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“Ignorance is the mother of all crimes. Crime is first of all foolishness.”

Honoré de Balzac

“When it comes to anything you want to do in your life, you have to be passionate. Success
may come, but in the end, the most important thing is that you are doing what you really
want to do.”

Chiara Ferragni
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UNIVERSITY OF PALERMO

Abstract
Department of Mathematics and Computer Sciences

Doctor of Philosophy

Social network analysis approaches to study crime

by Annamaria FICARA

Social Network Analysis (SNA) studies groups of individuals and can be applied
in a lot of areas such us organizational studies, psychology, economics, information
science and criminology. One of the most important results of SNA has been the
definition of a set of centrality measures (e.g., degree, closeness, betweenness, or
clustering coefficient) which can be used to identify the most influential people with
respect to their network of relationships.

The main problem with computing centrality metrics on social networks is the
typical big size of the data. From the computational point of view, SNA represents
social networks as graphs composed of a set of nodes connected by another set of
edges on which the metrics of interest are computed. To overcome the problem of
big data, some computationally-light alternatives to the standard measures, such as
Game of Thieves or WERW-Kpath, can be studied. In this regard, one of my main
research activities was to analyze the correlation among standard and nonstandard
centrality measures on network models and real-world networks.

The centrality metrics can greatly contribute to intelligence and criminal investi-
gations allowing to identify, within a covert network, the most central members in
terms of connections or information flow. Covert networks are terrorist or criminal
networks which are built from the criminal relationships among members of crimi-
nal organizations. One of the most renowned criminal organizations is the Sicilian
Mafia.

The focal point of my research work was the creation of two real-world crim-
inal networks from the judicial documents of an anti-mafia operation called Mon-
tagna conducted by a specialized anti-mafia police unit of the Italian Carabinieri in
Messina (i.e., the third largest city on the island of Sicily). One network includes
meetings and the other one records telephone calls among suspected criminals of
two Sicilian Mafia families. This dataset is unique and it might represent a valuable
resource for better understanding complex criminal phenomena from a quantitative
standpoint.

Different SNA approaches have been used on these Montagna networks to de-
scribe their structure and functioning, to predict missing links, to identify leaders or
to evaluate police interventions aimed at dismantling and disrupting the networks.
Graph distances have been used to find a network model able to properly mime the
structure of a Mafia network and to quantify the impact of incomplete data not only
on Mafia networks such as the Montagna ones but also on terrorist and street gangs
networks. The two simple Montagna networks have been finally used to build a
multilayer network trying to obtain a more nuanced understanding of the network
structure and of the strategic position of nodes in the network.

HTTP://WWW.UNIPA.IT
http://department.university.com
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Introduction

My research activity focuses on Social Network Analysis (SNA). SNA studies groups
of individuals and can be applied in a lot of areas such us organizational studies,
psychology, economics, information science and criminology. Social Network Sites
like Facebook, Twitter or Instagram have grown exponentially thus providing new
challenges for the application of SNA methods.

One of the most important results of SNA has been the definition of a set of
measures that describe the role of single individuals with respect to their network
of relationships. These so-called centrality measures are of great practical relevance
since, e.g., they can be used to identify influential people with the potential of con-
trolling the information flow inside communication networks. The main standard
centrality metrics, i.e., degree, closeness, betweenness, and clustering coefficient, are
fundamental to increase our understanding of a network.

Centrality measures are also used in the more general field of complex network
analysis for applications such as studying landscape connectivity to understand the
movement of organisms, analyzing proteins and gene networks, studying the prop-
agation of diseases, or planning urban streets for optimal efficiency. These metrics
can greatly contribute to intelligence and criminal investigations allowing to iden-
tify, within a covert network, the most central members in terms of connections or
information flow (Calderoni and Superchi, 2019). Covert networks are terrorist or
criminal networks which are built from the criminal relationships among members
of criminal organizations. Different terms can be adopted to refer to a criminal orga-
nization, like syndicates, crews, gangs, firms or mafia. Mafia was defined by Gam-
betta (1996) as a "territorially based criminal organization that attempts to govern
territories and markets"; he particularly calls original Mafia the criminal group lo-
cated in Sicily.

The starting point of my research work was the creation of two real-world crim-
inal networks from the judicial documents of an anti-mafia operation called Mon-
tagna conducted by a specialized anti-mafia police unit of the Italian Carabinieri in
Messina (i.e., the third largest city on the island of Sicily) (Ficara et al., 2020). One
network includes meetings and the other one records telephone calls among sus-
pected criminals of two Mafia families. This dataset is unique and it might represent
a valuable resource for better understanding complex criminal phenomena from a
quantitative standpoint.

The main problem with computing centrality metrics on complex networks is the
typical size of the data. The large size of current social networks makes their quan-
titative analysis challenging. From the computational point of view, SNA represents
social networks as graphs on which the metrics of interest are computed. Graphs
are defined as a set of nodes or actors with edges or links between them and with no
edges connecting a node to itself.

To overcome the problem of big data, some computationally-light alternatives to
the standard centrality measures should be found. De Meo et al. (2012, 2013, 2014)
presented a novel measure called the K-path to compute link centrality. The advan-
tage of using this metric is that it can be computed with a near-linear time algorithm
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called Weighted Edge Random Walks – K Path (WERW-Kpath). More recently, Mo-
canu, Exarchakos, and Liotta (2018) developed an algorithm called Game of Thieves
which is able to compute actors and links centrality in a polylogarithmic time.

We explored the correlation among standard and nonstandard measures on net-
work models and real-world freely available networks (Ficara et al., 2021a,b) and
then on real-world Mafia networks extracted from three different anti-mafia opera-
tions (Ficara et al., 2021d).

The identification of the most central actors in a covert network and their re-
moval belongs to one of the two disruption strategies in which we can categorize
criminal network disruption: the social capital approach and the human capital ap-
proach. A third strategy comes from the combination of the other two: the mixed
approach. We reviewed and classified network disruption methods in Ficara et
al. (2022a). We also used a social capital approach to disrupt the Montagna net-
works simulating different intervention procedures: sequential and block node re-
moval (Cavallaro et al., 2020b). The first one refers to those scenarios in which police
arrest one criminal at a time. The second strategy simulates police raids.

Information on a covert network is often likely to be missing or hidden. These
networks are usually incomplete, incorrect and inconsistent. Law Enforcement Agen-
cies (LEAs) may in fact have limited resources or make unintentional errors. Inves-
tigations often encounter individuals unrelated to the criminal organization (e.g.,
friends, relatives, and other frequent contacts). Moreover, some members of the
criminal organization actively attempt to avoid detection (e.g., by refraining from the
use of telephone, using intermediaries, and coding messages). In criminal network
analysis, missing data can refer to missing nodes and/or missing edges. LEAs plan
to get reliable results from the application of link prediction algorithms to address
the problem of missing edges which is a critical impediment to understand network
boundaries and topology. In particular, we tackled the problem of estimating the
robustness of link prediction algorithms in the Montagna networks (Calderoni et al.,
2020). First, we applied several link prediction algorithms and observed that link
prediction algorithms leveraging the full graph topology provide very accurate re-
sults even on very sparse networks. Second, we carried out extensive simulations
to investigate how the noisy and incomplete nature of criminal networks may affect
the accuracy of link prediction algorithms.

We also faced the missing data problem in covert networks of different nature
(i.e., Mafia, terrorist and street gang networks) from a different prospective (Ficara
et al., 2021c). We first used random edge and node removal strategies. Edge removal
simulates the scenario in which LEAs fail to intercept some calls or to spot sporadic
meetings among suspects. Node removal models the situation in which some sus-
pects cannot be intercepted or investigated. Then, we used graph distances to com-
pare the complete and the pruned networks. This comparison allows to quantify the
impact of incomplete data and to determine which network type is most affected by
it.

Graph distances have also been used to compare a Mafia network with several
network models with the aim to identify the model able to properly mime the struc-
ture and behavior of a covert network (Cavallaro et al., 2021; Ficara et al., 2021f). Ar-
tificial but realistic models can, in fact, represent a useful tool for LEAs to simulate
and study the structure, evolution and faults of criminal networks. LEAs could cre-
ate models which replicate criminal networks starting from the investigation data,
even if they are affected by noise or missing information. Network models could be
used to predict and prevent the creation of relationship ties between criminals or to
break those ties by arresting one or more of the suspects.
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SNA studies have led to an improvement and to a generalization of existing tools
to networks with multiple subsystems and layers of connectivity. These kind of
networks are usually called multilayer networks. Some networked systems can be
better modeled by multilayer structures where the individual nodes develop rela-
tionships in multiple layers. For this reason, we built a multilayer network from
the single-layer Montagna networks and we focused on the identification of key
actors using different approaches with and without considering the layered struc-
ture (Ficara et al., 2021e). The analysis of multiple layers within a criminal network
provides a complete picture of the network structure identifying actors with strate-
gic positions whose centrality does not emerge from the analysis of the single-layer
networks.

This dissertation is structured as follows. Chap. 1 contains the description of data
management issues, including the methods that may be used to collect and validate
data and those to transform the original criminal information into graphs. All the
network models and real criminal networks used in our studies are also introduced.
Chap. 2 regards the leader identification problem including the explanation of stan-
dard and nonstandard centrality measures and the correlation analysis among them.
Chap. 3 is about the use of graph distances to compare artificial and real criminal
networks. Chap. 4 describes the problem of missing data in covert networks that
we faced, at first, using link prediction algorithms in the Montagna networks and,
then, using graph distances in several covert networks. Chap. 5 explains the three
main disruption strategies. It also describes the concept of resilience and the char-
acteristics of resilient covert networks. Then, it focuses on our approach to disrupt
the Montagna networks. Chap. 6 is about the use of a multilayer approach on the
Montagna dataset.
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Chapter 1

Covert networks

Organized crime is a category of groups operating covertly and illegally outside the
boundaries of the law that could potentially have devastating effects on both the so-
cial and economic order (Everton, 2012; Xu and Chen, 2008). Criminal relationships
can be studied in terms of network theory as covert or dark networks, which usually
include terrorist and criminal networks.

A criminal network can be represented as a simple graph composed by a set of
nodes or actors connected by another set of edges or links supporting in some way
or other the commission of illegal actions.

Criminal networks are the result of large number of different pieces of informa-
tion. In particular, physical and/or audio surveillance stakeouts are usually used
together with documents from criminal prosecutions (Morselli, 2008), law enforce-
ment agencies accounts (Malm and Bichler, 2011), interviews with suspects and case
studies describing the operation of secret organizations (Erickson, 1981). The ele-
ments of a criminal network are the individuals appearing in the records, after a
judicious screening removed those not involved in criminal activities (e.g., family,
friends, legitimate business partners and suppliers) (Faust and Tita, 2019). Commu-
nications, meetings, financial transactions and trading of illicit goods are modeled
using edges (Faust and Tita, 2019).

Access to data related to criminal organizations, and in particular records from
wiretapping activities (Berlusconi et al., 2016), is difficult. This may explain why
most studies in this sector rely on a limited number of case studies involving only
one source of information. Criminal networks are covert and most of the information
is not publicly available. This leads to small datasets available for analysis, and most
importantly severely limits the range of applicability of the findings (Jupp, 2012).

Also terrorist social networks can be represented as graphs where nodes in the
network represent actors or groups, and the links between the nodes demonstrate
their relationship with each other. An edge among terrorists or groups of terror-
ists can exist if they communicated with each other or if they were present on the
location of the same attack.

The main difference between terrorism and organized crime lies in their purpose.
While terrorism is carried out in order to achieve a political aim, organized crime is
usually perpetrated for material gain, financial or otherwise. For terrorist groups,
the illicit acquisition or sale of goods and services is most often viewed as a means
to achieve their political or ideological goals, rather than the goal itself. By contrast,
for organized criminal groups, the illicit acquisition or sale of goods and services is
the goal.

Morselli, Giguère, and Petit (2007) compared the structure of criminal and ter-
rorist organizations, explaining the connection between time-to-task (i.e., the inter-
play between time and action), and their vulnerability. Terrorist organizations are
characterized by a limited time-to-task and a particularly efficient communication
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system at the core. In these way, actions take place as quickly as possible, and the
probability to be detected is considerably reduced. A terrorist organization, in fact,
might accomplish its intents by one single but successful terrorist attack. Criminal
organizations are characterized by a longer time-to-task, and a less efficient commu-
nication system at the core. Actions may be delayed for an extended period during
which criminals can operate within secure settings. These organizations try to stand
flexible and agile adapting quickly to external shocks (Kleemans and van de Bunt,
1999; Raab, 2003).

1.1 Network constructing

1.1.1 Data collection and incompleteness

SNA is based on the adoption of real datasets as sources: this allows to construct the
networks that are then analytically studied (Calderoni et al., 2020; Cavallaro et al.,
2020b; Duijn, Kashirin, and Sloot, 2014; Ficara et al., 2020; Robinson and Scogings,
2018; Rostami and Mondani, 2015b; Villani, Mosca, and Castiello, 2019). Anyhow,
the acquisition of complete network data that is able to describe the whole structure
and all of the activities of a criminal group in its entirety is theoretically impossible
to attain (Rothenberg, 2002).

During investigations, the suspected criminals will indeed always try to con-
ceal sensible information. For this reason, LEAs have to adopt alternative meth-
ods by exercising particular inquiring powers in order to collect evidence surrepti-
tiously. So, the information available for successive studies can be collected from
sources like phone taps and surveillance (Natarajan, 2000), archives (Morselli and
Roy, 2008; Tremblay, Talon, and Hurley, 2001), informants, interrogations to the
people involved such as witnesses and suspects (McGloin, 2005; Natarajan and Be-
langer, 1998), but even from infiltration operations by police.

Yet, in spite of providing significant advantages, the above sources come with an
amount of drawbacks as well. For example, if the subjects under investigation be-
come conscious of being phone-tapped, they get inclined to avoid speaking openly
about what could turn into self-incriminating evidence (Natarajan, 2000). Phone-
taps transcripts themselves are usually sampled and do not include all of the con-
versations occurred. The transcripts available to researchers come from different
kinds of court records, that are the original wiretap records, police reports, arrest
warrants, and sentences (Campana and Varese, 2012). In police reports, all relevant
conversations are transcribed to be made available to the prosecutor and the judge.
This means that anything deemed unrelated to criminal activities, such as conversa-
tions about personal or unrelated matters, is not included, which risks introducing
misinterpretations by LEAs.

The arrest warrants typically include an even more sampled part of the whole
transcripts, along with other relevant information that could come from other inves-
tigative sources. Finally, only a fraction of these data are reported in the final sen-
tence, along with other evidences. This means that the amount of electronic surveil-
lance data decreases moving from the original records up to the final sentence (see
Fig. 1.1), and it becomes more likely to lose relevant portions of these data. For this
reason, it is suggested to avoid using the sentence documentation as a data source
for statistical analysis, since the data sampled at that stage is likely to be partial and
biased, which may lead to unreliable results (Berlusconi, 2013; Campana and Varese,
2012).
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FIGURE 1.1: Sampled phone-tapped conversations between criminals
in court records.

Another issue is represented by the fact that different phones and telephone lines
are used in criminal communications, making it difficult for the police to phone-tap
all of them (Baker and Faulkner, 1993). This can result in either missing links or
missing nodes. In the latter case, we may end up missing some surveillance targets,
who will not appear in the graphs, risking to miss out on figures holding a central
role in the organizations (Morselli, 2008).

Longer-lasting investigations can minimize such problems, since these will re-
duce the amount of missing data. Interceptions and monitoring of a criminal group
going on for months or years will lower the chances for some skilled criminal to
avoid detection (Calderoni, 2012; Morselli, 2008). However, these prolonged inves-
tigations lead to datasets (and networks) that change over time, due to the dynamic
nature of criminal roles and activities. Typically, actors come and go, social relations
are built and dismantled, and criminal opportunities change alongside the social
context (Charette and Papachristos, 2017; Duijn, Kashirin, and Sloot, 2014).

It is worth noticing that the analysis of networks is based on their particular
composition, considered at a given point in time. Yet, since the network changes
and evolves over time, different data collection methods may be required in order to
cover more time spans (Sparrow, 1991). While investigations are proceeding, the list
of suspects tends to evolve as time goes by, not only because of the dynamic nature
of such covert networks, but also as a function of strategic decisions by the police. In
fact, LEAs normally start their investigations from some key subjects and, then, keep
expanding their range by adding further subjects. This approach is close to snowball
sampling (Goodman, 1961), that is shown to be better suited for network analysis,
as opposed to a random sampling approach. It is indeed shown that the latter holds
very high chances of generating distorted inferences on network structures (Robins,
2015). For this reason, it is not adopted.

This snowball-like sampling data collection technique is indeed mixed with pur-
posive sampling (Goodman, 1961), so that LEA decisions have a great impact at the
point of being a valuable strategy. Sampling based on human insights is, however,
also a possible source of biases. In practice, it may not be possible to monitor all the
individuals that appear connected to the central ones. This may be due to lack of
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resources, which makes it impossible to monitor all active criminals. The investiga-
tion is often focused on those individuals for whom it is easier to gather evidence.
These constraints lead to partial data collection, with some groups operating under
the police sight, while others are left out.

Another source of error arises from the possibility that LEAs misunderstand or
misjudge the relevance of specific nodes. There is also the case in which the police
omits information, e.g., when undercover agents have not yet been disclosed.

An important data source is represented by other open sources such as pub-
lic registries (Morselli and Roy, 2008). The case records prosecuted in the criminal
courts are publicly available, and may be used for research purposes, but only af-
ter case closure. For instance, American LEAs fill crime statistics using some de-
fined standards, and their archives are available online. Nevertheless, as noted
above for the case of sampled phone-taps, the information coming from prosecu-
torial transcripts and criminal investigation files (in general from closed cases) may
still present limitations in terms of data accuracy and completeness (Baker and Faulkner,
1993; Berlusconi, 2013).

Files on closed criminal investigations are kept by the police for long periods
in order to allow the examination of trends in policing as well as in the behaviors
and compositions of criminal groups (Spapens, 2011; Tremblay, Talon, and Hur-
ley, 2001). This kind of judicial documents, intelligence reports, or investigation
files are the main data source in the case of micro studies. Whereas in the case of
macro studies, the main source are intelligence databases collected by LEAs (Heber,
2009; Malm and Bichler, 2011; Malm, Bichler, and Walle, 2010) and databases created
through archival analyses (Mastrobuoni, Patacchini, et al., 2010; Papachristos and
Smith, 2012).

In light of the above considerations, it is now well-accepted that criminal-related
information (and networks) is typically incomplete, or it is just limited to a specific
time span. Therefore, it has to be taken for granted that it is not possible to attain
complete network data (Rothenberg, 2002). The problem of missing information is
particularly relevant in analyzing criminal networks, since it potentially affects the
scope and structure of the network (Malm, Bichler, and Walle, 2010; Morselli, 2008;
van der Hulst, 2009). Such incompleteness translates into missing nodes and edges,
which can create a domino effect that alters the results of the measures, leading to
incoherent inference problems (Ianni and Reuss-Ianni, 1990; Sparrow, 1991). How-
ever, some studies have showed that networks measures may still be valid under
some missing data scenarios (Ficara et al., 2021c; Malm, Bichler, and Walle, 2010;
Morselli, 2008; Xu and Chen, 2008).

1.1.2 Data reliability and validity

In addition to the missing data problem, criminal network data suffer also from
incorrectness (Rothenberg, 2002). Data validity and reliability are indeed some of
the main problems encountered in studies that apply SNA to organized crime.

During investigations, some of the consulted individuals to gain information
might be reliable, as opposed to others that might try to deceive the investigations in
order to protect themselves or their associates, or just to achieve some specific goal.
This means that investigators deal with data of different quality. Since there is not a
typical method in SNA to deal with such different gauges of reliability, the subjec-
tive judgement of investigators becomes crucial in the analysis and interpretation of
the available intelligence data.
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The task of determining the information relevance is known as the problem of
signal and noise. In such context, relevant information and a considerable volume
of irrelevant or unreliable information are merged. In fact, LEAs often face the is-
sue of possessing very large amounts of data, some of which having hardly any
importance. When they deal with great amounts of raw data gathered from several
sources, the possibility to occur into inconsistencies becomes inevitably greater.

During collection, data can be evaluated according to source reliability and infor-
mation validity (McDowell, 2008). In a criminal investigation setting, a source can
be classified as:

(1) reliable, when it is authentic, competent and trustworthy;

(2) usually reliable;

(3) unreliable;

(4) unknown, if there is no information about it.

On the other hand, information can be:

(1) truthful, if it is shared by other sources as well, making it consistent;

(2) probable;

(3) doubtful;

(4) unknown, if there is no other data it can be compared with.

Information which is doubtful or derives from sources of unknown reliability may
include facts, partial truths, false information, or lies and it consequentially has to
be used carefully.

An example of reliability problems is given by data collected through surveys or
interviews, that suffer from actors lying (Reuter and Haaga, 1989). Information col-
lected from interrogations are also affected by the risk that the interviewees down-
play or amplify their real role, and are not representative of the whole group.

In case of data collected through phone-taps, when the actors talk freely on the
phone about some incriminating actions, the transcripts can be considered valid. Yet,
a double-check is still needed in order to compare data collected from the taps and
data collected from other official records relating to the case. Such verification pro-
cedure is necessary, since communications among criminals are frequently packed
with lies or codes, in order to conceal the real intention of the conversation (Cam-
pana and Federico, 2013).

Beside the police seeking to verify the phone-taps, the criminals themselves may
also try to validate whether the information received by fellow criminals is accurate.
Longer investigations and surveillance tend to eventually expose this kind of lies.
Yet, dynamics is another feature of criminal networks that affects the reliability of
data since longer investigations lead to data sets changing over time. There is, then,
the potential for a network analysis to become out of date in a short time (Burcher
and Whelan, 2018). Analytical techniques, adopted by intelligence, must be capable
to handle large amounts of information, and to aid at extracting the signal from the
noise.

Because of the above reasons, we can say that data, gathered during criminal
investigations, are affected by the following weaknesses:

• Incompleteness, that is inevitable given the covert nature of such type of net-
works.
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• Incorrectness, that can be induced either by unintentional errors during data
collection or by criminals intentionally deceiving investigations.

• Inconsistency, that may occur when data regarding the same actors end up
being collected multiple times, generating inaccuracies. Such misleading in-
formation could, for instance, cause the same actor to appear as different indi-
viduals in a network.

Because of the described issues, and since sources themselves reflect the percep-
tion of LEAs, the data used in literature are all exposed to biases. This is the main
reason why data mining and machine learning techniques are often unsuitable in
criminal network analysis. These methods would be effective in discovering trends
and patterns automatically from large volumes of data, or for making predictions.
On the other side, these methods require good quality data, free from biases, errors
and missing data (Murphy, 2012). As it turns out, criminal network analysis views
social relationships in terms of network theory.

Scholars have indeed reported difficulties at managing such biases, analyzing
the possible limitations they can bring (Bouchard and Ouellet, 2011; Calderoni, 2012;
Morselli, 2008; Varese, 2006). Nevertheless, researchers attempted to develop auto-
mated data mining techniques for LEAs, such as an automatic actors extractor from
police reports and actors inconsistency detectors from networks (Chen et al., 2004).

1.1.3 From data to graph transformation

SNA has to deal with another obstacle in the criminal field, which lies into data
transformation into actual graphs.

There is no standard method for this task: the process goes through the sub-
jective judgement of the analyst. For instance, it may be difficult for an analyst
to decide whom to include or exclude from the network - the boundaries are of-
ten prone to ambiguity (Sparrow, 1991). As stated by LEAs, the boundaries of the
overall network do not necessarily correspond to the ones of the criminal group;
thus, the analysts may identify by themselves the internal boundaries on the basis
of personal experience and theoretical or practical considerations (Morselli, 2008).
This problem is known as fuzzy boundaries and it is a well-known challenge for
practitioners (Athey and Bouchard, 2013; Borgatti, 2006; Burcher and Whelan, 2015;
Duijn, Kashirin, and Sloot, 2014). Data conversion turns out to be, indeed, a quite
labor-intensive and time-consuming procedure.

A covert network can be mathematically represented by a simple graph which
is defined as a tuple G = (N, E) where N = {1, 2, ..., n} is the set composed by n
nodes and E = {1, 2, ..., e}, E ✓ N ⇥ N, is the set of e edges, whose generic element l
represents the edge existing between a pair of nodes (i, j).

Some basic definitions from network science are described below (Barabási and
Pósfai, 2016; Wasserman and Faust, 1994).

Weight and directionality. The type of graph is defined by edge weight and direc-
tionality. If all edges are bidirectional, then the graph is called undirected. If edges
have directionality, then the graph is called directed. If edges have weights, then the
graph is weighted. The weight is just a numerical value attached to each edge.

Density. Graph density is a measure of how many edges between nodes exist com-
pared to how many edges between nodes are possible. For an undirected graph, it
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is defined as:
d =

2e
n(n � 1)

. (1.1)

Adjacency matrix. The adjacency matrix of a graph, defined over the set of nodes
N, is an n ⇥ n square matrix denoted by A = (aij), 1  i, j  n, where the generic
element aij is defined as:

aij =

(
1 if i ! j
0 otherwise .

(1.2)

In undirected graphs, aij = aji for all i 6= j and therefore the adjacency matrix A will
be symmetrical: A = AT (where T is the transpose representation).

Path. A path is a sequence of nodes such that each node is connected to the next
node along the path by an edge.

Shortest path. The shortest path (or distance) dij between two nodes i and j in a
graph is the path with the fewest number of edges.

Average path length. The average path length hdi is the average distance between
all pairs of nodes in a graph. It is defined as:

hdi = Â
i,j2N

dij

n(n � 1)
. (1.3)

Connected component. A connected component cc is a subset of nodes in a graph,
so that there is a path between any two nodes that belong to the component, but one
cannot add any more nodes to it that would have the same property.

Largest connected component. The largest connected component lcc is the biggest
one among all the connected components in a graph. Real undirected networks
usually have a lcc which contains most of the nodes in the graph. The rest of the
graph is divided into a large number of small components disconnected from the
others.

Degree. The degree k of a node i is defined as the number of nodes adjacent to it
or as the cardinality of the set of neighbors of that node:

ki = |N (i)| = |{j : 9(i, j) _ 9(j, i), j 6= i}| . (1.4)

The degree assumes a discrete value between a minimum of 0 when a node is iso-
lated (i.e., it is not connected to any other node) and a maximum of n � 1 if the node
is connected to all other nodes in the network. The degree of a node can be calculated
by adding the columns (or rows) of the adjacency matrix A:

ki =
n

Â
j=1

aij =
n

Â
i=1

aij . (1.5)
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Average degree. In undirected graphs, the average degree hki is given by twice the
total number of edges divided by the total number of nodes:

hki = 2e
n

. (1.6)

Degree distribution. The degree distribution pk provides the probability that a
randomly selected node i in the graph has degree k. For a graph with N nodes
the degree distribution is a normalized histogram given by:

pk =
nk
n

, (1.7)

where nk is the number of nodes with degree equal to k.

Degree matrix. The degree matrix K of a graph is a diagonal matrix where:

kij =

(
ki if i = j
0 otherwise .

(1.8)

ki is the degree of the node i.

Clustering. The average clustering coefficient hCCi is the probability that two neigh-
bors of a randomly selected node link to each other. It is defined as:

hCCi = 1
N

N

Â
1

CC(i) , (1.9)

where CCi is the clustering coefficient of a node i which will be deeply explained in
Sect. 2.1.

Spectrum. The spectrum of a graph is defined as the set of eigenvalues (sorted in
increasing or decreasing order) of one of its representation matrices. It is used to
characterize graph properties, and to extract information from its structure. In the
case of the adjacency matrix A, if lk is its kth eigenvalue, the eigenvalues sorted in
descending order l1 � l2 � · · · � ln compose the spectrum.

1.2 Network models

Graphs are complex networks characterized by non trivial topological features which
often occur in networks representing real systems such as criminal networks, social
networks, biological networks, brain networks and others. The most studied and
well-known classes of complex networks are random graphs, small-world networks,
and scale-free networks (see Fig. 1.2).

1.2.1 Random networks

A random network may be simply described by a probability distribution, or by
a random process which generates it. The Erdos–Rényi (ER) model is one of two
closely related models to generate random networks. There are two variants of the
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FIGURE 1.2: Network models. Scale-free (left column), small-world
(middle column) and random graphs (right column).

Erdös Rényi model (Erdös and Rényi, 1959). The first chooses one of all possible net-
works G(n, M) with n nodes and M edges, where each network has an equal proba-
bility. This could be done by choosing M edges from the (n

2) possible edges. Second
variant G(n, p) (Gilbert, 1959) starts with an initial set of n unconnected nodes and
includes edges with probability p. It can easily be deduced that each network with
n nodes and M edges is equally likely with probability:

pM(1 � p)(
n
2)�M . (1.10)

1.2.2 Small-world networks

A small-world (SW) network is characterized by a high degree of local clustering
(like regular lattices). It also possess short node-node distances. This network model,
also called Watts-Strogatz (WS) model, was proposed by Watts and Strogatz (1998).
It interpolates between these two extremes by taking a regular lattice, and randomly
rewiring some of its edges. Newman and Watts (1999) proposed a real-space renor-
malization group transformation for the model, and demonstrated that the trans-
formation was exact in the limit of large system size. Given a graph G(N, E), the
Newman-Watts-Strogatz small-world model (NWS) is defined as follows:

Step 1 Ring Creation. Creation of a ring over n nodes in which each node i 2 N
is connected with the k closest neighbors. If k is odd, i is connected with the
nearest k � 1 neighbors.

Step 2 Edge rewiring. For each edge (i, j) 2 E, in the underlying n-ring with k
nearest neighbors, a new edge (i, x) is added, with randomly-chosen existing
node x and probability p.

Compared with the WS model, the random rewiring increases the edges number
because new edges are added, and no edges are removed.

1.2.3 Scale-free networks

A scale-free (SF) network is characterized by a degree distribution (see Eq. 1.7) which
decays like a power law (Barabási and Albert, 1999). Given a network defined as a
graph G(N, E), the scale-free network model of Barabási and Albert (BA) is defined
as follows:

Step 1 Initial condition. The network consists of n0 nodes and m0 edges.
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Step 2 Growth. One node i with m edges is added at each step. Time t is the number
of steps.

Step 3 Preferential attachment (PA). Each edge of i is attached to an existing node j
with the following probability:

Pi =
kj

Â
i2N

ki
. (1.11)

The defined probability is proportional to the degree of node i.

Holme and Kim (Holme and Kim, 2002) proposed a SF network model with
two main characteristics: a perfect power-law degree distribution and a high
clustering. To incorporate the second one, which is a peculiarity of the SW
model, the authors modified the above BA algorithm by adding the follow-
ing step:

Step 4 Triad formation. If an edge (i, j) is added in the PA step, an edge from i to
a neighbor of j (chosen randomly) is added. If all neighbors of j are already
connected to i (i.e., there are no pair to connect), a PA step is done instead.

Albert and Barabási (2000) also proposed an extension of the standard BA model
called Extended Barabási–Albert (EBA) model. Given two probabilities p and q,
p + q < 1, the model is created according to the following mechanism:

Step 1 With p probability, m new edges are added to the graph, starting from ran-
domly chosen existing nodes and attached preferentially at the other end.

Step 2 With q probability, m existing edges are rewired by randomly choosing an
edge, and rewiring one end to a preferentially chosen node.

Step 3 With (1 � p � q) probability, m new nodes are added to the graph with edges
attached preferentially.

When p = q = 0, the EBA model reduces to the standard BA model.

1.3 Real world networks

Network models, such as those described in Sect. 1.2, are closely similar to real-
world networks in terms of network properties. It is easier to perform an analysis on
these synthetic networks instead of real-world networks. Moreover, network models
can be useful to understand the mathematical basis of real-world networks, and to
perform controlled experiments that may not be available to real-world networks.

Most of my research work focused on two real-world criminal networks related
to a Mafia operation called Montagna (Calderoni et al., 2020; Cavallaro et al., 2020b,
2021; Ficara et al., 2020, 2021c,d,e).

Then, this research was extended to other seven real-world covert networks.
Some of them were also related to two distinct Mafia operations (i.e., Infinito and
Oversize), while the others were linked to street gangs and terrorist organizations.

Table 1.1 shows the characterization of the single investigations from which the
covert networks were constructed (Ficara et al., 2021c).
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TABLE 1.1: Characterization of real-world covert networks.

Investigation Network Source

Name Nodes Edges

Montagna Operation
(Sicilian Mafia)
2003-2007

MN
PC

Suspects Physical Surveillance
Audio Surveillance

(Calderoni et al., 2020)
(Cavallaro et al., 2020a)

Infinito Operation
(Lombardian ’Ndrangheta)
2007-2009

SN Suspects Physical and
Audio Surveillance (Calderoni and Piccardi, 2014)

Oversize Operation
(Calabrian ’Ndrangheta)
2000-2009

WR
AW
JU

Suspects
Audio Surveillance
Physical Surveillance
Audio Surveillance

(Berlusconi et al., 2016)
(Piccardi et al., 2016)

Swedish Police Operation
(Stockholm Street Gangs)
2000-2009

SV Gang members Physical Surveillance (Rostami and Mondani, 2015b)
(Rostami and Mondani, 2015a)

Caviar Project
(Montreal Drug Traffickers)
1994-1996

CV Criminals Audio Surveillance (Morselli, 2008)

Abu Sayyaf Group
(Philippines Kidnappers)
1991-2011

PK Kidnappers Attacks locations (Gerdes, Ringler, and Autin, 2014)

Fig. 1.3 shows the degree distributions for each criminal network as a normalized
histogram (Ficara et al., 2021c). The degree distribution pk provides the probability
that a randomly selected node in each covert network has degree k (see Eq. 1.7).
Same colors imply the networks belong to the same police investigation. Networks
related to the anti-mafia operations Montagna (i.e., MN and PC) and Oversize (i.e.,
WR, AW and JU), the Swedish Police Operation (i.e., SV) and the Caviar Project (i.e.,
CV) have similar degree distributions in which most nodes have a relatively small
degree k with values around 0, 1 or 2, while a few nodes have very large degree k,
and are connected to many other nodes. The Infinito Mafia network (i.e., SN) and the
terrorist network of Philippines Kidnappers (i.e., PK) are the only networks having
different degree distributions compared to other criminal networks, as most of their
nodes have large degree k. In particular, we note that most nodes in PK are strongly
connected and have a degree k = 57.

SN is a one-mode projection of the original two-mode network in which are rep-
resented the meetings and the suspects attending them. This implies that all suspects
taking part in a meeting are assumed to be interacting with each other, which could
be somewhat artificial. In fact, in crowded meetings some participants may have
had a very limited (if any) interaction with other participants. In such case, assum-
ing that all participants interacted with each other may considerably overestimate
the real number of connections. However, it must be added that LEAs were only
able to identify the participants to meetings, and not the full extent of their interac-
tions. Similar consideration applies to PK which was built based on the presence of
the kidnappers in the same place of a terrorist event. Here as well, the existence of
an edge linking two terrorists does not necessarily imply that they have interacted
or worked together, despite being in the same place.

1.3.1 Mafia networks

Mafia networks refer to the major native mafia-like organizations which are the Si-
cilian Mafia (the original “Mafia" or Cosa Nostra) and the Calabrian ‘Ndrangheta.
They are loose confederations of about one hundred groups, also called cosche or
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FIGURE 1.3: Degree distributions of real-world covert networks.
The degree distribution pk provides the probability that a randomly
selected node has degree k in Meetings (MN), Phone Calls (PC), Sum-
mits Network (SN), Wiretap Records (WR), Arrest Warrant (AW),
Judgment (JU), Surveillance (SV), Caviar (CV) and Philippines Kid-
nappers (PK) networks. Same colors imply the networks belong to

the same police investigation.

families who affect the social and economic life especially in Southern Italy since at
least the 19th century (Paoli, 2004, 2008).

Mafia families have a typical structure (Ficara et al., 2021e) which is shown in
Fig. 1.4. On top of the pyramid hierarchical chart is the Boss who makes all the major
decisions, controls the Mafia members and resolves any disputes. Usually, the real
boss keeps a low-profile hiding his real identity. Just below the boss is the Underboss
who is the second in command. He can resolve disputes without involving the boss
himself and replaces the boss if he is old or in danger of going to jail. In-between the
boss and underboss is the role of the Consigliere who is an advisor to the boss and
makes impartial decisions based upon fairness, and for the good of the Mafia. Also
in-between there is the Messaggero who is a messenger who functions as liaison be-
tween criminal families. He can reduce the need for sit-downs, or meetings, of the
mob hierarchy, and thus limits the public exposure of the bosses. Below the under-
boss is the Caporegime (also called Captain or Capo) who manages his own crew
within the criminal family in a designated geographical location. A Capo’s career
relies heavily on how much money they can bring into the family. How many capos
there are in a given family simply depends on how big that family is. Then, there are
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FIGURE 1.4: The structure of a Mafia family.

soldiers who report to their Caporegime. They are street level mobsters who essen-
tially are no more than your average type criminals. Many soldiers can be assigned
to one Capo. The final part of a family comes in the shape of associates, who are not
actual members of the Mafia, but they work with Mafia soldiers and caporegimes on
various criminal enterprises. An associate is simply someone who works with the
mob, including anyone from a burglar or drug dealer to a pharmacist, entrepreneur,
lawyer, investment banker, police officer or politician.

This hierarchical structure represents a peculiarity of a criminal organization as
the Mafia. A custom network model could be constructed to replicate this structure
starting from a scale free network (see Subsect. 1.2.3) which is the one with the most
similar topology to a Mafia network, as we will explain in detail in Chap. 3.

Moreover, in Ficara et al. (2022b), we tried to create a network model for crim-
inal network disruption using scale free networks with the same number of nodes
and edges of our Montagna networks. After identifying, the key role in the hierar-
chy of a Mafia family or in its criminal activities, it is possible to identify this role
in scale free models, and apply a disruption strategy based on the human capital
(see Subsect. 5.1.1 for more details) to these models. Specifically, the human capital
approach is simulated targeting nodes with the same rank of the caporegimes in our
Mafia networks.

Our line of long-term research began with no information about the node role,
and only one type of criminal network related to phone calls. Initially, it was natural
to use graph theory. The knowledge of roles allows to study alternative approaches
by combining new tools such as agent based modeling with more traditional tools
like network science methods.

The Montagna Operation

The Montagna operation was one of the most important anti-mafia investigation
concluded in 2007 by the Public Prosecutor’s Office of Messina, and conducted by
the R.O.S. (Reparto Operativo Speciale, or Special Operations Group, a specialized anti-
mafia police unit of the Italian Carabinieri) (Calderoni et al., 2020). This operation
focused in particular on two families known as Mistretta and Batanesi.
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From 2003 to 2007, these families had infiltrated several economic activities in-
cluding the public works in the area, through a cartel of entrepreneurs close to the
Sicilian Mafia (Calderoni et al., 2020). The groups engaged in extortion racketeering,
and provided illegal protection to achieve illegal profits from the public construc-
tion works, with dynamics similar to those described by Gambetta (Gambetta, 1993;
Gambetta and Reuter, 1995). Furthermore, the investigation showed that the Mis-
tretta family had taken on the role of mediator between the Mafia families of Palermo
and Catania, and the other criminal organizations around Messina. Indeed both the
Mistretta and Batanesi families had close connections with other families located in
the province of Messina, namely Barcellona and Caltagirone. The charges were up-
held by several trials, and the majority of the individuals have been sentenced to
long prison terms.

Our main data source was the pre-trial detention order issued on March 14, 2007
by the preliminary investigation judge of the Court of Messina towards the end of
the investigation. The order concerned a total of 52 suspects, all charged with the
crime of participation in a Mafia clan (Article 416 bis of the Italian Criminal Code) as
well as other crimes (e.g., theft, extortion, damaging followed by arson) (Calderoni
et al., 2020). According to the Italian Criminal code, the affiliation to a Mafia clan
carries a penalty of between ten and fifteen years of imprisonment. The Court or-
dered the pre-trial detention for 38 individuals, and provided detailed motivations
for the decision in a document of more than two hundred pages with an important
amount of information about the suspected crimes, activities, meetings, and calls.

Most of the information from judicial documents were about the Mistretta and
Batanesi families. From the analysis of legal documents we built two networks: the
Meetings (MN) network, in which nodes are uniquely associated with suspected
criminals and edges specify meetings among individuals, and the Phone Calls (PC)
network, in which nodes are uniquely associated with suspected criminals and edges
records phone calls between pairs of individuals (Ficara et al., 2020). Our dataset is
publicly available on Zenodo (Cavallaro et al., 2020a).

TABLE 1.2: Properties of Montagna networks.

Parameter MN PC

weights weighted weighted
directionality undirected undirected
connectedness false false
no. of nodes n 101 100
no. of isolated nodes ni 0 0
no. of edges e 256 124
no. of components |cc| 5 5
max avg. path length hdi for cc 3.309 3.378
max shortest path length d 7 7
density d 0.051 0.025
avg. degree hki 5.07 2.48
max degree k 24 25
avg. clust. coeff. hCCi 0.656 0.105

MN has 101 nodes and 256 edges while PC has 100 nodes and it contained only
124 edges. There were 47 individuals who jointly belonged to MN and PC. Some
statistics about MN and PC are displayed in Table 1.2.
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FIGURE 1.5: The Montagna Meetings network. The node size is pro-
portional to the node degree, while the edge thickness is proportional
to the edge weight. Members of the Mistretta and Batanesi families
are respectively colored in purple and orange. Circled nodes corre-
spond to the subjects investigated for having promoted, organized
and directed the Mafia association. The red and yellow circled nodes
refer to bosses of Mafia families of other districts. The white nodes
represent the other subjects considered to be: (i) close to the asso-
ciation and (ii) not classifiable in any of the previous categories, but
nevertheless useful for the purposes of the Mafia-type association and

the realization of its plans.

Figs 1.5 and 1.6 graphically report MN and PC networks. In these figures, the
node size is proportional to the node degree, while the edge thickness is proportional
to the edge weight, i.e., the total number of meetings (or telephone calls) recorded
between the nodes that edge connects. Members of the Mistretta and Batanesi fami-
lies are colored in purple and orange, respectively. Circled nodes correspond to the
subjects investigated for having promoted, organized and directed the Mafia asso-
ciation. The red and yellow circled nodes refer to bosses of Mafia families of other
districts. The white nodes represent the other subjects considered to be: (i) close to
the association and (ii) not classifiable in any of the previous categories, but never-
theless useful for the purposes of the Mafia-type association and the realization of
its plans (Calderoni et al., 2020).

Fig. 1.7 shows the edge weights distribution in the Montagna MN and PC net-
works (Ficara et al., 2020). Noticeably, both networks exhibit similar characteristics
and include several low-weight links. A possible explanation is that the affiliates
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FIGURE 1.6: The Montagna Phone Calls network. The node size
is proportional to the node degree, while the edge thickness is pro-
portional to the edge weight. Members of the Mistretta and Batanesi
families are colored in purple and orange, respectively. Circled nodes
correspond to the subjects investigated for having promoted, orga-
nized and directed the Mafia association. The red and yellow circled
nodes refer to bosses of Mafia families of other districts. The white
nodes represent the other subjects considered to be: (i) close to the
association and (ii) not classifiable in any of the previous categories,
but nevertheless useful for the purposes of the Mafia-type association

and the realization of its plans.

want to reduce the risk of being intercepted by LEAs, and even by other people
outside the clan. In the MN network, this trend is even more accentuated since the
maximum frequency in low-weight links is equal to 200, which is double with re-
spect to that of the PC network. Moreover, the maximum weight of interactions
among affiliates in the MN network (i.e., w = 10) is greater than the one in the
PC network (i.e., w = 8). A possible explanation is that mobsters prefer to com-
municate by physical meetings rather than calling each other, to reduce the risk of
being intercepted by the police. Mobsters will find it easier to crypt their conversa-
tions in face-by-face meetings, for instance by using body language, or generating
background noise. Furthermore, bosses often have to participate to Mafia events to
pursue their power inside a clan. For instance, bosses have to participate to funerals
of other affiliates, and other solemn religious demonstrations (masses, processions,
etc.). During those kinds of events, they also have the opportunity to pass messages
to their closest subordinate affiliates. Moreover, it is harder for criminals to notice
that they are going to be intercepted rather than to be eavesdropped by the police.

The histograms of shortest path length distributions of Fig. 1.8 provide useful



1.3. Real world networks 21

FIGURE 1.7: Weight distribution in the Montagna Meetings (MN) and
Phone Calls (PC) networks.

statistical characterizations of the Montagna networks (Ficara et al., 2020). Path
length statistics are closely related to dynamic properties such as velocities of net-
work spreading processes. Usually, criminal organizations are structured in a way as
to optimize the number of communications among members, and to efficiently dis-
seminate information. These members can be discovered by following short paths
of communications. Moreover, we can discover relationships among individuals be-
longing to distant groups in the graph because, even when two nodes seem to be
distant, there may exist a relatively short path that connects them.

FIGURE 1.8: Shortest path length distribution in the unweighted (left
column) and weighted (right column) Montagna Meetings (MN) and

Phone Calls (PC) networks.

There are similarities between the weighted and the unweighted shortest path
length analysis. In both scenarios, indeed, there is a higher interaction frequency



22 Chapter 1. Covert networks

among affiliates having a balanced number of intermediates. This behaviour con-
firms the hypothesis that inside a cosca it is better to avoid the borderline cases. On
one hand, if the shortest path is composed of a lower number of affiliates, the bosses
are overexpose to police investigations. On the other hand, the longest the num-
ber of intermediates, the higher the chances to be intercepted by people outside the
family.

Furthermore, in the weighted simulations emerges a lower frequency of inter-
actions in the PC network compared with the same shortest path length of the MN
network. This behaviour, emerged also in Fig. 1.7, proves that the clan tries to min-
imize the risk of interceptions, specially to avoid exposing those mobsters who are
hierarchically in a higher rank.

The availability of a real weighted graph is a valuable asset in order to conduct a
more thorough network analysis. Indeed, in the unweighted scenario this behaviour
is not highlighted because both networks seem to act in the same way.

The Infinito Operation

The Infinito Operation was a large law enforcement operation against ’Ndrangheta
groups and Milan cosche concluded by the courts of Milan and Reggio Calabria,
Italian cities situated in Northern and Southern Italy, respectively. The investigation,
which started in 2003, is still in progress. On July 5, 2010, the Preliminary Investiga-
tions Judge of Milan issued a pre-trial detention order for 154 people, with charges
ranging from mafia-style association to arms trafficking, extortion and intimidation
for the awarding of contracts or electoral preferences.

The dataset was extracted from this judicial act, and it is available as a 2-mode
matrix on the UCINET (Borgatti, Everett, and Freeman, 2002) website1.

The Infinito Operation dataset was investigated by Calderoni and his co-authors
in several works (Calderoni, 2014, 2015; Calderoni, Brunetto, and Piccardi, 2017;
Calderoni and Piccardi, 2014; Grassi et al., 2019).

From the original 2-mode matrix, we constructed the weighted and undirected
graph Infinito Summits Network (SN) with 156 nodes and 1619 edges (Ficara et al.,
2021c,d). Nodes are suspected members of the ’Ndrangheta criminal organization.
Edges are summits (i.e., meetings whose purpose is to make important decisions
and/or affiliations, but also to solve internal problems, and to establish roles and
powers) taking place between 2007 and 2009. This network describes how many
summits any two suspects may have in common. Attendance at summits was regis-
tered by police authorities through wiretapping and observations during this oper-
ation.

Some statistics about SN are displayed in Table 1.3.

The Oversize Operation

The Oversize Operation is an investigation lasting from 2000 to 2006, which targeted
more than 50 suspects of the Calabrian ’Ndrangheta involved in international drug
trafficking, homicides, and robberies.

The trial led to the conviction of the main suspects from 5 to 22 years of im-
prisonment between 2007-2009. Berlusconi et al. (2016) studied three unweighted
and undirected networks extracted from three judicial documents corresponding to

1Available at: https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/
ndranghetamafia2

https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/ndranghetamafia2
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/ndranghetamafia2
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TABLE 1.3: Properties of Infinito and Oversize networks.

Parameter SN WR AW JU

weights weighted unweighted unweighted unweighted
directionality undirected undirected undirected undirected
connectedness false false false false
no. of nodes n 156 182 182 182
no. of isolated nodes ni 5 0 36 93
no. of edges e 1619 247 189 113
no. of components |cc| 6 3 38 96
max avg. path length hdi for cc 2.361 3.999 4.426 3.722
max shortest path length d 5 8 9 7
density d 0.134 0.015 0.011 0.007
avg. degree hki 20.76 2.71 2.08 1.24
max degree k 75 32 29 13
avg. clust. coeff. hCCi 0.795 0.149 0.122 0.059

three different stages of the criminal proceedings (see Table 1.1): wiretap records
(WR), arrest warrant (AW), and judgment (JU).

Each of these networks has 182 nodes corresponding to the individuals involved
in illicit activities (Ficara et al., 2021c,d). The WR network has 247 edges which rep-
resent the wiretap conversations transcribed by the police and considered relevant at
first glance. The AW network contains 189 edges which are meetings emerging from
the physical surveillance. The JU network has 113 edges which are wiretap con-
versations emerging from the trial and several other sources of evidence, including
wiretapping and audio surveillance. These datasets are available as three 1-mode
matrices on Figshare (Piccardi et al., 2016).

Some statistics about WR, AW and JU are displayed in Table 1.3.

1.3.2 Street gang and terrorist networks

Street gang networks refer to another form of criminal organization which is gener-
ally defined as street-oriented groups, whose membership is youthful, that exhibit
persistence across time, and for whom illegal activity constitutes a part of group
identity (Klein and Maxson, 2006). As noted by Morselli (2008), an association of
criminals is not the same as a criminal association, and gangs more commonly rep-
resent the former.

Curry (2011) examined the relationships between gangs and terrorist groups
finding a number of similarities but also substantial differences. Both groups are
composed by male members, and are characterized by violence, solidarity, and el-
ements of collective behavior. The violence used by both groups often represents a
form of "self-help," or attempts to redress wrongs. The differences included a profit
motive for gangs that is largely absent for terrorist groups, cross-national connec-
tions maintained by terrorist groups, the diversity in different types of crime that
typifies gang crime, and an ideological belief among members of terrorist groups
that is not present among gang members. Most of the similarities between the
groups reflect the fact that terrorist groups are less structured than is publicly be-
lieved (Decker and Pyrooz, 2011).

To compare with Mafia networks, two street gang networks related to Stockholm
and Montreal criminal groups, and one terrorist network related to Philippine kid-
nappers have been analyzed. Some statistics about them are displayed in Table 1.4.
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TABLE 1.4: Properties of street gang and terrorist networks.

Parameter SV CV PK

weights weighted weighted weighted
directionality undirected undirected undirected
connectedness false true false
no. of nodes n 234 110 246
no. of isolated nodes ni 12 0 16
no. of edges e 315 205 2571
no. of components cc 13 1 26
max avg. path length hdi for cc 3.534 2.655 3.034
max shortest path length d 6 5 9
density d 0.012 0.034 0.085
avg. degree hki 2.69 3.73 20.9
max degree k 34 60 78
avg. clust. coeff. hCCi 0.15 0.335 0.753

Stockholm street gangs

The Stockholm street gangs dataset was extracted from the National Swedish Po-
lice Intelligence, which collects and registers the information from different kinds of
intelligence sources to identify gang membership in Sweden.

The organization investigated here is a Stockholm-based street gang localized
in southern parts of Stockholm County, consisting of marginalized suburbs of the
capital. All gang members are male with high levels of violence, thefts, robbery, and
drug-related crimes.

Rostami and Mondani (2015b) constructed the Surveillance (SV) network (Ta-
ble 1.4). It contains data from the General Surveillance Register which covers the
period 1995–2010, and aims to facilitate access to the personal information revealed
in law enforcement activities needed in police operations.

SV is a weighted network with 234 nodes that are gang members (Ficara et al.,
2021c). Some of them were no longer part of the gang in the period covered by the
data, and have been included as isolated nodes. The link weight counts the number
of occurrence of a given edge. This dataset is available on Figshare (Rostami and
Mondani, 2015a).

Caviar Project

Project Caviar (Morselli, 2008) was a unique investigation against hashish and co-
caine importers operating out of Montreal (Canada).

The drug traffickers were targeted between 1994 and 1996 by a tandem investi-
gation uniting the Montreal Police, the Royal Canadian Mounted Police, and other
national and regional LEAs from England, Spain, Italy, Brazil, Paraguay, and Colom-
bia. In a 2-year period, 11 imported drug consignments were seized at different
moments and arrests only took place at the end of the investigation.

The principal data sources was the transcripts of electronically intercepted tele-
phone conversations between suspects submitted as evidence during the trials of 22
individuals. Initially, 318 individuals were extracted because of their appearance in
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the surveillance data. From this pool, 208 individuals were not implicated in the traf-
ficking operations. Most were simply named during the many transcripts of conver-
sations, but never detected. Others, who were detected, had no clear participatory
role within the network (e.g., family members or legitimate entrepreneurs).

The final Caviar (CV) network is composed of 110 nodes. The 1-mode matrix
with weighted and directed edges is available on the UCINET (Borgatti, Everett,
and Freeman, 2002) website2.

From this matrix, we extracted an undirected and weighted network (Ficara et
al., 2021c) with 110 nodes which are criminals and 205 edges which represent the
communications exchanges between them (see Table 1.4). Weights are level of com-
munication activity.

Philippines Kidnappers

Philippines Kidnappers data refer to the Abu Sayyaf Group (ASG) (Gerdes, Ringler,
and Autin, 2014), a violent non-state actor operating in the Southern Philippines. In
particular, this dataset is related to the Salast movement that has been founded by
Aburajak Janjalani, a native terrorist of the Southern Philippines in 1991. ASG is
active in kidnapping and other kinds of terrorist attacks.

The reconstructed 2-mode matrix is available on the UCINET (Borgatti, Everett,
and Freeman, 2002) website3.

From the 2-mode matrix, we constructed a weighted and undirected graph (Ficara
et al., 2021c) called Philippines Kidnappers (PK) (see Table 1.4). The PK network has
246 nodes and 2571 edges. Nodes are terrorist kidnappers of the ASG. Edges are the
terrorist events they have attended. This network describes how many events any
two kidnappers have in common.

2Available at: https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/
caviar

3Available at: https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/
philippinekidnappings

https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/caviar
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/caviar
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/philippinekidnappings
https://sites.google.com/site/ucinetsoftware/datasets/covert-networks/philippinekidnappings
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Chapter 2

Leader identification

To identify leaders within a criminal network, a family of measures must be used to
discover the most important actors in a social network (Wasserman and Faust, 1994).

The family of centrality measures is probably the most widely applied set of SNA
tools in practical contexts.

Centrality (Ficara et al., 2021b) is an intrinsically relational concept because, to
be central, an actor needs to have relations. An actor might be important because
he is connected to a large number of different nodes or because he is connected
to other important nodes. An actor can also be considered important because his
absence would result in a loosely connected social network made of many isolated
components. Centrality is also often described in terms of the power that an actor
could receive from it (e.g., an actor strategically located within a network will have a
high control over the information flowing through the network) (Ficara et al., 2021e).

Traditionally, centrality has typically been studied for graphs of relatively small
size. However, in the last few years, the proliferation of digital collection of data has
led to huge graphs with billions of nodes and edges. There is a clear need to develop
more efficient, scalable, and accurate algorithms (Kang et al., 2011).

Degree centrality, closeness centrality, betweenness centrality and clustering co-
efficient can be considered as the most frequently used centrality metrics to compute
node centrality. The first three measures were proposed by Freeman (1978), whereas
the clustering coefficient was defined by Watts and Strogatz (1998).

Degree centrality can be efficiently measured for large networks. Nevertheless,
it captures the local information of a node giving limited information. On the other
hand, betweenness and closeness centralities are prohibitively expensive to com-
pute, and thus impractical for large networks. Over the years, however, parallel im-
plementations of betweenness and closeness have been developed (Bader and Mad-
duri, 2006; Jamour, Skiadopoulos, and Kalnis, 2018; Madduri et al., 2009; McLaugh-
lin and Bader, 2018; Regunta et al., 2021). As we have already mentioned at the
beginning of Chap. 1, covert networks are usually composed of a small number
of actors, and therefore these measures are not computationally intensive on such
kinds of networks, but they become so on large graphs. Nevertheless, the problem
of finding computationally-light alternatives to the standard centrality measures is
interesting in itself.

Despite an abundance of methods for measuring centrality of individual nodes,
there are by now only a few metrics to measure centrality of individual edges (e.g.
edge betweenness centrality). De Meo et al. (2012, 2013, 2014) presented a novel
measure called K-path to compute link centrality. The advantage of using this met-
ric is that it can be computed with a near-linear time algorithm called Weighted Edge
Random Walks – K Path or WERW-Kpath. More recently, Mocanu, Exarchakos, and
Liotta (2018) developed an algorithm called Game of Thieves which is able to com-
pute actor and link centrality in a polylogarithmic time.
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An often asked, but rarely answered, question is: are these centrality measures
correlated (Valente et al., 2008)? If there exists a high correlation between the cen-
trality metrics, they will have a similar behavior in statistical analyses. For this rea-
son, there is the possibility of approximating the metric with the highest computa-
tional complexity using the other. If there is not high correlation, these measures are
unique and they can be associated with different outcomes.

Game of Thieves and WERW-Kpath have been tested on Mafia networks to know
if they were capable of identifying leaders as well as the more traditional measures.
Moreover, these networks perfectly reproduce the characteristics of larger networks.
Mafia networks are in fact a good example of real-world networks with respect to
the geometry of connections. Indeed, these connections are the building blocks of the
entire Mafia, and more generally of organized crime (Mastrobuoni and Patacchini,
2012).

2.1 Standard centrality measures

To find an important node or edge in a graph, and therefore an influential person or
connection in a criminal network (Ficara et al., 2021d), several centrality measures
can be used: degree centrality, closeness centrality, node/edge betweenness cen-
trality, clustering coefficient eigenvector centrality, PageRank centrality, and Katz
centrality.

Degree Centrality. Degree Centrality (DC) determines the importance of a node
based on the number of edges incident upon it (Freeman, 1978). It is defined as:

DCi =
ki

n � 1
, (2.1)

where ki is the degree of i (see Eqs. 1.4 and 1.5) and n is the network size.

Node Betweenness Centrality. Betweenness Centrality (BC) quantifies how many
times a node acts as a bridge along the shortest path between two other nodes (Bran-
des, 2008). It is defined as the sum of the fraction of all-pairs shortest paths that pass
through a node i:

BCi = Â
j,x2N

s(j, x|i)
s(j, x)

, (2.2)

where N is the set of nodes, s(j, x) is the number of shortest s(j, x)-paths, and
s(j, x|i) is the number of those paths passing through some node i other than j, x.

Edge Betweenness Centrality. Edge Betweenness Centrality (EBC) quantifies how
many times an edge acts as a bridge along the shortest path between two other
nodes (Brandes, 2008). It is defined as the sum of the fraction of all-pairs shortest
paths that pass through a link l:

EBCl = Â
i,j2N

s(i, j|l)
s(i, j)

, (2.3)

where N is the set of nodes, s(i, j) is the number of shortest s(i, j)-paths, and
s(i, j|l) is the number of those paths passing through the link l.
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Closeness Centrality. Closeness Centrality (CL) determines the importance of a
node based on the proximity of that node to all the other nodes in the graph (Free-
man, 1978). It is defined as:

CLi =
n � 1
Â
j

dj,i
, (2.4)

where dj,i is the shortest-path distance between j and i, and n is the network size.

Clustering Coefficient. Clustering Coefficient (CC) indicates how well connected
the neighborhood of a node is (Watts and Strogatz, 1998). It is defined as:

CCi =
2Ti

ki(di � 1)
, (2.5)

where Ti is the number of triangles through node i and ki is the degree of i. If the
neighborhood is fully connected, the CC is 1. It is 0 instead if there are hardly any
connections in the neighborhood.

Eigenvector Centrality. Eigenvector Centrality (EC) computes the centrality for a
node based on the centrality of its neighbors (Bonacich, 1987). Given a graph G, the
EC for a node i is defined as:

ECi =
1
l Â

j2N (i)
ECj =

1
l Â

j2N
ai,jECj , (2.6)

where N (i) is the set of neighbors of the node i, N is the set of nodes in G, l is a
constant and A = (ai,j) is the adjacency matrix. It can be rewritten as the eigenvector
notations as:

A EC = l EC . (2.7)

There will be different eigenvalues l for which a non-zero eigenvector solution
exists, and only the greatest one will result in the eigenvector centrality measure.

Two variants of the EC are Google’s PageRank and the Katz centrality.

PageRank Centrality. PageRank (PR) Centrality is used by Google to assess the
importance of a web page (Page et al., 1999). It expresses the likelihood that a user
randomly clicking on a hyperlink will arrive at that particular page. Given a directed
graph and its adjacency matrix A = (ai,j), the PRi of node i is given by:

PRi = a Â
j

aj,i

kj
PRj + b , (2.8)

where a and b are constants and kj is the out-degree of node j if such degree is
positive, or kj = 1 if the out-degree of j is null. In matrix form we have:

PR = a PR K�1A + b , (2.9)

where b is now a vector whose elements are all equal a given positive constant and
K�1 is a diagonal matrix with i-th diagonal element equal to 1/ki.
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Katz Centrality. Katz Centrality (KC) computes the relative influence of a node,
measuring the number of node’s immediate neighbors (first degree nodes) and also
all the other nodes in the network that connect to the node itself through these im-
mediate neighbors (Katz, 1953). For a node i, this is defined as:

KCi = a Â
j2N

aijKCj + b , (2.10)

where a and b are positive constants, A = (aij) is the adjacency matrix of the graph,
whose eigenvalues are denoted by li, i = 1, . . . , n. The parameter b controls the
initial centrality, while the parameter a satisfies the inequality:

a <
1

max{li : 1  i  n} . (2.11)

2.2 Nonstandard centrality measures

Game of Thieves. A more recent centrality measure is called Game of Thieves
(GoT) (Mocanu, Exarchakos, and Liotta, 2018). It computes the importance of all el-
ements in a network (i.e., nodes and edges), compared to the total number of nodes.

The game proceeds in epochs. When it begins, each node has a certain number of
virtual diamonds or vdiamonds and wandering thieves, who are the leading actors
in the game. If a thief carry a vdiamond, his state is “empty”. If a thief does not
carry a vdiamond, his state is “loaded”.

In order to understand how this measure works, we have to define some nota-
tion. Given a graph G(N, E),

• Fi
0 is the initial number of vdiamonds in node i 2 N at time T = 0;

• Fi
T indicates the number of vdiamonds in node i 2 N at time T (i.e., after GoT

has run for T epochs);

• Yl
T is the number of “loaded” thieves passing through an edge l 2 E at time T;

• Gi is the set of vertices connected by an edge with node i, 8i 2 N;

• Wij � 0 is the weight of the edge which connects the node i 2 N and j 2 N;

• Yt is a dynamic list which contains the vertices visited by a thief t, useful to
keep the path of t in his search for vdiamonds.

If the state of a thief t is “empty”, the following operations will be sequentially
performed in any epoch ep:

Step 1 a randomly picks a node j 2 Gi, where i is its actual location, with a probabil-
ity pij =

Wji
Â

i2Gi
Wij

.

Step 2 t moves from his home node i to node j.

Step 3 If j 2 Yt, then all the vertices after j in Yt are removed from the list.

Step 4 If j /2 Yt, then j is added to the end of Yt.
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Step 5 If F
j
ep > 0, then t takes one vdiamond and changes his state to “loaded”.

Step 6 F
j
ep decreases by one vdiamond.

If the state of a thief t is “loaded”, the following steps will be sequentially per-
formed in any epoch ep:

Step 1 t moves from the last node i from Yt, which is his actual location, to the last
but one node j from Yt.

Step 2 i is removed from Yt.

Step 3 Yl
ep increases by one (i.e., edge l from i to j increases).

Step 4 If j is the home node of t, t unloads the vdiamond, and sets his state to
“empty”.

Step 5 F
j
ep increases by one vdiamond.

The game runs for a duration of T epochs. The number of epochs to stop the
algorithm is conventionally T = log3|N|.

FIGURE 2.1: Game of Thieves (GoT) illustration. GoT behavior
over epochs on a simple unweighted and undirected network with
six nodes. The number of thieves is initially set to one per node. The
number of vdiamonds on each node is initially equal to the number
of nodes (i.e., 6). The game runs for T = log3 6 ' 5. YT shows the
number of thieves passing through each edge after T epochs. At each
epoch, all thieves jump from their current location to the next one,
changing state (i.e., empty or loaded) when they find or deposit a
new vdiamond. In the final epoch, the most important node (i.e., the
one with the highest number of stolen vdiamonds) and edge (i.e., the
one crossed by the greatest number of thieves) are marked in green.
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When the game has run for a duration of T epochs, the centrality of a node i is
computed as the average number of vdiamonds present on i:

Fi
T =

1
T

T

Â
ep=0

Fi
ep . (2.12)

This measure refers to the average number of vdiamonds present on each node, after
the game has run for a duration of T epochs. An important node i is indicated by a
small Fi

T value because a lot of thieves visit the most central nodes which will are
quickly depleted.

The centrality of each edge l is computed as the average number of thieves who
carry a vdiamond passing through l:

Yl
T =

1
T

T

Â
ep=0

Yl
ep . (2.13)

This measure refers to the average number of thieves who carry a vdiamond passing
through an edge l after T epochs. The most important edges are indicated by a high
Yl

T value.
Fig. 2.1 shows GoT behavior over epochs in a graph G composed by 6 nodes

and 7 edges. When the game begins, each node has a number of vdiamonds equal
to the number of nodes in G and one thief. At each epoch ep, a thief located on a
node i randomly picks a neighbor of i. He moves to this new node and, if he finds
a vdiamond, he fetches it. Then, he brings the vdiamond back to his home node.
At this point the vdiamond becomes available for the other thieves who can steal
it. After T epochs, node and edge centrality are computed according to Eqs 2.12
and 2.13.

Weighted Edge Random Walks – K Path. A novel measure of edge centrality for
social networks is the K-path edge centrality which is defined as:

Lk(l) = Â
i

sk
i (l)
sk

i
, (2.14)

where sk
i (l) is the number of k-paths originating from i and traversing the edge l

and sk
i is the number of k-paths originating from i.

A near linear time algorithm called Weighted Edge Random Walks – K Path or
WERW-Kpath (WKP) (De Meo et al., 2012, 2013, 2014) is able to compute this cen-
trality index.

It consists of three main steps:

Step 1 Node and edge weights assignment.

Step 2 Simulation of message propagations through random simple random walks
of fixed length up to k.

Step 3 Final weight computation.

In the first stage of the algorithm, weights are assigned to both nodes and edges.
Nodes weight is used to select the source node from which each message propaga-
tion simulation starts. Edges weight is the initial value of the edge centrality and it is
updated during the execution of the algorithm. Then, the idea of message propaga-
tion is simulated in the graph using random walkers forced to make simple paths of
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bounded length up to a constant and user-defined value k without passing no more
than once through the same edge. The reasonable values range for the length of the
k-path random walks can be found in the interval [5, 20]. An edge is central if it is
frequently exploited to diffuse information.

Its is computationally efficient since its cost is near linear with respect to the
number of edges in the network.

TABLE 2.1: Computational complexity of standard and nonstandard
centrality measures. n is the cardinality of N, and e is the cardinality

of E in a graph G(N, E).

Measure Centrality Computational Complexity

DC Nodes O(e)
BC Nodes O(en) or O(n3)
EBC Edges O(en) or O(n3)
CL Nodes O(n3)
CC Nodes O(n2)
GoT Nodes and Edges O(log2n) or O(log3n)
WKP Edges O(ke)

Table 2.1 shows how GoT represents a great step forward in terms of computa-
tional complexity with respect to classical algorithms of node centrality such us BC,
CL and CC which have at least a quadratic time complexity. The DC has a linear
time complexity, as well as the WKP, but GoT still remains a better option because it
is able to compute the centrality of both nodes and edges.

2.3 Correlation analysis

Correlation is a bivariate analysis used to study the degree of association between
two variables, taking into account the strength of this relationship and its direction.

A correlation coefficient is a measure of a specific type of correlation, which stud-
ies the degree of association between two variables.

The most used types of correlations are Pearson linear correlation, Spearman and
Kendall rank correlations.

Pearson correlation. Given a pair of random variables a and b, the Pearson’s r
correlation coefficient (Chen and Popovich, 2002) is defined as the covariance of the
two variables divided by the product of their standard deviations:

r =
cov(a, b)

sasb
. (2.15)

Spearman correlation. The Spearman’s r rank correlation coefficient (Spearman,
1904) between two variables is defined as the Pearson’s r between the rank values of
those two variables. For a sample of size s, the s raw scores a and b are converted to
ranks rga and rgb, and r is computed as:

r =
cov(rga, rgb)

srga srgb

, (2.16)
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where cov(rga, rgb) is the covariance of the rank variables and srga srgb are the stan-
dard deviations of the rank variables.

Kendall correlation. Given two samples a and b, where each sample size is s,
Kendall’s t rank correlation coefficient (Kendall and Gibbons, 1990) is defined ac-
cording to the following formula:

t =
sc � sd

1
2 s(s � 1)

, (2.17)

where sc is number of concordant pairs, sd is number of discordant pairs and 1
2 s(s �

1) is the total number of pairings with a and b.
A correlation coefficient can assume any value in the interval between +1 and

�1, including the end values +1 or �1 and to interpret it, we have to adopt the
following rules (Ratner, 2009):

• Values equal to 0 indicate no relationship;

• Values equal to +1 (or �1) indicate a perfect positive (or negative) relationship;

• Values between 0 and 0.3 (or �0.3) indicate a weak positive (or negative) rela-
tionship;

• Values between 0.3 and 0.7 (or �0.3 and �0.7) indicate a moderate positive (or
negative) relationship;

• Values between 0.7 and 1 (or �0.7 and �1) indicate a strong positive (or nega-
tive) relationship.

2.3.1 The impact of real and artificial network size on correlation coeffi-
cients

In Ficara et al. (2021b), we investigated the correlations among some of the tradi-
tional node centrality measures introduced in Sect. 2.1, that are DC, BC, CL and CC,
and GoT described in Sect. 2.2, on network models and real world networks.

The network models (see Sect. 1.2) include SF, SW and ER random networks. For
each class, we randomly generated five unweighted networks. Each network had
between 1, 000 and 15, 000 nodes and between 4, 970 and 1, 125, 545 edges.

For ER networks, we chose the number of nodes n between 1, 000 and 15, 000,
and a probability for edge creation p = 0.01.

For SW networks, we built NWS models choosing the number of nodes n be-
tween 1, 000 and 15, 000, k = 6 neighbors with which connect each node i in the ring
topology, and a probability p = 0.6 of rewiring each edge.

For SF networks, we built BA models choosing the number of nodes n between
1, 000 and 15, 000, we added 5 random edges for each new node i, and we chose a
probability p = 0.3 of adding a triangle after we added each of these random edges.

The real world networks include three networks from different domains: the
Dolphins social network (see Fig. 2.2-(a)), the High Energy theory collaborations
network (see Fig. 2.2-(b)) and the Internet network (see Fig. 2.2-(c)).

The Dolphins social network is an undirected and unweighted network of the re-
lationships between the bottlenose dolphins (genus Tursiops) living in a community
in New Zealand (Lusseau et al., 2003). The dolphins have been observed between
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FIGURE 2.2: Real-world networks. Dolphins social network (a),
High Energy theory collaborations network (b) and Internet network

(c).

1994 and 2001. This network is composed of 62 vertices which are the bottlenose
dolphins and 159 edges which are the frequent associations.

The High Energy theory collaborations is an undirected and weighted network
of co-authorships between scientists who posted preprints on the High-Energy The-
ory E-Print Archive between January 1, 1995 and December 31, 1999 (Newman,
2001). This network is composed of 8, 361 vertices which are scientists and 15, 751
edges which are connections existing if the scientists have authored a paper together.

The Internet network was created by Mark Newman from data for July 22, 2006
and is not previously published. It was reconstructed from Border Gateway Protocol
tables posted by the University of Oregon Route Views Project. This network is a
snapshot of the structure of the Internet at the level of autonomous systems (AS),
i.e., collections of connected IP routing prefixes controlled by independent network
operators. It is an undirected and unweighted network in which the vertices are
22, 963 AS and the edges are 48, 436 connections between AS.
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For the implementation of the traditional measures, we used Python and Net-
workX library (Hagberg, Schult, and Swart, 2008). For GoT we used the implemen-
tation by Mocanu, Exarchakos, and Liotta (2018)1, setting 1 thief and Fi

0 = n vdia-
monds per node, with n being the network size. We let GoT to run for T = log3 n
epochs. NetworkX was also used to generate the network models and to perform
our experiments with the real-world networks.

FIGURE 2.3: Pearson correlation coefficient among Game of Thieves
(GoT) and other centrality measures in real and artificial networks
of different sizes. Pearson’s r between GoT and Degree Centrality
(DC), GoT and Betweenness Centrality (BC), GoT and Closeness (CL)
Centrality, GoT and Clustering Coefficient (CC) is represented as a
function of the network size in scale-free (SF), small-world (SW), Er-

dos–Rényi (ER) networks and as a bar chart for real networks.

The results of the Pearson correlation coefficient r are presented in Fig. 2.3, the
Spearman rank correlation coefficient r in Fig. 2.4 and the Kendall rank correlation
coefficient t in Fig. 2.5, with the growth of networks’ sizes. Small deviations of
rank correlation coefficients can be observed when the size of the networks is rather
small. However, when networks grow big enough, the deviations are not visible
anymore, especially for the rank correlation coefficients. Spearman correlation coef-
ficient r was much higher than Pearson correlation coefficient r, and therefore more
capable of capturing the underlying ranking correlation between GoT and the other
measures. Moreover, we can observe that r is always larger than t, but there is no
distribution difference between these two coefficients.

1Available on GitHub (github.com/dcmocanu/centrality-metrics-complex-networks)

https://github.com/dcmocanu/centrality-metrics-complex-networks
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FIGURE 2.4: Spearman rank correlation coefficient among Game
of Thieves (GoT) and other centrality measures in real and arti-
ficial networks of different sizes. Spearman’s r between GoT and
Degree Centrality (DC), GoT and Betweenness Centrality (BC), GoT
and Closeness (CL) Centrality, GoT and Clustering Coefficient (CC) is
represented as a function of the network size in scale-free (SF), small-
world (SW), Erdos–Rényi (ER) networks and as a bar chart for real

networks.

GoT and DC have the strongest negative correlation. GoT and BC also exhibit a
large negative correlation. GoT and CL are negative correlated, but this correlation
is less than that between GoT and both DC and BC. GoT and CC centrality have no
correlation in most cases. In ER networks, we can observe the strongest and almost
identical negative correlation among GoT and DC, BC and CL. In SW networks, a
very strong and unique positive correlation between GoT and the CC can be ob-
served. Real networks are more complex than the artificial ones, but also in this case
the correlation among GoT and DC is confirmed to be the strongest one.

2.3.2 The impact of artificial network density on correlation coefficients

In Ficara et al. (2021a), we investigated the correlations between GoT and the stan-
dard node centrality measures (i.e., DC, BC, CL and CC) on three types of network
models (i.e., SF, SW and ER). We also used GoT to compute edge centrality compar-
ing it with the WKP.

This time we considered the increase of the number of links with a fixed net-
work size. For each class of networks, we randomly generated undirected and un-
weighted networks with 10, 000 nodes and between 5, 000 and 50, 000 edges.
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FIGURE 2.5: Kendall rank correlation coefficient among Game of
Thieves (GoT) and other centrality measures in real and artificial
networks of different sizes. Kendall’s t between GoT and Degree
Centrality (DC), GoT and Betweenness Centrality (BC), GoT and
Closeness (CL) Centrality, GoT and Clustering Coefficient (CC) is rep-
resented as a function of the network size in scale-free (SF), small-
world (SW), Erdos–Rényi (ER) networks and as a bar chart for real

networks.

We used the model proposed by Holme and Kim to generate the SF networks.
In each experiment, we chose the number of nodes n = 10, 000, we added m =
{5, 15, 25, 35, 50} random edges for each new node i, and we picked a probability
p = 0.3 of adding a triangle after adding a random edge.

SW graphs were generated using NWS small-world model. In each experiment,
we chose the number of nodes n = 10, 000, k = {6, 18, 32, 64} neighbors with which
connect each node i in the ring topology, and a probability p = 0.6 of rewiring each
edge.

ER networks were generated choosing the network size n = 10, 000, and for edge
creation the probability values p = {0.001, 0.003, 0.005, 0.010}.

For the implementation of the artificial networks and the centrality metrics such
as DC, BC, CL, and CC, we used Python and NetworkX module. To run the WERW-
Kpath2, we set the value of the random walk to k = 10. For GoT, we set 1 thief per
node and the initial amount of vdiamonds per node equal to the network size n. We
let GoT to run for T = log3 n epochs.

2Available at: http://www.emilio.ferrara.name/code/werw-kpath/

http://www.emilio.ferrara.name/code/werw-kpath/
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FIGURE 2.6: Correlation coefficients among Game of Thieves (GoT)
and other centrality measures in scale-free (SF) networks of differ-
ent densities. Pearson’s r, Spearman’s r and Kendall’s t between
GoT and Degree Centrality (DC), GoT and Betweenness Centrality
(BC), GoT and Closeness (CL) Centrality, GoT and Clustering Coeffi-
cient (CC), GoT and Weighted Edge Random Walks – K Path (WERW-
Kpath) are represented as functions of the network density in SF net-

works.

FIGURE 2.7: Correlation coefficients among Game of Thieves (GoT)
and other centrality measures in small-world (SW) networks of dif-
ferent densities. Pearson’s r, Spearman’s r and Kendall’s t between
GoT and Degree Centrality (DC), GoT and Betweenness Centrality
(BC), GoT and Closeness (CL) Centrality, GoT and Clustering Coeffi-
cient (CC), GoT and Weighted Edge Random Walks – K Path (WERW-
Kpath) are represented as functions of the network density in SW net-

works.

In Figs. 2.6, 2.7 and 2.8 are shown the results of the Pearson’s r correlation co-
efficient (left column), the Spearman’s r (middle column) and the Kendall’s t rank
correlation coefficients (right column) for SF, SW and ER networks respectively.

In SF networks (see Fig. 2.6), GoT and DC have the strongest negative correla-
tion. GoT exhibits a strong negative correlation with the BC and slightly weaker
with the CL. There is a positive correlation between GoT and the CC which becomes
stronger for the rank correlation coefficients. In particular, we can observe that the
Spearman’s r is always larger than the Kendall’s t. Except for the DC, we can ob-
serve a small deviation of the rank correlation coefficients when the number of edges
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FIGURE 2.8: Correlation coefficients among Game of Thieves (GoT)
and other centrality measures in Erdos–Rényi (ER) networks of dif-
ferent densities. Pearson’s r, Spearman’s r and Kendall’s t between
GoT and Degree Centrality (DC), GoT and Betweenness Centrality
(BC), GoT and Closeness (CL) Centrality, GoT and Clustering Coeffi-
cient (CC), GoT and Weighted Edge Random Walks – K Path (WERW-
Kpath) are represented as functions of the network density in ER net-

works.

in the analyzed networks is smaller which is not visible anymore when edges grow
big enough.

In SW networks (see Fig. 2.7), there is an almost identical strong negative corre-
lation among GoT and DC, BC and CL. We can also still observe a strong positive
correlation between GoT and the CC. All of these correlations become weaker when
the number of edges grows.

In ER networks (see Fig. 2.8), the correlation among GoT and DC, BC and CL is
the same as in SW networks. But, in this kind of networks, there is no correlation
between GoT and the CC even if we can observe a very little deviation when the
number of edges is small.

In all networks, we can observe a strong positive correlation among GoT and
WKP which remains constant when the number of edges grows.

According to our results, there is a strong correlation among GoT and the most
known centrality algorithms. For this reason, our future works will explore the pos-
sibility to substitute them with GoT in the computation of node centrality in large
networks.

2.3.3 Case study on Mafia networks

In Ficara et al. (2021d), we explored at first the correlation among GoT and DC, BC,
CL and CC for measuring node centrality. Then, we explored the correlation be-
tween EBC, GoT and WKP for measuring edge centrality. This two kinds of studies
were conducted on specific type of complex criminal networks which are Mafia net-
works. Our analysis focused on six real criminal networks related to three distinct
Mafia operations called Montagna, Infinito and Oversize (see Subsect. 1.3.1).

The first experiment we performed consists in the identification of the ten most
important nodes in the six Mafia networks using GoT and the four canonical nodes
centrality measures DC, BC, CL and CC (see Fig. 2.9). GoT seems to be able to iden-
tify the most important nodes in the networks in a pretty similar way to DC, BC and
CL. The CC seems instead to identify different nodes as the most central.
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FIGURE 2.9: The 10 top ranked nodes in Mafia networks. The 10
most central nodes are computed with degree centrality (DC), be-
tweenness centrality (BC), closeness (CL) centrality, clustering coeffi-
cient (CC) and Game of Thieves (GoT) in Meetings (MN), Phone Calls
(PC), Summits Network (SN), Wiretap Records (WR), Arrest Warrant

(AW) and Judgment (JU) networks.

Regarding the Montagna Operation, GoT is able to identify the two most im-
portant nodes, 18 and 47, which are respectively the Caporegime of the Mistretta
family and the deputy Caporegime of the Batanesi family. Mistretta and Batanesi
are the two Mafia families at the centre of this investigation. Node 22 is also impor-
tant because it represents a pharmacist who can have a key role in drug synthesis
processes which require pharmacological and chemical knowledge (Cavallaro et al.,
2020b). Only future experiments may share insights about the reason why this node
seems to be more central using GoT. Nodes 68, 27 and 25 are caporegimes while the
others are associates as entrepreneurs. More details about the roles of nodes in the
Montagna Operation can be found in Table 6.1.

If applied to the Infinito SN, GoT is capable to find some of the leaders of the
criminal networks such as Node 78 which is is always at the top rank across all
measures as described by Grassi et al. (2019). The authors discovered 22 leaders in
the Infinito Operation. Some of them, such as nodes 114, 9 and 6, are also found by
GoT.

About the Oversize networks (i.e., WR, AW and JU), GoT is able to discover two
drug wholesaler (i.e., nodes 26 and 39), a drug sealer (i.e., node 13) and also the boss’
son and important drug dealer (i.e., node 49).

Our results seem to be confirmed by our correlation analysis. We used the most
well-known correlation coefficients (i.e., Pearson’s r, Spearman’s r and Kendall’s t).
Since the results for the three coefficients were quite similar, we chose to show only
those for the Spearman’s r because it best captured the relationships among all the
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considered centrality measures.
The Spearman’s r and the traditional centrality measures were computed in

Python also using the NetworkX module. To improve these experiments, the avail-
able version of GoT in Python 2 was ported to Python 3, while the available Java
version of WKP was ported to Python. Moreover, to get more reliable results, GoT
and WKP were repeated for 30 times on each network. Then, we computed the
mean and standard deviation values. This was necessary because in such measures
the centrality values change at each execution. They are not in fact deterministic
measure as DC, BC, EBC, CL and CC.

FIGURE 2.10: Spearman rank correlation coefficient among Game
of Thieves (GoT) and node centrality measures in Mafia networks.
Spearman’s r is computed among GoT, degree centrality (DC), be-
tweenness centrality (BC), closeness (CL) centrality and clustering co-
efficient (CC) in Meetings (MN), Phone Calls (PC), Summits Network
(SN), Wiretap Records (WR), Arrest Warrant (AW) and Judgment (JU)

networks.

The Spearman coefficient (see Fig. 2.10) shows how in most cases there is a strong
negative correlation among GoT, BC and DC, and a moderate negative correlation
between GoT and CL. More peculiar seems to be the relationship between GoT and
CC, which seem to have a strong positive correlation in networks as MN or SN, and
a moderate or strong negative correlation in the other networks. In the Oversize WR
network, we obtained a weak or absent correlation among all the measures. This re-
sult is an exception with respect to the other graphs and it can be explained through
the peculiar degree distribution (see Fig. 1.3) of this network which indicates that
there are only two hubs, while most nodes have only 1 connection.

The negative correlation is easily explained by the fact that the most important
nodes for GoT are those with the smaller number of vdiamonds, and therefore the
smaller centrality value.
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FIGURE 2.11: The 10 top ranked edges in Mafia networks. The 10
most central edges are computed with edge betweenness centrality
(EBC), Game of Thieves (GoT) and WERW-Kpath (WKP) in Meetings
(MN), Phone Calls (PC), Summits Network (SN), Wiretap Records

(WR), Arrest Warrant (AW) and Judgment (JU) networks.

Then, we continued with the experiments on edge centrality computing the ten
most important edges in the six Mafia networks using GoT, WKP and the canonical
edge centrality measure EBC (see Fig. 2.11). This time, WKP seems to find results
more similar to EBC in the identification of the most important edges, if compared
to GoT.

The Spearman coefficient in Fig. 2.12 shows how in all the cases WKP has a mod-
erate positive correlation with EBC, and a moderate or strong negative correlation
with GoT. GoT has a weak or absent correlation with EBC.

The correlation among WKP and EBC is an important finding because we can
think to substitute random edge betweenness computing edge centrality through
WKP in a much shorter time than that required by EBC for very large networks.

Although the existence of a correlation among GoT and the standard centrality
measures does not imply the replaceability of them with the other, a future series of
experiments may lead us to consider the possibility of using GoT to compute node
and edge centrality along with the standard measures. These experiments should be
about GoT behaviour varying the input parameters (i.e., the number of thieves per
node, the number of vdiamonds per node and the number of epochs) and applying
on networks of different characteristics (e.g. BA models with different densities).
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FIGURE 2.12: Spearman rank correlation coefficient among Game
of Thieves (GoT) and edge centrality measures in Mafia networks.
Spearman’s r is computed among GoT, WERW-Kpath (WKP) and
edge betweenness centrality (EBC) in Meetings (MN), Phone Calls
(PC), Summits Network (SN), Wiretap Records (WR), Arrest Warrant

(AW) and Judgment (JU) networks.
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Chapter 3

Graph comparison between
artificial and covert networks

One common application in graph theory is to develop random graph models which
mimic the structure and behavior of real networks. Even if the growing mechanism
of such criminal networks remains largely unknown, growth and preferential at-
tachment mechanisms are most probably at the core of the affiliation process. In
this respect, comparing an artificial model network to a real network is plausible as
well as fruitful in terms of detecting insights about the structure and behavior of the
real network. The growth of available data and number of network models (New-
man, 2018; Peixoto, 2018; Squartini, Mastrandrea, and Garlaschelli, 2015), has led
researchers to face the problem of comparing networks, i.e., finding and quantifying
similarities and differences between them.

Network comparison requires measures for the distance between graphs (Tanta-
rdini et al., 2019). This is a non-trivial task, since one of the most faced issues in such
regard deal with the result effectiveness, their interpretability and the computational
efficiency. The validity of such techniques has indeed been assessed, being cospec-
trality issues one of the main reasons that could potentially make them weak. It was
though shown that the fraction of cospectral graphs is 21% for networks composed
of 10 nodes and is less for 11 nodes (Wilson and Zhu, 2008). We may, therefore, ex-
pect that cospectrality becomes negligible for larger graphs. Granted the reliability
of these techniques, we selected the simplest and yet effective among the various
metrics.

The literature on this topic is abundant, but the classification of best methods
for specific situations (including the comparison of real-world networks) remains
an open field. A few critical reviews of the literature on this subject have already
been compiled (Donnat and Holmes, 2018; Emmert-Streib, Dehmer, and Shi, 2016;
Soundarajan, Eliassi-Rad, and Gallagher, 2014). Hartle et al. (2020) proposed sim-
ple ensembles of random networks as natural benchmarks for network comparison
methods showing that the expected distance between two networks independently
sampled from a generative model can be a useful property that encapsulates many
key features of that model. The authors calculated the within-ensemble graph dis-
tance and related quantities for classic network models using 20 distance measures
commonly used to compare graphs. Wills and Meyer (2020) compared commonly
used graph metrics and distance measures, and demonstrate their ability to dis-
cern between common topological features found in both random graph models
and real world networks. They put forward a multi-scale picture of graph structure
wherein they studied the effect of global and local structures on changes in distance
measures. The number of useful graph comparison techniques (Akoglu, Tong, and
Koutra, 2015) drastically reduces when one requires an algorithm which runs in rea-
sonable time on large graphs.
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A completely new SNA approach to study crime could be the identification of the
best measures for distance between graphs in a criminal scenario. The novelty of this
type of work consists in generating artificial networks which mirror the topology
and functionality of real criminal networks; this study help to understand which
artificial model best simulates real criminal networks and it concretely aids police
forces to predict the formation of links between criminals as well as to detect the
individuals who, if arrested, would damage the most the information flow across
the organization.

3.1 Graph distances

3.1.1 Spectral distances

Spectral distances allow to measure the structural similarity between two graphs
starting from their spectra. The spectrum of a graph (see Subsect. 1.1.3) is widely
used to characterize its properties and to extract information from its structure.

The most common matrix representations of a graph are the adjacency matrix A,
the Laplacian matrix L, and the normalized Laplacian L.

The adjacency matrix (see Eq. 1.2) and the degree matrix (see Eq. 1.8) are used to
compute the combinatorial Laplacian matrix L, which is an n ⇥ n symmetric matrix
defined as:

L = D � A . (3.1)

The diagonal elements Lii of matrix L are then equal to the degree ki of the node
i, while the off-diagonal elements Lij are �1 if the node i is adjacent to j, and 0
otherwise. A normalized version of the Laplacian matrix L is defined as:

L = D� 1
2 LD� 1

2 , (3.2)

where the diagonal matrix D� 1
2 is given by:

D� 1
2

i,i =

(
1p
ki

if ki 6= 0

0 otherwise .
(3.3)

If the representation matrix is symmetric, its eigenvalues are real and they can be
sorted. The spectrum of a graph consists indeed of the set of the sorted eigenvalues
of one of its representation matrices. The sequence of eigenvalues may be ascending
or descending depending on the chosen matrix. The spectra derived from each rep-
resentation matrix may reveal different properties of the graph. The largest eigen-
value in modulus is called the spectral radius of the graph. If lA

k is the kth eigenvalue
of the adjacency matrix A, then the spectrum is given by the descending sequence:

lA
1 � lA

2 � · · · � lA
n . (3.4)

If lL
k is the kth eigenvalue of the Laplacian matrix L, such eigenvalues are considered

in ascending order so that:

0 = lL
1  lL

2  · · ·  lL
n . (3.5)

The second smallest eigenvalue of the Laplacian matrix of a graph is called its al-
gebraic connectivity. Similarly, if we denote the kth eigenvalue of the normalized



3.1. Graph distances 47

Laplacian matrix L as lL
k , then its spectrum is given by:

0 = lL
1  lL

2  · · ·  lL
n . (3.6)

The spectral distance between two graphs is the euclidean distance between their
spectra (Wilson and Zhu, 2008). Given two graphs G and G0 of size n, with their
spectra respectively given by the set of eigenvalues li and l0

i, their spectral distance,
according to the chosen representation matrix, is computed as follows by the for-
mula:

d(G, G0) =

s
n

Â
i=1

(li � l0
i)

2 . (3.7)

Based on the chosen representation matrix and consequently its spectrum, the
most common spectral distances are the adjacency spectral distance dA, the Lapla-
cian spectral distance dL and the normalized Laplacian spectral distance dL.

If the two spectra are of different sizes, the smaller graph is brought to the same
cardinality of the other by adding zero values to its spectrum. In such case, only
the first k ⌧ n eigenvalues are compared. Given the definitions of spectra of the
different matrices, the adjacency spectral distance dA compares the largest k eigen-
values, while dL and dL compare the smallest k eigenvalues. This determines the
scale at which the graphs are studied, since comparing the higher eigenvalues al-
lows to focus more on global features, while the other two allow to focus more on
local features.

3.1.2 Matrix distances

Another class of distances between graphs is the matrix distance (Wills and Meyer,
2020). A matrix of pairwise distances dij between nodes on the single graph is con-
structed for each as:

Mij = dij . (3.8)

While the most common distance d is the shortest path, other measures can also
be used, such as the effective graph resistance, or variations on random-walk dis-
tances. Such matrices provide a signature of the graph characteristics and carry
important structural information. Matrices M are then compared using some norm
or distance.

Given two graphs G and G0, having M and M0 as their respective matrices of
pairwise distances, the matrix distance between the G and G0 is introduced as:

d(G, G0) = kM � M0k , (3.9)

where k.k is a norm to be chosen. If the matrix used is the adjacency matrix A, the
resulting distance is called edit distance.

Two graphs can also be compared using a similarity measure called DELTA-
CON (Koutra, Vogelstein, and Faloutsos, 2013). It is based on the root euclidean
distance drootED, also called Matsusita difference, between matrices S created from
the fast belief propagation method of measuring node affinities.

The DELTACON similarity simDC is defined as:

simDC(G, G0) =
1

1 + drootED(G, G0)
, (3.10)
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where the root euclidean distance drootED(G, G0) is defined as:

drootED(G, G0) =

s

Â
i,j
(
q

Si,j �
q

S0
i,j)

2
. (3.11)

When used instead of the Euclidean distance, drootED(G, G0) may even detect
small changes in the graphs. The fast belief propagation matrix S is defined as:

S = [I + #2D � #A]�1 , (3.12)

where # = 1/(1 + max1in Dii) and it is assumed to be # ⌧ 1, so that S can be
rewritten in a matrix power series as:

S ⇡ I + #A + #2(A2 � D) + . . . (3.13)

Fast belief propagation is an effective algorithm and it is designed to perceive both
global and local structures of the graph (Koutra, Vogelstein, and Faloutsos, 2013).

3.2 Case study on the Montagna operation

In Cavallaro et al. (2021) and Ficara et al. (2021f), we used traditional network mod-
els from graph theory (i.e., ER, WS, BA and EBA) to replicate the topology of the
Montagna Meetings network. We built 1000 networks for each type with a number
of edges as close as possible to that of our Mafia network, which is equal to 256.

To compare the Montagna Meetings network to the network models, we used
two graph distances: the adjacency spectral distance dA (see Eq. 3.7) and the root eu-
clidean distance drootED (see Eq. 3.11). From drootED, we also derived the DELTACON
similarity simDC. Then, we computed the average values of dA, drootED and simDC
for each type of network model together with the error rates.

The aim of our study was to find the best model which reproduces a criminal
network. Both the graph distances identified the BA models as the ones that better
approximate our Mafia network. BA models are built based on a specific parameter
m, which indicates the number of edges that are preferentially attached to existing
nodes with high degree. We tried two different configurations of the BA graphs
with m = 2 and m = 3. But, it was not possible to obtain the exactly same number
of edges of our criminal network. For this reason, we used preferential attachment
and random strategies to add or remove edges from them. This further experiment
was done to discover if the graph distances decreased, when the number of edges
coincided perfectly with 256.

3.2.1 How to simulate a covert network

The first step of our analysis was the computation of the simDC similarity and the
drootED distance (see Eqs. 3.10 and 3.11) to measure how well an artificial network
may catch some real network features in a criminal scenario.

Thus, we compared the Montagna MN with three network models, i.e., ER, WS
and BA with several configurations, for a total of 5 models. The analysis of the MN
network, which was conducted in Ficara et al. (2020), found that it followed a scale-
free power law. For this reason, we chose the BA model.

Even if this is not the main purpose of our study, it is worth highlighting that
criminal organizations adopt specific criteria for recruiting new affiliates (growing
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and preferential attachment dynamics) (Williams, 2001). A single network snapshot
such as MN we created is clearly insufficient, as a temporal network would be better
suited. But this would require a deeper knowledge of the dynamics of the criminal
network which is usually unknown. For comparison, we have selected also the ER
and WS models, notwithstanding the fact that the random nature of these models
hardly can reproduce the nature of a real network. The WS model is more realistic
than the ER model because it exhibits a small diameter, short average path lengths
and high clustering coefficient. In most real networks, in fact, nodes tend to create
close groups with a high density of edges. Despite this, WS models cannot model
real networks where degree distributions are usually power-law as in the BA mod-
els.

We used Python and NetworkX (Hagberg, Schult, and Swart, 2008) to create all
the network models. In Table 3.1 are listed the parameters and the corresponding
values used in our experiments. The number of nodes n is defined a priori in all the
models considered, whereas the number of edges e is set only in the ER model. In
WS, k represents the number of nearest neighbors in ring topology to which each
node is connected. We chose k = 6 so to obtain a number of edges as close as possi-
ble to the real criminal network. The same has been done for the input parameters
of all the BA models chosen herein. But, in this case, three different configurations
have been selected: BA2, BA3 and EBA. BA2 and BA3 are standard BA models in
which each new node is connected to m = 2 and m = 3 “old” nodes respectively.
The EBA model requires two more parameters: (i) p, i.e., the probability that m ran-
domly chosen pairs of nodes are connected by an edge, and (ii) q, i.e., the probability
of rewiring an edge. We set q = 0 to avoid introducing more randomness in the
network process.

TABLE 3.1: Network model parameters. Erdös-Rényi (ER), Watts-
Strogatz (WS), Barabási-Albert (BA), Extended Barabási-Albert (EBA)
have the same number of nodes n of the Montagna Meetings network.
The number of edges e changes according to their specific parameters.

Network model Parameter

n e m k p q

ER 101 256
WS 101 6 0.6
BA2 101 2
BA3 101 3
EBA 101 2 0.225 0

Then, we computed the DELTACON similarity, which allows to compare two
graphs having different numbers of nodes and/or edges. Unfortunately this mea-
sure did not yielded indisputable results about the network model closest to the real
network. We therefore resorted to compute the adjacency spectral distance which,
in contrast, clearly allowed us to identified the BA model networks as the best at
catching the real network features.

The last step consisted in considering the number of edges of the network mod-
els. The BA models with m = 2 and m = 3 have a number of edges different from
the real network. For this reason, we decided to further investigate whether the
adjacency spectral distance could have been reduced by increasing (in the case of
BA2) or reducing (BA3) the number of edges until they were equal to the number
of edges of the real network. This is required to iteratively add an edge to the BA2



50 Chapter 3. Graph comparison between artificial and covert networks

(respectively, remove an edge from the BA3) and recalculate the adjacency spectral
distance. The procedure ends when the number of edges coincides with that of the
real network. Two strategies have been devised to select the candidate edge: (i) a
preferential attachment selection, in which the edge is added (or removed) among
the edges of the best connected nodes, and (ii) a random selection, in which the edge
is selected at random.

In order to significantly reduce statistical errors, the experiments have been re-
peated 1000 times for each artificial network (ER, WS, BA2, BA3, EBA), from which
the average values have been computed.

3.2.2 The best model to simulate a covert network

Table 3.2 shows the average values of the root euclidean distance drootED and the
DELTACON similarity simDC between the real network and the five random models.
Being drootED a distance measure, the higher its value is, the more the two compared
networks are different. Viceversa, being simDC a similarity measure that takes val-
ues between 0 and 1, the more its value is close to 1, the more the two compared
networks are similar. The error of simDC is equal to 0.015 for all the network models
and has not been reported.

TABLE 3.2: Root euclidean distance drootED and DELTACON simi-
larity simDC between the Montagna Meetings network and the net-
work models, i.e., Erdös-Rényi (ER), Watts-Strogatz (WS), Extended
Barabási-Albert (EBA), and Barabási-Albert (BA) with two different

configurations. The number of edges e is also showed.

Network model e drootED simDC

ER 256 2.2 ± 0.2 0.317
WS 202 2.5 ± 0.2 0.287
EBA 246 1.31 ± 0.08 0.433
BA2 198 1.28 ± 0.08 0.438
BA3 294 1.27 ± 0.07 0.441

From the analysis of the results shown in the Table 3.2, it is clear that all the BA
models are able to better approximate our Montagna MN network with respect to
ER and WS models.

The similarities between the real network and the random models were further
analyzed by evaluating the adjacency spectral distance dA. These results are shown
in Table 3.3.

Also in this case, we can observe a huge adjacency spectral distance dA among
the criminal networks and the ER and WS models which even reaches more than 9.
The BA models are confirmed to be the most similar to the Montagna MN network.
This time, the EBA has the best performance.

Both the selected graph distances drootED and dA agree that the ER and WS mod-
els are are the most distant from a criminal network.

Tables 3.2 and 3.3 also show how the BA models have a different number of edges
e. A different number of edges implies a different number of nonzero elements of
the adjacency or Laplacian matrices, thus affecting the resulting eigenvalues.

To obtain more precise and comparable results, we tried to change the BA models
to reach a number of edges closer to our MN (i.e., 256 edges). The BA2 model is
characterized by a smaller e than MN, while the BA3 model possesses a higher e.
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TABLE 3.3: Adjacency spectral distance dA between the Montagna
Meetings network and the network models, i.e., Erdös-Rényi (ER),
Watts-Strogatz (WS), Extended Barabási-Albert (EBA), and Barabási-
Albert (BA) with two different configurations. The number of edges

e is also showed.

Network model e dA

ER 256 8.4 ± 0.2
WS 202 9.2 ± 0.2
EBA 255 6.6 ± 0.2
BA2 198 6.9 ± 0.2
BA3 294 7.1 ± 0.2

Two procedures were, then, adopted to iteratively add to BA2 or remove from
BA3 the percentage of e needed to reach the 256 edges of the Montagna MN. The
two procedures are based on two different approaches: preferential attachment and
random selection.

FIGURE 3.1: Difference between adjacency spectral distances when
different strategies are applied to change the number of edges of
Barabási-Albert models. Adjacency spectral distance dA is repre-
sented as a function of the number of edges e added to BA2 and
removed from BA3 with a Preferential Attachment (PA) or Random
strategy. BA2 and BA3 are Barabási-Albert models with respectively
2 and 3 edges preferentially attached to existing nodes with high de-

gree.

Fig. 3.1 shows the difference between ordinates when abscissa is equal to 256.
Ideally, this difference should reduce to 0 when both the BA models reach the same
number of edges (i.e., 256). This does not happen because the BA2 and BA3 models
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are still different and it is not enough to add or remove edges to make them identical.
However, we can observe that the PA approach works better reducing this difference
more than the random approach.

FIGURE 3.2: Graphical comparison between the Montagna Meet-
ings (MN) network and the BA2 model. BA2 is a Barabási-Albert
model with 2 edges preferentially attached to existing nodes with
high degree. The five high degree nodes in MN and BA2 are marked

in dark green.

FIGURE 3.3: Graphical comparison between the Montagna Meet-
ings (MN) network and the BA3 model. BA3 is a Barabási-Albert
model with 3 edges preferentially attached to existing nodes with
high degree. The five high degree nodes in MN and BA3 are marked

in dark green.

In Figs. 3.2 and 3.3 is shown a graphical comparison between the Montagna MN
network and the BA models. The five high degree nodes are highlighted because the
identification of the most important nodes in an artificial model could lead to also
find the key nodes in criminal network thus helping in police investigations.

Our experiments identify the BA model as the one which better represents a
criminal network. For this reason, we could expect that new members of a crimi-
nal organization will be more likely to establish connections with high degree nodes
rather than low degree nodes. Such studies could indeed help LEAs in their in-
vestigations because they could focus their resources and attention on high degree
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individuals to intercept criminals instead to waste time and resources to follow in-
dividuals without obtaining any concrete results.

These studies have limitations which may be addressed by future research. First,
our results rely on a single case study, which implies limited external validity. Our
analysis focused on the Sicilian Mafia which has a very peculiar hierarchical struc-
ture (see Fig. 1.4). Its peculiarities may hinder the generalizability of our results to
other form of organized crime.

Our research can pave the way to the application of network models in police
investigations. LEAs could create models which replicate criminal networks starting
from the investigation data, even if they are affected by noise or missing information.
Network models could be used to predict and prevent the creation of relationship
ties between criminals or to break those ties by arresting one or more of the suspects.
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Chapter 4

The missing data problem

In the analysis of criminal networks, missing data can refer to missing nodes and/or
missing edges (Morselli, 2008). The problem of missing nodes has already received
attention (Hric, Peixoto, and Fortunato, 2016; Kim and Leskovec, 2011) but it is not
particularly relevant in Mafia networks because it is quite improbable that LEAs
may disregard central criminals during prolonged anti-mafia investigations. On the
other hand, while it is possible to predict some missing edges among already de-
tected criminals, it is impossible to detect missing criminals relying only on pre-trial
detention orders.

Missing edges refer to the lack of information on the relations between two
known criminals. LEAs, in fact, may miss a lot of criminal activities such as meetings
or phone calls, and therefore relevant plans of the criminal organization (Agreste et
al., 2016; Campana and Varese, 2012; Catanese et al., 2014; Ferrara et al., 2014). For
this reason, we do not have a complete dataset of all possible meetings or phone calls
between suspected criminals, but it is reasonable to assume that they have occurred.
Therefore, it becomes necessary to make predictions.

A crucial application of SNA methods to intelligence is the so-called link pre-
diction problem (Liben-Nowell and Kleinberg, 2003; Pandey et al., 2019): given a
graph G which describes interactions between pairs of criminals, it is possible to
predict which edges are more likely to appear in G in the near future. Algorithms to
solve the link prediction problem may hugely impact police activities: in fact, if we
would be able to accurately predict the formation of new links, we would be able to
discover pairs of criminals who are likely to collaborate and, thus, we could early
detect and prevent crimes.

Many link prediction methods have been designed and implemented in a broad
range of domains (Liben-Nowell and Kleinberg, 2003; Pandey et al., 2019) and, more
recently, Berlusconi et al. (2016) applied link prediction algorithms on a dataset de-
rived from an Italian criminal case against a Mafia group.

Almost all of the existing approaches to link prediction focus on maximizing the
accuracy, and they overlook fundamental aspects such as the robustness of predic-
tions, namely the extent to which the incompleteness of information about relations
may affect the quality of predictions. By construction, in fact, datasets associated
with criminal networks are noisy and incomplete: on one hand, investigations often
encounter individuals unrelated to the criminal organization (e.g., friends, relatives,
and other frequent contacts) and, on the other hand, some members of the organiza-
tion actively attempt to avoid detection, e.g., by refraining from the use of telephone,
using intermediaries, and coding messages. As a consequence, imprecise and in-
complete information is a critical impediment to understand network boundaries
and topology and, ultimately, it constitutes a main challenge for LEAs which plan to
get reliable results from the application of link prediction algorithms.
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A completely new SNA approach to study the problem of missing data could be
done using graph distances (see Sect. 3.1) to quantify the effects of missing nodes
or edges on a criminal network. Given a graph G, nodes or edges are randomly re-
moved to simulate scenarios in which a criminal, a meeting or a phone call eludes
audio or physical surveillance. After the removal, a second graph G0 is created.
Graph distances (see Sect. 3.1) can be used to compare G and G0. In this way, it is
possible to know how much the overall understanding of G changes with incom-
plete data.

4.1 Link prediction in Montagna

In Calderoni et al. (2020), we tackled the problem of estimating the robustness of link
prediction algorithm in the Montagna Meetings and Phone Calls networks.

The link prediction problem (Liben-Nowell and Kleinberg, 2003) is defined as
follows:

Definition 1 Let G = hN, Ei be an undirected graph and let G0 = hN, E0i be a subgraph
of G which contains all nodes in G and a subset E0 ✓ E of its edges. The link prediction
problem consists of printing a list of non-edges in G0 which are edges in G.

We will call the set E0 as the training set and the set E � E0 as the test set.
In practice, algorithms to solve the link prediction problem build a matrix W in

which the entry Wij = sij specifies the degree of similarity between the nodes i and
j; all pair of non edges hi, ji in G are thus ranked in decreasing order of similarity
and non-edges with the largest similarity scores are the most likely to exist (Liben-
Nowell and Kleinberg, 2003).

We can define many similarity scores to compute the similarity degree of two
nodes in G. Methods to compute node similarity can be classified into local and
global methods.

4.1.1 Local methods for node similarity

A first class of methods to calculate node similarity in graphs is known as local
methods (Leicht, Holme, and Newman, 2006; Liben-Nowell and Kleinberg, 2003),
because they only require the knowledge of the neighbors N of two nodes i and j.
Some of the most popular local methods are as follows:

(1) Jaccard Coefficient (JC) (Jaccard, 1912; Liben-Nowell and Kleinberg, 2003):

JC(i, j) =
|N (i) \N (j)|
|N (i) [N (j)| . (4.1)

(2) Common Neighbors (CN) (Liben-Nowell and Kleinberg, 2003; Newman, 2001):

CN(i, j) = |N (i) \N (j)| . (4.2)

(3) Preferential Attachment (PA) (Liben-Nowell and Kleinberg, 2003; Newman,
2001):

PA(i, j) = |N (i)| · |N (j)| . (4.3)
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(4) Adamic-Adar coefficient (AA) (Adamic and Adar, 2003; Liben-Nowell and
Kleinberg, 2003):

AA(i, j) = Â
x2N (i)\N (j)

1
log |N (x)| . (4.4)

4.1.2 Global methods for node similarity

Both the MN and PC networks are highly sparse and, thus, we expect that the task
of predicting edges is hard if we would rely only on local information.

However, both MN and PC display a very high clustering coefficient (see Ta-
ble 1.2), which is much higher than that we observe in other types of real-life social
networks of roughly equal size. A large clustering coefficient implies that if two
nodes i and j share at least one neighbor, then there is a high chance that i and j
will be linked by an edge too. Therefore, methods to calculate node similarity which
leverage higher order structures (e.g., as walks or paths) or, more in general, the full
knowledge of the graph topology, might be more accurate than local methods in
predicting edges.

We will call these methods as global methods and one of the most popular global
methods is the so called Katz score (Katz, 1953).

The Katz score k(i, j) associated with a pair of nodes i and j considers the whole
ensemble of walks connecting i and j, and it assumes that each walk provides a con-
tribution to determine the degree of similarity between i and j. A core assumption
in the calculation of k(i, j) is that long walks are to be penalized with respect to short
ones, which implies that two nodes are highly similar if they are connected by many
short walks in G. To formally encode such a principle, we introduce a discount fac-
tor a and we denote wk(i, j) as the number of walks of length k = 0, 1, . . . , from i to
j. The Katz coefficient score is then computed as follows:

k(i, j) = w0(i, j) + aw1(i, j) + a2w2(i, j) + . . .+ akwk(i, j) + . . . =
•

Â
k=0

akwk(i, j) . (4.5)

Observe that w0(i, j) = 1 if and only if nodes i and j coincide, 0 otherwise. If we
let A be the adjacency matrix of G and suppose that a is less than 1

l1
, l1 being the

largest eigenvalue of A1, then the Katz score between any pair of nodes in G can be
seen as a matrix Ka, which can be computed as follows:

Ka = (I � aA)�1 � I . (4.6)

Here I is the identity matrix.
In our analysis we considered also Node2Vec (Grover and Leskovec, 2016), a re-

cent but promising approach for embedding graphs onto vectors. More specifically,
given a graph G = hN, Ei, Node2Vec seeks at finding out a function f : N ! Rk

where k is a fixed constant and Rk is the set of k-th dimensional arrays of real num-
bers. The main requirement we imposed on f is that if two nodes i and j are “close”in
G, then their representations f (i) and f (j) should be close in Rk too. To detect pairs
of close nodes, Node2Vec simulates a random walk on G which can be thought as
an interpolation of two popular procedures to explore a graph, namely the Breadth
First Search (BFS) and the Depth First Search (DFS). More specifically, such a random
walk is regulated by two parameters, namely the return parameter p (which speci-
fies the likelihood the random walk will immediately revisit a node) and the in-out

1The parameter l1 is also known as the spectral radius of A.
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parameter q: if q > 1, the random walk acts as a BFS because it tends to visit nodes
which are close to the currently visited node; vice versa, if q < 1, the walk tends to
move to nodes that are farther away from the current, thus simulating a DFS.
After applying the Node2Vec algorithm, each node i is associated with a vector vi
and the similarity of two nodes i and j is defined as the cosine similarity of vectors
vi and vj.

A further method to compute node similarity is the Personalized PageRank sim-
ilarity score (PPR) (Avrachenkov, Chebotarev, and Rubanov, 2019), which is defined
in matrix form as follow:

PPRa = (I � aP)�1 . (4.7)

The matrix P is a row-stochastic matrix defined as P = D�1A: here D is a diag-
onal matrix storing the degrees of nodes in G and, A is the adjacency matrix of G.
Therefore, the sum of the elements within each row of P is 1 and we can interpret P
as the transition probability of a random walk over G in which the random walker,
at any step, chooses uniformly at random one of its neighbors.

4.1.3 Our link prediction methods

As a first step of our analysis, we compared local and global methods. Specifically,
let smet(i, j) be the similarity score between a pair of nodes i and j calculated accord-
ing to the method met, where met is one of the methods introduced in Subsects. 4.1.1
and 4.1.2. Similarity scores generated by each method were normalized to range
from 0 to 1. We claimed that i and j are connected if and only if smet(i, j) was bigger
than a threshold q and we negated the existence of that edge if smet(i, j) < q. In this
way, we were able to map continuous similarity scores onto discrete labels (i.e., 0
and 1 to claim/negate the existence of an edge).

We used two metrics to evaluate the level of association between a particular
measure of similarity and the existence of an edge: (i) the True Positive Rate (TPR)
and (ii) the True Negative Rate (TNR). The TPR measures the proportion between
the number of edges that a similarity measure claims exist and the real number of
edges. The TNR is the proportion between the number of node pairs that according
to a particular similarity measure are not connected and the actual number of pairs
of nodes not connected. The TPR and TNR of local methods for a broad range of
values of q are not reported. However, it is instructive to comment the configuration
q = 0.5: here we observed that the TPR of all local methods was around 0 and their
TNR were close to 1. Such a result implies that local methods almost always negate
the existence of an edge and, thus, due to the sparsity of MN and PC, their guesses
are almost always exact. Of course, local methods fail to identify edges actually
existing. The Katz and PPR scores, instead, work much better than local methods.
In Fig. 4.1 we plot only the TPR and TNR for Katz score as function of a; similar
results hold true for PPR as function of a.

The main conclusions we drew from our analysis are as follows: (i) An increase
of a yields a decrease in TPR; (ii) The TNR achieved by the Katz score in MN and
PC is generally very large (bigger than 0.99) even if slightly smaller that achieved
by local methods. Specifically, Fig. 4.1 (left panel) indicates the presence of a turning
point a (with a ' 0.52 in case of the MN network and a ' 0.44 in case of the PC net-
work) beyond which the TPR quickly drops. The Katz score thus perfectly addresses
issues we highlighted above and, with a suitable choice of a, all highly-scored pair
of nodes are actually tied by an edge. Such a result agrees fairly well with our model
about information flow in criminal networks: criminals often do not communicate
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FIGURE 4.1: Level of association between the Katz score and the
existence of an edge in the Montagna Meetings (MN) and Phone
Calls (PC) networks. True Positive Rate (TPR) and True Negative
Rate (TNR) associated with the Katz score are represented as func-

tions of the discount factor a in the criminal networks.

directly with each other but they prefer to make use of intermediaries to convey mes-
sages, both in face-to-face meetings and in case of phone calls; however, the chain of
intermediaries is generally very short for security reasons.

4.1.4 Accuracy of our link prediction methods

As a further step of our analysis, we analyzed the accuracy of the methods to calcu-
late node similarity.

We applied 10-fold cross validation to quantify the predictive accuracy of each
previous predictor. Cross-validation is a procedure used to assess the accuracy of a
Machine Learning algorithm which, in the latest years, gained an astonishing pop-
ularity (Hastie, Tibshirani, and Friedman, 2009). The main reasons underlying the
popularity of k-fold cross validation are its simplicity as well as its ability of produc-
ing less optimistic accuracy assessment than methods based on the (random) divi-
sion of a dataset into a training and a test part. In short, in the k-fold cross validation
we randomly shuffled a dataset D and divided it into k groups, say, G1, . . . , Gk; com-
mon choices for k are k = 5 and k = 10. For each group Gi, we took Gi as test dataset
and we used the remaining G1, G2, . . . , Gk groups as training set: in other words, we
used all groups Gj (but Gi) to fit our model; once our model had been fitted, we
evaluated its accuracy on Gi. Such a procedure was repeated for each group Gi and,
consequently, any sample in the original dataset was used k � 1 times for training
purposes and one time for testing purposes. At the end of evaluation procedure, we
obtained k values of accuracy (one for each group used as test set); we thus took the
average of the accuracy scores on each group Gi as the accuracy of the algorithm to
evaluate.

The prediction accuracy was evaluated by a standard metric, the Area Under
the Receiving Operating Curve (AUROC) 2. We repeated the calculation of AUROC
n = 50 times, thus generating a sample of the true AUROC scores. Then, we cal-
culated the empirical mean m and the empirical standard deviation s of the sample

2The AUROC is understood as the probability that a randomly chosen edge in the test set gets a
higher score than a randomly chosen non-edge.
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above; if we denote as µ the true AUROC, the random variable t =
p

n(m�µ)
s fol-

lows a t-student distribution with n � 1 degrees of freedom (Ross, 2017). We then
calculated the value of A for which P(�A  t  A) = 0.95 and we take the in-
terval

⇣
m � A sp

n , m + A sp
n

⌘
as the 95% confidence interval associated with the true

AUROC score.
In Table 4.1 we report the confidence intervals associated with AUROC for AA,

CN, PA, JC, Node2Vec, Katz and PPR methods on the MN and PC networks. We re-
port the AUROC 95% confidence intervals for the Katz and PPR methods. Moreover,
we considered some specified values of the parameter a (namely a = 0.1, 0.3, 0.5, 0.7
and 0.9), and we investigated how the a parameter affected the AUROC.

TABLE 4.1: Area Under the Receiving Operating Curve (AUROC)
confidence intervals for the Adamic Adar (AA), Common Neigh-
bors (CN), Preferential Attachment (PA), Jaccard Coefficient (JC),
Node2Vec, Katz (K) and Personalized PageRank (PPR) methods com-
puted on the Montagna Meetings (MN) and Phone Calls (PC) net-

works.

Method Confidence Interval
Name a MN PC

JC (0.917, 0.938) (0.57, 0.623)
CN (0.938, 0.953) (0.595, 0.634)
PA (0.754, 0.789) (0.872, 0.913)
AA (0.939, 0.957) (0.602, 0.643)

Node2Vec (0.899, 0.919) (0.577, 0.646)

K

0.1 (0.946, 0.959) (0.706, 0.753)
0.3 (0.95, 0.965) (0.711, 0.772)
0.5 (0.939, 0.955) (0.701, 0.754)
0.7 (0.927, 0.946) (0.73, 0.778)
0.9 (0.927, 0.946) (0.696, 0.748)

PPR

0.1 (0.939, 0.956) (0.66, 0.724)
0.3 (0.954, 0.968) (0.696, 0.752)
0.5 (0.942, 0.958) (0.698, 0.747)
0.7 (0.939, 0.955) (0.687, 0.743)
0.9 (0.922, 0.94) (0.688, 0.75)

In case of MN network, the AUROC was generally very high for all methods
under investigation and the worst-performing method is PA. The Katz score and the
PPR score generally outperformed but their AUROC tended to slightly decrease as
a increased: for instance, if a > 0.7 the AUROC achieved by Katz score ranges from
0.893 to 0.918 while the AUROC measured for PPR ranges between 0.922 and 0.94.
The JC, CN and AA methods achieved an AUROC which was slightly smaller than
that of the Katz and the PPR score. In contrast, PA displayed the worst performance,
and its AUROC was 17.51% less than that of AA and 17.25% smaller than that of JC.

On the PC network, instead, the PA method achieved the highest AUROC and
the performances of all other methods significantly deteriorated. For instance, the
AA method achieved an AUROC ranging from 0.602 to 0.643, with a loss of more
than 30% with respect to MN.

We observed our methods were very accurate and they achieved an AUROC,
which in some cases was higher than 0.9.

We reported that graph topology actually played an important role on the pro-
cess of predicting edges: specifically, methods which were very accurate on MN
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performed badly on PC (and vice versa). In detail, it seems that if a graph is poorly
connected (with a low edge density and a small clustering coefficient) local meth-
ods are to be preferred to global ones. Vice versa, global methods as the Katz score
achieved their best accuracy on graphs which displayed a better level of connectivity
(i.e., in graph with larger edge density and clustering coefficients).

4.1.5 Robustness of our link prediction methods

Let us assume that we know all the nodes of a network and do not know a percent-
age of its edges. This realistic situation must allow us to make predictions about
how much the network can help LEAs, even if there are some missing edges.

We used the complete Montagna networks MN and PC to study the usefulness
of a partial knowledge of them. To understand if a partial knowledge of the edges is
sufficient, we assumed that we did not know a percentage of their edges and applied
similarity algorithms for link prediction.

Both MN and PC are built upon the evidence collected by police forces, and
therefore they are an incomplete sample of true graphs MN0 and PC0. An important
discrepancy between MN and MN0 (resp., PC and PC0) might significantly alter the
conclusions we can draw from the analysis of MN (resp. PC), and in particular it
might severely alter our ability of predicting edges between criminals.

We ran our analysis in parallel for the two networks MN and PC, and rely on the
methods achieving the highest prediction accuracy in the analysis of the previous
section: for MN, we concentrated on the Katz score with different levels of param-
eter a; for PC, we focus on PA.3 Let us consider the MN network. Our aim was to
quantify the difference between Ka(MN) and Ka(MN0). At an aggregate level, we
introduced the parameter ra(MN, MN0) to quantify such a difference:

ra(MN, MN0) =
||Ka(MN)�Ka(MN0)||2

||Ka(MN)||2
. (4.8)

Eq. 4.8 can be applied to networks PC and PC0 and method PA, which yielded the
highest prediction accuracy in the telephone call network. However, the equation is
not applicable in practice because we do not know the true graphs MN0 and PC0. We
can overcome this issue by assuming that missing edges – those edges in MN0 (resp.,
PC0) but not observed in MN (resp., PC) – have been generated using a suitable
probabilistic model.

Our probabilistic model assumes that non-observed edges in MN0 (resp. PC0) are
non-edges in MN (resp., PC); each non-edge in MN (resp., PC) is associated with a
parameter `, called likelihood, such that the higher the likelihood, the more likely a
non-edge in MN (resp., PC) will correspond to an edge in MN0 (resp., PC0). If the
likelihood ` is specified, we can select non-edges from MN (resp., PC) on the basis
of their likelihood, and we can incrementally insert them into MN (resp., PC) until a
pre-defined stop condition is satisfied. At the end of this procedure, we obtain MN0

(resp., PC0).
We considered multiple strategies to model the likelihood `, namely: (i) CN (see

Eq. 4.2), (ii) JC (see Eq. 4.1), and (iii) a random model, a baseline where ` is dis-
tributed as a uniform random variable in the interval [0, 1].

The model above resemble network-growth models (Newman, 2010) which de-
scribe the creation/evolution of a network (for example, a mechanism similar to the
preferential attachment is at the base of the generation of BA networks). However,

3For MN, we have also run our analysis in the case of PPR score with similar results.
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in network-growth models we assume that new nodes arrive and join the network,
and the last node can decide which other nodes to connect to. In contrast, in our
model, there are no new nodes that can be added to the network: this is equivalent
to the simplifying hypothesis that the network is perfectly observable about what
concerns the subjects in it (that is, the investigation has not excluded any criminal
subject), and the possible lack of information only concerns the relations observed
by the investigators.

Our experimental protocol consisted of the following steps:

Step 1 Let T be the list of non-edges in MN (resp., PC) sorted by decreasing likeli-
hood scores. We took 50% of the top elements in T, i.e., we chose half of the
non-edges that have the highest likelihood. This step was necessary to create
a group of potential non-edges that was sufficiently large but, at the same
time, which was reliable enough because non-edges with low values of like-
lihood were filtered out. We called C ✓ T the set of the non-edges generated
at the end of Step 1.

Step 2 We randomly chose a sample of R(p) ✓ C with size equal to p from C. In
our experiments, we set p = {1%, 5%, 10%, 15%}. Of course, the larger p, the
higher the number of missing edges.

Step 3 We add elements in R(p) to MN (resp., PC), thus creating a new graph
MN0(p) = hN, E [ R(p)i (resp., PC0(p) = hN, E [ R(p)i).

Step 4 We calculate the relative variation r using Eq. 4.8, where the graph MN0

(resp., PC0) is replaced by MN0(p) (resp, PC0(p)) .

Steps 2-4 have been repeated 30 times to avoid statistical fluctuations. The results
are shown in Fig. 4.2 for MN, and in Table 4.2 and in Fig. 4.3 for PC.

TABLE 4.2: r, i.e., the difference among the initial graph and the one
with predicted edges, as function of p, i.e., percentage of added edges,
in the Montagna Phone Calls (PC) network. Edges are predicted ac-
cording to Common Neighbors (CN), Jaccard Coefficient (JC), and

Random strategies.

p CN JC Random

1.0 0.134 0.107 0.121
5.0 0.157 0.174 0.179
10.0 0.232 0.235 0.201
15.0 0.291 0.296 0.233

As for the meeting network, the random strategy clearly induces the highest
values of r for any value of a and p. This was a largely predictable result: if the
probability of the existence of a non-edge follows one of the other strategies (i.e.,
JC and CN), then the network structure is somehow able to predict the existence
of missing edges. On the other hand, if edges were randomly placed, the network
structure would not offer any insight to predict the existence of missing edges and,
thus, the parameter r significantly grows: for instance, it suffices to set p = 5% and
a = 0.2 to obtain r ' 1.
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FIGURE 4.2: Variation of ⇢ as a function of the discount factor ↵ in
the Montagna Meetings (MN) network for p = 1%,5%,10%,15%.
The parameter r quantifies the difference between MN and MN0

which is created from MN adding a percentage of edges p accord-
ing to Common Neighbors (CN), Jaccard Coefficient (JC), Preferential

Attachment (PA) and Random strategies.

The growth of a implies a growth of r for the random strategy. For CN, r is
relatively stable, only slightly increasing for higher values of a. A limit case hap-
pened when we decided to adopt JC as the likelihood function: in that case, the
result was anti-intuitive because when a increased, a reduction of r occurred (with
peaks up to 18%). In practice, if a ! 1, the contribution of relatively long walks
was not-negligible, and thus long walks were capable of contrasting high level of
uncertainty associated with larger values of p. For a fixed a, the parameter p plays a
key role on the value of r and, obviously, the higher p, the higher r.

We obtained totally different results in the PC network. The random and JC like-
lihood functions were the only strategies that generated the highest value of r, and
there was a crossover point a in the JC likelihood beyond which we observed a vari-
ation of r greater than that detected in the random generative model. The variations
of r in the CN generative model become almost imperceptible if a gets larger than
0.1, and thus CN seems an unhappy choice to analyze telephone conversation flows.
The trend of r is relatively little affected by p if p < 15%; however, if p > 15% the
value of r in all the generative models analysed undergoes significant changes.

Link prediction algorithms are sensitive not only to uncertainty in MN and PC
(captured by the parameter p) but also on the type of graph they operate on. If
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FIGURE 4.3: ⇢ as a function of p in the Montagna Phone Calls (PC)
network. The parameter r quantifies the difference between PC and
PC0 which is created from PC adding a percentage of edges p = 1%,
5%, 10%, 15% according to Common Neighbors (CN), Jaccard Coeffi-

cient (JC) and Random strategies.

the amount of uncertainty is relatively small, and non-observed edges derive from
a specified generative model, we can hope for robust edge prediction. This is con-
firmed by the results in MN, where both CN and JC generate lower values of r than
the random strategy for different combination of of p and a. Conversely, there is
no clear indication from PC, suggesting that the network growth does not follow a
specific strategy. We can thus conclude that the robustness of link prediction is not
only dependent on the amount of uncertainty (i.e., p), but also on type of network
and underlying relations.

In the light of our studies, we recommend LEAs not only to build a detailed map
of connections between criminals, but also to investigate how such a map evolves
over time: in this way, we would be able to determine which of the likelihood func-
tions better fit experimental observations, and if required we could design more
sophisticated likelihood functions to help LEAs to detect and prevent crimes.

4.2 Graph distances in missing data scenarios

In Ficara et al. (2021c), a network science approach was adopted to assess how much
of the available data of a criminal network may be missing, before it starts to be
unreliable. In other words, our aim was to quantify how much the partial knowledge
of a criminal network can affect investigations in a significant way.

As mentioned in Chap. 3, one of the most interesting SNA application consists
of comparing networks, by finding and quantifying similarities and differences be-
tween them (Newman, 2018; Peixoto, 2018; Squartini, Mastrandrea, and Garlaschelli,
2015). This network comparisons require measures for the distance between graphs
(see Sect. 3.1), such as the adjacency spectral distance dA, the Laplacian spectral
distance dL, the normalized Laplacian spectral distance dL and the root euclidean
distance drootED. In Cavallaro et al. (2021) and Ficara et al. (2021f), some of these
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measures were exploited to quantify how well artificial (but realistic) models could
simulate real criminal networks (see Sect. 3.2). But, graph distances can be also used
for different tasks.

In Ficara et al. (2021c), we analyzed the nine real criminal networks described in
Sect. 1.3, i.e., Mafia networks, street gangs and terrorist networks.

To quantify the impact of incomplete data, and to determine what kind of net-
work mostly suffers from it, we adopted the following strategy:

(1) We pruned input networks using two specific methods, namely: random edge
removal and random node removal.

(2) We compared the original and complete networks to their pruned version
through spectral (i.e., dA, dL, and dL) and matrix (i.e., drootED) graph distances.

4.2.1 Experimental design

We implemented distances to understand the extent by which a partial knowledge
of a criminal network may negatively affect the investigations. Since we tried to
estimate differences based on the types/amount of data missing, we set up the ex-
periments based on two main strategies: random edges removal and nodes removal.
The first case simulates the scenario in which LEAs miss to intercept some calls or
to spot sporadic meetings among suspects (i.e., due to the delays in obtaining a war-
rant). In node removal procedures, the selected nodes are removed along with their
incident edges, and afterwards they are reinserted within the networks as isolated
nodes. Indeed, the second case models the scenario in which some suspects cannot
be intercepted. For instance, if a criminal is known to be a boss but there are not
enough proofs to be investigated, then that criminal can be identified as an isolated
node with no incident edges. However, node removal is expected to have a greater
impact than simple edge removal, since removing a node implies the deletion of all
its edges as well.

Note that for a better comparison among the networks, all the graphs were con-
sidered as unweighted (as AW and JU). Also, all the suspects showed as isolated
nodes of the original network were excluded. In fact, our input parameter was the
edge list of the graph, which does not take into account nodes with no incident
edges.

Algorithm 1 shows the pseudocode of our approach. The full code is available at
https://github.com/lcucav/criminal-nets/tree/master/missing_data. In order
to obtain the subgraphs, we started from the datasets described in Table 1.1; then, we
converted them into graphs (i.e., G) and, lastly, we pruned them (i.e., G0) according
to a prefixed range of fractions with 0 < torem  10%. We opted for the 10% because
the criminal networks considered are small, as they have less than 250 nodes. After-
wards, we computed the spectral and matrix distances between the original and the
pruned graphs. Each edges removal process was repeated a fixed number of times
(nrep = 100), and the obtained results were averaged. Thus, the averaged distances
values hXi and their standard deviations s were computed.

4.2.2 Node and edge removal effects

The distance analysis between the real and the pruned networks is reported starting
from the random edge removal approach (see Fig. 4.4), moving to the analysis on the
networks after node pruning (see Fig. 4.5). The plots show the distances between the

https://github.com/lcucav/criminal-nets/tree/master/missing_data
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Algorithm 1 Pseudocode for computing the distances

1: Input parameters: data, nrep, torem, and exptype
2: Read data and convert it to graph G
3: if exptype = True then
4: Isolate torem of nodes
5: else
6: Remove torem of random edges
7: end if
8: Compute S(G)
9: Compute the matrices A(G), L(G), L(G)

10: for torem do
11: for nrep do
12: Create a pruned graph G0 and compute S0

(G0
)

13: Compute drootED(G, G0
), dA(G, G0

), dL(G, G0
), and dL(G, G0

)
14: end for
15: Compute hXi, s 8 d(G, G0

) 2 nrep
16: end for

original graphs and their pruned versions up to 10% of edges (Fe) and nodes (Fn),
respectively.

In both removal processes, dA displays a saturation effect that makes the results
difficult to be interpreted. Hence, this distance is not effective for highlighting the
effects of missing data on criminal networks. Furthermore, from this metric it might
seem that the two pruned networks of PK and SN show a greater deviation from
their original counterparts, but this is due to the inner structure of this metric, which
is highly influenced by the node degree. In fact, the average degree of PK and SN
(see Tables 1.3 and 1.4) is significantly higher (i.e., hki ' 21) than the other networks
herein studied (i.e., 1 < hki < 4); moreover, their different topology is also evident
from their degree distribution (see Fig. 1.3). This is the reason why these networks
seem to have a more significant detachment effect than others; however, they too
suffer the saturation effect mentioned above as they grow. A similar behavior has
also been encountered in dL and its explanation is the same.

On the other hand, the distance metric which more effectively catches the dam-
age caused by a significant amount of missing data is dL, where distance growth
is linear. Indeed, the effects of hki are smaller as this aspect is compressed by the
structure of this distance metric. It would seem that this metric is the most effective
measure compared to other spectral distances, in understanding how much lacking
data affects the total knowledge of the network. A similar trend was also found in
drootED; however, for a better comparison between node and edge removal processes,
we analyzed in more detail this last metric by considering the DELTACON similar-
ity simDC. Fig. 4.6 shows the difference between the original and pruned networks
as the fraction of elements removed increases (i.e., Fe for edges and Fn for nodes).
Before pruning the networks, we have simDC = 1. Afterwards, the drop begins to
become more evident as the fraction F increases. In addition, as expected, the node
removal process affects more significantly the networks. This means that if the lack
of data relates to sporadically missed wiretaps, or to just a few random connections
between suspects, then the network structure is not as much misinterpreted as if the
case when one suspect has not been tracked at all. Indeed, pruning the network by
2%, causes a simDC � 0.8 for edge pruning, compared to a simDC ' 0.2 for the nodes
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FIGURE 4.4: Matrix and spectral graph distances after random edge
removal in covert real-world networks. Adjacency spectral distance
dA, Laplacian spectral distance dL, the normalized Laplacian spec-
tral distance dL and root euclidean distance drootED are represented
as functions of the fraction of removed edges Fe in Meetings (MN),
Phone Calls (PC), Summits Network (SN), Wiretap Records (WR), Ar-
rest Warrant (AW), Judgment (JU), Surveillance (SV), Caviar (CV) and

Philippines Kidnappers (PK) networks.

ones. Therefore, even when a small amount of suspects are not included in the in-
vestigations, this can lead to a very different network. The exclusion of the suspects
could be voluntary or not. It highly depends on the overall investigation process,
starting from the very preliminary analysis, and up to the judges’ decision to allow
warrants, or to exclude data considered irrelevant for the current investigation.

Our analysis suggests that:

(1) the spectral metric dL is best at catching the expected linear growth of differ-
ences with the incomplete graph against its complete counterpart;

(2) the node removal process is significantly more damaging than random edge
removal because of the edges that are removed as a result, which makes it
difficult to quantitatively compare the two types of experiments.
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FIGURE 4.5: Matrix and spectral graph distances after random node
removal in covert real-world networks. Adjacency spectral distance
dA, Laplacian spectral distance dL, the normalized Laplacian spec-
tral distance dL and root euclidean distance drootED are represented
as functions of the fraction of removed nodes Fn in Meetings (MN),
Phone Calls (PC), Summits Network (SN), Wiretap Records (WR), Ar-
rest Warrant (AW), Judgment (JU), Surveillance (SV), Caviar (CV) and

Philippines Kidnappers (PK) networks.

This translates to a negligible error in terms of graph analysis when, for example,
some wiretaps are missing. Indeed, in terms of simDC drop, there is a 30% differ-
ence from the real network, for a pruned version at 10%. On the other hand, it is
crucial to be able to investigate the suspects in a timely fashion, since any exclusion
of suspects from an investigation may lead to significant errors (due to substantial
differences from the actual network) - we observed drops of up to 80% of simDC on
some networks.
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FIGURE 4.6: DELTACON similarity after edge and node removal in
covert real-world networks. DELTACON similarity simDC is repre-
sented as a function of the fraction of removed edges Fe (left column)
and the fraction of removed nodes Fn (right column) in Meetings
(MN), Phone Calls (PC), Summits Network (SN), Wiretap Records
(WR), Arrest Warrant (AW), Judgment (JU), Surveillance (SV), Caviar

(CV) and Philippines Kidnappers (PK) networks.
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Chapter 5

Disruption and resilience

5.1 Covert network disruption

The aim of criminal intelligence is to allow the police to disrupt the structure and
working mechanisms of groups of individuals engaged in criminal activities.

According to Strang (2014), there are two core questions that an intelligence pro-
fessional should pose when applying network analysis to disrupt organized crime:

(1) How does the organization operates?

(2) How could it be broken?

SNA allows to discover which individuals of the organization are most impor-
tant, and to produce targeted recommendations for intelligence collection and op-
erational disruption. Other tools such as value chains, production chains, attack
preparations, and other criminal conspiracies have given practitioners insights into
core activities of criminal and terrorist organizations, and have assisted at identify-
ing their crucial requirements and potentials. In order to be successful at disrupting
organized crime, the aim is to disrupt their activities (Strang, 2014). For instance, the
Sicilian Mafia would stop to be a problem if it maintained its structure turning into
a social club, rather than being an economic organization based on looting, coercion,
and other illegal activities.

We can distinguish three indicators of destabilization for a criminal or terrorist
organization (Duijn, Kashirin, and Sloot, 2014):

(1) a reduction of the quantity of the information that circulates in the organiza-
tion;

(2) a reduction of the capacity to exercise its functions;

(3) a collapse or a significant decline of the decision making process (Carley, Lee,
and Krackhardt, 2001).

The three steps above can summarize the disruption of criminal and terrorist associ-
ations as the incapacity to diffuse information, goods and knowledge in an efficient
way (Carley, Reminga, and Borgatti, 2003). The term information refers to infor-
mation and resources to flow through the organization. The term knowledge refers
to skills, competences and expertise into a specific job of a specific member of the
organization.

Generally, disruption strategies can be categorized into two main techniques (Duijn,
Kashirin, and Sloot, 2014): the human capital approach and the social capital ap-
proach (McCarthy and Hagan, 2001). The combination of the two gives rise to a
third one: the mixed approach. These strategies can be applied on covert networks
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(i.e., criminal and terrorist), which are built from law enforcement data considering
social relationships in terms of network theory (see Sect. 1.1).

In Ficara et al. (2022a), we provided a systematic organization of the most sig-
nificant works about covert network disruption and resilience, described the main
approaches, and summarized the key references in relation to this research field (see
Table 5.1).

TABLE 5.1: Key references about techniques in covert network dis-
ruption.

Approach Key concepts References

Human capital

Substitutability Sparrow, 1991
Value chain Gottschalk, 2009
Crime script analysis Cornish, 1994; Dehghanniri and Borrion, 2021
Crime and human capital accumulation Brown and Velásquez, 2017

Social capital
Social network analysis

Degree centrality Sparrow, 1991
Betweenness centrality Sparrow, 1991
Closeness centrality Krebs, 2002
Eigenvector centrality Hutchins and Benham-Hutchins, 2010
PageRank centrality Singh, Verma, and Tiwari, 2020
Katz centrality Cavallaro et al., 2020b
Collective influence Cavallaro et al., 2020b
Network capital Schwartz and Rouselle, 2009
Attribute gravity centrality de Andrade et al., 2021
Energy disruptive centrality de Andrade et al., 2021

Order theory Farley, 2003

Mixed Combination of human and social capital techniques
Duijn, Kashirin, and Sloot, 2014
Bright et al., 2017
Villani, Mosca, and Castiello, 2019

5.1.1 The human capital approach

Human capital is defined by the Organization for Economic Cooperation and De-
velopment (OECD) as «the knowledge, skills, competencies and attributes embod-
ied in individuals that facilitate the creation of personal, social and economic well-
being» (Keeley, 2007).

The economic concept of human capital showed up in the earlier years of the 20th
century in the studies of the Scottish economist Adam Smith, but it wasn’t really
until the 1960s that economists systematically began to incorporate this idea into
their work. In those years, some economists like Theodore Schultz began to use the
metaphor of "capital" - an economic concept of long standing date - to explain how
education and expertise contributed to prosperity and the economic growth. They
argued that people who invest in their education and training build a stock of skills
and capabilities (a capital) that will pay off in the long term. Such an investment
can also be profitable for national economies and helps to fuel economic growth.
Usually, human capital is defined in a broad sense as a mix of: (i) skills and innate
individual skills, and (ii) competences and knowledge acquired at school, and in
courses of vocational training. Sometimes, health is also included in the definition
of the human capital. The world of industry, which adopted with enthusiasm this
concept, tends to give it a more restrictive meaning, considering it mainly as a set of
skills and talents of the workforce that contributes directly to the economic success
of the company or one specific sector of industry.

The strength of a criminal organization, as for a company, depends on the human
capital of their members which includes their knowledge, skills, competences, and
expertise into a specific job. Criminal organizations are increasingly infiltrating very
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specialized areas of activity that require particularly important advisory services,
skills, and expertise. These may include pharmacological and chemical knowledge
needed, for instance, in synthetic drug synthesis productions, or the skills of civil ser-
vants who are able, through technical suggestions, to facilitate the award of public
contracts to companies close to criminal organizations. The removal of such impor-
tant human capital individuals could cause a weakening of the resilience of crimi-
nal organizations, as their elimination is not easily replaceable with other individu-
als (Duijn, Kashirin, and Sloot, 2014; Robins, 2009; Sparrow, 1991). Sparrow (1991)
suggested that a great opportunity to damage a criminal network is represented by
the identification of subjects who own many resources or present specialized skills
or can have access to scarce resources. He explained the concept of substitutabil-
ity which is an important criterion for network disruption. The removal of subjects
with specific skills leads indeed to major consequences inside the criminal network,
if compared to the removal of ones who are instead concerned with more general
tasks and roles.

FIGURE 5.1: Crime script of cannabis cultivation.

If we think about criminal markets, each of them involves a business procedure
that is made of several stages of production and activity (Klerks, 2003; Morselli, 2008;
Spapens, 2011). Just as in a typical chain structure, different kinds of information,
goods and human capital are exchanged at each step of the process and added to
the next one. For this reason the whole process can be considered a value chain in
all respects (Gottschalk, 2009). Based on the distinct features of the illegal activity,
a distinct radius of both skills- and knowledge-based human capital is necessary at
each stage of the value chain (Bruinsma and Bernasco, 2004; Cornish, 1994; Morselli
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and Roy, 2008). Duijn, Kashirin, and Sloot (2014) offered an example of the value
chain units in case of organized cannabis cultivation (see Fig. 5.1). Primary activities
in this value chain are:

(1) finding location;

(2) building;

(3) taking care;

(4) harvesting;

(5) storage and processing;

(6) distribution.

Within this system there are some roles, such as the coordinator and the growshop
owner, who administer the majority of the steps of the value chain. Since they even
gather the right roles at the right place and time, they function as criminal brokers
(see Fig. 5.1), making their roles, under a human capital point of view, extremely
vulnerable in terms of disruption.

An important method to identify high human capital actors within criminal value
chains is the crime script analysis. Cornish (1994) introduced the notion of the script
which if correctly identified can prevent or disrupt crime commission. The script
is an event schema which organizes knowledge about how to understand and enact
commonplace behavioral processes or routines. For example, a robbery script can be
realized taking into account the crime setting, the entry to the setting, the awaiting
or establishment of conditions under which the crime in question is committed. In-
formation about preparations or aspects of the offense’s aftermath are often missing,
and can be identified through the script. In this way, it is possible to find motivation
and purpose that together with origins or development are important to understand
the crime-commission act and its goals. Then, crime script analysis showed to be
an important method to identify high human capital actors within criminal value
chains. In the case of an organized cannabis production, crime script analysis al-
lowed to describe all the tasks, roles, information, and resources involved in the
value chain for such a delicate business process (see Fig. 5.1).

5.1.2 The social capital approach

Social capital may have first appeared in a book published in 1916 in the United
States that discussed how neighbors could work together to oversee schools. In
it, Lyda Hanifan referred to social capital as «those tangible assets that count for
most in the daily lives of people: namely goodwill, fellowship, sympathy, and social
intercourse among the individuals and families who make up a social unit» (Keeley,
2007).

We can think of social capital as the links, shared values and understandings in
society that enable individuals and groups to trust each other, and so work together.
Social capital can take various forms which can be divided into three main cate-
gories: bonds, bridges and linkages (Keeley, 2007). Bonds are links to people based
on a sense of common identity (i.e., people like us) such as family, close friends and
people who share our culture or ethnicity. Bridges are links which stretch beyond a
shared sense of identity (e.g., to distant friends, colleagues and associates). Linkages
are links to people or groups further up or lower down the social ladder.
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The creation of competitive advantages through social connections is the key
for a criminal organization (just as it is for a company) to be successful in achiev-
ing goals which would not be feasible in its absence (Coleman, 1990). It is indeed
clear that criminal organizations are heavily based off social ties, connections and
the capacity of retrieving resources to accomplish their tasks (van der Hulst, 2009).
Such ties make it possible for actors in strategic positions to exchange and share re-
sources with other individuals within the organization (Bouchard, 2020; Bouchard
and Malm, 2016; Burcher, 2020; Campana, 2016; Ficara et al., 2021e; Klerks, 2003;
Natarajan, 2006).

Research in this field is commonly based on SNA which considers social relation-
ships in terms of network theory (see Subsect. 1.1.3). SNA can be used to evaluate
LEAs interventions aimed at dismantling and disrupting covert networks because it
allows to identify central actors, i.e., the ones involved with significant and power-
ful positions of social capital (Duijn, Kashirin, and Sloot, 2014; Lin, Cook, and Burt,
2001).

As mentioned in Chap. 2, there are several reasons for an actor to be central
within a network and centrality can be measured in many ways through SNA. DC
and BC are the most common centrality measures to find strategic positions within
a covert network (Klerks, 2003; Sparrow, 1991).

High degree actors possess higher social capital because they can exchange more
information and resources than actors with fewer ties. They are also called hubs
since they are relevant in order for information and resources to flow through the
network. As stated by Peterson (1994), an high degree centrality value can be a
sign of vulnerability instead of strength. He argued that the most central actors in
covert networks could be the most likely to be detected if they were the most visible.
Fig. 5.2 shows a simulation of the fragmentation of the Montagna MN (see Subsub-
sect. 1.3.1). At each step, the actor with maximal DC (marked in red) is removed.

As opposed to high degree actors, high betweenness actors occupy strategic
positions within the network due to their ability to transfer and exchange of re-
sources (Burt, 2007; Burt, Jannotta, and Mahoney, 1998; Morselli, 2010). They are
called brokers and connect criminal networks linking criminal collectives within il-
legal markets (Morselli, 2001, 2008; Morselli and Roy, 2008; Natarajan, 2006). Fig. 5.3
shows another simulation of the fragmentation of the Meetings network. This time,
at each step, the actor with maximal BC (marked in brown) is removed.

Berlusconi (2017) discussed the network approach to study crime and the differ-
ent fields of application of SNA in the criminologist context. She described how SNA
can be considered not only a valuable tool for research purposes but it can also help
LEAs in their investigations. However, there are some cases in which traditional
methods to target leaders in criminal networks are not applicable (e.g., loose net-
works of collaborating criminals). In fact, the leader removal does not automatically
lead to the vulnerability of a criminal organization, or its disruption, because the ef-
fects of LEAs targeting can be reduced by the network flexibility (Bright, Greenhill,
and Levenkova, 2013; Carley, Reminga, and Borgatti, 2003; Morselli and Petit, 2007).
Hence, the impact of LEA interventions is not always effective, for instance when
it leads to better adaptation strategies by the targeted criminal group (rather than
disrupting the network) (Ayling, 2009).

We also made a study (Cavallaro et al., 2020b) borrowing methods and tools from
SNA to unveil the structure and organization of Sicilian Mafia gangs, based on the
Montagna dataset (see Subsubsect. 1.3.1), and gain insights as to how to reduce the
size of the lcc (see Subsect. 1.1.3) of our Mafia networks. We employed four different
centrality metrics (see Sect. 2.1) to identify the actors having a high level of social
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FIGURE 5.2: Removal of the 10 most important nodes according to
degree centrality in the Montagna Meetings network. The first pic-
ture shows the complete network. Then, at each step the node with
the highest value of degree centrality is marked in red and, then, re-
moved. The last picture shows the network without its 10 most cen-

tral nodes.

capital: DC, BC, Katz centrality and the collective influence. The removal of key
actors increased the lcc size drop inside the networks, which was our aim.

5.1.3 The mixed approach

The mixed approach consists in the use of disruption strategies which are charac-
terized by a combination of social capital (i.e., SNA metrics) and human capital (i.e.,
special abilities or competence and the supposed substitutability within the value
chain). Regarding the human capital, nodes can also be targeted based on the high-
est value chain degree within the network (Duijn, Kashirin, and Sloot, 2014), which
is measured by the amount of edges defined within the social system of the value
chain configuration (see Fig. 5.1). This strategy refers to the LEA ability to identify
actors who have a great reputation. These actors could commit to other and various
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FIGURE 5.3: Removal of the 10 most important nodes according to
betweenness centrality in the Montagna Meetings network. The
first picture shows the complete network. Then, at each step the node
with the highest value of betweenness centrality is marked in brown
and, then, removed. The last picture shows the network without its

10 most central nodes.

value chains within the value chain network as well. This means that they could
be the most visible within the network, and therefore they could have a higher DC.
Robins (2009) emphasized on the interaction between the characteristic of network
topology and the factors at an individual level. Knowledge, skills, information, ex-
pertise, and all the other qualities of individual actors are essential to understand
the complex dynamics of criminal networks.

Morselli and Roy (2008) analyzed two stolen-vehicle exportation operations (i.e.,
Siren and Togo) within a framework which merged SNA and crime script analy-
sis, to examine the impact that brokers have on crime commission processes. In
fact, key players in criminal organizations do not maintain authoritarian roles, but
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instead maintain brokerage positions that: (i) bring flexibility, integration, and cre-
ativity to the ensemble of an organization, and (ii) benefit the individuals occupy-
ing such positions (Burt, 1992). A broker occupies a position between disconnected
nodes within a network. These disconnected nodes may be members of different
criminal organizations working together for a given operation. They also may have
a hierarchical role within the criminal organization. Brokers are at first identified
through crime script analysis, which has as main objective to untangle how some
participants (i.e., the brokers) in criminal activities contribute in varying degrees to
keeping the inherent channels of a script in place. Then, they used two brokerage in-
dicators from SNA: BC and brokerage leverage (Gould and Fernandez, 1989). Their
framework and results are particularly useful for research on disruption strategies in
various criminal networks, and for direct applications in law-enforcement settings.

Duijn and Klerks (2014) focused on a cannabis cultivation network called the
Blackbird crime network, illustrating the potentiality of the combination of SNA and
crime script analysis. The authors defined the topology of the Blackbird network and
its substructures, and exposed the key actors using a mix of qualitative and quan-
titative analysis. They showed how analysts and informant handlers could work
together developing a better understanding of the strategies to target key individ-
uals, and discover access points to criminal communities and markets. In another
work, Duijn, Kashirin, and Sloot (2014) extracted a criminal network from unique
data from the Dutch Police discovering that targeted attacks could make criminal
networks even stronger. Their results emphasized the importance of criminal net-
work interventions at an early stage, before the network gets a chance to re-organize
to maximum resilience. Disruption strategies such as the social and human capital
approaches force criminal networks to become more exposed, which causes success-
ful network disruption to become a long-term effort. Duijn and Sloot (2015) also
explained how LEAs are seeking for more proactive strategies in targeting these
criminal network structures more effectively. This starts with a better understand-
ing of the way they operate and adapt over time. A key element to developing this
understanding remained largely unexploited: big data and big data analytics. This
provides novel insight into how criminal cooperations on a micro and meso level
are embedded in small-world criminal macro-networks, and how this fosters its re-
silience against disruption.

Bright et al. (2017) explored the validity of five LEA interventions in dismantling
and disrupting criminal networks. They tested three LEA strategies targeting social
capital and two interventions targeting human capital in criminal networks. The au-
thors identified the actor removal based on BC as the most efficient strategy. In fact,
this strategy led to network disruption in few steps, which was relatively consistent
across all their experiments.

Villani, Mosca, and Castiello (2019) tried to check if, and to which extent, con-
trasting strategies based on human capital may be used in combination with the
strategies based on social capital to reduce or neutralize the resistance and adap-
tation abilities of criminal organizations. The elements that influence the resilience
ability of a criminal network are various, such as the knowledge, skills and techni-
cal abilities available in the network, that translate into the available human capital.
Since their importance is often underestimated or ignored, the adoption of new and
diversified repression policies based on both human and social capital could be prof-
itable to develop a valid resilience index.
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5.2 Covert network resilience

Covert networks might be able to withstand or absorb disruption adapting to changes
when necessary - that is referred to as network resilience (Duijn, Kashirin, and Sloot,
2014). More precisely, these networks develop the above abilities as a consequence
of being disrupted. Key references in relation to this research field are summarized
in Table 5.2, as we discuss next.

TABLE 5.2: Key references about covert networks resilience.

Resilience Description References

Key concepts

Definition Norris et al., 2008
Characteristics Ayling, 2009; Bouchard, 2007
Efficiency/security tradeoff Morselli, Giguère, and Petit, 2007
Redundancy Williams, 2001
Non-redundancy Duijn, Kashirin, and Sloot, 2014

Case studies

Illegal drug markets Bouchard, 2007
Terrorism Kenney, 2007
Street gangs Ayling, 2009
People smuggling Munro, 2011
Police corruption Lauchs, Keast, and Chamberlain, 2012
Rhino horn trading Ayling, 2013
Cannabis cultivation Duijn, Kashirin, and Sloot, 2014
Mafia Catanese, De Meo, and Fiumara, 2016
Financial crimes Hardy and Bell, 2020

The term resilience has first been used in physics and mathematics to illustrate
the ability of certain materials to resume their original shape after external strain
actions (Ayling, 2009; Catanese, De Meo, and Fiumara, 2016; Norris et al., 2008;
Oliver et al., 2014); but it was actually Holling who introduced the concept of re-
silience in an ecological context (Ayling, 2009; Holling, 1961). This concept has since
been applied to describe the adaptive capacities of individuals (Bonanno, 2004), hu-
man communities (Kulig et al., 2013), and larger societies (Adger, 2000). There are
many ways to define resilience (Norris et al., 2008). The most common definition is
the adaptive capacity in disturbance, stress, or adversity situations. The difference
between resistance and resilience in mathematics and technology has been widely
discussed. Given a system which has to return to equilibrium, resilience refers to the
time required to achieve the purpose, while resistance refers to the force required
to displace the system from equilibrium (Bodin and Wiman, 2004). Across these
definitions, all the scientists agree on two key points about the concept of resilience:

(1) it refers more to an ability or process than an outcome (Pfefferbaum et al.,
2007);

(2) it refers more to adaptability than stability (Handmer and Dovers, 1996).

The increasing awareness of the business vulnerability to threats such as natural
disasters, accident and employee/management error, neglect or recklessness, ter-
rorism or cybercrime has brought the attention on the concept of resilience also in
organizational literature and business circles (Ayling, 2009). An organization is re-
silient if it is able to change its operations and objectives to survive during a state of
chaos (Ayling, 2009; Lengnick-Hall and Beck, 2005).
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As mentioned at the beginning of Chap. 1, Morselli, Giguère, and Petit (2007)
criminal and terrorist organizations are characterized by a different time-to-task,
which is long for the former and limited for the latter. Moreover, criminal orga-
nizations are more flexible and agile being able to quickly adapt to external shocks.
This flexibility is fundamental for criminal network resilience against dismantling
attempts.

5.2.1 The characteristics of resilient criminal organizations

Illegal drug markets

Bouchard (2007) analyzed the concept of resilience to understand the impact of re-
pressive policies on illegal drug markets. According to him, three main characteris-
tics should be considered to determine if a system is resilient:

(1) vulnerability;

(2) elasticity;

(3) adaptive capacity.

The vulnerability to attacks refers to the degree to which a criminal organization is
likely to be damaged by an external shock (Luers et al., 2003). It first depends on the
organization level of exposure to attacks (i.e., on its capacity to protect itself or hide
from attacks). For example, an illegal drug market will suffer weaker external shocks
if the police have to make a great effort to seize drugs or to arrest a dealer (Bouchard,
2007). If the criminal organization cannot absorb an external shock without compro-
mising its functioning, then it has to use its elastic properties to recover. Elasticity
refers to the efficiency of the organization to return to its original state after an exter-
nal shock (Gunderson and Holling, 2001). The organization can go back to function
properly using its elasticity, and replacing what has been removed by the external
shock. Illegal drug markets possess elasticity if they are able to replace specific drug
dealers or drug quantities seized by LEAs (Bouchard, 2007). A criminal organization
may not necessarily use a recovery process to return to its original state, but it may
adapt its structure. The adaptive capacity of the organization consists in the possi-
bility to make its components less vulnerable modifying its circumstances (Luers et
al., 2003). Adaptation is considered as an option only when recovery is too difficult
to achieve or it is not possible because it is more demanding than recovery. In illegal
drug markets, adaptation can happen in a variety of ways: drug dealers can change
the location of transactions; or drug producers can make their sites less vulnerable
to detection changing their production methods.

Consequently, covert networks show resilience to attacks when they possess ei-
ther one of the mentioned features (i.e., vulnerability, efficiency and adaptation) or a
combination of them. The most resilient network will show a tendency towards all
three characteristics (Bouchard, 2007).

Street gangs

Ayling (2009) explained the characteristics of resilient licit organizations, which in-
clude:

(1) approach based on capabilities;

(2) planning of strategic scenario;
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(3) good communication within the organization;

(4) good communication with key stakeholders;

(5) sharing of the same vision, sense of purpose and set of values;

(6) distributed power;

(7) inbuilt redundancy;

(8) bricolage;

(9) inspirational, enthusiastic and intellectually stimulating leaders;

(10) capacity for effective organizational learning.

According to the author these characteristics cannot simply be applied to illicit or-
ganization because licit and illicit organizations have some differences which have
implications for their resilient characteristics. Criminal organizations in fact operate
against the state (Paoli, 2002) and constantly risk interference such as asset seizure or
member arrest. The existence of this threat requires an efficiency/security tradeoff
by criminal organizations, defined as «the interplay between the need to act col-
lectively and the need to assure trust and secrecy within these risky collaborative
settings» (Morselli, Giguère, and Petit, 2007). The resilience which comes from trans-
parent democratic processes is undermined by the need for operational secrecy. At
the same time, criminal organizations have a certain freedom, which can facilitate
operational and structural changes because they do not have to report to stakehold-
ers or explain their unethical behavior to institutions or media. In particular, Ayling
focused on street gangs identifying three environmental sources of gang resilience:

(1) high level of interpenetration between gangs and legitimate businesses or state
authorities;

(2) community support;

(3) thick crime habitats.

The associations between legitimate businesses, state authorities and gangs provide
a source of gang resilience to disturbance. Nightclubs rely on gangs for security
services, overlooking in return their drug dealing on the premises. Some gangs have
also extensive investments in legitimate businesses or actively support particular
political factions. Sometimes communities support the gang as an institution. This
happens because gangs assist residents with bills and accommodation, protect them
from exploitation and physical attacks, organize recreational activities or keep local
rents low. Residents may also refuse to ostracize gang members because they are
friends children or even their own relatives. This kind of community support is
clearly a source of resilience because it gives gang members places, materials and
psychological resources to reorganize and regroup after disruption. Thick crime
habitats make also street gangs more resilient because they continually generate new
criminal opportunities for the gang, providing a space to self-organize. In these
spaces, gang members can find co-offenders, share information or make plans; they
can recover from setbacks, such as injury or arrest of members. Thick crime habitats
are plentiful in large urban conglomerates, particularly in weak or failing states.

According to Ayling (2009), gang resilience is also to be found in characteristics
peculiar to a gang itself, such as its structure and operational methods. Gangs have
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simple structures which are flatter or minimally hierarchical, and decision-making
power is therefore equally distributed throughout the organization. Thanks to this
kind of structure, gangs have a capacity of adaptation to changing conditions (Pina
e Cunha and Vieira da Cunha, 2006). Strong trust between members speeds infor-
mation flow through a gang, making possible lightning adjustments to game plans
and facilitating more measured debate about longer-term adjustments. However,
close relationships may also increase the vulnerability of an organization, should
there be an information leak. Security of information is a priority in a gang and it
can be achieved through compartmentalization (Kenney, 2007; Williams, 2001) (i.e.,
the isolation of important information within certain organizational cells). Compart-
mentalization allows to isolate the active parts (i.e. the cells which contain essential
knowledge) of the gangs from the damaged ones and an adaptive and fast regener-
ation of gang operations after LEAs attacks. The identity of leaders or others cen-
tral roles is an example of information which can be compartmentalized by a gang.
Gangs, in fact, cannot prosper without a leader who mentor younger members and
provide continuity. Leaders personal attributes and the way they influence the de-
cisions and leadership styles may affect the gang resilience. Gangs also need skills
of bricolage in order to creatively deal with hostile interventions and environmental
changes. Bricolage is an ability to take available resources and make something new
from them, even when these are seemingly unconnected.

The Sicilian Mafia

Catanese, De Meo, and Fiumara (2016) focused on the Sicilian Mafia emphasizing its
most peculiar features. After the capture of a boss (i.e., the leader of a Mafia family)
and/or of his more close collaborators, this criminal organization shows high qual-
ities in terms of regeneration and rearrangement of top positions equilibria. This
ability allows it to reconstruct the specific skills of the various families active in the
territory.

Mafia networks are able to resist even in situations of large pressure thanks to the
large economic incomes which derive from the criminal activities and sustain them
during the regeneration process. Even after substantial node removals, the network
efficiency seems not to be significantly affected.

On the contrary, this property increases over time when old paths are restored,
new paths are built and the overall dimension of the structure is reduced. Mafia as-
sociations have a powerful organizational structure which is highly resistant, adap-
tive, and flexible even after particularly incisive interruptions. Moreover the Sicilian
Mafia has a peculiar feature called apparent appeasement which usually draw atten-
tion of magistrates and LEAs. It consists in the ability to change its visibility strategy
maintaining the equilibria, an internal peace status and a low profile.

Cannabis cultivation

Duijn, Kashirin, and Sloot (2014) studied the resilience of criminal networks in-
volved in organized cannabis cultivation. They reminded the studies of Ayling
(2009) and Bouchard (2007), asserting that the notion of resilience involves two fea-
tures:

(1) the ability to undergo and resist to disruption;

(2) the ability to adapt to alterations caused by that disruption.
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Their work pointed out that cannabis cultivation is a delicate criminal process which
is organized in a flexible and adaptive network structure, and it is highly resilient
against network disruption. The authors also showed how criminal network re-
silience is a paradoxical concept which depends on:

(1) redundancy, which is essential for finding trustworthy replacements after losses
due to disruption;

(2) non-redundancy, as the increased risks associated with the search replacement,
demand compartmentalization of the flow of information to prevent further
detection.

5.2.2 Resilience as behavior after disruption

Resilient criminal organizations are those that can respond quickly and effectively to
disruption, enabling them to maintain illegal activities over time. Thus, to measure
resiliency, it is necessary to factor in both the network robustness to disruption (i.e.,
the structural characteristics of a network that insulate it from damage) as well as
the length of time it takes for network recovery when disruption occurs (Duxbury
and Haynie, 2019). Unfortunately, very little is known regarding criminal network
recovery or behavior in the aftermath of disruption. Next, we review relevant works
for the cases of terror and criminal networks, identifying prominent differences.

Agreste et al. (2016) investigated the network structure of a Mafia syndicate, de-
scribing its evolution, and highlighting its plasticity to membership-targeting inter-
ventions and its resilience to disruption caused by police operations. They analyzed
two different datasets dealing with Mafia gangs built by examining different digi-
tal trails and judicial documents in a period of ten years. The first dataset included
the phone contacts among suspected individuals, and the second captured the re-
lationships among individuals actively involved in various criminal offenses. They
showed that, although criminal networks were extremely resilient to different kinds
of attacks, contact networks (i.e., the network reporting suspects and reciprocated
phone calls) were much more vulnerable.

Duxbury and Haynie (2019) evaluated covert network resilience by examining
network recovery from different disruption strategies in an array of different covert
networks:

(1) the September 11, 2001 terrorist network (Krebs, 2002);

(2) the Siren stolen-vehicle exportation network (Morselli and Roy, 2008);

(3) the Caviar network (see Subsubsect. 1.3.2);

(4) the New York network Terrorist (Natarajan, 2006).

They used an agent-based model to evaluate how covert networks recover from dis-
ruption, and identified which disruption strategies are most effective at damaging
various covert networks. The authors found variability in the effects of disruption
and time to recovery for different covert networks, depending on whether the net-
work was organized to prioritize security or efficiency. Network vulnerability to
specific targeting strategies, in terms of both network robustness and time to recov-
ery, were considered when evaluating or developing LEAs interventions for the four
covert networks. According to the authors, security-oriented networks tend to be
more resilient than efficiency-oriented covert networks, in terms of both robustness
and recovery.
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5.3 Case study on the Montagna operation

As mentioned in Subsect. 5.1.2, we investigated the robustness of the Montagna net-
works across different scenarios, pinpointing the most effective metric, and demon-
strating an effective strategy to obtain a faster lcc size drop (Cavallaro et al., 2020b),.
We simulated two types of police operations:

(1) arresting one criminal at a time (sequential node removal);

(2) police raids (block node removal).

We evaluated how the different types of networks are impacted by these two types of
perturbations, in terms of lcc size drop. We employed SNA methods to identify the
actors having a high level of social capital. To this end, we put to test four different
centrality metrics, namely: DC, BC, Katz Centrality and the Collective Influence.

As mentioned in Subsect. 5.1.2, DC and BC are the most used centrality measures
to find strategic positions within a network. For the sake of completeness, we also
considered two more prominent centrality metrics, that are Katz centrality and the
collective influence. As already explained in Sect. 2.1, KC measures is a generaliza-
tion of the EC, which computes the centrality of a node based on the centrality of its
neighbors.

Collective Influence (CI) (Morone and Makse, 2015) establishes the centrality of
a node in a criminal network taking into account the degree of the node neighbors
at a given distance l from it. For a node i, it is defined as:

CI`(i) = (ki � 1) Â
j2dB(i,`)

(kj � 1), (5.1)

where ki is the degree of node i, B(i, `) is the ball of radius ` centered on node i,
and dB(i, `) is the frontier of the ball (i.e., the set of nodes at distance ` from i). To
compute CI`(i), we first find the nodes on the frontier dB(i, `).

KC and CI are not centrality measures traditionally applied to develop criminal
network disruption strategies. Our aim was to verify if actor removal based on these
measures was more or less effective than the most used degree and betweenness
targeting strategies.

5.3.1 Montagna networks disruption strategies

We tried to disrupt the Montagna MN and PC networks, and evaluated the effects of
node removal under different conditions and strategies. Both networks were used
with and without considering the edge weights. Two node removal strategies have
been studied. These are iterative procedures in which the nodes have been removed
in decreasing order of their centrality score. After the node removal stage, the lcc
size was updated, and the process was resumed.

Let us denote by lcc(G) the size of the lcc of a graph G. Denote by Gi the graph
resulting after the i-th iteration of the node removal algorithm, and by lcc(Gi) the
size of its lcc. The initial graph is denoted by G0 and the size of its lcc is lcc(G0).

The relative difference between the size of the lcc when the simulation begins
and i steps (i.e., after the removal of i nodes or i set of nodes) is given by ri 2 [0, 1]:

ri = 1 �
���
lcc(Gi)� lcc(G0)

lcc(G0)

��� . (5.2)

Note that r0 = 1 and rn = 0, where n is the last iteration (sequential removal).
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Both strategies (sequential and block removal) may be summarized as follows:

Step 1 We first computed lcc(G0), i.e., the lcc size for the initial graph G0.

Step 2 This step depends on the removal strategy. Either the highest ranking of
the remaining nodes (in the sequential strategy), or the set of the five most
influential nodes of the remaining ones (in the block strategy) are removed.
Ranks were computed with the current centrality score. The new graph Gi,
with i = 1, 2, . . . , n was obtained (for block removal we had fewer iterations).

Step 3 We computed lcc(Gi) and ri.

Step 4 Steps 2 and 3 were repeated until the graph size could no longer be reduced.

Sequential node removal simulates the scenario in which affiliates are arrested
one-by-one by the police.

Block node removal simulates the scenario in which affiliates are arrested dur-
ing a raid by the police. This strategy is similar to the sequential one. The main
difference is that nodes are removed in blocks of five. The block size depends on
the type and scale of the dataset. The fraction of nodes to be removed during block
police operations is a reasonable value that took into account some considerations.
In Agreste et al. (2016), we obtained a serious reduction of the lcc with only 5% as
block size. Moreover, in such a relatively small criminal network, larger fractions of
block sizes appear unrealistic. This is why we chose to remove five nodes at once.

5.3.2 Montagna networks behavior after disruption

Weighted Graphs. Fig. 5.4 shows the results obtained on the Montagna MN and
PC networks applying sequential and block node removal strategies, where nodes
are targeted according to DC, BC, KC and CI.

KC is configured with the default values of a = 0.1 and b = 1.0. Remarkably, it
is the least effective one (i.e, the slowest one) at causing the lcc size drop, in all the
cases. To understand this result intuitively, we need to look at the way this centrality
metric operates. Katz determines the importance of each node based on the number
of walks that pass through it; but it does not consider their length. Furthermore,
shortest paths were not considered, hence a walk may visit the same node multiple
times. Yet, this is in contrast to how criminals would operate in practice. Affili-
ates typically prefer to spread the information through a number of intermediaries,
to minimize the risk of interception by non-family members. This was consistent
with our earlier findings (Ficara et al., 2020). Ultimately, it would not make sense
(and would be unwise) to send the same message multiple times through the same
path, which is what Katz would help identifying. Therefore, removing nodes by the
highest Katz score would not be a winning strategy.

All the other metrics act better than KC, and comparably among each other. This
happens because of the weight distribution shape (see Fig. 1.7), which exhibits a
long tail of nodes, with just a few dominating ones (see Subsubsect. 1.3.1). Thus,
after removing the most central nodes (i.e., the first five iterations), the network get
almost totally disconnected and the remaining nodes have the same weight (w = 1).
Hence, all the metrics focused on either degree (i.e., DC and CI) or shortest paths
(i.e., BC) follow the same r drop speed. On the other hand, KC with its default
parameters focuses on walks of undefined lengths, thus producing a slower r drop.
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FIGURE 5.4: Sequential and block node removal strategies in the
Montagna Meetings (MN) and Phone Calls (PC) networks. r is the
relative difference between the size of the largest connected compo-
nent in the initial graphs and after i steps when sequential (left col-
umn) and block (right column) node removal strategies are applied

to the weighted networks.

Sequential vs Block Removal. Looking at Fig. 5.4, with the exception of Katz, no
significant differences are visible between the two node-removal strategies (i.e., se-
quential and block). This is somewhat counter-intuitive, since in real life police raids
are typically aimed at breaking up the network more effectively. In our case, this
result originates from the particular type of our dataset. When constructing our net-
works, we did not have access to information about the way criminals reconstructed
their communication channels following arrests. Hence, our networks are static (i.e.,
they miss the network reconfiguration data), which is why our analysis is not fully
capturing the dynamic aspects that differentiate sequential and block strategies. In
network terms, this translates into no differences in terms of lcc size drop as the net-
works are static. On the other hand, significant network re-tuning of node impor-
tance, due to internal reorganization of trusted affiliates used to spread messages
within and outside the criminal network, would be expected in the case of dynamic
graphs (i.e., graph snapshots before and after police operations).

Weighted vs Unweighted. Considering now the differences between weighted and
unweighted graph analysis, we noticed that the majority of cases did not pinpoint
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major differences. This was due to the peculiar way in which weights were dis-
tributed in criminal networks (as noted in the Weighted Graphs paragraph at the be-
ginning of Subsect. 5.3.2).

FIGURE 5.5: Sequential node removal strategies in the Montagna
Meetings (MN) network. r is the relative difference between the size
of the largest connected component in the initial graph and after i
steps when a sequential node removal strategy is applied to the un-

weighted and weighted criminal network.

Nevertheless, interesting differences are visible in the MN network - sequential
node removal (see Fig. 5.5). The unweighted case is mostly faster than (although
occasionally equivalent to) the weighted case. This is because the weights (i.e., the
affiliates’ interaction frequency) are concentrated in very few individuals, with most
other weights having w = 1. This is also why, with the exception of the initial tran-
sient period (involving very few interactions), most algorithms converge to similar
values.

The best centrality metric. Comparing the algorithms in Fig. 5.5, it emerges that
BC is by far the most effective centrality index for reducing the size of the lcc of a
criminal network.

This result is consistent with literature reports upon criminal network analysis
and has an intuitive explanation. Indeed, to avoid being intercepted, members of a
criminal network build their relationships to assure that information flows along the
shortest possible paths. In this way, both MN and PC networks configure themselves
as small-world networks with a low average path length hdi and a large number of
connected components |cc|. The nodes that intercept most of these shortest paths are
those having the largest values of BC, and act as intermediaries to assure the quick
flow of information from any source to any target in the graph.

To confirm this intuition, we progressively removed nodes according to their BC
and we measured the corresponding variation of hdi and |cc| (see Fig. 5.6). These
plots indicate that the selected removal of nodes amplifies the average distance be-
tween any pair of nodes in the MN and PC networks and, simultaneously, it creates
an increasing number of disjoint components. A repressive action aimed at remov-
ing high betweenness nodes has, therefore, a devastating impact on network topol-
ogy because it causes an lcc size drop, as we observed a fast drop in r. Also, since the
KC prioritized those nodes crossed by a large number of walks of arbitrary length,
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FIGURE 5.6: Betweenness centrality targeting in the Montagna
Meetings (MN) and Phone Calls (PC) networks. Average path
length hdi and number of connected components |cc| are represented
as functions of the number of removed nodes with high betweenness

in the criminal networks.

it was less effective in detecting the nodes acting as intermediaries, and whose re-
moval reduced the lcc size the most.

Intuitively, BC outperforms the other metrics, thanks to its operation on paths,
rather than on individual nodes degree. This is particularly effective in criminal
networks that are devised in such a way as to minimize the path length, in order to
reduce the risk of police interceptions. BC compromises the most influential paths,
leading to a faster drop in r. This feature is what makes betweenness somehow
opposite to KC (whose goal is to explore walks).

CI was the second worst performer after Katz. This was, again, due to its em-
phasis on node degree instead of path length. CI also showed some differences
between the weighted and the unweighted processes, exhibiting a lower r drop in
the weighed graph. A possible explanation is that the weighted case identifies as in-
fluential nodes not only those with higher weights on the incident links, but also the
nodes having high-weight only on immediate neighbors. This could reflect a typ-
ical situation in criminal networks, whereby the top-leaders avoid direct exposure
and mediate all communications through a single trusted individual (or very few of
them). On the other hand, this particular aspect is not detectable in the unweighted
analysis.

5.3.3 Real-world implications

Our SNA results can be directly translated onto law enforcement actions, consid-
ering that we are now able to efficiently identify the top 5% most trusted affiliates
(i.e., the ones typically employed as intermediaries between bosses and the other
members).
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In turn, we can virtually neutralize the clans’ internal communication infrastruc-
ture by getting the trusted affiliates in custody. Intuitively, whenever arrests can be
made in block (raids), that would further impair the ability of the criminal commu-
nication network to be re-established. However, we have not studied this specific
aspect, due to unavailability of necessary data.

The pre-trial detention order is the final outcome of a time-consuming police in-
vestigation. Once the inquiry is underway (and even before it has been completed),
the actual network is richer than the one derived from the pre-trial detention or-
der. The investigative network includes extra interactions among suspects, which
are removed once the judge deems them to be irrelevant. Thus, the final network
derived from the original one is partial and misses the data included in the initial
investigation. This explains our limits related to the lack of data.

Furthermore, when LEAs inspect on those kinds of criminal networks, most of
the time they have prior knowledge thanks to criminal records, even though they
may not have a clear picture of the connections between individuals.

Generally speaking, the aim of a cosca is to conduct illegal activities (which may
vary from place to place and are susceptible to local trends), and to ultimately pursue
effective financial benefits. For instance, some clans may focus on drugs, rather
than organ trafficking, prostitution, finance, or political influence. Quite commonly,
clans pursue multiple activities, which makes it even more difficult to reconstruct
the labyrinth of criminal communication networks (and perform SNA thereof).

Our datasets emerged directly from a collection of official juridical acts, and fo-
cused on a single criminal activity (the securement of public procurement contracts).
This involved a network of entrepreneurs, was confined to a specific geographical
area, and captured information over a limited time span. The peculiarity of our
networks is that the gang was established in relation to a specific event (procure-
ment of a mechanization process), so it was not a pre-existent organization. Thus,
our dataset captured a relatively simpler snapshot of the complex entanglement of
mafia criminals, which constitutes both a strength, and weakness of our study.

Indeed, if LEAs have prior knowledge, then our approach is even more efficient;
otherwise, as in the case of the Montagna networks, two main issues may arise to
conduct investigations: noise and different organizational time scales.

By noise, we mean that LEAs could have too much information (e.g., too many
interceptions or surveillance logs, some of which are worthless). By different or-
ganizational time scales we indicate that criminals already know how to contact a
specific criminal for their illicit purposes (e.g., a sniper), in a way LEAs might not
be able to identify. Thus, they have to spend more time to reconstruct the inner
relationships by exploring the evidences and, as previously asserted, this is a time
consuming process.

On the one hand, the scope of our SNA analysis is limited by the significance
and breadth of the datasets at hand. A more dynamic analysis of the network could
not be done in this case, as for instance, understanding the re-connection ability fol-
lowing events like individual arrests or police raids. Also, we are capturing a single
criminal activity in a confined spatiotemporal context. So, it was not possible to
detect a broader and more diversified set of communications, such as those taking
place in a more complex, multi-activity network. Nor could we detect external com-
munications, such as those involving people who were not directly members of the
criminal nets except for entrepreneurs (e.g., politicians, magistrates and business-
men).

On the other hand, the greater specificity of the Montagna networks allowed a
cleaner analysis, focused on unveiling some hidden communication mechanisms.
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Having reduced the parameters under scrutiny and the complexity of the system,
we could pinpoint a simple, yet effective strategy for unsettling the connectivity of
the network through a dramatic drop in the lcc size. This might have not emerged
from the analysis of a more complex network. Also, this simpler framework has
allowed us to swiftly test out our hypothesis and to obtain reliable results.

This could have been a challenge on a complex network, especially when multi-
ple criminal activities take place in parallel.
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Chapter 6

The multilayer approach

During his lifetime, each individual continuously deal with multiple social networks.
He does it with no effort and this does not mean that it is a trivial activity which
can be overlooked. The connections between people through multiple types of re-
lational ties represent only one possible view of a problem already known long be-
fore the field of SNA was developed. Looking only at a single type of relational tie
within a single social network risks either defining a world where different kinds of
relationships are ontologically equivalent or overlooking the invisible relationships
emerging from the interactions among different types of ties.

For a long time, these interactions have largely been studied within a single-layer
perspective and one of the most effective SNA tools to measure social interactions
has been the simple graph (see Subsect. 1.1.3).

According to Wasserman and Faust (1994), social networks contain at least three
different dimensions: a structural dimension corresponding to the social graph (e.g.,
actors and their relationships); a compositional dimension describing the actors (e.g.,
their personal information); and an affiliation dimension (e.g., members of the same
family or organization). These three dimensions provide a minimal description
needed to understand the full complexity of social structures.

An alternative conceptual approach to dealing with the same set of problems is
to think of multiple relationships as a set of connected levels, or layers, forming a
single multidimensional social network (Dickison, Magnani, and Rossi, 2016). In
fact, a social network with nodes and/or edges can be organized into multiple lay-
ers, where each layer represents a different kind of node or edge, a different social
context, a different community, a different online social network, and so on. The
analysis of multiple layers can provide knowledge that is not present in each layer
when layers are considered independently of each other.

Kivelä et al. (2014) reviewed and discussed many of the relevant works on the
topic. Then, they tried to unify the literature by introducing a general framework for
multilayer networks (Boccaletti et al., 2014; Catanese, 2017; De Domenico et al., 2013,
2015). Such framework can represent the different notions of networks (e.g., single-
layer or monoplex networks (De Domenico et al., 2013; Degani, 2016), multiplex net-
works (Battiston, Nicosia, and Latora, 2014; Nicosia and Latora, 2015; Solé-Ribalta
et al., 2014), interdependent networks, networks of networks) by simply introducing
cumulative constraints on the general model (Tomasini, 2015).

Multilayer social networks appear in a number of different contexts, where data
are characterized by different sizes, different natures (e.g., online, offline, hybrid),
and different layer semantics (e.g., contact, communication, time, context, etc.). Many
multirelational networks, that is actors connected by multiple types of ties, have
been collected during SNA studies. These networks are often characterized by a
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small size, because they were often collected through offline questionnaires or inter-
views and they can be very useful in qualitatively checking the behavior and results
of new methods (Dickison, Magnani, and Rossi, 2016).

An interesting multirelational network about criminal relationships is described
by Bright et al. (2015) who focused on eight types of edges related to the exchange
of a particular resource (e.g., drugs, money) in a criminal network with 128 actors.
Some networked systems can be better modeled by multilayer structures where the
individual nodes develop relationships in multiple layers.

FIGURE 6.1: The Montagna multilayer network. The layered visual-
ization is obtained using Muxviz. The color of nodes is given by their

community assignment, and the size by their degree.

In Ficara et al. (2021e), a new real multilayer criminal network was built starting
from the Montagna MN and PC networks described in Subsect. 1.3.1. It is an undi-
rected and weighted multilayer network with two layers called Meetings and Phone
Calls, 154 nodes and 439 edges. Fig. 6.1 shows the layered visualization obtained us-
ing Muxviz (De Domenico, Porter, and Arenas, 2014). The color of nodes is given by
their community assignment (i.e., how actors are clustered together) and the size by
their degree. The links within layer Meetings refer to the meetings among members
of the criminal network, while edges in the layer Phone Calls represent phone com-
munications among distinct phone numbers they use. The weight encodes the num-
ber of meetings or phone calls. This network can be identified as an edge-colored
multilayer (i.e., a network with multiple types of edges), and more precisely as a
multiplex network which does not require all nodes to exist on every layer. Each
layer have to share at least one node with some other layer in the network to be
multiplex. In this case, the two layers share 47 nodes. Moreover, interlayer edges
are only those between nodes and their counterparts in the other layer and no cost
is associated to them.

An analysis of suspects’ importance was performed for each layer separately,
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for the aggregate network (obtained summing for each node the edges over all lay-
ers in the multilayer network) and the multilayer one which allowed to quantify
the importance across the whole series of layers. The degree was used as a simple
descriptor to compute the centrality of the actors. This measure just quantifies the
number of different meetings or phone calls of each suspect. The top 20 characters
are showed ranking them by their degree in each layer, in the aggregate network
and in the multilayer network comparing the resulting importance with the role
they had in the Sicilian Mafia families which were the protagonists of the Montagna
operation.

6.1 Single-layer networks

The concepts presented in Subsect. 1.1.3 can be expressed using an alternative nota-
tion, which makes use of tensors and Einstein’s notation (De Domenico et al., 2013;
Degani, 2016).

Given the canonical basis in the vector space RN , x = {e1, e2, ..., en} where ei =
(0, ..., 0, 1, 0, ..., 0)T is 1 in the ith component, and 0 otherwise. Given a set of n nodes
vi (where i = 1, 2, ..., n and n 2 N), we associate with each node a state that is
represented by the canonical vector ei in the vector space Rn. A node vi can be
related with each other and the presence and the intensity of such relationships in the
vector space is indicated using the tensor product (Abraham, Marsden, and Ratiu,
1988) (i.e., the Kronecker product) Rn ⌦Rn = Rn⇥n. Thus, second-order (i.e., rank-2)
canonical tensors are defined by Eij = ei ⌦ eT

j (where i, j = 1, 2, ..., n). Consequently, if
wij indicates the intensity of the relationship from node vi to node vj, the relationship
tensor can be written as:

W =
n

Â
i=1

n

Â
j=1

wijEij =
n

Â
i=1

n

Â
j=1

wijei ⌦ eT
j . (6.1)

In the context of single-layer networks, W corresponds to an n ⇥ n weight matrix
that represents the standard graph of a system that consists of n nodes. This ma-
trix is equivalent to the adjacency matrix A (see Eq. 1.2) and it is an example of an
adjacency tensor.

An adjacency tensor can be written using the covariant notation introduced by Ricci
and Levi-Civita (1900). In this notation, a row vector a 2 Rn is given by a covariant
vector aa (where a = 1, 2, ..., n), and the corresponding contravariant vector aa (i.e.,
its dual vector) is a column vector in the Euclidean space. The adjacency tensor W
can be represented as a linear combination of tensors in the canonical basis:

Wa
b =

n

Â
i=1

n

Â
j=1

wijea(i)eb(j) =
n

Â
i=1

n

Â
j=1

wijEa
b(ij) , (6.2)

where ea(i) is the ath component of the ith contravariant canonical vector ei in
Rn, and eb(j) is the bth component of the jth covariant canonical vector in Rn,
Ea

b(ij) 2 Rn⇥n indicates the tensor in the canonical basis that corresponds to the
tensor product of the canonical vectors assigned to nodes vi and vj (i.e., it is Eij).

Define the 1-vector ua = (1, 1, ..., 1)T 2 Rn whose components are all equal to 1,
and let Ub

a = uaub be the second-order tensor whose elements are all equal to 1 (i.e.,
a so-called 1-tensor). The degree vector is calculated adding up all the columns of
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the adjacency tensor defined in Eq. 6.2:

kb = Wa
b ua . (6.3)

It is possible to calculate the degree of node vi by projecting the degree vector onto
the ith canonical vector:

k(i) = kbeb(i) . (6.4)

6.2 Multilayer networks

In this section, the tensor formulation of multilayer networks is reviewed. Following
the literature, we use the tensor formulation which represents the natural extension
of the adjacency matrix to the case of multilayer networks. Here, we are interested
in explaining how to extend the degree formulation to the multilayer case.

Kivelä et al. (2014) define a multilayer network as the most general structure
which can be used to represent any kind of network. At the base of this structure,
there is the elementary concept of graph, defined in Subsect. 1.1.3. The representa-
tion of networks at multiple levels or with multiple types of edges (or with other
similar features) requires structures that have layers in addition to nodes and edges.
Moreover, the concept of aspect can be defined as a feature of a layer representing
one dimension of the layer structure (e.g., the type of an edge or the time at which an
edge is present) (Tomasini, 2015). More specifically, an “elementary layer” is an ele-
ment of one of the possible sets of layers from a specific aspect and the term “layer”
refers to a combination of elementary layers from all aspects.

A multilayer network can be defined as a quadruplet M = (NM, EM, N, L). NM ✓
N ⇥ L1 ⇥ · · ·⇥ Ld is the set of the node-layer combinations, that is the set of layers
in which a node vi 2 N is present. EM ✓ NM ⇥ NM is the edge set containing the
set of pairs of possible combinations of nodes and elementary layers. N is the set
of all nodes independently from the layer. L = {La}d

a = 1 is the sequence of sets of
elementary layers such that there is one set of elementary layers La for each aspect a.
If d = 0, the multilayer network M reduces to a single-layer network. If d = 1, then
M reduces to a multiplex network.

Using multiple layers, it is possible to represent different types of edges: those
among nodes in the same layer, called intralayer edges, and those among nodes in
different layers, called interlayer edges. For this reason, the concepts of intralayer
and interlayer adiacency tensor are introduced (De Domenico et al., 2013). The in-
tralayer adiacency tensor Ca

b(
ekek) is defined as the second-order tensor Wa

b (
ek) that

indicates the relationships between nodes within the same layer ek, where a, b =
1, 2, ..., n as defined in Eq. 6.2. The tilde symbol is used to distinguish indices that
correspond to nodes from those that correspond to layers. To encode information
about relationships between nodes on different layers (e.g., a node vi from layer eh
can be connected to a node vj in another layer ek), the second-order interlayer ad-
jacency tensor Ca

b(
ehek) is introduced. The interlayer adjacency tensor Ca

b(
ehek), which

corresponds to the case in which a pair of layers represents the same layerek, is equiv-
alent to the intralayer adjacency tensor Wa

b (
ek) of such a layer.

Following a similar approach to the one used to define the adjacency tensor for
single-layer networks (see Eq. 6.2), the vector eeg(ek) (where eg,ek = 1, 2, ..., L) of the
canonical basis in the space RL is introduced. The greek index indicates the com-
ponents of the vector while the latin index indicates the kth canonical vector. It is
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straightforward to construct the second-order tensors that represent the canonical
basis of the space RL⇥L as:

Eeg
ed
(ehek) = eeg(eh)eed(ek) . (6.5)

The multilayer adjacency tensor (Degani, 2016) can be written from Eq. 6.5, using
a tensor product between the adjacency tensors Cea

eb
(ehek) and the canonical tensors

Eeg
ed
(ehek). A fourth-order tensor is obtained as:

Maeg
bed

=
L

Â
eh=1

L

Â
ek=1

Ca
b(ehek)Eeg

ed
(ehek) . (6.6)

The second-order interlayer adjacency tensor Ca
b(
ehek) can be written when eh = ek as:

Ca
b(ehek) =

n

Â
i=1

n

Â
j=1

wij(ehek)Ea
b(ij) , (6.7)

where wij(ehek) are real numbers that indicate the intensity of the relationship be-
tween nodes vi in layer eh and node vj in layer ek. Then, the fourth-order tensor of the
canonical basis of the space Rn⇥n⇥L⇥L is defined as:

xaeg
bed
(ijehek) = Ea

b(ij)Eeg
ed
(ehek) = ea(i)eb(j)eeg(eh)eed(ek) . (6.8)

Replacing in Eq. 6.6 the expressions obtained in Eq. 6.2 and Eq. 6.8, the multilayer
adjacency tensor can be written as:

Maeg
bed

=
L

Â
eh,ek=1

n

Â
i,j=1

wij(ehek)xaeg
bed
(ijehek) . (6.9)

In some cases, it is possible to construct a single-layer network by aggregating
multiple networks. Such aggregation is useful in many situations such as the study
of temporal networks or social networks. To project a multilayer network onto a
weighted single-layer network, the corresponding tensor multiplied by the 1-tensor

Ubed
aeg. The obtained projected single-layer network Pa

b (De Domenico et al., 2013) is:

Pa
b = Maeg

bed
Ued

eg =
L

Â
eh=1

L

Â
ek=1

Ca
b(ehek) . (6.10)

A structure similar to the projected single-layer network is the aggregate or over-
lay single-layer network (De Domenico et al., 2013) that is obtained from a multilayer
network by summing the edges over all layers for each node. The aggregate network
ignores the non-negligible contribution of interlayer connections and it is obtained
from a multilayer adjacency tensor by contracting the indices corresponding to the
layer components as:

Oa
b = Maeg

beg =
L

Â
er=1

Wa
b (er) . (6.11)

In the case of an aggregate network, the degree computation is the same of a single-
layer network and it is computed like in Eq. 6.3.

On the contrary, the multidegree centrality vector Ka (De Domenico et al., 2013)
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is defined by performing the same projections from the case of single-layer networks
using 1-tensors of an appropriate order:

Ka =
h

Maeg
bed

Ued
eg

i
ub =

h
Pa

b

i
ub =

"
L

Â
eh=1

L

Â
ek=1

Ca
b(ehek)

#
ub =

L

Â
eh=1

L

Â
ek=1

ka(ehek) , (6.12)

where ka(ehek) is the degree vector defined in Eq. 6.3 computed on the interlayer ad-
jacency tensor Ca

b(
ehek).

6.3 The identification of key actors

As already said in Chap. 2, leaders in a criminal network can be identified using a
family of measures called centralities aimed at identifying the most important actors
in a social network.

Three different approaches can be used to analyze the importance of nodes in a
multiplex network using node degree as descriptor:

Approach 1 The two layers of the multilayer network are merged to obtain a single-
layer network (i.e., the aggregate network shown in Fig. 6.2). This process,
often called flattening, is performed creating a new network with one node
for every actor and an edge between two nodes if the corresponding actors
are connected in any of the layers. Once the aggregate network is obtained,
traditional degree (see Eq. 6.3) can be computed.

Approach 2 The traditional degree (see Eq. 6.3) can be applied to each layer sepa-
rately. Then, the results are compared.

Approach 3 Multiple layers are considered at the same time, but without treating
them as being ontologically different. Measures based on this approach explic-
itly consider the difference between interlayer and intralayer edges and also
make numerical distinctions between different layers (e.g., through weights),
but at the end they typically produce single numerical values merging the con-
tributions of the different types of edges (De Domenico et al., 2013, 2015) (see
Eq. 6.12).

Table 6.1 gives a summary of the 20 top nodes ranked by their degree in the
Aggregate network (i.e., according to Approach 1), in the single layers Phone Calls
and Meetings (i.e., according to Approach 2) and in the Multilayer network (i.e.,
according to Approach 3). The node importance given by their degree is compared
with the real roles these nodes have in the Sicilian Mafia families observed during
the Montagna operation.

The analysis of node degree was performed for each layer separately, the aggre-
gate and the multilayer networks using Muxviz (De Domenico, Porter, and Arenas,
2014) and Python. The multilayer framework allows to quantify the importance of
a node across all the layers. The top 20 nodes ranked by their degree are shown in
Fig. 6.3. The results for each layer separately (i.e., Meetings or Phone Calls), shown
in the stacked histogram, reveal that the most important actors per layer are nodes
18 and 47. The result from the aggregate network, obtained by summing up all
interactions across the whole network while neglecting the layered structure, also
identify nodes 18 and 47 as the most central actors. The same result is obtained for
the multilayer network, i.e., considering the layered structure. These two nodes are
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FIGURE 6.2: The Montagna aggregate network. The edge-colored
multigraph visualization is obtained using Muxviz. The color of
nodes is given by their community assignment, and the size by their

degree.

effectively important because they are respectively Caporegime of the Mistretta fam-
ily and deputy Caporegime of the Batanesi family. Using the multilayer framework
it was possible to identify two key Caporegimes of the Mistretta family (i.e., nodes
61 and 25). Node 61 was one the twenty most important nodes in the Phone Calls
layer but not in the Meetings layer. Node 25 was one the twenty most important
nodes in the Meetings layer but not in the Phone Calls layer. So, the importance of
these nodes doesn’t emerge from the analysis of the single layers but only from the
analysis of the Aggregate network and even more of the Multilayer one. The Mes-
saggero (i.e., node 43) who didn’t seem so important from the analysis of the single
layers was also identified. Then, it was possible to identify some key associates such
as pharmacist or entrepreneurs needed in synthetic drug synthesis processes or to
facilitate the award of public contracts to companies close to criminal organizations.
The identification of these figures can be very useful to define attack strategies to
disrupt criminal networks (Cavallaro et al., 2020b; Duijn, Kashirin, and Sloot, 2014;
Villani, Mosca, and Castiello, 2019).

This is a preliminary study that shows promising results by identifying nodes
which don’t seem important from the analysis of the single-layer networks or the
aggregate network.

Montagna MN and PC are two criminal networks based on meetings and phone
calls among suspected criminals observed during stakeouts or wiretapped by police
during a specific period of time. MN possesses a greater number of connections
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TABLE 6.1: The 20 top ranked nodes in the Multilayer, Aggregate,
Phone Calls and Meetings networks compared with their roles in the

Montagna Operation.

Node Degree

Name Role Multilayer Aggregate Phone Calls Meetings

18 Caporegime Mistretta Family 51 41 25 24
47 Deputy Caporegime Batanesi Family 42 29 21 19
27 Caporegime Batanesi Family 29 21 11 16
68 Caporegime Batanesi Family 27 19 10 15
29 Enterpreneur 24 16 9 13
61 Caporegime Mistretta Family 23 19 17 4
45 Soldier Batanesi Family 20 14 6 12
12 Soldier Mistretta Family 19 16 1 16
11 Mafia activity coordinator in Messina 18 15 4 12
22 Pharmacist 18 15 2 14
51 Soldier Batanesi Family 17 11 4 11
25 Caporegime Mistretta Family 16 13 1 13
43 Messaggero 16 11 5 9
48 Soldier Batanesi Family 15 12 1 12
19 External partnership 14 11 3 9
36 Aiding and abetting of a fugitive 14 11 4 8
75 Soldier Mistretta Family 14 12 8 4
89 Soldier Batanesi Family 14 12 N/A 12
54 Enterpreneur 13 7 5 6
5 Sighted with nodes 11 and 12 12 10 N/A 10

FIGURE 6.3: Degree in the Montagna multilayer network. The 20
top ranked nodes by degree are identified in Multilayer (Blue), Ag-
gregate (Orange), Phone Calls (Green) and Meetings (Red) networks.

because LEAs were only able to identify the participants to meetings and not the full
extent of their interactions (see Sect. 1.3). In crowded meetings, some participants
may have had a very limited (if any) interaction with other participants. In such
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case, assuming that all participants interacted with each other may considerably
overestimate the real number of connections. This is the reason why MN is more
dense than PC.

Moreover, we deal with two criminal networks in which communications are
supposed to be reduced to keep the criminal organization safe. If two criminals call
each other, it is reasonable to believe that they will not meet. For this reason, it is not
recommended to build an aggregated network adding fictitious edges and putting
on the same plan phone calls and group meetings. A complete picture can only be
obtained by considering the two networks as a whole multilayer network.

The multilayer degree is a simple and introductory tool which already highlights
the usefulness of the multilayer approach by bringing out the importance of actors
that do not emerge by studying the two networks separately.

We expect that also the study of the shortest paths in the multilayer network will
provide useful information about the relationships within the criminal organization.
The shortest path distribution on the single-layer networks shows that PC has a
greater shortest path caused by its lower density with respect to MN (see Fig. 1.8).
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Conclusions and future work

This thesis paves the way to a new branch of criminal network analysis by providing
a new perspective on how SNA methods can help LEAs. Network science and graph
theory tools have been applied on real covert networks with the aim to discover new
ways to apply SNA on police investigations.

The central part of the study is about two criminal networks (i.e., Meetings and
Phone Calls) extracted from the outcome of an anti-mafia law enforcement operation
called Montagna against individuals charged for participating in a mafia association.
This study is interesting per se as the pre-trial detention order from which two net-
works was extracted concerns the birth and growth of a branch of the Sicilian Mafia
in the North-Eastern part of Sicily, a territory historically under the control of the
Palermo and Catania families.

Other seven datasets of real covert networks were analyzed. More specifically,
two datasets regard Mafia operations (i.e., Infinito and Oversize), and the remaining
ones refer to other dark networks, including street gangs, drug traffics, or terrorist
networks (i.e., Stockholm street gangs, Caviar Project, Philippines Kidnappers).

An open issue in the application of SNA to covert network studies has to do
with data collection. SNA techniques rely on real-world information, which is used
to build the networks. However, data incompleteness and unreliability have been
shown to be among the biggest issues in the field, since the collection of complete
data is a virtually impossible task, with bias being inevitable too. This is due to the
nature of such kind of networks: covert networks should be seen as complex adap-
tive systems that show unpredictability and covertness in their structures, behaviors
and activities.

The risk of biases in the collection of data by LEAs appears to be a major issue
in both micro and macro approaches. In the first case, greater volume of data on an
individual may suggest either a high level of activity by that actor or major attention
by police. Such issue is difficult to untangle, but shows the importance of interpret-
ing findings in light of local operational experience and knowledge. The variable
quality in intelligence data, known as the problem of signal and noise, can indeed
create a false impression of the situation. Limitations suffered from each data source
can be partially addressed by combining different data from different LEA sources.
Yet, this method is complex, expensive and time-consuming. In the same manner,
in case of macro studies, data are a reflection of LEA knowledge of markets and big
criminal or terrorist groups. In this case, the reliability and bias problems show to
have a greater impact than micro studies.

Inevitably, however, any LEA source is incomplete, and will always suffer from
missing data. This means that, in order to draw meaningful conclusions about the
network structure, resilience and dynamics, an understanding of both law enforce-
ment and the criminal environment is necessary.

Moreover, novel information metrics need to be developed to better understand
the effects of node manipulation in such networks. Most of the studies are based on
static observations of criminal groups. Being the dynamics one of the main features
of such networks, more studies should focus on the disclosure of the mechanisms
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that involve the dynamics of these networks. This is indeed a non trivial task and
only a profound integration of different scientific fields could bring the basis and the
tools to uncover the complexity of their dynamics.

In particular, the problem of missing edges (i.e. the lack of information on the
relations between two known criminals) can be solved through the application of
link prediction algorithm. LEAs, in fact, may miss a lot of criminal activities such as
meetings or phone calls, and therefore relevant plans of a criminal organization.

Graph distances can be used to quantify the impact of incomplete data and to de-
termine what kind of covert network mostly suffers from it. The same distances can
be used to compare covert networks with network models. LEAs may need network
models to predict and prevent the creation of relationship ties between criminals or
to break those ties by arresting one or more of the suspects.

Another problem is the scarcity of data availability in case of micro studies of
criminal groups, such as criminal gangs and Mafia. Most of the studies in litera-
ture focus indeed on macro studies of terrorist activity. Only future collaborations
between academic practitioners and LEAs would eventually open the doors to a
greater growth in the amount of available empirical data, which is needed to de-
velop more studies and to fill more gaps.

One of the most common SNA applications to study crime is the use of centrality
measures to identify leaders in covert networks. The concept of centrality as impor-
tance is debated and strongly depends on the context. Several measures can be used
to measuring the centrality of individual nodes such as degree centrality, closeness
centrality, betweenness centrality and clustering coefficient. There are only a few
metrics to measure centrality of individual edges such as the edge betweenness cen-
trality. All of these metrics are typically studied for graphs of relatively small size.
However, in the last few years, the proliferation of digital collection of data has led
to huge graphs with billions of nodes and edges. For these reasons, new computa-
tionally light alternatives, such as Game of Thieve or WERW-Kpath, could be used
and tested on covert network that perfectly reproduce the characteristics of larger
networks.

The analysis of the most central actor can be done also following a multilayer
approach. Single graphs extracted from the same police investigation can be used to
create a multilayer network where each layer represents a different kind of edge. An
actor can be central in a certain layer and not be central in an other layer, nor for the
multilayer network. It can be useful to compare the study of the single layers with
the analysis of multiple layers within a covert network to obtain a more nuanced
understanding of the structure of the network, and of the strategic position of actors
in the network. In this thesis, the Montagna multilayer network was presented. We
are currently working on a new multilayer network with a third layer in which nodes
are suspected criminals and edges are the crimes they have committed together. We
are using the Python module uunet.multinet1 created by Magnani, Rossi and Vega to
analyze this network through actor and layer measures (Ficara et al., 2022c).

SNA allows to understand how a network functions and how it could be broken.
Strategies and literature applications for covert network disruption are classified in
three approaches: the human capital, the social capital and finally the mixed ap-
proach. The first approach consists in weakening a criminal organization by identi-
fying and removing high human capital figures. This includes individuals who pro-
vide the organization with their specialized knowledge, skills, competences and ex-
pertise. The second approach identifies key actors based on their centrality in terms

1Available at: https://bitbucket.org/uuinfolab/py_multinet/src/master/

https://bitbucket.org/uuinfolab/py_multinet/src/master/
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of the network theory. By definition, a social network is based on social ties, so cen-
tral individuals are indeed evaluated purely upon their social connections within
the network. In the mixed approach, nodes to be removed are chosen based on a
combination of a SNA metric and the role played within the network. Actors with
higher reputation are more prone to present high values of centrality, being more
visible in the organization.

Criminal networks are able to withstand disruption and to adapt in face of di-
verse dismantling attempts. This ability is called network resilience. Resilience is
here classified upon the different types of covert networks and in terms of network
features such as vulnerability, elasticity and adaptive capacity.

We are currently working on the application of a mixed approach on the Mon-
tagna networks which consists in the removal of actors according to the maximal de-
gree, betweenness, closeness, and also according to special skills or knowledge (Ficara
et al., 2022b). To this end, it was built a labeled graph where each node possesses a
specific role according to the judicial documents of the Montagna operation. Node
removal stops when the network is completely disrupted. This kind of study can
help to identify the key roles to target during an anti-mafia investigation. Moreover,
after having identified the network model that better reproduces a Mafia network,
we can proceed to rank nodes in the model, and try to disrupt it removing the nodes
having the same rank of the ones with a key role in Mafia networks. In this way,
we are trying to create a network model for criminal network disruption using an
artificial network with the same characteristics of a Mafia network.
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