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Landomycins as glutathione-depleting agents and
natural fluorescent probes for cellular Michael
adduct-dependent quinone metabolism
Alessio Terenzi 1, Mery La Franca1,2, Sushilla van Schoonhoven2, Rostyslav Panchuk3, Álvaro Martínez4,

Petra Heffeter2,5, Redding Gober6, Christine Pirker2, Petra Vician2, Christian R. Kowol5,7, Rostyslav Stoika3,

Luca Salassa4,8, Jürgen Rohr6 & Walter Berger 2,5✉

Landomycins are angucyclines with promising antineoplastic activity produced by Strepto-

myces bacteria. The aglycone landomycinone is the distinctive core, while the oligosaccharide

chain differs within derivatives. Herein, we report that landomycins spontaneously form

Michael adducts with biothiols, including reduced cysteine and glutathione, both cell-free or

intracellularly involving the benz[a]anthraquinone moiety of landomycinone. While land-

omycins generally do not display emissive properties, the respective Michael adducts exerted

intense blue fluorescence in a glycosidic chain-dependent manner. This allowed label-free

tracking of the short-lived nature of the mono-SH-adduct followed by oxygen-dependent

evolution with addition of another SH-group. Accordingly, hypoxia distinctly stabilized the

fluorescent mono-adduct. While extracellular adduct formation completely blocked the

cytotoxic activity of landomycins, intracellularly it led to massively decreased reduced glu-

tathione levels. Accordingly, landomycin E strongly synergized with glutathione-depleting

agents like menadione but exerted reduced activity under hypoxia. Summarizing, land-

omycins represent natural glutathione-depleting agents and fluorescence probes for intra-

cellular anthraquinone-based angucycline metabolism.
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Angucyclines are a family of natural antibiotics produced
by Streptomyces bacteria and were discovered following
the success of tetracyclines and anthracyclines (e.g., dau-

norubicin and doxorubicin) both in broad medical use as anti-
biotics and anticancer compounds1–3. Similar to these well-
known substance classes, angucyclines are characterized by a
tetracyclic ring skeleton but assembled in a benz[a]anthracene
system owning a distinctive angular structure, reflected in the
name angu-cyclines4,5. This family of natural compounds repre-
sents one of the most bioactive polycyclic aromatic polyketides to
date, characterized by promising antiviral, antibacterial and
antitumor properties5. Among the different chemical scaffolds of
angucyclines, landomycins are the most auspicious antineoplastic
agents so far5,6. They are characterized by a benz[a]anthraqui-
none core bearing a nonaromatic B ring and a linear glycosidic
chain of various length attached to the hydroxyl at position C8
(Fig. 1)5–7. Besides extraction and purification from bacterial
cultures, strategies for total chemical synthesis of several land-
omycins have been developed8–10. Landomycin A (LA) and
landomycin E (LE), containing six and three saccharide residues,
respectively, are the most studied compounds of this
family3,7,11–13. In particular, LE showed potent activity against
numerous cancer cell models in vitro and demonstrated to be
unaffected by resistance to structurally related anthracyclines
(e.g., doxorubicin), used in clinics for the treatment of several
malignancies3,5,11.

Despite these efforts, the mechanisms-of-action underlying the
antineoplastic activity of angucyclines are not fully understood
yet. Considering their structural similarities with doxorubicin,
some anthraquinone-based angucyclines have been proposed to
act in a similar way, including a direct DNA targeting (examples
are jadomycin B and hedamycin)14,15. However, we have
demonstrated that LE shows a different mechanism of action
when compared with doxorubicin: it does not intercalate into
DNA and induces massive mitochondrial dysfunction and
membrane depolarization followed by apoptosis induction11.
Rodriguez et al. reported on another anticancer angucycline,
marmycin A, which acts differently from doxorubicin and accu-
mulates in lysosomes16, further demonstrating the potential of

this class of natural products in fighting cancers refractory to
doxorubicin-based treatments.

In previous investigation, we have shown that landomycins
exert potent anticancer activity by inducing apoptotic cell death
as a consequence of mitochondrial damage3,11. As part of our
continuing efforts toward the dissection of landomycins’
mechanism of action, we have recently elucidated that the intense
activity of LE against leukemia cells (e.g., acute T-cell leukemia
Jurkat cells) involved the generation of reactive oxygen species
(ROS) and hydrogen peroxide. However, surprisingly, exposure
of Jurkat cells to complex mixtures of diverse ROS scavengers
only partly blocked the cytotoxic LE effects, while co-incubation
with the reduced glutathione (GSH) precursor N-acetylcysteine
(NAC) almost completely abrogated its activity3. Consequently,
we hypothesized that NAC might have formed an adduct with LE
extracellularly, probably leading to a reduced uptake of the drug3.

At closer inspection, landomycins indeed feature an anthra-
quinone moiety in their core structure (Fig. 1), which might be
hypothesized to be a key player in landomycins’—and perhaps
other angucyclines’—anticancer properties17–19. Quinones are
known to exert their activity through ROS generation via redox
cycling20–22. Some of these quinones are additionally Michael
acceptors. Therefore, they can provoke cellular damage through
covalent bonds with nucleophilic cysteinyl thiols20,21,23. Inter-
esting examples of molecules with enhanced activity due to
Michael adduct formation are epigallocatechin-3-gallate (EGCG,
a major component of green tea) and 3,4-(±)-methylenediox-
ymethamphetamine (MDMA, the so-called recreation drug
ecstasy), whose metabolites are quinones that are able to interact
with thiols20,21,24. It was also shown that the SCH3 group of the
angucycline antibiotic urdamycin E derives from methanthiol
Michael addition to urdamycin A, a compound similar to the
landomycins25.

Herein, we present a detailed study on the relationship between
the anticancer activity of landomycins with a focus on LE and its
capability to form Michael adducts with biothiols. Conjugation
with cysteine (Cys) or reduced GSH induces a glycosidic chain-
dependent fluorescence pattern on the nonemissive LE molecule
allowing to follow the fate of landomycin both cell-free and in

Fig. 1 Chemical structure of the compounds used. Chemical structure of landomycin E (LE), landomycin A (LA), landomycinone (L) and menadione (MEN).
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cells by fluorescence-based techniques. Moreover, this is the first
report so far directly connecting the activity of landomycin
antibiotics to quinone-conjugation processing, possibly casting
light on the mode of action of all benz[a]anthraquinone-based
angucyclines. Ultimately, we suggest novel therapeutic combina-
tions of landomycins with other GSH-depleting and ROS-
producing agents.

Results and discussion
Extracellular cysteinyl thiols protect cells from LE more effi-
ciently than ROS scavenging. In order to better understand the
mechanisms underlying the profound protective effect of NAC
(or GSH) against LE cytotoxicity, we performed a series of intra-
and extra-cellular drug exposure experiments by an MTT-based
cell-viability assay26–28. As already reported for Jurkat cells
before3, also exposure of A2780 cells to LE led to a complete loss
of cell viability already at 5 µM, while co-incubation with 1 mM
NAC or GSH (added to cells 1 h before LE) completely inhibited
this cytotoxic effect. HeLa cells were more resistant against LE,
but again, full protection from the massive cytotoxicity of 10 µM
LE was observed by NAC/GSH coexposure (Fig. 2a, b). Accord-
ingly, preincubation (24 h) with the glutathione synthesis inhi-
bitor L-buthionine-(S,R)-sulfoximine (BSO) moderately but
significantly sensitized against LE. This effect was, however, by far
less potent as compared with the NAC-mediated protection
against LE (Fig. 2c). Additionally, removal of NAC or GSH after
1 h preexposure, before addition of LE, abolished the protective
effects observed when these cysteinyl thiols were kept in the cell
culture medium during LE exposure (compare Fig. 2a, b). To
confirm this interaction in another cell and assay background, we
used leukemic Jurkat cells and detected LE-mediated apoptosis
via flow cytometry by annexin-V staining. Indeed, preincubation
(60 min) with both NAC and GSH significantly blocked cell death
induction upon LE treatment (Fig. 2d, p < 0.01). Additionally,
removal of both NAC and GSH prior to LE exposure led to
cytotoxic effects similar to LE single treatment. Interestingly, cell-
free preincubation of LE with biothiols (NAC or GSH for 60 min)
before addition to cell culture, as well as concurrent addition of
the thiols with LE directly onto the cells, both completely abro-
gated LE-mediated apoptosis induction. This indicates that
upregulation of intracellular GSH concentrations by the short
NAC preincubation is not sufficient to efficiently protect cells
from LE-mediated cytotoxicity and that obviously a direct
interaction between NAC and LE, most probably extracellularly,
needs to be considered.

LE spontaneously forms an adduct with biothiols. As men-
tioned above, the chemical structure of landomycins features a
benz[a]anthraquinone moiety (Fig. 1). In selected cases, quinones
are known to undergo spontaneous conjugation with biothiols.
Consequently, we performed high resolution mass spectrometry
(ESI-TOF) experiments to elucidate whether Michael adduct
formation takes place between LE and cysteinyl thiols under cell-
free conditions. Immediately after mixing the quinone LE and the
nucleophilic thiol NAC, the adduct LE+NAC was clearly
detectable (peak at m/z= 874.3, Fig. 3a and Supplementary
Fig. 1), demonstrating a strong and fast interaction between the
two chemical entities. Interestingly, the peak at 711.3 corre-
sponding to the m/z value of LE is followed by another one at
713.3 with the isotope-distribution pattern of LE in its reduced
form (i.e., hydroquinone, two additional protons in mass spec-
trum), reasonably suggesting that the thiol, besides forming the
adduct, also exerts a reductive action (Supplementary Fig. 1). We
decided to follow the kinetics of the adduct formation via mass
spectrometry at different time points (compare Fig. 3a,

Supplementary Figs. 2 and 3). Interestingly, after two hours, in
addition to the LE+NAC adduct, two new species were detect-
able: one in which the adduct loses the glycosidic chain, leading to
the aglycone L in combination with NAC (L+NAC) and another
one, less abundant, in which L is combined with two NAC
molecules (L+ 2NAC). Indeed, once the glycosidic chain is lost,
the aglycone is ready to accept a second molecule of NAC (e.g., in
position 9). The formation of bis- or even multiple-thiol Michael
adducts has been reported for a number of quinones29–31. The
main adduct LE+NAC is consumed overtime (4, 8, and 24 h),
and after 24 h, is no longer detectable in favor of the L+NAC
and L+ 2NAC species, the latter becoming the most abundant.

The adduct formation, together with the following chemical
evolution, could be confirmed by NMR spectroscopy (Fig. 3b and
Supplementary Fig. 4). NMR of LE alone (red line, Fig. 3b; for full
1H and 13C NMR spectra see Supplementary Fig. 5a) showed a
multiplet at 5.17 corresponding to proton at position 6, two
singlets at 6.66 and 6.74 ppm, corresponding to the aromatic
protons at positions 2 and 4 of ring A, and two doublets at 7.27
and 7.54, corresponding to the aromatic protons at positions 9
and 10 of ring D (see Fig. 4). In addition, a set of signals
corresponding to approximately 5% of the aglycone L was
observed8.

After the addition of NAC to a LE solution (t= 0, blue line,
Fig. 3b), a new set of peaks emerged. The signal at 5.58 ppm (red
circle, Fig. 3b) can be assigned to the new proton between rings B
and C of the proposed adduct structure (red filled circle, Fig. 4).
Upon formation of the adduct, the signal corresponding to
proton 6, originally at 5.17 ppm, was downshifted up to 5.40 ppm
while maintaining its multiplicity. Among all the possible
regioisomers of the adduct, this suggests that the thiol reacts
with the activated double bond between rings B and C rather than
with ring D. Additionally, if the position of the thiolate and the
new proton would be the opposite as those depicted in Fig. 4, we
would expect higher complexity in both the above-mentioned
signals due to the additional coupling between the new proton
and the one in position 6 with a smaller shift of the latter.

Over time (t= 2 and 30 h, black lines, Fig. 3b), the peaks at
5.40 and 5.58 ppm completely disappeared, while there was a
gradual decrease of the two singlets at 6.66 and 6.74 ppm and of
the two doublets at 7.27 and 7.54 ppm. At the same time, new
singlets at 7.07 and 7.35 ppm and doublets at 7.32 and 7.70 ppm
appeared. Overall, these results point toward the existence of a
relatively short-lived monoadduct species and an underlying
process most likely leading to the L+ 2NAC species observed in
the mass experiment.

Control NMR experiments confirmed that LE without addition
of cysteinyl thiols is stable in solution (Supplementary Fig. 5b).

High-resolution mass spectrometry experiments clearly indi-
cated that GSH and Cys produced similar Michael adduct species
directly after mixing (Supplementary Figs. 6 and 7), although the
adduct LE+NAC under the same conditions was relatively more
abundant. The interaction of LE and GSH over time (Supple-
mentary Figs. 8 and 9) followed the same path as the one of LE
and NAC, including the loss of the glycosidic chain and the
reaction with a second GSH molecule.

The LE Michael adduct exhibits specific fluorescence proper-
ties. Next, we aimed to address the question whether LE adduct
formation might also take place in living cells. Cell-free LE in
solution is basically nonfluorescent as proven by its full fluores-
cence excitation–emission 3D landscape in Tris-HCl buffer
(Supplementary Fig. 10a). Unexpectedly, however, LE-exposed
human-immortalized T-lymphocyte Jurkat cells were character-
ized by a surprisingly strong but relatively short-lived fluorescent
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Fig. 2 Impact of small biothiols and BSO on LE cytotoxicity. a, b, c A2780 (left panels) or HeLa (right panels) cells were exposed for 72 h to increasing
concentrations of LE only or preincubated for 60min with NAC (a), GSH (b), or BSO (c) before addition of LE. Viability was determined using MTT assay. Each
data point represents the mean ± standard deviation (SD) of triplicate values from one representative experiment out of three delivering comparable results.
d Jurkat leukemic cells were treated with LE and small biothiols as indicated and apoptotic cells were quantified by Annexin V–APC/PI flow cytometry. Mean ± SD
from one experiment performed in triplicate is shown. Statistical differences between solvent control (s, white column) and treated samples were calculated with
student’s t-test (*p < 0.05, **p <0.01) and indicated by black asterisks above the respective columns. Statistical differences between LE single treatment (red
column) and combined settings with NAC or GSH were calculated using two-way ANOVA (**p < 0.01) and are indicated by red asterisks. ns nonsignificant.
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Fig. 3 Mass spectrometry and NMR studies of LE and NAC interaction. a Time-dependent ESI–TOF mass spectra of LE (0.2 mM) mixed with NAC
(0.4 mM) in H2O with 20%MeOH. The peaks corresponding to the different species are highlighted with boxes of different colors: LE (red box), LE+NAC
(blue box), L+NAC (orange box), and L+ 2NAC (green box). b 1H-NMR in CD3OD of LE (7mM, in red) and of LE (7 mM) mixed with NAC (10mM) at
different time points as indicated in the legend.
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signal in the blue Horizon V450 channel (λexc= 404 nm, λem=
448 nm) of the flow cytometer (Fig. 5a). LE-associated fluores-
cence was confirmed by live-cell fluorescence microscopy, per-
formed as published32, and localized to the cytoplasm with
enhanced accumulation in the cell nucleus of human LN229
glioblastoma and MG63 osteosarcoma cells (Supplementary
Fig. 10b and Fig. 5b, respectively). Interestingly, co-incubation
with either NAC or GSH strongly reduced intracellular signals
but instead resulted in a diffuse blue fluorescence in the extra-
cellular space (Fig. 5b). These findings indicated that the LE–thiol
adduct is fluorescent and poorly internalized by cells. In contrast,
cell-free preincubation of LE with the cysteinyl thiols for 1 h
completely abrogated the cell-associated fluorescent signal
(Fig. 5a). In addition, the blue fluorescence signal detected by flow
cytometry or under the microscope was transient and progres-
sively decreased, especially during the first two hours of incuba-
tion (Fig. 5a, b). Together, these data strongly suggest that the
observed Michael adduct of LE and its chemical evolution might
also take place in the living cells and underlie the strong cellular
fluorescence signals.

Accordingly, we decided to study the fluorescent properties of
LE without and with cysteinyl thiols in solution. When excited at
280 nm, LE alone was again essentially non-emissive (Fig. 5c,
solid red line). However, immediately after mixing LE with NAC,
a dramatic emission enhancement at 428 nm was observed
(Fig. 5c, solid blue line and Supplementary Fig. 11 for the
excitation/emission profiles). The species responsible for this
emission band was short lived, since the fluorescence signal
decreased within 10 min (Fig. 5c, dashed and dotted blue lines).

To investigate photobleaching of the LE adduct as possible
explanation for the short-lived nature of the fluorescence signal,
we prepared different solutions of LE mixed with NAC and
measured their emission after diverse incubation times (with
the solutions carefully protected from external light sources)
(Supplementary Fig. 12). The strong fluorescence signal at
428 nm was only produced by the freshly mixed solution at time
point zero, while this signal was strongly quenched after an
incubation time of only 10 min, demonstrating that the
emission decrease was solely due to the chemical evolution of
the LE-NAC adduct and not because of the irradiation of the
sample (by the instrument or by external light). We then
evaluated the effect of the NAC concentration on the LE
fluorescence intensity. As shown in Fig. 5d and Supplementary
Fig. 13, the emission band at 428 nm increased after addition of

several NAC aliquots, until a plateau appeared when the ratio
NAC/LE was equal to 2 (stoichiometry is indicated by the
two crossing red lines in the graph, Fig. 5d). Nevertheless,
considering the transient nature of the emission and the short
life span of the LE–NAC adduct, we believe that LE–NAC is
reasonably the emissive species, rather than its analog with two
NAC moieties. Under the experimental condition used, the
excess of NAC obviously served to produce the reduced form of
LE, as indicated by mass experiments.

Biothiols GSH, Cys, and GSH derivatives like glutathione
monoethyl ester (GSH-MME), interacting with LE in the same
way as NAC, were also inducing a fluorescence burst as shown in
Fig. 5e. Also, the LE–GSH and LE–Cys-associated fluorescence
decreased over time, however, LE–Cys emission appeared to be
more stable (Supplementary Fig. 14). The essential amino acid
methionine (Met), lacking the –SH group, did not produce any
fluorescence in combination with LE (Fig. 5e), indicating that the
Michael adducts are, indeed, the fluorescent species.

Strikingly, the fluorescence generated by Michael addition
resulted to be a distinctive property of LE. The similar arylating
1,4-naphthoquinone menadione (MEN), which in accordance
with the literature33 and our mass spectrometry experiments
(Supplementary Fig. 15) also forms an adduct with NAC, does
not show any fluorescence emission when excited at different
wavelengths, neither alone nor in combination with NAC
(Fig. 5f).

LE and MEN, while comparable in their core quinone
structure, differ in the presence of the glycosidic chain in the
landomycin molecule (see Fig. 1). Consequently, the question
arose whether the sugar could play an important role in the
fluorescence burst. Accordingly, we measured the fluorescence
profile of the landomycinone (L), which corresponds to the
aglycone of the LE deprived of the glycosidic chain (see Fig. 1).
Figure 5f shows that L, even when it forms an adduct with NAC
as demonstrated by mass spectrometry (Supplementary Fig. 16),
does not induce any fluorescence burst, indicating an important
role of the sugars in the general fluorescence properties. This
finding is corroborated by the blue emission produced, when
NAC was added to LA (Supplementary Fig. 17a, a land-
omycin derivative containing six sugar units (see Fig. 1)). We
wondered if sugars might play a role as simple electron donors,
regardless of the fact that they are part of the LE structure.
However, L did not show any fluorescence in the presence of
NAC and three equivalents of glucose (Supplementary Fig. 17b),

Fig. 4 LE–NAC adduct formation. Reaction scheme of LE and NAC and proposed structure of the formed adduct.
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Fig. 5 Landomycin E fluorescent properties upon Michael adduct formation. a Intracellular fluorescence of LE exposed Jurkat cells was detected by flow
cytometry. Cells were treated with 4 µM LE-alone or after preincubation with the cysteinyl thiols NAC (1 mM, left panel) or GSH (1 mM, right panel).
Intracellular fluorescence was quantified at indicated time points by flow cytometry (Horizon V450 (emission 448 nm)). b LE-induced intracellular
fluorescence of MG63 osteosarcoma cells was followed over time by live-cell imaging (DAPI channel) after treatment with 4 µM LE with or without 1 mM
NAC pre/coincubation (1 h). Scale bar indicates 10 µm (fluorescence images) and 100 µm (phase-contrast insets). The small phase-contrast images at
the bottom, taken at the start of the experiment (time point 0), indicate the cell groups shown enlarged in the respective upper fluorescence panels.
c Fluorescence profile of LE alone (red solid line) and in combination with NAC (λexc= 280 nm). Spectra of the same solution have been recorded
immediately after mixing LE with NAC (blue solid line) and after the time points indicated in the legend (blue dashed and dotted lines). Slits width: 5 nm/
5 nm. d Plot of LE emission in combination with NAC (λexc= 280 nm, λem= 428 nm) at different concentrations. e Fluorescence profile of 40 μM LE in
combination with 200 μM NAC (blue solid line), GSH (green dashed line), Cys (sea green dotted line), GSH–MME (violet dash–dot–dot line), and Met
(light blue dash–dot line). Slit width: 2 nm/5 nm. f Fluorescence profile of 15 μML (orange solid line) and 30 μM menadione (MEN, fuchsia solid line) in
combination with 60 μM NAC (corresponding dotted lines). For comparison, the fluorescence profile of 40 μM LE in combination with 200 μM NAC is
depicted as blue solid line. λexc= 280 nm; slit width: 5 nm/5 nm; Buffer: Tris-HCl 50mM, pH= 7.4 for b, c, d, and e.
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demonstrating that the mechanism behind the emission devel-
opment is not trivial.

Fluorescence and adduct formation in biological samples. In
the cellular microenvironment and inside cells, there are, besides
small molecules like Cys and GSH, multiple other proteins con-
taining free -SH groups potentially able to attack electrophilic
moieties through Michael addition. We analyzed LE fluorescence
changes in combination with human serum albumin, which
contains a free -SH group, or with cell culture medium containing
or lacking fetal calf serum (FCS). In addition, interaction of LE
with the complex biological matrix of a living cell was measured
by spiking the compound into crude protein extracts from human
cancer cells. The mixture of LE with pure human serum albumin
in buffered solution did not induce the typical adduct-dependent
fluorescence enhancement at 428 nm (Supplementary Fig. 18),
but a quenching of the intrinsic albumin fluorescence at
300–350 nm was observed, indicating a possible interaction
between the two molecules. Additionally, once NAC was added to
the albumin–LE mixture, the LE–NAC fluorescence at 428 nm
was present but distinctly reduced as compared with albumin-free
conditions, strongly suggesting that LE is still but less accessible
for adduct formation with cysteinyl thiols.

Likewise, fluorescent adduct formation of 15 µM LE was
missing when mixed with increasing aliquots of cell culture
medium (without and with FCS, Fig. 6a, b, respectively).
Furthermore, addition of NAC to the LE-containing medium
resulted in a fluorescence burst centered at 428 nm, indicating
that LE was still accessible for Michael addition. Besides diverse
inorganic salts, amino acids, and vitamins, cell culture medium
also contains GSH (~3 µM). This suggests that the GSH
concentration is too low to observe any adduct formation with
LE or that the GSH oxidation state is influenced by the
interaction with other medium components.

Finally, LE was mixed directly with increasing aliquots of total
cell extracts, containing biothiol concentrations higher than in the
medium. An emission enhancement at 428 nm was observed
(Fig. 6c), strongly indicating that some components of the cell
extract form a fluorescent adduct with LE. This is in agreement
with the fluorescence pattern observed in LE-exposed living cells
(compare Fig. 5a). Addition of NAC to the LE-cell extract mixture
did not further enhance the observed fluorescence at 428 nm,
confirming that LE had already fully undergone Michael addition
and could not react with the nucleophilic -SH group of NAC
anymore. Of note, the band at 428 nm was specifically produced
by the interaction of LE with components of the cell extract and
not by the cell extract alone as confirmed by changing the order of
addition in the experiment (Fig. 6d). Furthermore, as previously
observed for LE with NAC in buffer solution (compare Fig. 5c),
this emission band disappeared over time. As a further
confirmation, we treated the cell extract with N-ethylmaleimide
(NEM), which is also a strong –SH acceptor to form Michael’s
adducts. As shown in Fig. 6e, addition of LE to a cell extract–NEM
mixture did not result in a considerable fluorescence burst,
indicating that the –SH groups were not anymore available for
interaction with LE. The same fluorescence reduction was
observed in buffer when NAC was preincubated with NEM
before being mixed with LE (Fig. 6f, fuchsia line). Overall, these
data indicate that the complex biological intracellular matrix does
not inhibit fluorescent-adduct formation between LE and biothiols
and its further processing to non-fluorescent derivatives.

Impact of oxygen and GSH depletion on LE cytotoxicity and
adduct stability. Summarizing, we discovered that LE forms a
Michael’s adduct with biothiols and with components of the cell

extracts. These adducts were detectable not only via mass spec-
trometry experiments but, more straightforwardly, through
fluorescence assays (cell-free and in vitro) monitoring the
emission burst at 428 nm. Nevertheless, this intense blue fluor-
escence disappeared over time. Considering that LE might
undergo redox cycling (vide infra)3, we decided to investigate
whether the fluorescence signal stability might be oxygen-
dependent. Under hypoxic conditions, the fluorescence-signal
was far more stable and increased overtime, reaching its max-
imum after 1–2 h (Fig. 7a). Then it started to slowly decrease,
due to leaking of O2 into the cuvette over time and/or to cross-
oxidation reactions that are typical of quinones34. Using the
same experimental setting, we demonstrated that the interaction
between L and NAC does not produce any fluorescence burst
even under hypoxia (Supplementary Fig. 17b), indicating once
again that the structural features of LE (i.e., the presence of the
sugars) are necessary for the process to occur. In addition, we
assessed the impact of oxygen on LE cytotoxicity in human
cancer cell models. Cells, preincubated or not with NAC, were
exposed to LE under normoxic or hypoxic conditions for 72 h.
Interestingly, LE-treated cells preincubated with NAC were more
viable under hypoxic conditions when compared with normoxic
LE+NAC exposure (Fig. 7b). Thus, cell-free and in vitro results
strongly suggest that the adduct between LE and the -SH group
containing biomolecule is more stable under hypoxic conditions.
Simultaneously, LE single treatment under hypoxic conditions
also led to decreased cytotoxicity as compared with normoxia
(compare Fig. 7b). Furthermore, an enhanced LE cytotoxicity
was observed after combination treatment with the GSH-
depleting agent MEN, indicated by a strong synergistic effect,
especially in the LE-sensitive A2780 cell line (Fig. 7c). This
strong synergism suggests intracellular GSH-based protection
against LE cytotoxicity. Preincubation of MEN and NAC before
adding LE perturbed the protective effect of NAC on LE cyto-
toxicity and in addition, the synergism between MEN and LE
was lost (Fig. 7c). Accordingly, application of LE as a single drug
significantly reduced the ratio of GSH/GSSG in both investigated
cell types at concentrations exhibiting already cytotoxic activity
(low µM), proving that LE, like known for MEN, intracellularly
acts as GSH-depleting agent.

Modeling of the LE–NAC adduct and its emissive properties.
Experimental findings indicate that the emissive adduct, gener-
ated by the reaction of LE and NAC, is involved in redox pro-
cesses. This is clearly demonstrated by the oxygen dependency of
the fluorescence signal observed upon addition of excess
equivalents of NAC, which, also according to mass spectrometry
experiments, appears to simultaneously act as a reactant and
reducing agent. For this reason, we sought to gain further insights
by modeling the LE–NAC adducts in their oxidized (LE–NACox)
and reduced (LE–NACred) forms (Supplementary Fig. 19, Sup-
plementary Table 1 and Supplementary Data 1–3). In principle,
LE–NACox exists as two tautomeric forms: one where the qui-
none carbonyls are localized on the C ring, LE–NACox(C), and
the other where they are localized both on the C and D rings’
LE–NACox(C,D) (Fig. 8). The LE–NACox(C,D) adduct is sig-
nificantly more stable than the tautomer LE–NACox(C) according
to density functional theory (DFT) optimization calculations
(62.7 kcal/mol, 2.7 eV). Furthermore, the HOMO–LUMO gap of
LE–NACox(C,D) is 0.68 eV (15.7 kcal/mol) smaller compared
with the one determined for the LE–NACox(C) analog. These
results indicate (although only qualitatively) that this species is
the most easily reduced of the two, hence suggesting that the
adduct undergoing the reduction process, leading to the obser-
vation of fluorescence, might be LE–NACox(C,D).

ARTICLE COMMUNICATIONS CHEMISTRY | https://doi.org/10.1038/s42004-021-00600-4

8 COMMUNICATIONS CHEMISTRY |           (2021) 4:162 | https://doi.org/10.1038/s42004-021-00600-4 | www.nature.com/commschem

www.nature.com/commschem


Fig. 6 LE-related fluorescence in cell culture medium and cell cytosolic extracts. Fluorescence profile of (a) LE (red line) in combination with cell culture
medium without (green and light-green lines) and with NAC (blue line); b LE (red line) in combination with cell culture medium supplemented with FCS
without (green and light-green lines) and with NAC (blue line); c LE (red line) in combination with Hep3B cell extract (protein content: 3.7 μg/μl, diluted in
2 ml) without (green and light-green lines) and with NAC (blue line); d Hep3B cell extract (green and light green lines) in combination with LE (blue solid
line), also after 12 h (blue dashed line); e Hep3B cell extract alone (green line), preincubated with NEM (fuchsia line) and after mixing the latter with LE
(blue line); f LE (red line) in combination with NAC (blue line) and with NAC previously preincubated with NEM (fuchsia line). λexc= 280 nm; slit width:
2.5 nm/5 nm; Tris-HCl 50mM, pH= 7.4.
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Fig. 7 The influence of oxygen on the fluorescence and Michael’s adduct formation of LE–NAC and its cytotoxic activity. a Fluorescence profile over
time of 15 μM LE (red solid line) in combination with 60 μM NAC in the absence of oxygen (solid and dashed lines). In the inset, fluorescence intensity of
the LE+NAC emission at 428 nm vs. time. λexc= 280 nm; slits width: 2.5 nm/5 nm; Tris-HCl 50mM, pH= 7.4. b Cell viability of indicated cell lines was
measured with MTT after 72 h of LE treatment (with or without 1 mM NAC preincubation) under hypoxic and normoxic growth conditions. c Cell viability
of A2780 and Hela cells 48 h after LE treatment with or without preincubation with MEN, NAC, or a combination of both. Each data point in (b) and (c)
represents the mean ± SD of triplicate values from one representative experiment out of three delivering comparable results. All effect comparisons to the
respective controls indicated significant differences by one-way ANOVA, p < 0.001, except in (c), right panel, where LE versus LE+NAC was p < 0.05,
while LE+NAC versus LE+MEN+NAC did not significantly differ. d Determination of the ratio GSH/GSSG after 24 h of treatment with the indicated
concentrations of LE was performed as described under “Methods”. Mean ± SD of two independent experiments performed in triplicate are shown and
significance as compared with untreated controls was tested by one-way ANOVA; **p < 0.01; ***p < 0.001.
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We speculate that LE-NACred (hydroquinone) is associated
with the O2-dependent emission signal in the blue region of the
spectrum (Fig. 8). Related behavior was reported for MEN, whose
hydroquinone form obtained upon chemical reduction also emits
in the 420-nm region35,36. Indeed, reduced MEN displays a π-
conjugated system similar to that of the C and D rings of
LE–NACred. We calculated the singlet electronic transitions and
the theoretical absorption spectra for this adduct using time-
dependent DFT (Supplementary Fig. 20). In good agreement with
the excitation profile determined experimentally (Supplementary
Fig. 11), the results show that LE–NACred displays an absorption
band centered at ca. 400 nm that is associated with a lowest-
energy singlet state of π-π* nature, fully centered on the C and D
rings of the LE-NAC adduct. As demonstrated for several
quinones34, LE-NACred can subsequently undergo oxidation
reactions through semiquinone radical intermediates, ultimately
affording its fully oxidized form. In the case of LE, however, the
oxidation of the hydroquinone is also associated with the loss of
the sugar moiety and the generation of the nonemissive L-NACox

(as corroborated by MS, Fig. 3). The observation that the L-NAC
adduct is not emissive in the experimental conditions used can be
rationalized with the faster rate of oxidation of L-NACred when
compared with LE–NACred. As observed for other quinones34,
this difference can also be interpreted by more efficient cross-
oxidation reactions in the case of L-NAC, which lacks the
hindering sugar moiety. Overall, this would explain why the onset
of fluorescence is a glycosidic chain-dependent phenomenon.

Conclusion
Within angucyclines, a family of highly bioactive polycyclic aro-
matic polyketides produced by Streptomyces species, landomycins
offer unusual modes of anticancer activity5,6. Their characteristic
landomycinone core comprises a benz[a]anthraquinone moiety
with a nonaromatic B ring, while different linear glycosidic chains
are characteristic for the different landomycin family members.
Here we demonstrate that landomycins undergo spontaneous and
highly efficient Michael adduct formation with biothiols like Cys
and GSH, both under cell-free and in cellulo conditions. This
chemical reaction explains the massive extracellular landomycin
detoxification, e.g., by NAC. Intracellularly, potent GSH depletion
—in combination with ROS induction3—represents a novel mode
of action of landomycins and rational basis for future combina-
tion cancer-therapy approaches. The Michael addition reaction
via the landomycinone core generated, strikingly in a strictly

glycosidic chain-dependent fashion, an intensely fluorescent
intermediate. This allowed us to follow intracellular landomycin
metabolism and dissect the importance of oxygen in this process.
While several synthetic fluorescence probes for biothiol detection
via Michael addition reaction have been developed37,38, com-
pounds of natural origin with such chemical features are com-
parably rare. Consequently, landomycins represent, in addition to
promising anticancer GSH-depleting agents, natural-origin
fluorescence probes for intracellular Michael adduct-dependent
quinone metabolism.

Methods
Compounds. LE-overproducing Streptomyces globisporus 1912 strain was obtained
in the laboratory of B. Matselyukh (D.K. Zabolotny Institute of Microbiology and
Virology, National Academy of Sciences of Ukraine, Kyiv). LE (99.5% purity,
according to HPLC data) was prepared in the laboratory of J. Rohr (University of
Kentucky, USA) and dissolved in absolute ethanol to obtain a 4 mg/ml stock
solution. LA was isolated from S. cyanogenus S-136 following a previously pub-
lished procedure, and L was prepared by hydrolysis using formic acid39,40.

Menadione (MEN, Sigma Aldrich) was diluted in DMSO to obtain a 10 mM
stock and stored at −20 °C. The thiol containing substances glutathione (L-
GSH, ≥ 98%, Sigma Aldrich) and cysteine (L-Cys, ≥97%, Sigma Aldrich) and, in
addition, the chemical GSH precursor N-acetylcysteine (NAC, ≥ 99%, Sigma
Aldrich) were prior to each experiment freshly diluted in the indicated buffer or
growth medium at indicated concentrations. GSH-synthesis inhibitor BSO (≥ 97%,
Sigma Aldrich) was freshly diluted in ddH2O prior to each experiment. All the
other chemicals and solvents were purchased from Sigma-Aldrich and used
without further purification.

Fluorescence spectroscopy. Fluorescence spectra were recorded using 1-cm path-
length quartz cuvettes on a Horiba FluoroMax®−4 spectrofluorometer (Kyoto,
Japan) equipped with time correlated single photon counting (TCSPC) and the
data were processed using the FluorEssence v3.5 software package. Landomycin
stock solutions were freshly prepared in MeOH and diluted in buffer at the indi-
cated concentrations. Biothiol stock solutions were prepared in buffer and then
diluted to the indicated concentrations. Cell extracts for spiking experiments were
prepared from 1 × 108 Hep3B cells in logarithmic growth phase. Cells were
mechanically harvested by scraping into the growth medium, followed by cen-
trifugation and washing three times in ice-cold phosphate-buffered saline (PBS).
Then the cells were disrupted in the respective amount of buffer by five freezing/
thawing cycles using liquid nitrogen. The cell lysate was centrifuged at 16,000 g for
15 min and the supernatant collected for further analysis. Total protein content was
determined by the Micro BCATM kit following the instructions of the manufacturer
(Thermo Scientific, Rockford, IL). Cell extract (protein content indicated in the
figure caption) was spiked directly in the fluorescence cuvette where the final
volume was 2 mL of 10 mM Tris-HCl, pH 7.4.

NMR. 1H NMR spectra were recorded at 500.10 MHz using a Bruker FT-NMR
spectrometer Avance III™ 500MHz. CD3OD was used as solvent to prepare
landomycin and NAC solutions at the indicated concentrations.

Fig. 8 Redox process generated by the reaction of LE and NAC. Scheme illustrating how LE-NAC adduct in its oxidized state (LE–NACox) is reduced to the
emissive LE–NACred species that is then oxidized by oxygen to form L-NACox.
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Mass spectrometry. Stock solutions of landomycins were prepared in methanol.
These were further diluted with MilliQ water and mixed with NAC or the other
biothiols (previously dissolved in water) at the desired concentrations. The
resulting mixtures were diluted in ACN/MeOH 1% H2O and the introduction was
performed via direct infusion. High-resolution spectra were recorded in the
negative mode on a maXis classic (Bruker Daltonik GmbH, Bremen, Germany)
hybrid ESI-Qq/oa-TOF MS instrument. Samples were diluted in ACN/MeOH 1%
H2O and the introduction was performed via direct infusion. The following
parameters were used: flow rate 3 µl/min, capillary voltage −4500 V, dry gas flow
4.0 L/min (nitrogen); dry temperature 180 °C, mass accuracy: +/−5 ppm.

Cell culture. The human cancer cell lines Jurkat (acute T-cell leukemia, ATCC,
Manassas, VA), A2780 (ovarian carcinoma, Sigma Aldrich, St. Louis, MO, US),
HeLa (cervical carcinoma, ATCC), U2OS (osteosarcoma, ATCC), Hep3B (hepa-
toma, ATCC), and LN229 (glioblastoma, ATCC) were used during this study.
Jurkat and A2780 cells were grown in RPMI-1640 (Sigma Aldrich), HeLa, Hep3B,
and LN229 cells were cultured in Dulbecco’s modified eagle medium (DMEM,
Sigma Aldrich). All growth media were supplemented with 10% heat-inactivated
fetal bovine serum (FCS, PAA, Biowest, Nuaillé, France). Cells were passaged twice
a week and regularly tested onMycoplasma contamination (Mycoplasma kit, Sigma
Aldrich). Cells were kept in 37 °C humid incubators containing 5% CO2 and 10%
O2. For indicated experiments, the O2 level was reduced to 0–0.5%, creating a
hypoxic environment.

Cell viability. Cells were seeded (2 × 104 cells/ml) in 100 µl of their respective
growth medium per well in 96-well plates. After a recovery period of 24 h, cells
were exposed to the indicated concentrations of test drugs for 72 h under normal
O2 or hypoxic conditions. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-
trazolium bromide (MTT)-based vitality assay (EZ4U, Biomedica, Vienna, Austria)
was used to determine cell viability and drug synergism as published27,28. The
effects on cell viability and drug synergism were calculated using GraphPad
Prism 8.0.1 and CalcuSyn software (Biosoft, Ferguson, MO, USA), respectively.
Induction of 50% cell reduction compared with untreated controls was calculated
using point-to-point analysis. Data were indicated by IC50 values.

Apoptosis induction measured by flow cytometry. Cells (1 × 105 cells/sample)
were left to recover overnight, preincubated for 24 h or 1 h with indicated thiol-
containing compounds, followed by 24 h of treatment with 4 µM LE. After drug
exposure, cells were collected, resuspended in annexin-V-binding buffer (10 mM
HEPES, 140 mM NaCl, and 2.5 mM CaCl2 in 1x PBS) containing 1 µg/ml propi-
dium iodide (PI, Sigma Aldrich) and 20 µl/ml annexin-V/APC (# 550474, Becton
Dickinson (BD) Biosciences, Palo Alto, CA), and incubated for 15–20 min.
Apoptosis induction was examined by flow cytometry measuring PI- and annexin-
V/APC-positive and -negative cell populations (FACS Calibur, BD Biosciences).
The results were analyzed using CellQuestPro software (BD Biosciences) and
GraphPad Prism 8.0.1.

LE intracellular fluorescence. The respective cells were seeded into six-well plates
(CytoOne, Starblab, 1 × 105/well) and allowed to settle for 24 h. Cells were treated
with 4 µM LE and immediately measured by LSR Fortessa flow cytometer (BD
Biosciences) in both FITC (excitation 488 nm, emission 530/30 nm) and Horizon
V450 (excitation 405 nm, emission 550/50 nm) channels. LE-induced intracellular
fluorescence was followed up to 6 h after treatment. Analyses were carried out
using Flowing Software (University of Turku, Finland) and GraphPad Prism 8.0.1.

Determination of GSH/GSSG ratio. The impact of drug exposure on the ratio
between reduced and oxidized glutathione in cultured cells was determined by the
GSH/GSSG-Glo™ assay, a luminescence-based detection system (Promega, Madi-
son, WI). The indicated cell lines (A2780, HeLa) were seeded into 96-well plates
(1 × 104/100 µl/well) and, after incubation for 24 h, treated with the indicated
concentration of LE added in another 100 µl of growth medium. Extraction and
quantification followed exactly the instructions of the manufacturer based on the
comparison with a glutathione standard curve delivered in the assay. Experiments
were performed twice in triplicate.

Live-cell imaging. Live-cell fluorescence microscopy was performed as published28.
The indicated cell types (5 × 104/well) were seeded in 8-well chambers (IBIDI, Mar-
tinsried, Germany) and left to adhere for 24 h. Afterward, the chambers were moved
into the incubation chamber of a time-lapse microscope (Visitron Systems, Puchheim,
Germany) and 4 µM LE added after having defined five positions for filming per well.
Sequences were immediately taken with a 40x immersion oil lens in DIC and
fluorescence mode using the DAPI channel (395/25 nm excitation and 460/50 nm
band-pass emission filter) (VisiView software, Visitron Systems).

Density-functional theory (DFT) optimization. The structures of the LE–NAC
and L-NAC adducts were optimized at the DFT level using the lc-wpbe/6-
31+ g(d,p) combination41. All simulations of LE were performed using one
sugar monomer instead of the full moiety for reducing the computational cost.

Time-dependent DFT was employed to calculate singlet–singlet transitions and the
theoretical absorption spectra as previously described42. The nature of all sta-
tionary points was confirmed by normal-mode analysis and no imaginary fre-
quencies were found. The solvent was modeled by means of the polarized
continuum model (PCM)43 with water as implicit solvent. Calculations were all
performed with Gaussian 16, Revision C0144. For analysis and visualization of
computational results, the software packages GAUSSSUM 2.2 and Chimera were
employed45,46.

Statistics. All statistical calculations were performed in GraphPad prism software
8.0.1. The used statistical test to determine significance levels is indicated in the
respective figure legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and Supplementary Information file or from the corresponding author
upon reasonable request. Furthermore, the XYZ coordinates for the DFT-optimized
LE–NACox(C), LE–NACox(C,D), and LE–NACred are available in Supplementary Data 1,
2 and 3, respectively.
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