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UNDERSTANDING STAR-FUNDAMENTAL ALGEBRAS

A. GIAMBRUNO, D. LA MATTINA, AND C. POLCINO MILIES

(Communicated by Sarah Witherspoon)

Abstract. Star-fundamental algebras are special finite dimensional algebras
with involution ∗ over an algebraically closed field of characteristic zero defined
in terms of multialternating ∗-polynomials.

We prove that the upper-block matrix algebras with involution introduced
in Di Vincenzo and La Scala [J. Algebra 317 (2007), pp. 642–657] are star-
fundamental. Moreover, any finite dimensional algebra with involution con-
tains a subalgebra mapping homomorphically onto one of such algebras.

We also give a characterization of star-fundamental algebras through the
representation theory of the symmetric group.

1. Introduction

Let F be an algebraically closed field of characteristic zero. This paper is devoted
to the study of a class of finite dimensional algebras with involution or ∗-algebras
over F called ∗-fundamental.

The theory of polynomial identities for ∗-algebras has been developed mainly
following the pattern of the ordinary theory of polynomial identities ([8], [16], [17],
[18], [19] ). By rediscovering the theory of varieties developed by Kemer ([15]), in
recent years much interest has been devoted to the so-called “fundamental algebras”
([2], [3], [20]). In this framework in ([9]) we developed a theory of ∗-fundamental
algebras. These are algebras defined in terms of multialternating ∗-polynomials
non-vanishing in them; one of their basic properties is that any finite dimensional
∗-algebra over F has the same ∗-identities as a finite direct sum of ∗-fundamental
algebras. By exploiting the methods of [2] we were able to prove that if A is

any finitely generated PI-algebra with involution, then limn→∞ logn
c∗n(A)

exp∗(A)n exists

and is an integer or a half integer, where c∗n(A) is the nth ∗-codimension of A
and exp∗(A) is its ∗-exponent. This result agrees with an extension to rings with
involution of a conjecture of Regev implying that the polynomial growth rate of the
ordinary codimensions of a PI-algebra is an integer or a half integer (see [4], [5]).

For a better understanding of ∗-fundamental algebras we feel that the theory
still needs two ingredients: a class of examples of ∗-fundamental algebras (that are
not fundamental), and an explicit definition via the representation theory of the
symmetric group Sn. We achieve both objectives in this paper. In fact, on one hand
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we give a family of matrix algebras that are examples of ∗-fundamental algebras
and on the other we give a characterization of ∗-fundamental algebras in terms of
Sn-characters.

We achieve the first objective by considering the algebras UT∗(A1, . . . , An) of
upper-block triangular matrices with involution introduced in [6]. These algebras
play a special role in the theory of ∗-polynomial identities since they generate
the only varieties of algebras with involution of finite basic rank which are min-
imal with respect to the ∗-exponent, as shown in [7]. We prove that any finite
dimensional ∗-algebra contains a ∗-subalgebra which maps homomorphically onto
some UT∗(A1, . . . , An) (Theorem 4). Moreover we show that such algebras are ∗-
fundamental, for any choice of the ∗-simple components A1, . . . , An (Theorem 3).
If we allow at least one ∗-simple component that is not simple, then we find out
that the algebras UT∗(A1, . . . , An) are examples of algebras that are ∗-fundamental
but not fundamental.

Along the proof of these results we find a connection between the Kemer ∗-index
and the ∗-exponent of any finite dimensional ∗-algebra. The first index is defined
in terms of multialternating ∗-polynomials non-vanishing in the algebra (see [9]),
while the ∗-exponent measures the exponential growth of the ∗-codimensions of the
algebra (see [12], [13]).

As for the second result, one considers the free algebra with involution F 〈X, ∗〉
on a countable set X and if A is a ∗-algebra, we let Id∗(A) be the ideal of F 〈X, ∗〉
of ∗-polynomial identities satisfied by A. We write A = Ā + J , where Ā is a ∗-
semisimple subalgebra and J is the Jacobson radical. Let t = dim Ā and s ≥ 0 the
least integer such that Js+1 = 0.

As in the ordinary case ([11]) one considers P ∗
n(A), the space of multilinear ∗-

polynomials in n fixed variables modulo Id∗(A). Through the permutation action of
the symmetric group Sn, the space P

∗
n(A) becomes an Sn-module and we call χ∗

n(A)
its character. Such character decomposes into a sum of irreducible Sn-characters
χλ indexed by partitions λ of n.

We prove that A is ∗-fundamental if and only if for all n large enough, there is a
partition λ of n with s boxes below the first t rows such that χλ appears in χ∗

n(A)
with non-zero multiplicity (Theorem 2).

As a final remark we mention that some of the theory of codimensions of finite
dimensional algebras has been generalized to the context of H-codimensions, with
H a finite dimensional semisimple algebra having a generalized action on A ([14]).
Unfortunately the methods of this paper cannot work in that generality due to the
structure of finite dimensional ∗-algebras.

2. ∗-fundamental algebras and their ∗-cocharacters
Throughout this paper, we shall denote by F a field of characteristic zero and

by A an associative F -algebra with involution ∗ (also called a ∗-algebra).
Let X = {x1, x2, . . .} be a countable set and let F 〈X, ∗〉 = F 〈x1, x

∗
1, x2, x

∗
2, . . .〉

be the free associative algebra with involution on X over F. In order to simplify
the notation we shall write f(x1, . . . , xn) to indicate a ∗-polynomial of F 〈X, ∗〉 in
which the variables x1, . . . , xn or their star appear.

Recall that f(x1, . . . , xn) ∈ F 〈X, ∗〉 is a ∗-polynomial identity (or simply a ∗-
identity) of A, and we write f ≡ 0, if f(a1, . . . , an) = 0, for all a1, . . . , an ∈ A.
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Let Id∗(A) = {f ∈ F 〈X, ∗〉 | f ≡ 0 on A} be the ideal of F 〈X, ∗〉 of ∗-polynomial
identities of A. Clearly Id∗(A) is a T ∗-ideal of F 〈X, ∗〉, i.e., an ideal invariant under
all endomorphisms of the free algebra commuting with the involution. Let

P ∗
n = spanF {wσ(1) · · ·wσ(n)| σ ∈ Sn, wi = xi or wi = x∗

i , 1 ≤ i ≤ n}
be the space of multilinear ∗-polynomials of degree n in x1, . . . , xn, i.e., for every
i = 1, . . . , n, either xi or x

∗
i appears in every monomial of P ∗

n at degree 1 (but not
both). Since in characteristic zero Id∗(A) is generated as T ∗-ideal by its multilinear
polynomials one studies its intersection with P ∗

n , for all n ≥ 1.
There is a natural action of the symmetric group Sn on P ∗

n : if σ ∈ Sn and
f = f(x1, . . . , xn) ∈ P ∗

n then

σf = f(xσ(1), . . . , xσ(n)).

It is easily seen that the space

P ∗
n(A) =

P ∗
n

P ∗
n ∩ Id∗(A)

inherits a structure of Sn-module and its dimension, c∗n(A), is called the nth ∗-
codimension of A.

In order to capture the exponential rate of growth of the sequence of ∗-
codimensions, in [10] the authors proved that for any associative ∗-algebra A, sat-
isfying an ordinary identity, the limit

exp∗(A) = lim
n→∞

n
√
c∗n(A)

exists and is an integer. It is called the ∗-exponent of A. Moreover exp∗(A) can be
explicitly computed; it turns out to be the dimension of a suitable finite dimensional
semisimple ∗-algebra when the base field F is algebraically closed.

Now the character χ∗
n(A) of P ∗

n(A) is called the nth ∗-cocharacter of A, and by
complete reducibility, we can write

(1) χ∗
n(A) =

∑
λ�n

mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ and mλ ≥ 0
is the corresponding multiplicity.

If λ = (λ1, . . . , λr) 
 n is such that λ1 ≥ · · · ≥ λr > 0, we call r = ht(λ) the
height of λ.

We recall that any irreducible left Sn-module M wih character χλ can be gen-
erated as an Sn-module by an element of the form eTλ

f, for some f ∈ M and some
Young tableau Tλ of shape λ. Here eTλ

= R+
Tλ
C−

Tλ
is an essential idempotent, where

R+
Tλ

=
∑

σ∈RTλ
σ, C−

Tλ
=

∑
τ∈CTλ

(signτ )τ, and RTλ
and CTλ

are the row and col-

umn stabilizers of Tλ, respectively. Notice that the ∗-polynomial fTλ
= C−

Tλ
(eTλ

f)
generates also M, as an Sn-module, and it is alternating in each set of variables
indexed by the columns of Tλ.

We recall that a ∗-polynomial f(x1, . . . , xn, Y ) linear in the variables x1, . . . , xn

(and in some other set of variables Y ) is alternating in x1, . . . , xn if f vanishes
whenever we identify any two of these variables. This is equivalent to say that the
polynomial changes sign whenever we exchange any two of these variables (here we
exchange the indices of the two variables). For instance the polynomial x1x

∗
2−x2x

∗
1

is alternating in x1 and x2 whereas x∗
1x2 − x2x

∗
1 is not alternating in x1 and x2.
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From now on we assume that A = Ā+J is a finite dimensional ∗-algebra, where
Ā is a semisimple subalgebra of A and J = J(A) is the Jacobson radical. It is
well-known that there is a ∗-Wedderburn-Malcev decomposition of A, i.e., J = J∗

and we may take Ā to be stable under ∗ ([13, Theorem 3.4.4]). We recall that the
(t, s)-index of A is Indt,s(A) = (dim Ā, sA) where sA ≥ 0 is the smallest integer
such that JsA+1 = 0.

Next we define the Kemer ∗-index of A.
Let Γ ⊆ F 〈X, ∗〉 be the T ∗-ideal of ∗-identities of A. Then β(Γ) is defined as the

greatest integer t such that for every μ ≥ 1, there exists a multilinear ∗-polynomial
f(X1, . . . , Xμ, Y ) �∈ Γ alternating in the μ sets Xi with |Xi| = t. Moreover γ(Γ) is
defined as the greatest integer s for which there exists for all μ ≥ 1, a multilinear
∗-polynomial f(X1, . . . , Xμ, Z1, . . . , Zs, Y ) �∈ Γ alternating in the μ sets Xi with
|Xi| = β(Γ) and in the s sets Zj with |Zj | = β(Γ) + 1.

Then Ind∗K(Γ) = (β(Γ), γ(Γ)) is called the Kemer ∗-index of Γ.
Since Γ = Id∗(A), we also say that (β(Γ), γ(Γ)) = (β(A), γ(A)) = Ind∗K(A) is

the Kemer ∗-index of A.
We remark that by the definition of γ(Γ) there exists a smallest integer μ0 such

that every ∗-polynomial f(X1, . . . , Xμ, Z1, . . . , Zγ(Γ)+1, Y ), alternating in μ ≥ μ0

sets Xi with β(Γ) elements and in γ(Γ) + 1 sets Zj with β(Γ) + 1 elements lies in
Γ.

A multilinear ∗-polynomial f(X1, . . . , Xμ, Z1, . . . , Zγ(Γ), Y ) �∈ Γ which is alter-
nating in μ > μ0 sets Xi with |Xi| = β(Γ) and in γ(Γ) sets Zi with |Zi| = β(Γ)+ 1
is called a Kemer ∗-polynomial related to Γ.

Remark 1 ([9, Remark 5.1]). Ind∗K(A) ≤ Indt,s(A) in the left lexicographic order.

In what follows, by abuse of notation, we shall write sA = s.
Next we give the definition of ∗-fundamental algebra (see [9, Section 6] for more

details). We start with the following construction. Let A = Ā + J be a finite
dimensional algebra with involution over an algebraically closed field F , Js �= 0,
Js+1 = 0 and let n = dim J.

If A′ = Ā ∗ F 〈x1, . . . , xn, ∗〉 is the free product of Ā and the free algebra
F 〈x1, . . . , xn, ∗〉 then we can write A′ = Ā⊕I, where I is the ∗-ideal of A′ generated
by x1, . . . , xn. Let I1 be the ∗-ideal generated by {f(A′) | f ∈ Id∗(A)} and let

As = A′/(Is+1 + I1).

Notice that As is a finite dimensional algebra with Id∗(As) = Id∗(A) ([9, Lemma
6.1]). Moreover Indt,s(As) = Indt,s(A).

Now consider the ideal I ′ = I/(Is+1 + I1) of As and let

B0 = As/(I
′)s.

Hence Id∗(A) = Id∗(As) ⊆ Id∗(B0), and Indt,s(B0) = (dim Ā, s− 1).
Let Ā = A1⊕· · ·⊕Aq, where the Ai’s are ∗-simple algebras and let s ≥ 0 be the

smallest integer such that Js+1 = 0.
Now, for any 1 ≤ i ≤ q, we define

Bi = A1 ⊕ · · · ⊕ Âi ⊕ · · · ⊕Aq + J,

where the symbol Âi means that the algebra Ai is omitted in the direct sum.

Definition 1. The algebra A is ∗-fundamental if either A is ∗-simple or s > 0 and

Id∗(A) � ∩q
i=1Id

∗(Bi) ∩ Id∗(B0).
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In this case a multilinear ∗-polynomial f is ∗-fundamental if f ∈ ∩q
i=1Id

∗(Bi) ∩
Id∗(B0) and f �∈ Id∗(A).

It is not difficult to see that any finite dimensional algebra with involution has
the same ∗-identities as a finite direct sum of ∗-fundamental algebras.

The ∗-fundamental algebras can also be characterized through the Kemer ∗-
index, in fact we have.

Theorem 1 ([9, Theorem 6.1]). A finite dimensional ∗-algebra A is ∗-fundamental
if and only if Ind∗K(A) = Indt,s(A).

In Theorem 2 we give a characterization of ∗-fundamental algebras through the
representation theory of the symmetric group.

Theorem 2. Let A be a finite dimensional ∗-algebra with Indt,s(A) = (t, s) and
let χ∗

n(A) =
∑

λ�n mλχλ be its nth ∗-cocharacter. Then A is ∗-fundamental if and
only if for all n large enough, there is a partition λ of n of height ht(λ) ≥ t with
precisely s boxes under the first t rows such that mλ �= 0.

Proof. Suppose first that for all n large enough there is a partition λ = (λ1, . . . , λr)
with λt+1 + · · ·+ λr = s such that mλ �= 0.

If s = 0, A is semisimple and by hypothesis there is an irreducible Sn-module
M � Id∗(A) generated by a ∗-polynomial fTλ

∈ P ∗
n alternating in t variables, say,

x1, . . . , xt. Since fTλ
�∈ Id∗(A) is multilinear, there is a non-zero evaluation of the

variables xi on a basis of A. Being t = dimA, it is clear that A must be ∗-simple,
hence ∗-fundamental.

If s > 0, there exists an irreducible Sn-moduleM � Id∗(A) that can be generated
by a multilinear ∗-polynomial fTλ

(x1, . . . , xn) ∈ P ∗
n , alternating on λt+1 sets of

variables each of size greater or equal than t+ 1.
In order to prove that A is ∗-fundamental, we shall show that fTλ

∈ ∩q
i=1Id

∗(Bi)∩
Id∗(B0). Now, since Indt,s(B0) = (t, s − 1), then fTλ

∈ Id∗(B0). In fact, fTλ
is

alternating on λt+1 sets of variables each of size greater or equal than t+ 1; these
alternating sets correspond to the first λt+1 columns of the diagram of λ. Hence
if we want to get a non-zero evaluation, in each of the alternating sets we have to
substitute at most t linearly independent elements from the maximal semisimple
subalgebra of B0. Hence we need to evaluate the remaining variables in the Jacobson
radical J(B0) of B0. Now, since λt+1+ · · ·+λr = s and J(B0)

s = 0 we get that any
evaluation of fTλ

into B0 gives zero.
Since for any i = 1, . . . , q, we have that dim B̄i < t, if we evaluate fTλ

in Bi, in
order to get a non-zero value we have to evaluate more than s variables in J. This
says that fTλ

∈ Id∗(Bi). So we have proved that fTλ
∈ ∩q

i=1Id
∗(Bi) ∩ Id∗(B0) and,

since fTλ
�∈ Id∗(A), we get that A is ∗-fundamental.

Conversely, suppose that A is ∗-fundamental.
If s = 0, by definition A is ∗-simple and by [9, Proposition 3.1] there exists a

multilinear ∗-polynomial f(x1, . . . , xt, Y ) �∈ Id∗(A) alternating in x1, . . . , xt, |Y | <
∞.

Now, for any n > deg f , by multiplying on the right by new variables we may
assume that f ∈ P ∗

n . Consider the permutation action of the symmetric group St

on x1, . . . , xt, so that we can regard P ∗
n and, so, P ∗

n(A) as an St-module. Since
f �∈ Id∗(A), for any tableau T of shape (1t) we have that fT = eT f �∈ Id∗(A). Thus
the character χ(1t) appears with non-zero multiplicity in the St-character of P

∗
n(A).
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Now, by the branching rule ([13, Theorem 2.3.1]) the induced character χ(1t) ↑ Sn

has an irreducible component χλ′ with non-zero multiplicity and ht(λ′) = t since
dimA = t.

Suppose now that s > 0 and consider a Kemer ∗-polynomial f ∈ P ∗
n . Since

Ind∗K(A) = Indt,s(A) f can be written as

f = f(X1, . . . , Xs, z1, . . . , zs, Y ) /∈ Id∗(A),

where |X1| = · · · = |Xs| = t and f is alternating on each set {Xi, zi}, for i =
1, . . . , s.

We can consider P ∗
n as an Sk-module, where k = (t + 1)s, by letting Sk act on

the set {X1, . . . , Xs, z1, . . . , zs}. Then the quotient space P ∗
n(A) inherits a structure

of Sk-module.
Since f /∈ Id∗(A), there exists a partition λ = (λ1, . . . , λr) 
 k and a tableau Tλ

such that fTλ
= C−

Tλ
eTλ

f /∈ Id∗(A). Let χ be the Sk-character of P
∗
n(A). Then, if

we decompose χ =
∑

μ�k m
′
μχ

′
μ, we have that m

′
λ �= 0. Since fTλ

is not a ∗-identity
for A, we get that also f ′ = R+

Tλ
fTλ

/∈ Id∗(A). Notice that f ′ is symmetric in λ1

variables and f is alternating on s disjoint sets of variables; hence m′
λ �= 0 implies

that λ1 ≤ s and, also, λ1 + · · ·+ λt ≤ ts.
If λ1 + · · · + λt < ts, then we would have λt+1 + · · ·+ λr ≥ s+ 1 and as above

we get m′
λ = 0, a contradiction. Thus λ1 + · · · + λt = ts and λt+1 + · · · + λr = s.

Now consider the induced character χ′
λ ↑ Sn. By the branching rule we have

χ′
λ ↑ Sn =

∑
μ�n mμχμ, a decomposition into irreducible Sn-characters, where

μ = (μ1, . . . , μt+1, . . . , μr, . . .) runs over the set of partitions of n with μt+1 + · · ·+
μr + · · · ≥ λt+1 + · · · + λr = s. Since m′

λ �= 0, there exists at least one χμ which
appears with non-zero multiplicity. Then as in the first part of the proof we get
that μt+1 + · · ·+ μr + · · · = s and we are done. �

3. Star-fundamental algebras

We start by recalling the definition of the algebra UT∗(A1, . . . , An) given in [6].
Let (A1, . . . , An) be an n-tuple of ∗-simple algebras. We recall that any ∗-simple

algebra Ai is isomorphic to (Mdi
(F ), ∗), the algebra of di×di matrices over F where

∗ is the transpose or the symplectic involution or to Mdi
(F )⊕Mdi

(F )op, the direct
sum of Mdi

(F ) and its opposite, with exchange involution ([13, Theorem 3.4.4,
Theorem 3.6.8]). In order to simplify the notation we shall identify Ai ≡ Mdi

(F )
in the first case, and Ai ≡ Mdi

(F )⊕Mdi
(F )op, in the second case.

For any i = 1, . . . , n, let γi denote the reflection involution along the secondary
diagonal of Mdi

(F ). Recall that γi acts on matrix units as eγi

ij = edi−j+1,di−i+1.

Let d = d1 + · · ·+ dn and let UT (d1, . . . , dn) denote the algebra of upper block
triangular matrices of size d1, . . . , dn. We set s1 = 0, and for any 2 ≤ i ≤ n + 1

si =
∑i−1

k=1 dk.
For 1 ≤ i, j ≤ n define the map

πij : Md(F ) → Mdi×dj

such that

Y = (aα,β) →

⎛
⎜⎝

asi+1,sj+1 · · · asi+1,sj+1

...
...

asi+1,sj+1 · · · asi+1,sj+1

⎞
⎟⎠ .

Notice that πij(Y ) is the projection of Y on its di × dj-block.
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Let Γ = {i | Ai = (Mdi
(F ), ∗)}, where ∗ is the transpose or the symplectic

involution. The algebra

UT∗(A1, . . . , An) ⊆ UT (d1, . . . , dn, dn, . . . , d1) ⊆ M2d(F )

is defined by the following conditions: given Y ∈ UT (d1, . . . , dn, dn, . . . , d1), then
Y ∈ UT∗(A1, . . . , An) if and only if

(1) πij(Y ) = 0 if i ≤ n and j > n;
(2) π2n−i+1,2n−i+1(Y ) = (πii(Y )∗)γi , when i ∈ Γ.

The involution on UT∗(A1, . . . , An) is the reflection involution γ.
The relevance of the algebras UT∗(A1, . . . , An) is due to a result proved in [7].

We recall that a variety V of algebras with involution of finite basic rank (i.e., the
variety is generated by a finitely generated algebra with involution) are minimal
with respect to the ∗-exponent e ≥ 2 if for any proper subvariety U of finite basic
rank, we have that e = exp∗(V) > exp∗(U). Here the ∗-exponent of a variety is the
∗-exponent of a generating algebra.

In [7] the authors proved that the variety V is minimal with respect to the
∗-exponent if and only if it is generated by UT∗(A1, . . . , An), for some ∗-simple
algebras A1, . . . , An. We remark that the definition of minimal variety given in [7]
refers to varieties generated by finite dimensional algebras, but by the result in [21]
this is equivalent to our definition.

Next we shall prove that the algebras UT∗(A1, . . . , An) are ∗-fundamental.
To this end we need first to prove two lemmas of independent interest.
Let A = Ā + J be a finite dimensional algebra with involution ∗, with Ā =

A1⊕· · ·⊕Aq, where the Ai’s are ∗-simple algebras and s ≥ 0 is the smallest integer
such that Js+1 = 0.

In what follows we shall be dealing with multilinear ∗-polynomials. In order to
check that a multilinear ∗-polynomial is a ∗-identity of A, we shall evaluate the
variables only on elements of a basis of A. Then we choose a basis of A as the
union of a basis of J and a basis of Ā, which is the union of bases of the ∗-simple
components.

Recall that given any ∗-polynomial f(x1, . . . , xn, Y ) linear in each of the variables
in X = {x1, . . . , xn}, the operator of alternation AltX on X is defined as

AltXf(x1, . . . , xn, Y ) =
∑
σ∈Sn

(sgnσ)f(xσ(1), . . . , xσ(n), Y ).

The new polynomial AltXf(x1, . . . , xn, Y ) is multilinear and alternating in x1, . . . ,
xn.

Let the el,j ’s be the matrix units of Mdi
(F ) and, by abuse of notation, in case

Ai = Mdi
(F )⊕Mdi

(F )op, let el,j denote (el,j , 0) or (0, el,j).
In what follows we shall make use of the following.

Proposition 1 ([9, Proposition 3.1]). Let A be a ∗-simple algebra. For every μ ≥ 1
there exists a multilinear ∗-polynomial

(2) f(X1, . . . , Xμ, Y ) /∈ Id∗(A)

alternating on each of the disjoint sets X1, . . . , Xμ, where |X1| = · · · = |Xμ| =
dimA and |Y | < ∞. Such a polynomial has the property that it can take any value
of the type ei,i, when evaluated in A.
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Recall that a ∗-algebra A = Ā+J , with Ā = A1⊕· · ·⊕Aq is ∗-reduced ([9]) if up
to a rearrangement of the ∗-simple components we have that A1JA2J · · · JAq �= 0.

Let f(X1, . . . , Xr, Y ) be a multilinear ∗-polynomial in disjoint sets of variables
X1, . . . , Xr, Y . Then f is said to be r-fold t-alternating if f is alternating on each
set Xi and |Xi| = t, 1 ≤ i ≤ r.

Lemma 1. Let A = Ā + J be a finite dimensional ∗-reduced algebra, and let
dim Ā = dim(A1 ⊕ · · · ⊕ Aq) = t. Then, for any μ ≥ 1, there exists a multilinear
∗-polynomial

f(X1, . . . , Xμ, Z1, . . . , Zq−1, Y ) �∈ Id∗(A)

with |Xj | = t, 1 ≤ j ≤ μ, |Zi| = t+ 1, 1 ≤ i ≤ q − 1 such that

(1) f is (q − 1)-fold (t+ 1)-alternating,
(2) f is μ-fold t-alternating.

Proof. We assume as we may that A1JA2J · · ·JAq �= 0. Now let μ ≥ 1 and for every
1 ≤ i ≤ q, let fi(X1,i, . . . , Xμ+q−1,i, Yi) /∈ Id∗(Ai) be the multilinear ∗-polynomial
constructed in Proposition 1. Recall that fi is alternating on each of the disjoint
sets X1,i, . . . , Xμ+q−1,i, where |X1,i| = · · · = |Xμ+q−1,i| = dimAi. Also such ∗-
polynomial has the property that it can take any value of the type eji.ji ∈ Ai.

Next we define a new polynomial

f = f1z1f2z2 · · · zq−1fq,

where z1, . . . , zq−1 are new variables distinct from the ones appearing in each fi.
Then we let

f̃ = AltX,Zf,

where AltX,Z is the operator of alternation on each set

Xj = Xj,1 ∪ · · · ∪Xj,q, q ≤ j ≤ μ+ q − 1,

and on each set

Zj = Xj,1 ∪ · · · ∪Xj,q ∪ {zj}, 1 ≤ j ≤ q − 1.

Since dimA1 + · · · + dimAq = t, f̃ is (q − 1)-fold (t + 1)-alternating, and μ-fold
t-alternating.

The proof of the lemma will be completed once we prove that f̃ is not a ∗-identity
of A.

In fact, since A1JA2J · · · JAq �= 0, there exist a1 ∈ A1, . . . , aq ∈ Aq, u1, . . . , uq−1

∈ J , such that
a1u1a2u2 · · ·uq−1aq �= 0.

Let ei be the unit element of Ai. It follows that

ei1,i1v1ei2,i2v2 · · · vq−1eiq,iq �= 0,

where eij ,ij are suitable elements of Aj , 1 ≤ j ≤ q, and vk = ekakukek+1, 1 ≤ k ≤
q − 2, vq−1 = eq−1aq−1uq−1aqeq.

Let ϕ be the evaluation such that ϕ(fj) = eij ,ij , 1 ≤ j ≤ q, and ϕ(zj) = vj for
1 ≤ j ≤ q − 1. Then, since for i �= j, AiAj = 0, we get

ϕ(f̃) = Cei1,i1v1ei2,i2v2 · · · vq−1eiqiq

where C =
∏q

i=1(dimAi)!
μ+q−1. �

The connection between the ∗-exponent and the Kemer ∗-index of a finite di-
mensional algebra with involution is given in the following.
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Remark 2. If A = Ā + J is a finite dimensional algebra with involution and
Ind∗K(A) = (α, β), then α = exp∗(A).

Proof. Recall (see [12] or [13, Corollary 10.8.5]) that exp∗(A) is the largest dimen-
sion of a ∗-semisimple subalgebra of Ā, say, A1 ⊕ · · · ⊕An, such that

A1JA2J · · ·JAn �= 0.

Then the algebra B = A1⊕· · ·⊕An+J is ∗-reduced and by Lemma 1 for every μ ≥ 1
there exists a multilinear ∗-polynomial f �∈ Id∗(B) which is μ-fold t-alternating,
where t = dim(A1 ⊕ · · · ⊕ An) = exp∗(A). Since f �∈ Id∗(A), then for the first
Kemer ∗-index we have α ≥ exp∗(A).

On the other hand let Jk = 0 and let g be a multilinear ∗-polynomial k-fold
(exp∗(A) + 1)-alternating. We shall prove that g is a ∗-identity of A.

Suppose to the contrary that there is a non-zero evaluation ϕ of g in A.
If we evaluate all variables of g in Ā, since AiAj = 0, for i �= j, in order for

ϕ(g) to be non-zero, all variables must be evaluated in one ∗-simple component,
say Ai. Since g is alternating on exp∗(A) + 1 > dimAi variables we get ϕ(g) = 0,
a contradiction. It follows that some variables of g must be evaluated in J .

Suppose now that we evaluate all variables of an alternating set Xu in Ā, say in
Ai1 , . . . , Ais . But then 0 �= ϕ(g) ∈ B = Ai1 + · · · + Ais + J and, by definition of
∗-exponent, dim(Ai1 + · · ·+Ais) ≤ exp∗(A). Since |Xu| = exp∗(A)+1, we get that
ϕ(g) = 0, a contradiction.

It follows that at least one variable of each alternating set must be evaluated
under ϕ in J . Since there are k alternating sets, we get that ϕ(g) ∈ Jk = 0.

Since for any l ≥ k, any multilinear ∗-polynomial l-fold (exp∗(A)+1)-alternating
is a ∗-identity of A, it follows that α, the first Kemer ∗-index of A, cannot be strictly
greater than exp∗(A). �

We can now prove the following result.

Theorem 3. The algebra UT∗(A1, . . . , An) is ∗-fundamental, for any ∗-simple al-
gebras A1, . . . , An.

Proof. If J is the Jacobson radical of A = UT∗(A1, . . . , An), we have that Jn = 0
and Jn−1 �= 0. It is not difficult to see that the algebra A is ∗-reduced. Hence the
(t, s)-index of A is Indt,s(A) = (dim(A1+ · · ·+An), n−1) = (exp∗(A), n−1). Since
Ind∗K(A) ≤ Indt,s(A), by Lemma 1 and Remark 2 we get that Ind∗K(A) = Indt,s(A)
and A is ∗-fundamental. �

By applying Theorem 10.1 in [9] one easily gets the following.

Corollary 1. Given A = UT∗(A1, . . . , An) let r be the number of ∗-simple algebras
Ai which are not simple algebras. Then

C1m
− 1

2 (dim(Ā)−−r)+n−1(dim Ā)m ≤ c∗m(A) ≤ C2m
− 1

2 (dim(Ā)−−r)+n−1(dim Ā)m,

for some constants C1 > 0, C2 where Ā = A1⊕· · ·⊕An and (Ā)− is the Lie algebra
of skew elements of Ā. Hence

lim
m→∞

logm
c∗m(A)

exp∗(A)m
= −1

2
(dim(Ā)− − r) + n− 1.

Final remarks are in order. Let A = Ā + J be a finite dimensional algebra
over F and let Ā = A1 ⊕ · · · ⊕ Ar, with the Ai’s simple algebras (no involution is
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involved). Then A is reduced if up to a rearrangement of the simple components
we have that A1JA2J · · ·Ar �= 0. It is well-known that in the ordinary case any
fundamental algebra ([3], see [20] where the term fundamental is used for the first
time) is reduced and the analogous of Theorem 1 holds, i.e, a finite dimensional
algebra A is fundamental if and only if IndK(A) = Indt,s(A).

Clearly if A is a fundamental algebra then A is also a ∗-fundamental algebra for
any involution ∗ defined on A. In fact, if A is fundamental we have that Indt,s(A) =
IndK(A) but IndK(A) ≤ Ind∗K(A) ≤ Indt,s(A). Hence Ind∗K(A) = Indt,s(A) and
by Theorem 1 A is ∗-fundamental.

Next we shall give examples of algebras which are ∗-fundamental but not funda-
mental.

Consider the algebra A = UT∗(A1, . . . , An). If at least one of the components
Ai is a ∗-simple but not simple algebra, then A is not reduced, so, cannot be
fundamental. On the other hand if all the components Ai are simple algebras,
then UT∗(A1, . . . , An) is isomorphic to UT (A1, . . . , An), an algebra of upper block
triangular matrices, and it is well-known that such an algebra is fundamental ([1]
or [2, Section 2.2.1]).

Remark 3. The algebra UT∗(A1, . . . , An) is ∗-fundamental but not fundamental if
and only if at least one of the components Ai is a ∗-simple but not simple algebra.

4. Connecting finite dimensional algebras with ∗-minimal algebras

As in the previous section we let A be a finite dimensional algebra with involution
∗ over an algebraically closed field F of characteristic zero. We write A = Ā + J ,
where Ā is a maximal semisimple subalgebra with involution and J is the Jacobson
radical. Also Ā = A1 ⊕ · · · ⊕Aq, where Ai = Mdi

(F ) with transpose or symplectic
involution or Ai = Mdi

(F )⊕Mdi
(F )op with exchange involution.

A connection between finite dimensional ∗-algebras and ∗-fundamental algebras
is given by the following.

Theorem 4. Let A = Ā+J be a finite dimensional algebra with involution ∗ over an
algebraically closed field F of characteristic zero. If A1, . . . , An are distinct ∗-simple
subalgebras of Ā such that A1JA2J · · · JAn �= 0, then the ∗-algebra UT∗(A1, . . . , An)
is isomorphic to a quotient of a ∗-subalgebra of A.

Proof. For any i = 1, . . . , n, write Ai = (Mdi
(F ), ∗) or Ai = Mdi

(F ) ⊕Mdi
(F )op.

As in the previous section let d = d1 + · · ·+ dn, s1 = 0, and for any 2 ≤ i ≤ n+ 1,

si =
∑i−1

k=1 dk. Also Γ = {i | Ai = (Mdi
(F ), ∗)}.

It is convenient to identify Ã = A1 ⊕ · · · ⊕An with the algebra⎛
⎜⎝

A1 0
. . .

0 An

⎞
⎟⎠ ,

where if i ∈ Γ, Ai = (Mdi
(F ), ∗) is identified with the di × di matrices with basis

{ei,j | si +1 ≤ i, j ≤ si+1} and if i �∈ Γ, Ai = Mdi
(F )⊕Mdi

(F )op is identified with
the pairs of matrices with basis {(ei,j , 0), (0, ek,l) | si + 1 ≤ i, j, k, l ≤ si+1}.

Now, define a map ϕ : Ã → (M2d(F ), γ), where γ is the reflection involution,
such that if i ∈ Γ, then for any eα,β ∈ Ai,

ϕ(eα,β) = eα,β + (e∗α,β)
γ ,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

UNDERSTANDING STAR-FUNDAMENTAL ALGEBRAS 3231

whereas if i �∈ Γ, for any (eα,β , 0), (0, eα,β) ∈ Ai,

ϕ((eα,β, 0)) = eα,β and ϕ((0, eα,β)) = (eα,β)
γ .

Then ϕ induces an isomorphism of algebras with involution

(Ã, ∗) → (ϕ(Ã), γ) ⊆ UT∗(A1, . . . , An).

Now by the hypothesis of the theorem, there exist a1 ∈ A1, . . . , an ∈ An and
u1, . . . , un−1 ∈ J such that

a1u1a2 · · · an−1un−1an �= 0.

If e1, . . . , en are the unit elements of A1, . . . , An, respectively, we have

e1v
′
1e2 · · · en−1v

′
n−1en �= 0,

where v′i = eiaiuiei+1, 1 ≤ i ≤ n − 2 and v′n−1 = en−1an−1un−1anen. Thus,
recalling that we write eαi,αi

for (eαi,αi
, 0) or (0, eαi,αi

), we can say that there exist
matrix units eαi,αi

∈ Ai = Mdi
(F ), if i ∈ Γ, or eαi,αi

∈ Ai = Mdi
(F )⊕Mdi

(F )op,
if i �∈ Γ, such that

(3) eα1,α1
v′1eα2,α2

v′2 · · · v′n−1eαn,αn
�= 0.

Now define vi = eαi,αi
v′1eαi+1,αi+1

, i = 1, . . . , n− 1 and we have

(4) eα1,α1
v1eα2,α2

v2 · · · vn−1eαn,αn
�= 0.

Notice that Mdi
(F )⊕Mdi

(F )op and Mdi
(F )op⊕Mdi

(F ) are isomorphic as alge-
bras with involution. Hence, if i �∈ Γ, by eventually replacing Ai with an isomorphic
copy, we may assume that eαi,αi

= (eαi,αi
, 0).

Let B be the subalgebra with involution of A generated by Ã and v1, . . . , vn−1.
Let also I be the ideal with involution of B generated by the elements viBv∗i , v

∗
i Bvi,

1 ≤ i ≤ n − 1. The quotient algebra B/I has an induced involution, and we shall
prove that it is isomorphic to UT∗(A1, . . . , An). To this end we shall induce the

isomorphism (Ã, ∗) → (ϕ(Ã), γ) to

ϕ′ : B/I → UT∗(A1, . . . , An).

We start by determining a basis of B/I. By abuse of notation we shall identify the
elements of the quotient algebra with the elements of B keeping in mind that any
word in elements of Ā and vi’s containing vi and v∗i must be zero.

Let 1 ≤ i, j ≤ d. If sk + 1 ≤ i, j ≤ sk+1, for some 1 ≤ k ≤ n, then we define
xi,j = ei,j ∈ Ak.

Let now 1 ≤ i < j ≤ d. For any 1 ≤ k ≤ n− 1 and t ≥ 1 such that k + t ≤ n, if

sk + 1 ≤ i ≤ sk+1, sk+t + 1 ≤ j ≤ sk+1+t,

define
xi,j = ei,αk

eαk,αk
vkeαk+1,αk+1

vk+1 · · · vk+t−1eαk+t,αk+t
eαk+t,j .

Since eαk,ixi,jej,αk+t
is a factor of the non-zero product in (4), we have that xij �= 0.

Recalling also the definition of the ideal I, it can be checked that for xi,j , xk,l ∈
J(B/I), we have that

(5) xi,jx
∗
k,l = x∗

i,jxk,l = 0.

In fact, let xi,j ∈ Arvr · · · vs−1As and xk,l ∈ Atvt · · · vc−1Ac. Then xi,jx
∗
k,l ∈

Arvr · · ·AsAcv
∗
c−1 · · · v∗tAt and either s �= c and, so, xi,jx

∗
k,l = 0 or s = c and the

above product must contain vs−1 and v∗s−1 and, by definition of I, xi,jx
∗
k,l = 0.

Similarly x∗
i,jxk,l = 0.
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By direct computation it follows that the xi,j ’s and the x∗
i,j ’s multiply as matrix

units taking into account the relations in (5). Thus they are linearly independent
over F . Since these are the only non-zero words of B/I, it follows that they form
a basis of the algebra with involution B/I.

Next we define a map ϕ′ : B/I → UT∗(A1, . . . , An) by setting ϕ′(Ã) = ϕ(Ã).
Moreover for 1 ≤ k ≤ n− 1, k+ t ≤ n, t ≥ 1 if sk + 1 ≤ i ≤ sk+1, sk+t + 1 ≤ j ≤
sk+1+t, we let

ϕ′(xi,j) = ei,j and ϕ′(x∗
i,j) = eγi,j .

The map ϕ′ is a multiplicative linear isomorphism since dimB/I = dimUT ∗

(A1, . . . , An) and the xij ’s multiply like matrix units. Since it is also an isomor-
phism of algebras with involution, the theorem is proved. �

Given an algebra with involution A let us denote by var∗(A) the ∗-variety gen-
erated by A.

The connection between finitely generated ∗-algebras and ∗-fundamental algebras
with respect to the ∗-exponent is given in the following.

Corollary 2. Let A be a finitely generated PI-algebra with involution ∗ over an
algebraically closed field of characteristic zero. Then there exist ∗-simple alge-
bras A1, . . . , An such that UT∗(A1, . . . , An) ∈ var∗(A) and exp∗(A) = exp∗(UT∗
(A1, . . . , An)).

Proof. By [21], we may assume that A is a finite dimensional algebra. Hence the
∗-exponent of A is equal to the largest dimension of a ∗-semisimple subalgebra of
Ā, say, A1 ⊕ · · · ⊕An, such that

A1JA2J · · ·JAn �= 0.

Hence exp∗(A) = dim(A1⊕· · ·⊕An) and, by Theorem 4, there exists a ∗-subalgebra
of A mapping homomorphically onto UT∗(A1, . . . , An). Hence UT∗(A1, . . . , An) ∈
var∗(A) and we are done since exp∗(UT∗(A1, . . . , An)) = dim(A1 ⊕ · · · ⊕An). �

Now recalling the definition of ∗-minimal variety, by [21] this implies the following
result proved in [7].

Theorem 5. Let V be a ∗-variety of finite basic rank minimal with respect to the
∗-exponent. Then V is generated by an algebra of the type UT∗(A1, . . . , An) for
some ∗-simple algebras A1, . . . , An.
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