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TOWER SETS AND OTHER CONFIGURATIONS WITH
THE COHEN-MACAULAY PROPERTY

GIUSEPPE FAVACCHIO, ALFIO RAGUSA AND GIUSEPPE ZAPPALA

ABSTRACT. Some well-known arithmetically Cohen-Macaulay configu-
rations of linear varieties in P" as k-configurations, partial intersections
and star configurations are generalized by introducing tower schemes.
Tower schemes are reduced schemes that are finite union of linear vari-
eties whose support set is a suitable finite subset of Z4 called tower set.
We prove that the tower schemes are arithmetically Cohen-Macaulay
and we compute their Hilbert function in terms of their support. Af-
terwards, since even in codimension 2 not every arithmetically Cohen-
Macaulay squarefree monomial ideal is the ideal of a tower scheme, we
slightly extend this notion by defining generalized tower schemes (in
codimension 2) and we show that the support of these configurations
(the generalized tower set) gives a combinatorial characterization of the
primary decomposition of the arithmetically Cohen-Macaulay squarefree
monomial ideals.

INTRODUCTION

In the last few years a large number of researchers in algebraic geometry
in order to produce projective schemes with suitable Hilbert functions and
graded Betti numbers constructed special configurations of linear varieties
related to some subsets of Z . Among these should be cited the partial inter-
section schemes introduced first in [MR] and generalized in any codimension
in [RZ] and the k-configurations defined in [GS] and [GHS] to obtain maxi-
mal graded Betti numbers with respect to a fixed Hilbert function. On the
other hand, to study the extremal Hilbert functions for fat point schemes
in the plane, secant varieties of some classical algebraic varieties and some
properties of the symbolic powers of ideals, the star configurations were
defined and deeply investigated (see for instance [AS], [GHM]). All these
configurations lead to aCM ideals, mostly monomial and squarefree. Look-
ing at what all these configurations have in common, in this paper we define
the tower sets (Definition 2.1]), suitable finite subsets of Z<, on which are
supported the tower schemes (Definition 2.3]), which generalize all the pre-
vious mentioned configurations. These tower sets enclose the combinatorial
aspects of such configurations.

Also for these schemes we are able to prove that they have the aCM
property (Theorem [2.6]). Moreover, we compute the Hilbert function of
the tower schemes in terms of its tower set support. At this point one
can believe that, at least for monomial squarefree ideals, all aCM ideals
can be constructed in this way. Unfortunately, already in codimension 2,
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this is false as we show in Example B4l So the question which arises is to
find the right configuration which could characterize all the aCM monomial
squarefree ideals in a polynomial ring. Here we give a complete answer in
codimension 2 (Theorems [3.19)], and B.35]) defining a slight modification
of the tower schemes (generalized tower sets and schemes, see Definitions
and B.13). The codimension bigger than 2 case remains open.

After preliminaries and basic facts, in section 2 we introduce tower sets
and tower schemes and we prove that all these schemes are aCM (Theorem
[2.6). Then we show that every tower scheme has the same Hilbert func-
tion as a corresponding tower scheme supported on a left segment whose
Hilbert function was computed in [RZ] (see Proposition 211 and Corollary
2.12]). Section 3 is devoted to give a combinatorial characterization for aCM
squarefree monomial ideals of codimension 2. To do that we give a slight
generalization of tower sets and tower schemes (Definitions and [3.13]).
Then we prove numerous preparatory results about these sets and schemes
and finally in Theorems B.19] and we prove the stated characterization.

1. NOTATION AND PRELIMINARIES

Throughout the paper k will be a field and R := k[xy,...,z,] = ®qRy
will be the standard graded polynomial k-algebra.

We will denote by Zy :={r € Z | r > 0}. If r € Z we will set [r] :=
{1,...,r}. If ¢,r € Z we will denote by C., the set of the subsets of [r] of
cardinality c.

Moreover, we will set m; : ZS — 7 the projection on the i-th component.
On the set ZG we will use the following standard partial order. If o, 3 € Z¢,
a < Biff m(a) < m;(B) for every i € [c].

We will denote by (Z)* := {(a1,...,ac) € ZS | a; # a; for every i # j}.
Let T' C Z< be a finite set. Let 1 <t < c—1 be an integer and let a € Zz_.
We set

To:={y€Z{"| (v,a) €T}
and
T = {y € 757 | (a,7) € T)

Definition 1.1. The function ¢ : (Z9)* — C.,, such that ¢(a,...,
{a1,...,a.}, will be called forgetful function. A function w : C.,, —
will be called ordinante iff ¢ ow =id¢,,, -

ac)
(Z%)"

Let L C Z be a finite set. L is said left segment if for every a € L and
B € ZS with 8 < a it follows that 3 € L.

Let L C ZS be a left segment. The set {a1,...,a,} € L is called set
of generators for L if for every a € L, a < «; for some ¢. The element
(maxmi(L),...,max7. (L)) € Z is said the size of L.

Let L C Z% be a left segment of size (mi,...,m.), with ¢ < n. For
1 <i<eglet Fi = {fi,.--, fim;} be c families of generic linear forms
belonging to R. For every a = (ay,...,a.) € L we set I, := (fiayy- -+ fea,)-
We recall that the scheme defined by the ideal Ir(F1,...,Fe) = (\aer la
is called partial intersection, with support on L and with respect to the

families F1,..., Fe.
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If @ € 25 we set v(a) := >7 mi(a). If L C ZS is a left segment, the
Hilbert function of L is

Hi(i) :=|{a € L|v(a) =i+ c}.

We remind that Hp, coincides with the Hilbert function of a partial intersec-
tion supported on L (for details about left segments and partial intersections
see [RZ]).

In the sequel, if M is a matrix of rank r, with entries in R, we will denote
by I(M) the ideal generated by the minors of size r in M.

2. TOWERS SETS

Many recent papers dealt with special configurations of linear subvari-
eties of projective spaces which raised up to Cohen-Macaulay varieties, for
instance partial intersections studied in [RZ], k-configurations studied in
[GHS], star configurations studied in [GHM]|. In this section we would like
to generalize all these configurations in such a way to preserve the Cohen-
Macaulayness.

Definition 2.1. Let T' C Z¢ be a finite set. We say that T' is a tower set if
for every t € [c — 1] and for every a, 3 € Z! , with a < 3, T, # ), we have
T, D Ts.

Note that when ¢ = 1 every finite subset of Z, is a tower set.

Remark 2.2. If T C Z¢ is a tower set and o € Zz_ then T, C Zf[t is also a
tower set.

Definition 2.3. Let T' C ZS be a tower set. Let R := k[z1,...,z,], with
2<c<n-—1 Let F; ={fij | j € m(T)}, 1 <i<e¢, where fi; € Ry,;, such
that f;; and f;, are coprime when j # h and for every o = (a1,...,a.) € T
the sequence (fiqy,- .-, fea,) is regular. We will denote by I, the complete

intersection ideal generated by fiq,, ..., fea.. We set
Ip(Fr,. o Fe) = ) Ta
aeT

It defines a c-codimensional subscheme of P™ called tower scheme, with
support on T, with respect to the families F1,..., F.

Note that if T is a c-left segment then T is a tower set, so every partial
intersection is a tower scheme.

Recently many people investigated special subschemes called star con-
figurations. We recall that a star configuration is defined as follows. Let
R = k[z1,...,xn], s,c € Z4 such that ¢ < min{s,n — 1}. Take a set F
consisting of s forms fy,..., fs € R such that any c of them are a regular
sequence. If s > a; > ... > a. > 1 are integers and a = {aq,...,a.} we set
Iy := (fay,--, fa.)- A star configuration is the subscheme V.(F,P") C P"
defined by the ideal ) I, where « runs over all the subsets of [s] of cardinality
c. For more details on star configurations see, for instance, [GHM].

Remark 2.4. A star configuration is a particular tower scheme. Namely, let

T:{(al,---,ac)EZi|82a1>...>a021},
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and let us consider the families of forms

-Fi:(fsfi+la"'afcfi+1), fOI'lS’L'SC.
T is trivially a tower set and V (Ip(Fi,...,Fe)) = Vo(F,P").

In the quoted papers it was shown that partial intersections, k-configurations
and star configurations are all aCM schemes. Now we prove that every tower
scheme is an aCM scheme and this generalizes those results. We need the
following lemma, which is a slight generalization of Lemma 1.6 in [RZ].

Lemma 2.5. Let ¢,7 > 2 be integers. Let Vi 2 ... D V. be (¢ — 1)-
codimensional aCM subschemes of P and A; = V(f;) hypersurfaces, 1 <
Jj < r, with deg fj = d;. We set Y; :== V; N A; and let us suppose that Y; is
c-codimensional for each i and that'Y; and Y; have no common components
fori#j. Wesetd:=>; ;d;, Y :=Y1U...UY,_1 and X :=Y UY,. Then
the following sequence of graded R-modules

0= Iy (—(d—d)) L Ix 2 Iy /(f) =0

r—1
is exact, where f = [] f; and ¢ is the natural map. Moreover
i=1

Ix = Iy, + filv, + fifolvy + -+ fr. froalv, + (f1-- - fr).

Proof. The proof is analogous to that of Lemma 1.6 in [RZ]. We report it
for convenience of the reader.

Observe that the exactness of the above sequence in the middle depends
on the fact that f is regular modulo Iy,, since ¥; and Y; have no common
components for ¢ # j. So, the only not trivial fact to prove is that the map
 is surjective. For this we use induction on r. For r = 2, since V; is aCM,
Iy = Iy, 4+ (f1), therefore every element in Iy /(f1) looks like z + (f;) with
z € Iy, C Iy,. Hence, z € Iy; N1y, = Ix. So, ¢ is surjective and the
sequence is exact. Now, from the exactness of this sequence it follows that
Ix is generated by Iy, and fily,, i.e. Ix = Iy, + fily, + (f1f2)-

Let us suppose the lemma true for » — 1. This means, in particular, that
Iy = Iv, + filv, + -+ fi... fr—olv,_, + (f1... fr—1). Therefore, every
element z € Iy /(f1... fr—1) has the form = + (f1... fr—1) with = € Iy, +
flIV2 +tf1... fr—QI\/Tfl- Hence, x € IVT which implies x € IyﬂIyT =1Ix.
Again, by the exactness of our sequence we get that [x is generated by
fl .- -fr—lIYr and by IV1 + flIV2 +e+ fl . -fr—QIVrfn Le. Ix = IVI +
filvy +-+ froo fr—adv, + (fr- - fr)- O

We are ready to prove our result.
Theorem 2.6. Every tower scheme is aCM.

Proof. Let X be a tower scheme of codimension c. To show that X is aCM
we use induction on c. The property is trivially true for ¢ = 1, so we can
assume that every tower scheme of codimension ¢ — 1 is aCM. Let T be the
support of X and let F; = {fi; | j € mi(T)}, for 1 < i < ¢, be the families
defining X. Let 7n.(T) = {a1,...,as}, with a; < ... < as. For every i € [s]
we denote by V; the tower scheme of codimension ¢ — 1 supported on Tj,. If
t < j then V; D Vj. By inductive hypotheses each V; is aCM. Moreover we
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denote by A; the hypersurface defined by feq,, with ¢ € [s] and Y; = V; N A;.
Note that by the hypotheses on F3’s Y; is aCM of codimension c.

Therefore we have X = |J Y;. Now we use induction on s. For s = 1
1<i<s
X =Y is aCM. Suppose that Y = |J Y; is aCM and show that X =
1<i<s—1

Y UY; is aCM. Applying the previous lemma we get the exact sequence

0= Iy,(—deg f) = Ix = Iy /(f) = 0
s—1
where f = [] feq; from which we see that a resolution of I'x can be obtained
i=1
as direct sum of the resolutions of Iy, (—deg f) and Iy /(f); since both have
resolutions of length ¢ the same is true for Ix and we are done. U

Our next aim is to compute the Hilbert function of a tower scheme in the
case when the defining families consist of linear forms. To do this, if T" is a
tower set, we define a map o : T' — Z$ as follows. Let o = (a1,...,a.) € T,
we set

hi(a) :=|{i|i<ay, (i,a2,...,a.) € T} |,
hi(e) =[{i|i < aj, Tia;e1,a0) 03], for2<j <ec
and finally
ola,...,ac) = (hi(@),..., he(a)).
The map o is trivially injective. We set T# := o(T).

Proposition 2.7. For every tower set T, T# is a left segment.

Proof. Let o = (a},...,a.) € T# and B = (b},...,b.) € Z, such that
B' < /. We have to prove that 5/ € T#, i.e. we have to find 8 € T such
that o(8) = #'. Let « = (a,...,a.) € T be such that o(a) = o/, hence
a, = hi(a). Since b, < he(a), there is a unique element b, such that Ty # 0
and | {i | i < be, T; # 0} |= bl.. Now, since b.,_; < he—1(a), we have that
T, a0) # () and, since T is a tower set, T, be) # (), therefore there is
a unique element b,y such that Ty, _, 5.y # 0 and | {i | i < be1, T(ip,) #
0} |=b._,. By iterating the same argument we will set b; the unique element
such that Ty, p.1..00) 7 0 and | {7 | 1 < by, Tip,uy,p0) # 0F = 0,
for 1 < j < ¢. Now we set 8 = (b1,...,b.). By definition 5 € T and
o(8) = 4. 0

Remark 2.8. Note that if T,U C Z are tower sets such that 7" C U then
T# C U#.

Proposition 2.9. Let T' C Z be a tower set. Let X =V (Ip(Fi,...,Fe)).
LetY be a tower scheme supported on T#, with respect to the same families
fl,... ,fc. Then HX = Hy.

Proof. If ¢ = 1 then T is a finite subset of Z, say r = |T|, so T# = [r].
Therefore Iy and Iy are principal ideals generated by a form of same degree,
hence Hx = Hy.

So we may assume that ¢ > 2 and we proceed by induction on c¢. We
consider the set 7.(T') = {m1,...,ms}, my < ... < mg. Since T is a tower
set, Ty, 2 ... 2 Ty, are (c—1)-tower sets. Let X; be the scheme defined by
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Ir,, (Fi,...,Fe—1). Then each X; is an aCM scheme of codimension ¢ — 1
by Theorem and X1 D ... O X,. Moreover, by Remark 28, (7;,,)” 2

. D (Tm.)¥. Let Y; be the scheme defined by Iop, y#(F1,. oo Fee1). By
the inductive hypothesis Hx, = Hy,. Now, let F, - {fi,s---, fs}, we set
X; = X;NV(f;) and Y; = Y; N V(f;). Since X; and Y; are aCM then
Hy = Hy,. Finally, using induction on s and the exact sequences (see

Lemma [2.9])

0— IYS(_(S) — IX — IYZU...UYS_l/(fl . fs—l) —0

0= Iy (=0) = Iy = Iy, v, /(fi-o fs=1) = 0

where 6 = deg(f1 ... fs—1), we get the conclusion. O

Proposition 2.9 allows us to find a formula for the Hilbert function of a
tower scheme.

Remark 2.10. Note that, according to the exact sequence of Lemma 2.5
the Hilbert function of a tower scheme depends on the tower set and on the
degrees of the forms in the families.

Now we associate to a tower scheme X, supported on a left segment L, a
partial intersection Y with support on a suitable left segment Lp such that
Hx = Hy.

If L is a left segment of size (ai,...,a.) and D = {d;;}, 1 < i < c and
1 < j < a; are positive integers, we define a new left segment, which we will
be denoted by Lp, in the following way. If L is (minimally) generated by
Ki,...,K,, then Lp is the left segment generated by K7,..., K| where, if
Ki = (k1,..., k) then K] = (Y51 dyj, ..., Y02 dey).

Thus, let X be a tower scheme supported on the left segment L and let
Fi =A{fij | j € m(L)}, for 1 < i < ¢, be the families defining X. Set now
(L) ={a1,...,a.}, with a1 < ... <a. and D = {d;;} where d;; = deg f;j,
1<i<cand1<j<a;. Since, by Remark 210, Hx depends just on D
we may assume that f;; = HZil ll}-‘j, where each llhj is a linear form. Now
we denote by Y the partial intersection supported on Lp with respect the ¢
ordered families of linear forms

Li=(linn, - lidg lior, - lizdigs - -+ liag1s -+ liggdia, )-

Proposition 2.11. Given a tower scheme X supported on the left segment
L with respect to the families of forms F; = {fi; | j € mi(L)}, for1 <i<c¢
and D = {d;;} where d;; = deg f;;. Then Hx = Hyp,,,.

Proof. By definition Ix = N, . jyer(fijs -« fej.). Now we denote by YV
the partial intersection supported on Lp with respect the ¢ ordered families
Of linear forms ﬁz = (li117 e 7li1d¢17li217 e 7li2d¢27 N 7liai17 N 7lia¢diai)7 1 S
i < c¢. Now if « is an integer such that 1 < a < zg’zl d;s we set

to :=max{j | dj1 +...+d;j <a}+1

and
ta—1

he = a — Z dis
s=1
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and piq = lit,h,- Then, with this notation
IY = ﬂ (plala---,pcac)-

(a1,...,ac)ELD
It is a matter of computation to show that Ix = Iy and this completes the
proof. O

In the next corollary we lead back the computation of the Hilbert function
of a tower scheme to that of a partial intersection. The Hilbert function of
a partial intersection was explicitly computed in [RZ].

Corollary 2.12. If X is a tower scheme supported on a tower set T with
respect to families of forms of degrees D, then Hx = H 4,

Proof. It follows just using Propositions 2.9 and 2111 O

3. GENERALIZED TOWER SETS: A CHARACTERIZATION OF ACM
PROPERTY

In this section we will generalize tower sets in such a way to characterize
aCM squarefree monomial ideal of codimension 2.

Let I C k[x1,...,2,] be an equidimensional squarefree monomial ideal of
codimension ¢ and let I = p; N...Np; be its primary decomposition. Each
p; is a prime ideal of the type (z4;,, ..., %q, ). S0 we can consider the subset
S(I) = {{aﬂ, Ces ,aic} ‘ 1 < 1 < t} of Cc,n-

Vice versa to § C C,, we can associate an equidimensional squarefree

monomial ideal
Is = ﬂ (Tays - Ta.)-
{a1,...,ac}€S
Definition 3.1. Let S C C,,,. We will say & aCM if Is is an aCM ideal.
Definition 3.2. Let § C C.,. We will say that S is towerizable if there

exists a permutation 7 on [n] and an ordinante function w : Ce, — (Z5)*
such that 7(w(S)) is a tower set.

Remark 3.3. Let S C C, . Note that S is towerizable if there exists a tower
set T' and families F; C {z1,...,zy,}, such that S(Ip(F1,...,Fe)) =S.

By Theorem if § is towerizable then S is aCM, however there are
aCM equidimensional squarefree monomial ideals I such that S(I) is not
towerizable. Here it is an example in codimension 2.

Ezample 3.4. Let S = {{1,2},{3,4},{5,6},{4,6},{1,4},{1,6}}. Then it is
easy to check that Is is the determinantal ideal generated by the order 3
minors of the matrix

il 0 0
Tro I3 X
0 Xq 0 ’
0 0 Te

so & is aCM. Let us suppose that S is towerizable. Then there exists a tower
scheme X with support on a tower set 7' such that S(Ix) = S. Of course
|T'| = 6 and there is not a variable xj such that the ideal (xj) contains
4 of the 6 minimal primes of Is. Consequently, |m2(7")| < 3 and for every
a € ma(T) |Ta] < 3 so we have only three possibilities
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1) mo(T") = {a,b} with |T,| = 3 and |T}| = 3;

2) mo(T) ={a,b,c} with |T,| = 2, |T}| = 2 and |T,| = 2;

3) ma(T) = {a,b,c} with |T,| =3, |Tp| = 2 and |T| = 1.
The first two cases cannot occur since Ix = Is does not contain monomials
of degree two.

Therefore T, D Ty, D T, and T, = {hl,hz,hg}, T, = {hl,hg}, T. = {hl}
for some h;’s and thus T = {(h1,a), (ha,a), (hs,a), (h1,b), (h2,b), (h1,c)}.
But the numbers 2, 3 and 5 belong each to one only element of .S whereas
in T there are only two such numbers, precisely hs and c.

Because of the previous example it is natural to ask which sets & C C,
are aCM. We will give a characterization in codimension 2 (see Theorems

[3.19] and [3.35)).
Definition 3.5. Let h € Z;. Let S C Ca,,. We set
S:h:={AcS|h¢gA}
Ifs C Zi we set
S:h:={aeS|m(a)#hand m(a) # h}.

Remark 3.6. Note that if S is aCM then S : h is aCM. Indeed, if M is an
Hilbert-Burch matrix for Ig then Ig.; is generated by the maximal minors
of the matrix obtained from M by replacing x; with 1.

In the sequel we will use the following result which shows that if S C Cy,,
is aCM then also the scheme obtained by replacing (x;, ;) 2 Is with (h;, hj),
generic complete intersections, is aCM.

Proposition 3.7. Let S C Cy,, be an aCM set, with Is C klxy,...,x,]. Let
hi,....hn € E[y1,...,ym] be forms, such that depth(h;,h;) = 2 for every
{i,7} € S and

depth(hs, b, hu, he) > 3
for every {i, j}, {u, v} € S, {i,j} # {u,v}. Then the ideal J = (; jyes5(his hy)
is aCM.

Proof. We consider the following vectors
L = (xl""’xn) andﬁ: (hl""’hn)'

Since Is is aCM we can consider M = M (z), an Hilbert-Burch matrix
for Is. We claim that N = M (h) is an Hilbert-Burch matrix for J. We have
to prove that J = I(N). Let g € I(IN) be a maximal minor of N. Then
g = f(h), with f(z) € Is. Therefore f(z) = A\i(z)x; + pj(z)x; for every
{i,j} € S, consequently f(h) € (hs, h;) for every {i,j} € S. So I(N) C J.

To conclude the proof it is enough to show that deg I(N) = deg J. By the
generality of the forms hq,...,h,, we have that

degJ = Z (deg h;)(deg h;).
{i,j}es
Now we proceed by induction on n. If n = 2 then § = {1,2} and I(N) =
(h1, hz). So we can suppose that deg I(N) = >_r; e s(deghy)(degh;), when
S C Cypn1. We can write S = (S : n) US(,) where S:n={a €S |n¢a}
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and S,y = S\ (S : n). By Remark 3.6l S : n is aCM. Let ]\//_7@) be an
Hilbert-Burch matrix for Is.,,. We set N=M (h). Therefore
Is = I(M) = (I(M) : 2) N (2, [ 2a) = IO (@0, T 20)-
UES(n) uGS(n)
Hence, using the inductive hypothesis, we get

deg I(N) = deg(I(N)) + deg(hn, [] hu)) =
UES(n)

> (deghi)(degh;)+(deghy) > deghy = Y (deghs)(deghy).
{i,7}€(Sn) {u,n}€Sm) {i,j}€S
[

We recall that if T C Z%— and ¢ € Z, then
T'={jem(T)| (i,j) € T}
and
Ti ={j em(T) | (4,9) € T}
Remark 3.8. Let T C (Z%)* be a tower set. Then

1) a <band T, # 0 = (a,b) ¢ T. Indeed, the assumption implies
T, 2 Tp. Since (a,a) ¢ T, we have a & T, therefore a ¢ T, i.e.
(a,b) € T.

2) a < band (b,a) € T = (a,b) € T. Indeed, the assumption implies
T, # 0 so, by the previous item, (a,b) & T.

3) {(a,b),(bya)} T for every a and b. It follows by item 2.

Note that by item 3, |T'| = |¢(T")| where ¢ is the forgetful function.

Proposition 3.9. Let T C Zi be a tower set. Then T' and T" are compa-
rable under inclusion for every i and h.

Proof. Let j € T? be such that j ¢ T", we have to show that T" C T?. Let
keTh ie heTy buthd T; therefore since T is a tower set we have that
T; C Ty, s0 i € Ty ie. (i,k) € T that implies that k € T". O
Proposition 3.10. Let T C (Z%)* be a tower set.

1) Let h € m(T) be such that T, O T} for every j € mwao(T). Then
h & m(T).

2) Let h € m(T) be such that T" D T° for every i € m(T). Then
h & mo(T).

Proof. 1) If (h,j) € T then h € T; C Tj,, i.e. (h,h) € T.
2) Using Proposition 3.9 the proof is analogous to item 1.

Let T C (Z2%)* be a tower set. Let h € m(T) N m2(T). We set
Fr(h) :={j € m(T) | T, C T; and (h,j) € T}.
Note that if j € Fr(h) then j < h.
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Definition 3.11. Let U C Cy,. We say that U is connected if for every
A,B € U there is C € U such that ANC # () and BN C # (). Let
S C (Z%)*. We say that S is connected if ¢(S) is connected.

Definition 3.12. Let S C (Z%)* be a finite set. We say that S is a gener-
alized tower set if

1) S is connected;
2) S=TUS, where T is a tower set

and Sy has the following further properties
3) for every (i,j) € So, i € m1(T) Uma(T) and j € m1(T) Nma(T);
4) for every (i,j) € So and h € Fr(j), (i,h) € So.

Definition 3.13. Let S C (Z%)* be a generalized tower set. Let R =
Elzi,...,xn],n > 3. Let F; = {fi; | j € mi(S5)}, 1 <i <2, where each f;; is a
form satisfying such conditions of genericity: for every (a1, a2) € S, fia,, f2a,
are coprime and for every (ai,asz), (bi,b2) € S, with {a1,a2} # {b1,b2},
depth(fia, s foass f1bys fob,) = 3. If @ = (a1,a2) € S, we will denote by I,, the
complete intersection ideal generated by fiq,, f24,- We set

IS(]:l,J:Q) = ﬂ Ia.
a€Ees

It defines a 2-codimensional subscheme of P” called generalized tower scheme,
with support on S, with respect to the families Fi, Fo.

In the sequel if S C (Zi)* we will set for short Is := I, g), consequently
S will be said aCM if Ig is aCM.

In order to prove our results on the Cohen-Macaulayness of such schemes
we need several lemmas.

Lemma 3.14. Let S = T U Sy be a generalized tower set. Let i € m1(Sp)
and let m = min{j | (i, j) € So}. Then Fr(m) = 0.

Proof. Let s € Fp(m); then s < m and by Definition B.12] item 4, (i,s) € Sp,
which is a contradiction. O

Lemma 3.15. With the above notation, if h € m(T) Nma(T') then for every
jem(T)Nm(T)\ {h} we have Fr.(j) C Fr(j).

Proof. If b € Fr.(j) then (T': h); C (T : h)p and (j,b) € T : h, with j # h
and b # h, so (j,b) € T. Moreover there is a such that (a,b) € T : h and
(a,j) € T : h. Since a # h this implies that T},  Tj. Since T is a tower set
we get that T; C Tj,.

U

Lemma 3.16. Let S =T U Sy be a generalized tower set. Let h € mi(T) N
mo(T). Then S : h is a generalized tower set with respect to the decomposition
S:h=(T:h)U(Sp:h).
Proof. Of course S : h= (T :h)U(Sp:h).

1) Since S is connected then S : h is connected too.

2) Let a,b € mo(T : h), a < b. Let i € (T : h)p; then (i,b) € T : h ie.
i €Ty, CTy;since i # h and b # h then i € (T : h),.
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3) Let (i,7) € So : h. Of course ¢ & m (T : h) Uma(T : h). Moreover
(m(T) Nmo(T)) \{h} = m(T : h) N ma(T : h). Indeed, m (T : h) N
mo(T : h) C (m(T)Nmo(T))\{h} trivially; if & € (w1 (T)Nme(T))\{h}
then k # h, k € Ty where Ty, O T, for every w and k € T® where
T O TV for every v, (see Proposition 39, so by Proposition B0,
a# handb#hie. (a,k),(k,b) €T :h, hence item 3 is clear.

4) Let (i,7) € So : h and u € Fr.,(j). By Lemma BI85 u € Fr(j), so
(i,u) € Sp. Since i # h and u # h we get (i,u) € Sp : h.

U
Lemma 3.17. Let U C Cy,, and a € [n]. Then Iy.q = Iy = (z4).
Proof. Iy = (g jrev (@i, 2;). Then
IU : (xa) = ﬂ ((.%'i,.%'j) : (wa)) = ﬂ (xi,mj) = IU:a-
{i,j}eU {i,j}€U:a
U

Lemma 3.18. Let S = T U Sy be a generalized tower set. For every a €
m1(S0), there is (a,h) € Sy such that Is., + (x) is a complete intersection
ideal of height 2.

Proof. We proceed step by step.

1) In this first step we show that the assertion is equivalent to prove
that for all {7,j} € ¢(S : a) we have either {i,h} € ¢(S : a) or
{j.h} € o(S s a),

At the beginning we observe that if Is., + (xp) is equidimensional
of height 2 and p is a minimal prime in its primary decomposition
then zj, € p, so Is.q + () = (;,(zh,2:) = (@, [[; z:) that is a
complete intersection.

On the other hand to show that Ig., + (x5) is equidimensional
of height 2 it is enough to prove that for all {i,j} € (S : a) we
have either {i,h} € ©(S : a) or {j,h} € »(S : a). In fact let p =
(xi,zj,zp) be a prime ideal containing Is., + (), so {4,j} € ¢(S :
a), consequently {i,h} € (S :a) or {j,h} € ¢(S : a) i.e. p contains
a prime ideal of height 2 containing Igs., + ().

Now let a € m1(Sp), and let m; = min S%; we set
U(S") :=={me S*| T, =Ty, and Fr(m) = 0}.

Note that by Lemma BI4, m; € U(S?).
We claim that the integer h which we are looking for can be found in
U(S%). In the next two steps we prove properties of U(S®) for our claim.
2) Let myn € U(S?*) then T™ =T". If « € T™\T", i.e. (m,a) €T
and (n,a) ¢ T we have T,, D T,,, = T,,. Now since a ¢ Fp(n) = ()
and (n,«) ¢ T we should have T,, C T,,, a contradiction.
3) If Fr(m) =0 and (o, 8) € T then either (a,m) € T or (m,f) € T.
Since § ¢ Fr(m) = 0 we get either T C Ty, hence (a,m) € T, or
(m,B) eT.
In the remaining steps we will find the integer h working by induction on

[U(S)]-
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If |US")| = 1 then U(S*) = {m;1}, and we would like to show
that for all {i,j} € ¢(S : a) we have either {i,m;} € ¢(S : a) or
{j,mi1} € ¢(S :a). If {i,j} € p(T) then by item 3 we are done. So
we can assume that {i,j} € ©(Sp), with (4,5) € Sp. Of course we
can suppose that j # my. Since j ¢ Fr(m1) then either (mq,j) € T
or T; C Ty, . If (m1,5) € T we are done; otherwise we can assume
that T; C T,y .

if Tj C T,,, then either (j,m;) € T and we are done, or (j,m;) € T
then my € Fr(j), so by item 4 in Definition B12] we get (i, m1) € Sp
and we are done again.

if T,,,, = Tj, let us suppose that

{i,ma}, {ma, 5} & 0 (5).
Since S is connected then, taking (i,j) and (a,m;), we get (a,j) €
So. Since U(S*) = {m1} and j # my we have Fr(j) # 0. Now take
k € Fr(j); then Ty, = T; C T}, so k < m;. Since (a,j) € Sy and
k € Fr(j) by item 4 in Definition B.12] we have (a, k) € Sy, and this
contradicts the minimality of m;.

Let now U(S%) = {m,...,mp}, p> 1.

5)

At first we prove that U(S%) \ {mp} = U((S : mp)*). The inclusion
U(S*)\{mp} CU((S : my)?) follows directly by definition of U(S?)
and by Lemma Let m € U((S : mp)*) then m # m, and
(T 2 mp)m = (T : Mp)my; since T, = Tpp, we get my & Ty,
therefore T, D T,,,. By the minimality of m; we have T;, = T,,,.
Now if b € Fp(m) then T,,, = T,, C Tp, so b < my. Since S is
a generalized tower set we get (a,b) € Sy and this contradicts the
minimality of m;.

By the inductive hypothesis there exists m € U(S%)\{m,} such that
for any (4,j) € (S : a) : m, we have either

{im, i} or {m,j} € p((S : @) : my).
We will prove that either m, or m is the wanted element. Let us
suppose that there exist («, ), (u,v) € S such that

{m,a},{m, 5} & o((S : a)) and {my, u}, {mp, v} ¢ ¢((S : a)).

Note that § = m,, since otherwise (a,) € S : my,. Now since
v # my (u,v) € Sy : my, hence by hypothesis on m it should be
either (u,m) € Sy or {v,m} € ¢(T); but the last assertion is false
since, by item 2, T);, = Tjp,, and T™ = T". This implies that (o, myp)
and (u,m) € S and this contradicts the connection of S.

U

Finally we are ready to prove the announced result.

Theorem 3.19. If S is a generalized tower set then S is aCM.

Proof.

S =T USy, where T is a tower set and for Sy the properties of

Definition hold. We proceed by induction on r = |7r1(Sp)|. If Sop = 0
then S = T which is aCM by Theorem Now we can suppose that the
assertion is true up to r — 1. Take a € m;(Sp). Note that S :a=TU(Sy : a)
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and S : a is a generalized tower set with respect to this decomposition. Then
by inductive hypothesis S : a is aCM. We can write Ig = I5.,N (x4, f) where
f= HjeSa x;. Using the exact sequence
0— IS %IS:a@(xaaf) _>IS:a+(xa7f) —0

it is enough to show that proj-dim(Is., + (z4, f)) < 3, i.e. proj-dim(Ig., +
(f)) < 2. To do that we use induction on deg f = [S?|. If f = x} then, by
Lemma B8] Ig., + (z1,) is a complete intersection ideal of height 2 and we
are done.

If deg f = |S?| > 1, by Lemma B.I8] there is h € S® such that Ig., + ()
is a complete intersection ideal of height 2. We can write

Is.q + (f) = ((IS:a : (xh)) + (fh)) N (IS:a + (xh))a

where f, = f/xzp. In fact Is.a + (f) C ((Iswa : (@n)) + (fn)) O (Is:a + (1))
trivially. Let g € ((Is:a ¢ (zn)) + (fr)) N (Is.a + (z1)) be a monomial. If
g € Is.q we are done, otherwise g € (zp,). If g € (fy,) then g € (f) and we
are done again. Otherwise x,g € Ig.q; since Ig., is a monomial squarefree
ideal, we get g € Ig.,.

By Lemma [3.17 we have that Is.q : (zn) = I(5:):q- Since by Lemma
S : h is a generalized tower set, observing that f, = Hje(szh)a Tj, we can
apply the inductive hypothesis to assert that

proj-dim ((Is.q : (z4)) + (fn)) < 2.
We set J := (Is.q : (z1)) + (fn). Now let us consider the exact sequence
0= I+ (f) = J & (Isia + (xn)) = J + (21) = 0.
Since proj-dim(J + (z3)) < 3 and Ig., + (z1,) is a complete intersection ideal
of height 2, we can conclude that proj-dim(Zg., + (f)) < 2. O

Now we want to give a converse of the previous theorem. More precisely
we want to prove that every monomial squarefree aCM ideal of height two
is supported on a suitable generalized tower set. To do this we introduce
some preparatory material.

Definition 3.20. Let U C Cs,,. We will say that U is generalized towerizable
set if there exists an ordinante function w : Co, — (Zi)* and a permutation
7 on ma(w(U)) such that Tw(U) is a generalized tower set.

Let U C Cy,, be an aCM set; then, by the Hilbert-Burch theorem, I is
a determinantal ideal generated by the maximal minors of a matrix of size
(r+1)xr.

Lemma 3.21. IfI C R is an aCM monomial ideal of height 2 then it admits
a Hilbert-Burch matriz of the form

MO,l 0 0 0
Dl M1,2 Ml,al 0

0 D, 0 0 Mo,ay+1  «-- Mooy

0 0 D 0 0 0 Msagt1 - Msag
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where D; and M;; are monomials, D; # 0 and M;; # 0 and D; is in the
position (i,1) (we enumerate the rows from 0 to r and the columns from 1
tor).

Proof. We take the minimal monomial set G of generators for I, then the first
syzygy module is minimally generated by a set ® of r elements acting each
only on two of such generators. Moreover there are at least two generators in
G on which only one syzygy acts. Let fy be one of these generators and let
¢1 be the syzygy acting on fy and let f; be the other generator on which acts
¢1. Now we call ¢g, ..., ¢, all the other syzygies in ® acting respectively on
fiand fa,..., fo, € G. By iterating this procedure we get our matrix. U

Definition 3.22. An Hilbert-Burch matrix of the type as in Lemma [3.21]
will be called a matrix of standard form.

Definition 3.23. Let M = (m;;) be an Hilbert-Burch matrix of standard
form of size (r + 1) x r. Let o : [r] = {0,...,r — 1} be the application such
that o(j) is the only integer less than j such that mg(;y; # 0.

From now on we set M; for M ;.
Remark 3.24. Note that 0(1) =0, 0(2) = 1 and, for j > 2, 0(j) > o(j—1) >
0.

Given j € {1,...,r} we denote with m(j) the set
m(j) = {j,0(i), 0* (3, 0" ()},
where h is the only integer such that o"(j) = 1. We write u & m(j) to mean
u € [n] \ m(j).
Remark 3.25. Note that if i € m(j) then m(i) C m(j).

We denote by f; the determinant of the matrix obtained by removing the
row i for 0 <4 < r. By the Hilbert-Burch theorem we have that

{an"'afT}

is a minimal set of generators for I. Note that fo = Dg - - - D,.. In the following
proposition will compute all the other generators.

Proposition 3.26. For anyi € {1,...,r}, with the above notation, we have
fi= 11 M- I] Dps
jem(i) jgm(i)

Proof. Let i € {1,...,r}, and let H be the square matrix given by M
without the row containing D;. Since M; is the only entry in the i-th column
of H, we compute the determinant f; by using the Laplace expansion along
its ¢-th column. Thus f; = M;G1, where (G1 is the determinant of the matrix
H; obtained from H by deleting the row o (i) and the i-th column. Note that
M, (;y is the only entry in the o(7)-th column of Hj, hence f; = M;My;Go,
where G5 is the determinant of the matrix Hs obtained from H; by deleting
the row o2(i) and the o(i)-th column. So, by iterating this computation,
we get f; = Hjem(z‘) M; - G', where G’ is the determinant of the matrix H’
obtained from H by deleting the rows o(j) and the columns j, for all j €
m(i). Finally, we observe that H’ is an upper triangular matrix, therefore

G = Ijgma Di- O
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Now we want to construct a generalized tower set starting from a n
Hilbert-Burch matrix of standard form M.

Definition 3.27. We define
Uy o= {{i,j} € Coar | i <j <randigm(j)}
and
Uig:={{i,j} € Caor | i <r<jand j—rem(i}
Finally we set
Upm = Uy UUY,.

Proposition 3.28. 1) If {u,v} € U}, then either u & m(i) orv & m(i)

for every 1 <i <r.

2) If {u,v} € U}, with u < v, then either u & m(i) orv—r € m(i) for
every 1l <1< r.

Proof. 1) Let u,v € m(i) with u < v. Then v = ¢”(i) and u = " (i)
with b < k. Then v = o*"¢"(i) = o "(v), i.e. u € m(v), hence
{u, v} € U},

2) Let {u,v} € U}, with u < v, such that v € m(i). Since v—r € m(u)
we get v —r € m(7).

O
Proposition 3.29. Uy is connected.

Proof. Let {i,j},{u,v} € Upm, with i < j, u < v and u < i. If u & m(i) then
u <1<, s0{u,i} € Uy, If u € m(i), we have to consider two cases.

If v < r then {u,v} € U),, hence v & m(v). Since u € m(i) we get
m(i) € m(v) i.e. i € m(v). Moreover, by Proposition we have v & m(7)
and so {i,v} € U),.

If v > r then, by Proposition B.28] we get v—r € m(i), so {i,v} € Uy,. O

Now we set T := Uy, U{{i,j} € U\, | j—r €m(r)} and So := Upm \ T,
s0 So = {{i,j} € Coor |i <r <jand j—rem(i)\m(r)}
For every i € [r], we set p; := max(m(i) N m(r)).
We set
VY= ({u, v} € Ung | pa = o = i}
and

r = max U a U {0}.

1
aEV(l)

i

1)

Note that TZ( < r. Moreover, we set

(1) {max(m(z) N m(r§1))) if rgl) >0
py = o
0 otherwise

Now by induction let us suppose that we defined Mgk) for 1 < k < h. Then
we set

Vi = o € VIl = a0 = )

(3
and

r" .= max U auU{0}.

7

aEVi(h)
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h—1) h) (h—1)

Note that if TZ( > 0 then TZ( < It rlgh_l) = 0 then rgh) = 0.

Moreover we set
(h) max(m(i) N m(ri(h))) if rgh) >0
Wy = .
0 otherwise

(0)

In the sequel we will set u,’ := p;. Note that by definition the sequence

( ugh) )h>0 vanishes definitively.

Lemma 3.30. If {i,j} € U}, then there exists h such that ,ugh) # Mg.h).

Proof. If ugh) = ,ug»h) for every h then VZ-(h) = VJ(-h) # () for every h. Conse-

quently (,ugh)) n>0 should not be definitively null, a contradiction. U

For every {i,j} € UY,, with i > j, we set w({3,7}) := (4, 7).
For every {i,j} € U),, let ¢t be the smallest integer such that ,ugt) # ,ug»t)
(see Lemma [3.30). Then we set

w({i,j}) = {
Now we set U := w(Upnq) C (Z2%)*.

Observe that for 1 <4 <r, (r+1,i) € U, hence m(U) = [r].

Lemma 3.31. Let i,j € [r], with p; < pj. Let h > 1 be such that (h,i) €
w(T). Then (h,j) € w(T).

Proof. Since {h,i} € T and h > r we get h —r € m(i) N m(r). On the
other hand, p; < p; implies that m(:) N m(r) € m(j) N m(r). Therefore
h—rem(j)Nm(r),so (h,j) € w(T). O

Theorem 3.32. Uy is a generalized towerizable set.

(i,5) if it < !

(.1 if p? > p?

Proof. Let us consider U. It is enough to find a permutation 7 on [2r] such
that 7(U) is a generalized tower set.

We set T := w(T). We want to show that the set {T;}1<;<, is totally
ordered by inclusion. Let i,j € [r], i # j.

Case 1 : ugk) = ugk) for every k > 0. In this case we will show that

T, = Tj. Of course it is enough to show that T; C Tj. Take h € T; ie.
(h,i) € T. If h > r by Lemma B3] (h,5) € T. If h < r let t be the smallest

integer such that ,ugf) < ,ugt) = ,u§~t>. By the minimality of ¢, Tz'(t) = T/(zt),

hence from m(h) N m(r}(lt)) c m(i)N m(rlgt)) =m(j)N m(r§t)) it follows that
j & m(h). On the other hand if h € m(j), since ,ugk) = ,ug»k) for every k > 0,
by Lemma B30, {i,j} & U), ie. either i € m(j) or j € m(i). If j € m(i)
then h € m(i) and this contradicts that {h,i} € T.1If i € m(j), since both h
and 7 belong to m(j) then either h € m(i) or i € m(h), again a contradiction
with {h,i} € T. Therefore h & m(j). This together with j ¢ m(h), as we
saw, implies that {h,j} € T. By the inequality u,(f) < ug-t), we get (h,j) € T.

Case 2 : let t be the smallest integer such that Mz(t) < ,ug»t). We claim that
T; C Tj. Take h € T; i.e. (h,i) € T. If h > r, using again Lemma B.31] we
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are done. So we can assume h < r. Let s be the smallest integer such that
Mgls) < /’LES)
We have to prove that (h,j) € T. From the inequalities MS) < ,ul-s) < ,ug.s) it
is enough to show that {h,j} € T i.e. h & m(j) and j € m(h). Using the
same inequalities we get

. Assume s <t (the same argument will work in the case s > t).

m(h) Nm(ryY) € m(@) N m(r) € m(j) nm(rl).
As above, by the minimality of s, we have T}(LS) = TZ(S) = rj(»s), SO we can
deduce that j ¢ m(h). On the other hand, if h € m(j), since there is

ke m(j)ﬂm(r§s)), with k& € m(h), we obtain that h € m(k) (note that we are
using the fact that h, k € m(j) and k ¢ m(h)). Since m(k) C m(j)ﬂm(r(s)),

J
we get h € m(rj(-s)), so h € m(i), a contradiction, hence h € m(j) and we are
done.

Let 7 be a permutation on [2r], such that 7(i) < 7(j) whenever 1 <i,j <r
and T; O T;. Moreover 7(i) =i for i > r + 1. We denote by S = Tw(Up).
We want to show that S is a generalized tower set i.e. we need to prove the
four properties stated in Definition

1) Clearly S is connected by Lemma [3.291

2) Now set T := 7(T) and Sy = S\ T. By the properties of 7, T is a tower
set.

3) Note that m(S) = m2(T) = [r] and m(T) C [r]U{r+1 <i < 2r |
i —r € m(r)}. Therefore if (i,7) € So, {7~ (i),77'(j)} € U},. This implies
that i > 7 so i & m2(T). On the other hand since {77(i),77*(j)} & T,
we have i —r & m(r) i.e. i € m(T). Let u = 771(j). Then (i,u) € T, so
{i,u} € UY,. We claim that (u,r) € T, which will imply that j € m(T).
We need to show that u & m(r). We know that {i,u} € UY,, soi—1r €
m(u). If u € m(r) then i —r € m(r) therefore (i,j) € T, a contradiction.
Consequently j € m1(T) N w2 (T).

4) Now we would like to prove that if (i,7(j)) € So and 7(u) € Fr(7(j))
then (7,7(u)) € Sp, i.e. {i,u} € Sp hence we have to show that i —r € m(u)
and i —r & m(r). Since (i,7(j)) € Sp we have i —r € m(j) \ m(r). Since
7(u) € Fr(r(j)) we have Ty ;) C Ty, and (7(j),7(u)) & T. From this we
deduce that {u,j} & U),, consequently either j € m(u) or u € m(j). If
j € m(u) since ¢ —r € m(j) we get ¢ —r € m(u) and we are done. If
u € m(j) since also i —r € m(j) we get either uw € m(i —r) or i —r € m(u).
Ifu€m(—r)and i —r & m(u), take v € T, \ T; and consider {u,v},
{i,j} € Up. Since Uy is connected we have that one of the following sets
must belong to U :

{w, i}, {u, 7}, {v, i}, {v, 5}

Note that {u,i} & Upq since i —r ¢ m(u). Moreover {u,j} & Un (see
above). If {v,i} € Upy, then (i,v) € w(Sp), so i —r € m(v), consequently
u € m(v), which contradicts that {u,v} € Upng.

If {v,7} € Uy, then (j,v) € w(Sp). Therefore j € T,\T,, and v € T, \T,,
a contradiction since T, and T, are comparable by inclusion. Consequently
i —r € m(u) and we are done. O
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Remark 3.33. We note that if a Hilbert-Burch matrix of standard form
M = (m; ;) is bidiagonal (i.e. the only non zero entries are m;; and m; ;41)
then Upq is a towerizable set. This follows by Theorem [3:32] since, using
the same notation as above, Sy = . Vice versa if Uy is a towerizable set
then it is easy to build a bidiagonal Hilbert-Burch matrix of standard form
M’ such that I(M) = I(M’). This generalizes a result of Ahn and Shin in
[AS].

In order to get our main result we need the following Lemma.

Lemma 3.34. With the same terminology as above, let M be a Hilbert-
Burch matriz of standard form. Let {i,j},{u,v} be two different elements
in Upq. Then, if we set H; :== D; and Hypy; := M; fori=1,..,r,

depth(Hi, Hj, Hu, Hv) > 3.

Proof. We need to distinguish three possibilities. If {i,j}, {u,v} € U),
then i, j,u,v < r, since [[,_, , Dy is a minimal generator of I(M) and
i, j,u,v}| > 3 we are done. If {i,j},{u,v} € UY,, say i,u > r, then if
j = v we have i —r € m(j) and u — r € m(j). So, by Proposition B.20]
H;H, is a factor of f; hence H;, H, are coprime as f; is squarefree, then
depth(H;, Hj, H,) = 3. If j < v, then i —r € m(j) and v ¢ m(j). So, by
Proposition B.26] H;H, is a factor of f; hence H;, H, are coprime as f; is
squarefree, then depth(H;, Hj, H,) = 3. If {i,j} € U}, {u,v} € U},, with
v < u, when [{i, j,v}| = 3 we are done, otherwise say v = j then H,H; is a
factor of f; so depth(H;, H;, H,) = 3. O

Collecting all the results of this section we are ready to proof the main
result.

Theorem 3.35. Let I C k[z1,...,x,] be a monomial squarefree of height
2. Then I is aCM iff it defines a generalized tower scheme.

Proof. Let us suppose that I is aCM. Then I = I(M) for some M of
standard form of size (r + 1) X r (see Lemma B.2]] and Definition B:22]). By
Theorem U is a generalized towerizable set. Let w and 7 be as in the
proof of Theorem Let S := 7(w(Un)), which is a generalized tower
set. For j € m1(9), we set

e Di-vy) forj<r
T M, for j >r’

For j € m2(S) = [r], we set faj := D.—1(;). Also we set
Fi={fij | jem(9)} i=12

By Lemma B34, 77 and F» satisfy the conditions of genericity required by
Definition B.13]

We claim that Is(Fp,F2) = I. At first we show that I C Ig(Fi,Fa).
Indeed, let g; be the maximal minor obtained from M by deleting the k-
th row and take any (i,7) € S. We need to show that g, € (fi;, fo;) for
every k. Since go = [[1<;<, Di and fa; = D--1(jy, go € (f1i, f2;). Assume
k > 1. Since (i,5) € S we have {771(i),77'(j)} € Um = Uy U U}, If
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{m71(i), 771 (j)} € Uy, then (fii, f2;) = (Dr-1(), Dr—1(;)) and by Proposi-
tion 328 we get either 771(i) & m(k) or 771(5) € m(k) therefore by Proposi-
tion B.26 gx € (f1;, f2;). We proceed analogously if {7~1(i), 771(j)} € U},.

Now we show that Ig(Fy,F2) C I. Let g € Ig(Fi,F2) be a squarefree
monomial. Let

B, ={0}U{1<h<r|ge (M) and g & (D)}.

We set e := max ;. We claim that g € (ge).

Assume e = 0 and let h € [r]. If g € (M},) then g € (D) by the maximality
of e. If g & (My,) then g € (Dy,) since {r + h,h} € U\,

Assume e > 0. Remind that ge = [[;cpe) Mj - [Ligm(e) Di- I 9 € (Mp)
then g € (Dy) for h > e by the maximality of e. If g & (M},) then g € (Dy)
since {r + h,h} € Uy, Note that if e = 1 we are done. So we can assume
e>1.If h € m(e) and h < e then {e,h} € U),, consequently g € (D, D),
but g ¢ (De) so g € (Dy). Now let h € m(e), namely {r + h,e} € Uy,
Therefore g € (Mp, De), but g € (D.) so g € (M},). Since g, is a squarefree
monomial, we showed that g € (g.).

Vice versa let us suppose that I defines a generalized tower scheme. This
means that [ = Ig(Fy, F2) where S is a generalized tower set and Fi, Fo
are families of monomials, satisfying the conditions of Definition B.I3l By
Theorem B.19], S is aCM. So we get that I is aCM just applying Proposition
B.7

O
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