

FB = MTB =
(
MG−1 H

)
UB = KB UB. (22)

Eq. (10), related to the VEM sub-domain, can be conveniently rewritten as[
KV
SS KV

SD

KV
DS KV

DD

][
UV
S

UV
D

]
=

[
FV
S

FV
D

]
, (23)

and it may be eventually combined with the interface conditions in Eq. (20), with

Eq. (22) and with suitable external boundary conditions to obtain the problem

solution.

3. Numerical test

In this Section, an application of the hybrid virtual-boundary element formulation,

combined with an isotropic damage model for the regions modeled with virtual el-

ements, is reported. Fig. 2 shows the model’s geometry and boundary conditions: a

unit cell comprising a single fiber embedded in an epoxy matrix, with initial partial

debonding between fiber and matrix along the region of the interface identified by

|θd| ≤ 70◦. Outside the debonded region, the inclusion is perfectly bonded to the ma-

trix. The study of this fiber–matrix system has been treated extensively 27,28,29,30.

The present test aims at simulating the progression into the matrix of the two kinked

cracks that start from both ends of the debonded zone. It is worth noting that, in

this specific application, the coupling procedure detailed in Section 2.3 is applied

only over the pristine region of the matrix–fiber interface. The debonded regions

require the application of zero traction conditions over the edges of the BEM fiber

domain and zero nodal equivalent forces over the nodes at the edge of the VEM

matrix domain.

The side length of the unit cell is L = 0.2 mm and the fiber diameter is D =

0.025 mm. The center of the circle coincides with the center of the square. The

tensile loading is applied by prescribing uniform displacements ū at the sample

left and right edges. Plane strain conditions are assumed. The fiber material is

assumed linear elastic, and it does not develop damage. The matrix material is

treated as linear elastic until the damage onset, governed by the loading function

in Eq. (13). The exponential damage evolution law in Eq. (16) is assumed, with

r0 = 1, rf = 234, according to strength and fracture toughness data about epoxy.

The transverse elastic material parameters are EF = 201 GPa and νF = 0.22 for
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the fiber and EM = 2.8 GPa and νM = 0.33 for the matrix. The fracture toughness

of the epoxy matrix is Gfr = 0.09 N/mm.

A integral-type non local regularization approach 31,32 is employed, which con-

sists in replacing the local value of the equivalent strain τ(xp) at a certain point xp
with its weighted average τ̄(xp) over a representative circular domain surrounding

each material point xp

τ̄(xp) =

∫
Ω

α(xp,xq)τ(xq) dΩ, (24)

where Ω is the analysis domain and α(xp,xq) is a nonlocal weight function chosen

as

α(xp,xq) =
α0 (r)∫

Ω
α0 (r) dΩ

, (25)

where α0 (r) is a non-negative function of the distance r = ||xp − xq|| between

two considered material points, monotonically decreasing for r ≥ 0. The expression

adopted for α0 (r) is the truncated quadratic polynomial function

α0 (r) =

〈
1− r2

R2

〉2

, (26)

where R is known as the interaction radius and it is a parameter related to the

characteristic length lc. In this test, a value of R = D/3 has been used.

Fig. 2. Geometry and boundary conditions of the composite unit cell containing a circular fiber
partially debonded from the matrix.

The matrix region is discretized with 8047 2D lowest-order virtual polygon ele-

ments, which induce 256 1D linear boundary elements on the fiber-matrix interface.

The simulation is performed under displacement control using a Newton-Raphson

with adaptive load step to track the steep softening branch. The simulation is ar-

rested at a nominal macro-strain εx = 0.05.
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Fig. 3 shows the load-displacement diagram: for each load increment, the plot-

ted reaction force is computed as the sum of the nodal reaction forces on the right

edge. The identified labels correspond to the damage profiles shown in Fig. 4. Linear

elastic behavior is exhibited up to slightly before the point (a) in the curve, which

marks the initiation of damage at the ends of the debonded interface, where stress

concentration is expected. Once the damage is activated, the two symmetric dam-

aged/failed region progress within the matrix, following a kinked path consistent

with the previously cited references’ behavior. As the load increases, the material

failure evolves, affecting regions oriented perpendicularly to the load direction up

to the domain boundary, which causes a progressive decrease of the load-carrying

capability identified by the softening branch of the load-displacement diagram.

An important aspect related to the use of VEM for modelling evolving damage

in the matrix is worth highlighting. In damage modelling with standard FEM,

mesh directionality is a well-known issue, especially when highly structured meshes

are employed 33. In the numerical campaign, it has been noticed that the use of

hexagonal elements in the VEM region, in conjunction with the use of the non-local

regularisation, mitigated mesh directionality, which could be an additional indirect

benefit provided by VEM. This aspect has not been however thoroughly investigated

and will form the object of further investigations.

Fig. 3. Force-displacement diagram for the composite unit cell test.
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Fig. 4. Evolution of the damage profile for the composite unit cell test.
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