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Abstract
In the present paper we show that it is possible to obtain the well known Pauli group
P = 〈X, Y, Z | X2 = Y 2 = Z2 = 1, (YZ)4 = (ZX)4 = (XY )4 = 1〉 of order 16 as
an appropriate quotient group of two distinct spaces of orbits of the three dimensional
sphere S3. The first of these spaces of orbits is realized via an action of the quaternion
groupQ8 on S3; the second one via an action of the cyclic group of order fourZ(4) on
S3. We deduce a result of decomposition of P of topological nature and then we find,
in connection with the theory of pseudo-fermions, a possible physical interpretation
of this decomposition.
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1 Statement of theMain Result

The Pauli group P is a finite group of order 16, introduced by W. Pauli in [29], and
it is an interesting 2-group, which has relevant properties for dynamical systems and
theoretical physics. Pauli matrices are

X =
(
0 1
1 0

)
, Y =

(
0 −i

i 0

)
and Z =

(
1 0
0 −1

)
, (1.1)

and one can check that X2 = Y 2 = Z2 = 11 =
(
1 0
0 1

)
and in addition that

(YZ)4 = (ZX)4 = (XY )4 = 11, (XYZ)4 = [XYZ, X] = [XYZ, Y ]
= [XYZ, Z] = 11,

in fact

P = 〈X, Y, Z | X2 = Y 2 = Z2 = 1, (YZ)4 = (ZX)4 = (XY )4 = 1〉. (1.2)

In Quantum Mechanics the role of P is well known (see [21, 27]) and it allows us to
detect symmetries in numerous dynamical systems. More recently, Pauli groups have
been studied in connection with their rich lattice of subgroups (especially abelian
subgroups) and several applications have been found in Quantum Information The-
ory. Notable examples are quantum error correcting codes and the problem of finding
mutually unbiased bases (see [16, 17, 22, 24, 32]). It might be useful to observe that
Pauli groups and Heisenberg groups have a precise meaning for their generators and
relations in physics. In particular, the role of Heisenberg algebras has been recently
explored in [1–3] within the framework of pseudo-bosonic operators.

Here we will describe P in terms of an appropriate quotient of the fundamen-
tal group of a topological space, identifying in this way P from a geometric point
of view. A direct geometric construction of P is one of our main contributions. We
involve some methods of general nature, but develop a series of tools which are
designed for P only. This choice is made for a specific motivation: we want to avoid
a universal approach for the notions of amalgamated product and central product
(see [14, 15, 19, 23], or Section 3 later on), even if these two notions may be formal-
ized in category theory, or in classes of finite groups which are larger than the class
of 2-groups. Our approach will have the advantage to analyse directly P , involv-
ing low dimensional topology and combinatorial results for which we do not need a
computational software.

Following [19, 23], π(X) denotes the fundamental group of a path connected topo-
logical space X and X/G the space of orbits of X under a (left) action of a group G

acting on X. For the n-dimensional sphere Sn of the euclidean space Rn+1 we recall
that Sn = ∂Bn+1

1 (0), that is, Sn agrees with the boundary of the ball Bn+1
1 (0) of cen-

ter at the origin and radius one in Rn+1. The terminology is standard and follows [14,
15, 19, 23, 25]. In particular, a manifold M of dimension dim(M) = n is a Hausdorff
space M in which each point of M has an open neighbourhood homeomorphic to to
the open ball Bn

1 (0), that is, to Bn
1 (0) \ ∂Bn

1 (0) (see [23, Definition 11.1]). Note that
Q8 denotes the well known quaternion group of order 8 and Z(m) the cyclic group
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of integers modulo m (with m positive integer). On the other hand, we will refer to
the usual connected sum # between manifolds (see [19, 23]). Our first main result is
the following.

Theorem 1.1 There exist two compact path connected orbit spaces U = S3/Q8 and
V = S3/Z(4) such that the following conditions hold:

(i) U ∪ V is a compact path connected space with U ∩ V �= ∅, π(U ∩ V ) cyclic
of order 2 and P � π(U ∪ V )/N for some normal subgroup N of π(U ∪ V );

(ii) U#V is a Riemannian manifold of dim(U#V ) = 3 and P � π(U#V )/L for
some normal subgroup L of π(U#V ).

Both in case (i) and (ii), P is central product of π(U) and π(V ).

A separation in (i) and (ii) is made, because we stress that a topological decom-
position U ∪ V cannot produce enough information on the dimension of U#V , or on
the fact that it is Riemannian. The formation of U ∪ V is in fact more general than
the formation of U#V . On the other hand, the algebraic decomposition of P is not
affected from the topological ones in Theorem 1.1.

Another interesting result of the present paper is that P can be expressed in terms
of pseudo-fermionic operators. The reader can refer to [5–7] (or to a final Appendix
here) for the main notions on the theory of pseudo-fermionic operators: these are
operators defined by suitable anti-commutation relations. It is relevant to note that
some dynamical aspects of physical systems (involving pseudo-fermionic operators)
are connected with a suitable decomposition of P . This will be shown later, and is
stated by the following theorem.

Theorem 1.2 There are two dynamical systems S and T involving pseudo-fermions
with groups of symmetries respectively Pμ � P and Q8 but with the same hamilto-
nian HS = HT . In particular, there exist dynamical systems admitting larger groups
of symmetries, whose size does not affect the dynamical aspects of the system.

The paper is structured as follows. We begin to recall some facts of Algebraic
Topology in Section 2, where finite group actions are involved on three dimensional
spheres. Then Section 3 is devoted to prove some results on central products in com-
binatorial group theory, separating a paragraph of general nature from one which is
specific on the behaviour of the Pauli group. Finally, the proofs of our main results
are placed in Sections 4 and 5. In particular, connections with mathematical physics
are presented in Section 5 and conclusions are placed in Section 6. A brief review on
pseudo-fermions is given in Appendix.

2 Some Facts on the Actions ofQ8 and Z(4) on S3

Let K be a field and A be a vector space over K with an additional internal operation

• : (x, y) ∈ A × A 
→ x • y ∈ A
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such that

(x + y) • z = x • z + y • z, x • (y + z) = x • y + x • z, (ax) • (by) = (ab)(x • y)

for all x, y, z ∈ A and a, b ∈ K . In this situation A is an algebra on K . The quater-
nion algebra H (on R) is a different way to endow an algebraic (and topological)
structure on the usual euclidean space R

4. Specifically it consists of all the linear
combinations a1+bi+cj+dk, where a, b, c, d ∈ R and {1, i, j, k} forms a standard
basis for the vector space H, hence

span(1, i, j, k) = span((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) = H.

In addition to the pointwise sum of elements of H and to the usual scalar multiplica-
tion on R, we have the (internal) multiplication in H, given by

x•y = (a11+b1i+c1j+d1k)•(a21+b2i+c2j+d2k) = (a1a2−b1b2−c1c2−d1d2)1

+(a1b2 + b1a2 + c1d2 − d1c2)i + (a1c2 − b1d2 + c1a2 + d1b2)j

+(a1d2 + b1c2 − c1b2 + d1a2)k.

From this rule, one can check that

i• i = i2 = −1, j• j = j2 = −1, k•k = k2 = −1, i• j = k, j•k = i, k• i = j.
(2.1)

and that every nonzero element of H has an inverse (w.r.t. • ) of the form

(a1 + bi + cj + dk)−1 = 1

a2 + b2 + c2 + d2
(a1 − bi − cj − dk),

and so every nonzero element of H has a multiplicative inverse. In this context the
usual sphere S3 = {(x, y, z, t) | x2 + z2 + y2 + t2 = 1} ⊆ R

4 can be regarded as
the set of elements of H with norm equal to one. On H we may introduce the norm
‖ ‖ which is defined as the usual Euclidean norm in R

4, but on H now the norm ‖ ‖
becomes multiplicative, i.e.

‖x • y‖ = ‖x‖ ‖y‖ for all x, y ∈ H,

so the multiplication of vectors whose norms equal one will result in a vector whose
norm equals one. From [19], we know that such a norm allows us to give a topological
structure on H and S3 may be regarded as topological subspace of H, but also as a
group with respect to the algebraic structure of H, because the operation

(x, y) ∈ S3 × S3 
−→ x • y ∈ S3

is well defined and endow S3 of a structure of group.
Let recall some classical notions from [19, 23]. Given a group G and a set X, the

map (g, x) ∈ G × X 
−→ g · x ∈ X is said to be a (left) action if 1 · x = x for all
x ∈ X and if g · (h · x) = (g · h) · x for all x ∈ X and g, h ∈ G. Then we say that G
acts freely on X (or is a free action) if g · x �= x for all x ∈ X, g ∈ G, g �= 1. The
following fact is known, but we offer a direct argument:

Lemma 2.1 The groups Q8 and Z(4) act freely on S3.

16   Page 4 of 20 Math Phys Anal Geom (2021) 24: 16



Proof The map (x, y) ∈ S3×S3 
−→ x•y ∈ S3 makes S3 a group, and an appropriate
restriction of this map to a subgroup G of S3 allows us to define an action on S3 of
the form

(g, x) ∈ G × S3 
−→ g · x = g • x ∈ S3. (2.2)

In particular we look at (2.1) and note that this happens when G is chosen as

Q8 = 〈1, i, j, k | i2 = j2 = k2 = −1, i • j = k, j • k = i, k • i = j 〉,
producing the action

(q, x) ∈ Q8 × S3 
−→ q · x = q • x ∈ S3. (2.3)

The rest follows from the fact that H \ {0} contains inverses for all its elements and
so the equation g •x = x is only true for g = 1 or x = 0 where g, x ∈ H. This shows
that Q8 acts freely on S3. In order to show the second part of the result, we consider

h : (z0, z1) ∈ S3 
−→ (e
2πi
4 z0, e

2πi3
4 z1) ∈ S3

and observe that S3, regarded as a group, contains cyclic subgroups of order four, so
we may define the action of Z(4) on S3 by

(n, (z0, z1)) ∈ Z(4) × S3 
−→ n · (z0, z1) = hn(z0, z1) ∈ S3. (2.4)

We need to show that the only element that fixes points in this action is the identity
element. This can be checked easily, since

hn(z0, z1) = (z0, z1) ⇐⇒ (e
2πin
4 z0, e

2πi3n
4 z1) = (z0, z1) ⇐⇒ e

2πin
4 z0

= z0, e
2πi3n

4 z1 = z1.

Since z0 or z1 are different from zero, we have for all k ≥ 0

e
2πin
4 z0 = z0 ⇐⇒ 2πin

4
= 0 + 2πik ⇐⇒ n = 4k;

e
2πi3n

4 z1 = z1 ⇐⇒ 2πi3n

4
= 0 + 2πik ⇐⇒ 2πi3n = 8πik.

Clearly n ≡ 0 mod 4 and therefore the only fixed points are under the identity action
of Z(4). This means that Z(4) acts freely on S3.

The notion of properly discontinuous action is well known and can be found in
[23, P.143], namely if X is a G-space, that is, X is a topological space possessing a
left action · of a group G on X and in addition the function θg : x ∈ X → g · x ∈ X

is continuous for all g ∈ G, we say that the action · is properly discontinuous if for
each x ∈ X there is an open neighbourhood V of x such that g1 · V ∩ g2 · V = ∅ for
all g1, g2 ∈ G with g1 �= g2.

Corollary 2.2 There are properly discontinuous actions of Q8 and Z(4) on S3.
Moreover, the orbit spaces S3/Q8 and S3/Z(4) are compact and path connected.

Proof From [23, Theorem 17.2] if we have a finite group G that acts freely on a
Hausdorff space X then the action of G on X is properly discontinuous. From [23,
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Theorem 7.8] and [23, Theorem 12.4] the image of a compact, path connected space
is itself compact and path connected.

Fundamental groups of spaces of orbits can be easily computed when the actions
are given. Details can be found in [23, Chapters 18 and 19]. Therefore we may con-
clude that

Lemma 2.3 The fundamental group π(S3/Q8) of the space of orbits S3/Q8 via the
action (2.3) is isomorphic to Q8. Moreover π(S3/Z(4)) ∼= Z(4) via the action (2.4).

Proof We may apply [23, Theorem 19.4], that is, we have an orbit space X/G pro-
duced by a properly discontinuous action of a group G on a simply connected space
X, then the fundamental group of the orbit spaceX/G is isomorphic to the underlying
group G.

Groups acting on spheres deserve attention in literature. There are two conditions
that a finite group G acting freely on Sn must satisfy, according to [19, Page 75].

Remark 2.4 The following conditions are well known

(a) Every abelian subgroup of G is cyclic. This is equivalent to saying that G

contains no subgroup Z(p) × Z(p) with p prime.
(b) G contains at most one element of order 2.

Because of Remark 2.4, it is not surprising that Z(4) acts freely on S3 since it is a
finite cyclic group of order four. On the other hand, it is useful to note that:

Remark 2.5 The dihedral group D8 of order 8 does not act freely on S3 since it fails
on condition (b) of Remark 2.4: There are in fact involutions in D8. Structurally D8
is very similar to Q8, e.g. [Q8, Q8] ∼= [D8, D8] ∼= Z(2), Z(Q8) ∼= Z(D8) ∼= Z(2)
and Q8/Z(Q8) ∼= D8/Z(D8) ∼= Z(2) × Z(2) but the presence of more involutions
makes the difference between Q8 and D8.

In fact Zimmermann and others [31, 33–36] developed the theory of group actions
on spheres in a series of fundamental contributions, illustrating the properties that
finite (or even infinite) groups must have in order to act on spheres of low dimension,
i.e. S2, S3 and S4.

Remark 2.6 It is useful to know that [31, 34–36] explores the orientation-preserving
topological actions on S3 (and on the euclidean space R3), while [36] deals specif-
ically with the following question: Is there a finite group G which admits a faithful
topological or smooth action on a sphere Sd (of dimension d) but does not admit a
faithful, linear action on Sd ? For each dimension d > 5, there is indeed a finite
group G which admits a faithful topological action on Sd (but G is not isomorphic to
a subgroup of the real orthogonal group O(d + 1), see again [36]).
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Remarks 2.4, 2.5 and 2.6 show that the theory of actions of groups on spheres may
be developed more generally than what is presented here for S3. We indeed use this
theory for our scopes.

3 Central Products and Subdirect Products

We introduce some results of general nature on central products of groups, dividing
the present section in two parts, one with more emphasis on the general constructions,
and another one which is specific for the Pauli group.

3.1 Classical properties of central products of groups

We need to fix some notation, mentioned in [23]. The inclusion map i : U → X,
where U ⊆ X, is the map that takes a point x ∈ U to itself in X. And this can induce
a homomorphism on fundamental groups that we denote by i∗. In the language of
combinatorial group theory, if X is a topological space; U and V are open, path
connected subspaces of X; U ∩ V is nonempty and path-connected; w ∈ U ∩ V ;
then the natural inclusions i1 : U ∩ V → U , i2 : U ∩ V → V , j1 : U → X and
j2 : V → X for the following commutative diagram

U ∩ V
i1−−−−→ U

i2

⏐⏐� ⏐⏐�j1

V
j2−−−−→ X

that induces another commutative diagram on the corresponding fundamental groups,
given by

π(U ∩ V, w)
(i1)∗−−−−→ π(U, w)

(i2)∗
⏐⏐�

⏐⏐�(j1)∗

π(V, w)
(j2)∗−−−−→ π(X, w)

Here it is possible to interpret π(X, w) as the free product with amalgamation of
π(U, w) and π(V, w) so that, given group presentations:

π(U, w) = 〈u1, · · · , uk | α1, · · · , αl〉 = 〈S1 | R1〉;
π(V, w) = 〈v1, · · · , vm | β1, · · · , βn〉 = 〈S2 | R2〉;

π(U ∩ V, w) = 〈w1, · · · , wp | γ1, · · · , γp〉 = 〈S | R3〉;
and one can describe π(X, w) in terms of generators and relators

π(X, w) = 〈u1, . . . , uk, v1, · · · , vm |
α1, . . . , αl, β1, . . . , βn, (i1)∗(w1)((i2)∗(w1))

−1, . . . , (i1)∗(wp)((i2)∗(wp))−1〉
= 〈S1 ∪ S2 | R1 ∪ R2 ∪ RS〉,

where RS is the set of words of the form (i1)∗(a)((i2)∗(a))−1 with a ∈ S. See details
in [23, Chapters 23, 24, 25 and 26]. There is an alternative way to view a group
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presentation and that is as a quotient group of another group; it is well known fact
in combinatorial group theory [25]. In order to give a lemma that shows us this let
us first recall that the normal subgroup of a group generated by a set of elements
is the smallest normal subgroup containing these elements, or equivalently, it is the
subgroup generated by the set of elements and their conjugates.

Lemma 3.1 Let G have the presentation 〈a, b, c, ... | P, Q, R, ...〉, where a, b, c, ...
are generators of G and P = P(a, b, c, ...), Q = Q(a, b, c, ...), R =
R(a, b, c, ...), ... are words in G that give us the relators. Let N be the normal sub-
group of G generated by the words S(a, b, c, ...), T (a, b, c, ...), ... in G, then the
quotient group G/N has the presentation 〈a, b, c, ... | P, Q, R, ..., S, T , ...〉.
Proof The proof and details can be found in [25, Theorem 2.1].

In particular, we can describe the quotients of the free groups and this gives a
powerful tool, in order to think at arbitrary groups via appropriate quotients of free
groups.

Corollary 3.2 If F is the free group on a, b, c, ... and N is the normal subgroup
of F generated by P(a, b, c, ...), Q(a, b, c, ...), R(a, b, c, ...), ..., then F/N =
〈a, b, c, ... | P, Q, R, ...〉.
Proof See [25, Corollary 2.1].

We reprove [14, Theorem 19.1] via commutative diagrams, since the logic will be
useful later on.

Lemma 3.3 Let G1, G2, and H be groups, let εi : Gi → H be an epimorphism,
and write Ki = ker(εi)(i = 1, 2). Let D = G1 × G2 and G = {(g1, g2) : gi ∈
Gi and ε1(g1) = ε2(g2)}. Then G is a subgroup of D, and there exist epimorphisms
δi : G → Gi such that

(a) ker(δ1) = G ∩ G2 ∼= K2 and ker(δ2) = G ∩ G1 ∼= K1,
(b) ker(δ1) ker(δ2) = K1 × K2, and
(c) G/(K1 × K2) ∼= H .

Proof From the assumptions, we may consider the following commutative diagram,
where δi = πi ◦ ι is clearly an epimorphism, and check that the thesis is satisfied
when K1 = ker(δ2) and K2 = ker(δ1);

G G1 × G2 G2

G1 × G2 G1 H

δ2

δ1

ι

ι

π2

π1 ε2

π1 ε1
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Following [14], the subgroup G of G1 × G2 constructed in Lemma 3.3 is a
subdirect product of G1 and G2. On the other hand,

Definition 3.4 An arbitrary group C is a central product of its subgroups A and B,
if C = AB and [A, B] = 1.

We use the notation C = A◦B when we are in a situation like Definition 3.4. Note
that bothA and B are normal inC in Definition 3.4; moreoverA∩B � Z(A)∩Z(B),
where Z(A) = {a ∈ A | ax = xa ∀x ∈ A} denotes the center of A.

Lemma 3.5 Let A, B be subgroups of a group G, D = A × B and Ā = A × 1 and
B̄ = 1 × B. Then the following statements are equivalent:

(a) G is a central product of A and B;
(b) There exists an epimorphism ε : D → G such that ε(Ā) = A, ε(B̄) = B;

In particular, if G is a central product of A and B, then G is a subdirect product of
A and B.

Proof This proof can be found in [14, Lemma 19.4], but we report it with a different
argument which we will be useful later on.(a) ⇒ (b): If G = AB with [A, B] = 1
then the map ε : (a, b) 
→ ab is clearly an epimorphism with the required properties.
(b) ⇒ (a): Since ε is an epimorphism, we have G = ε(D) = ε(A × B) = ε(ĀB̄) =
ε(Ā)ε(B̄) = AB. Moreover, [A, B] = [ε(Ā), ε(B̄)] = ε([Ā, B̄]) = 1. So the first
part of the result follows. In particular, we apply Lemma 3.3 with G1 = A and
G2 = B, so the second part of the result follows.

Lemma 3.5 basically says that a group which can be written as the central product
of two groups A and B must be necessarily isomorphic to a quotient of A × B.

3.2 Applications to the group of Wolfgang Pauli

Now one can focus on the Pauli group P and find an equivalent presentation for (1.2),
involving Q8 and Z(4).

Lemma 3.6 The group P can be presented by

P = 〈u, xy, y | u4 = x2 = 1, u2 = y2, uy = yu, yx = xy, x−1ux = u−1〉.
Moreover P = Q8 ◦ Z(4), where

Q8 = 〈u, xy | u4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1〉 and Z(4) = 〈y | y4 = 1〉.

Proof Consider P as in (1.2) and define

u = XY, x = Y and y = XYZ.

Then we need to show that the relations in (1.2) can be generated by the relations in
the thesis.
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First of all we will derive the equations X2 = Y 2 = Z2 = 1. We begin to note that

x2 = 1 =⇒ Y 2 = 1, (3.1)

so one equation in (1.2) is obtained and (3.1) allows us to conclude that

x−1ux = u−1 =⇒ Y−1XYY = (XY )−1 =⇒ Y−1XYY

= Y−1X−1 =⇒ XYY = X−1 (3.2)

XXYY = 1 =⇒ X2Y 2 = 1 =⇒ X21 = 1 =⇒ X2 = 1

so a second equation in (1.2) is obtained. Now we need to show that

uy = yu =⇒ XYXYZ = XYZXY =⇒ XYZ = ZXY, (3.3)

in order to derive the following equation

u2 = y2 =⇒ XYXY = XYZXYZ =⇒ XY = ZXYZ (3.4)

=⇒ XY = XYZZ =⇒ 1 = Z2

So we have shown until now that X2 = Y 2 = Z2 = 1.
Now we go ahead to show the equations (YZ)4 = (ZX)4 = (XY )4 = 1. We

begin with
u4 = 1 =⇒ (XY )4 = 1, (3.5)

then with help of (3.3) we derive

yx = xy =⇒ XYZY = YXYZ =⇒ ZXYY = YXYZ (3.6)

=⇒ ZXYY = YZXY =⇒ ZXY = YZX.

Now (3.3) allows us to have two more equations, namely

ZXY = YZX =⇒ ZXYX = YZXX =⇒ ZXYX = YZ, (3.7)

ZXY = YZX ⇐⇒ ZX = YZXY =⇒ ZX = YXYZ. (3.8)

Therefore we find

(YZ)4 = YZYZYZYZ = ZXYXZXYXZXYXZXYX

= (ZXY)XZXYXZXYXZXYX (3.9)

= (YZX)XZXYXZXYXZXYX = YZXXZXYXZXYXZXYX

= YXYXYZZXYX

=YZZXYXZXYXZXYX=Y (ZZ)XYXZXYXZXYX=YXYXZXYXZXYX

= YXYX(ZXY)XZXYX = YXYX(YZX)XZXYX = YXYXYZXXZXYX

= YXYXYZ(XX)ZXYX = YZ(XX)ZXYXZXYXZXYX

= YXYXY(ZZ)XYX = YXYXYXYX = Y (XYXYXY)X

= Y (XY)3X = Y (XY)−1X = YY−1X−1X = 1

and in analogy (ZX)4 = 1. This allows us to conclude that (1.2) is equivalent to the
presentation in the thesis. Now we consider the map

ε : (a, b) ∈ Q8 × Z(4) 
→ ab ∈ P
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and we note that xy = yx in P , hence for all α, β, γ, δ ∈ {0, 1, 2, 3} we have
ε(uα, yβ)ε((xy)γ , yδ) = (uαyβ)((xy)γ yδ)

= uαyβxγ yγ+δ = uαxγ yβ+γ+δ = ε(uα(xy)γ , yβ+δ) = ε((uα, yβ)((xy)γ , yδ)),

which is enough to conclude that ε is homomorphism of groups, because we checked
on the generic generators of Q8 × Z(4). Finally, ε is surjective by construction, so
P = Q8 ◦ Z(4) by Lemma 3.5.

Viceversa the notion of central product can allow us to construct presentations.

Lemma 3.7 If G = A ◦ B with A = 〈S | RA〉 and B = 〈T | RB〉 are presentations
for A and B, then G = 〈S ∪ T | RA ∪ RB ∪ RC ∪ Rε〉, where RC = {(a, b) ∈
S × T | ab = ba} and Rε = {(a, b) ∈ S × T | ab = 1}.

Proof From Lemma 3.5 if we have the epimorphism ε : (a, b) ∈ A × B 
→ ab ∈ G,
then G = (A × B)/ ker(ε). A presentation for A × B is of the form 〈S ∪ T | RA ∪
RB ∪ RC〉, because in the definition of A × B we require [A, B] = 1. Now ker(ε)
induces the additional relation Rε and so (A × B)/ ker(ε) is presented as claimed,
because of Lemma 3.1.

4 Proof of Theorem 1.1

We begin to prove Theorem 1.1.

Proof Case (i). We refer to [23, Chapter 23] for the formulation of the theorem of
Seifert and Van Kampen, and the corresponding terminology has been reported in
Paragraph 3.1 above exactly as in [23, Chapter 23]. First of all we note that we are
in the assumptions of the theorem of Seifert and Van Kampen because of Lemmas
2.1 and 2.3 and Corollary 2.2. In addition, these results show that U , V , U ∩ V , X

are compact and path connected spaces. Therefore π(X, x0) is not dependent on the
choice of x0 ∈ U ∩ V . Now we construct π(X) directly:

π(U) = Q8 = 〈u, xy | u4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1〉 = 〈S1 | R1〉,
π(V ) = Z(4) = 〈y | y4 = 1〉 = 〈S2 | R2〉,

π(U ∩ V ) = Z(2) = 〈u2 | u4 = 1〉 ⊆ π(U),

π(U ∩ V ) = Z(2) = 〈y2 | y4 = 1〉 ⊆ π(V )

and one can check that

(i1)∗ : u2 ∈ π(U ∩ V ) ⊆ π(U) 
→ (i1)∗(u2) = u2 ∈ π(U),

(i2)∗ : y2 ∈ π(U ∩ V ) ⊆ π(V ) 
→ (i2)∗(y2) = y2 ∈ π(V )

are homomorphisms in accordance to the theorem of Seifert-Van Kampen. Moreover

S = {u2 | u ∈ π(U)} = {y2 | y ∈ π(V )}
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is the set of generators of π(U ∩ V ), but Z(2) has only one generator so we may
deduce that

RS = {u2y2 = 1 | u ∈ π(U), y ∈ π(V )} = {u2 = y2 | u ∈ π(U), y ∈ π(V )}
are the relations on π(X) induced by π(U ∩ V ) from the theorem of Seifert and van
Kampen.

We conclude that

π(X) = 〈S1 ∪ S2 | R1 ∪ R2 ∪ RS〉
= 〈u, xy, y | u4 = y4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1, u2 = y2〉.

LetN be the normal subgroup generated by [S1, S2] = {s−1
1 s−1

2 s1s2|s1 ∈ S1, s2 ∈ S2}
in π(X). By Lemma 3.1 we get the following presentation for the quotient group:

π(X)/N = 〈S1 ∪ S2 | R1 ∪ R2 ∪ R3 ∪ RS〉 (4.1)

= 〈u, xy, y | u4 = y4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1,

u2 = y2, uy = yu, xyy = yxy〉
where

R3 = {s1s2 = s2s1 | s1 ∈ S1, s2 ∈ S2},
and we claim that (4.1) is equivalent to the following presentation of Lemma 3.6

P = 〈u, xy, y | u4 = x2 = 1, u2 = y2, uy = yu, yx = xy, x−1ux = u−1〉. (4.2)

Since (4.1) and (4.2) have the same generators, the relations in (4.2) will be
deduced from the relations in (4.1) and viceversa. Firstly we consider (4.1) and note
that

xyy = yxy ⇐⇒ xy2 = yxy ⇐⇒ xy2y3 = yxyy3 ⇐⇒ xy5 = yxy4

⇐⇒ xyy4 = yxy4 ⇐⇒ xy = yx

and so x and y commute. Similarly one can see that u commutes with y. Secondly
we have

u2 = (xy)2 ⇐⇒ u2 = x2y2 ⇐⇒ u2 = x2u2 ⇐⇒ u2u2 = x2u2u2 ⇐⇒ u4

= x2u4 ⇐⇒ 1 = x2.

Thirdly we note that

(xy)−1u(xy) = u−1 ⇐⇒ x−1y−1uxy = u−1 ⇐⇒ x−1y−1uyx = u−1

⇐⇒ x−1y−1yux = u−1 ⇐⇒ x−1ux = u−1

Finally all the other relations in (4.1) are clearly present in Lemma 3.6 so our claim
follows and we may conclude that P ∼= π(X)/N . Now we apply Lemma 3.7 and
realize that P = π(U) ◦ π(V ).

Case (ii). From [23, Exercise 11.2 (d)] both U and V are 3-manifolds and so
[23, Exercise 11.5 (b)] implies that U#V is a 3-manifold. Now we observe from [11]
that the action of Q8 on the Riemannian sphere S3 (with the round metric dS3 that is
derived from the Riemannian metric

ds2 = 4‖dx‖2
(1 + ‖x‖)2 ,
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where ‖dx‖2 is the usual Riemannian metric on R2) produces the Riemannian space
of orbits U = S3/Q8, with canonical quotient map pU : S3 → U with the induced
distance function on u1, u2 ∈ U ,

dU(u1, u2) = inf
x∈p−1

U (u1),y∈p−1
U (u2)

dS3(x, y)

and similarly this happens for V with dV , because the actions are free and properly
discontinuous (see Lemma 2.1), as well as Q8 and Z(4) being groups of isometries
on S3 (see [10, Remark 41]).

According to the terminology of [10, Definition 22], a pair (M, �) where M is a
Riemannian manifold and � is a (proper) discontinuous group of isometries acting
effectively on M is called “good Riemannian orbifold”. The underlying space of the
orbifold is M/�. In the case of a good Riemannian orbifold (M, �) it follows that
for x, y ∈ M/�,

d(x, y) = dM(π−1(x), π−1(y)) := inf
x̃∈π−1(x),ỹ∈π−1(y)

dM(x̃, ỹ)

and this is exactly the situation we have here with M = S3 and � as indicated in
Lemmas 2.1 and 2.3. This means that we can define a metric on the disjoint union of
the subspaces U ′ and V ′ (which are U and V without the open balls of a connected
sum construction) by:

d ′(x, y) =
⎧⎨
⎩

dU ′(x, y), if x, y ∈ U ′
dV ′(x, y), if x, y ∈ V ′
∞, otherwise.

Using this metric we can endow U#V with the structure of Riemannian space and
consider the quotient semi-metric on U#V in the sense of [11, Definition 3.1.12]

dR(x, y) = inf

{
k∑

i=1

d ′(pi, qi) | p1 = x, qk = y, k ∈ N

}
,

where R is the equivalence relation induced by #. In particular, dR(x, y) is a
Riemannian metric on U#V , since U ′ ∪ V ′ is compact (see [11, Exercise 3.1.14]).

From [23, Exercise 26.6(c)] we have π(U#V ) � π(U) ∗ π(V ) and so

π(U#V )=Q8 ∗Z(4) = 〈u, xy, y | u4=1, u2=(xy)2, (xy)−1u(xy) = u−1, y4=1〉.
Imposing the relations uy = yu, xyy = yxy, u2 = y2, we consider the existence
of a normal subgroup L in π(U#V ) by Lemma 3.1, and get again the presentation
(4.1), which we have seen to be equivalent to that in Lemma 3.6. Therefore P =
π(U) ◦ π(V ) and Case (ii) follows completely.

It is appropriate to make some comments here on the choice of S3 in the context of
the present investigations. Looking at [19, Chapters 1, 4] or at [23, Chapter 29], we
know that a path connected space whose fundamental group is isomorphic to a given
group G and which has a contractible universal covering is a K(G, 1) space, also
known as Eilenberg-MacLane space (of type one). Roughly speaking, these topo-
logical spaces answer the problem of realizing a prescribed group G as fundamental
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group of an appropriate path connected space X. Eilenberg-MacLane spaces are well
known in algebraic topology, so one could wonder why we didn’t use them.

A first motivation is that X is constructed as a polyhedron (technically, X is a
cellular complex, see [19, Chapter 0]) so it is in general difficult to argue whether X

possesses a Riemannian structure or not, when we construct X with the method of
Eilenberg and Mac Lane. Our direct observation of the properties of S3 allows us to
find an interesting behaviour, looking at the final part of the proof of Theorem 1.1:
the Pauli group can be constructed in the way we made and it can be endowed by a
Riemannian structure, arising from the Riemannian metric which we introduced.

Then we come to a second motivation which justifies our approach via S3. Find-
ing a Riemannian structure, in connection with a group, has a relevant meaning in
several models of quantum mechanics. For instance, Chepilko and Romanenko [12]
produced a series of contributions, illustrating how certain processes of quantization
and some sophisticated variational principles may be easily understood in presence
of Riemannian manifolds and groups. In this perspective one can also look at [30],
which shows again the strong simplification of the structure of the hamiltonian in
presence of models where we have both a Riemannian manifold and a group of sym-
metries. There are of course more examples on the same line of research and this
shows the relevance of our construction once more.

Last (but not least) we know from [20, Corollary 9.59, (iv), The Sphere Group
Theorem] that: the only groups on a sphere are either the two element group
S0 = {1, −1}, or the circle group S1, or the group S3 of quaternions of norm one
(note that S3 may be identified with SU(2) and we gave details in Section 2 of
the present paper). Note that all of them are compact connected Lie groups (apart
from S0 which is disconnected) and we know from Lie theory that a structure of
differential manifold can be introduced on compact connected Lie groups via the
Baker–Campbell–Hausdorff formalism [20, Chapters 5 and 6]. Therefore the rele-
vance of S3 appears again among all the possible spheres Sn, which possesses a group
structure, because it allows us to produce also a differential structure on P , realized
in the way we made.

We end with an observation which was surprising in our investigation.

Remark 4.1 In [32], it was discussed the decomposition P = D8 ◦ Z(4) with an
appropriate study of the abelian subgroups of P arising from this decomposition; so
not only P = Q8 ◦ Z(4) is true. On the other hand, D8 cannot act freely on any Sn

by Remarks 2.4 and 2.5, so one cannot replace the role of Q8 with D8 in the proof
of Theorem 1.1, even if algebraically Q8 and D8 are very similar. This is a further
element of interest for the methods that we offered here.

5 Proof of Theorem 1.2 and connections with physics

In [1, 2] connections between some purely algebraic results and physics, and Quan-
tum Mechanics in particular, have been considered. The bridge between the two
realms was provided by the so-called pseudo-bosons, studied intensively in a series
of recent contributions [4, 5]. In particular, we refer to [5] for a (relatively) recent
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review. In this perspective, it is natural to see if and how the Pauli group P is related
to mathematical objects which, in some sense, are close to pseudo-bosons. As we
will show here, this is exactly the case: pseudo-fermions, which are a sort of two-
dimensional version of pseudo-bosons, can be used to describe the elements X, Y

and Z of P in (1.1), and, because of this, they appear to have a direct physical
meaning. We refer to [5–7] for the general theory of pseudo-fermions, and to [8] for
several physical applications of these excitations. We should also mention that simi-
lar pseudo-particles have been considered by several authors in the past decades. We
only cite here few contributions, [18, 26, 28]. To keep the paper self-contained, we
have also given a crash course on pseudo-fermions in Appendix.

The idea is quite simple: we consider two operators a and b on the Hilbert space
H = C

2 satisfying the following rules:

{a, b} = ab + ba = 11, a2 = b2 = 0, (5.1)

where {a, b} is the anticommutator between a and b, and 11 is the identity operator on
H. Of course, if b = a†, the adjoint of a, (5.1) returns the so-called canonical anti-
commutation relations, CAR. The operators a and b are the basic ingredients now to
define the following operators onH:

μ1 = b + a, μ2 = i(b − a), μ3 = [a, b] = ab − ba. (5.2)

In particular, the square brackets are called the commutator between a and b. Inci-
dentally we observe that {a, b} = 11, because of the (5.1). The main result of this
section is that the set Pμ = {μ1, μ2, μ3} is a concrete realization of the Pauli group.
The proof of this claim is based on several identities which can easily be deduced out
of (5.1). More in details, we have that

μ2
j = 11, j = 1, 2, 3, and μ1μ2 = iμ3, μ2μ3 = iμ1, μ3μ1 = iμ2.

(5.3)
In fact we have

μ2
1 = (b + a)2 = b2 + ba + ab + a2 = {a, b} = 11,

since a2 = b2 = 0 and {a, b} = 11. Similarly we can check that μ2
2 = 11. Slightly

longer is the proof that μ2
3 = 11. We have

μ2
2 = (ab − ba)2 = abab + baba − abba − baab = (11 − ba)ab + (11 − ab)ba

= ab + ba = 11,

where we have used several times the equalities in (5.1). The proof of the other
equalities in (5.1) is similar, and will not be given here. However, these equalities
are relevant to prove that, indeed, Pμ is a Pauli group. Infact, we have (μ1μ2)

4 =
(iμ3)

4 = i4(μ2
3)

2 = 112 = 11. Similarly we can check that (μ2μ3)
4 = (μ3μ1)

4 = 11,
so that our claim is proved.

Pμ is not the only Pauli group which can be constructed out of pseudo-fermionic
operators. In fact, Pρ = {ρj = μ

†
j , j = 1, 2, 3} is also a Pauli group, meaning with

this that the following equalities are all satisfied:

ρ2
j = 11, j = 1, 2, 3, and ρ1ρ2 = iρ3, ρ2ρ3 = iρ1, and ρ3ρ1 = iρ2.

Page 15 of 20    16Math Phys Anal Geom (2021) 24: 16



In [5, 8] many applications of pseudo-fermions to physics have been discussed.
This suggests that the theory developed here is somehow connected to physics, and
in particular to QuantumMechanics, as the following result connected to a two-levels
atom with damping clearly shows.

In 2007 [13], an effective non self-adjoint hamiltonian describing a two level atom
interacting with an electromagnetic field was analyzed in connection with pseudo-
hermitian systems, [9]. Later (see [6]) it has been shown that this model can be
rewritten in terms of pseudo-fermionic operators, and, because of what discussed in
this section, in terms of Pauli groups.

Proof of Theorem 1.2 The starting point is the Schrödinger equation

i
̇(t) = Heff 
(t), Heff = 1

2

( −iδ ω

ω iδ

)
. (5.4)

Here δ is a real quantity, related to the decay rates for the two levels, while the com-
plex parameter ω characterizes the radiation-atom interaction. We refer to [13] for
further details. It is clear that Heff �= H

†
eff . It is convenient to write ω = |ω|eiθ .

Then, we introduce the operators

a= 1

2�

( −|ω| −e−iθ (� + iδ)

eiθ (�−iδ) |ω|
)

, b= 1

2�

( −|ω| e−iθ (�−iδ)

−eiθ (� + iδ) |ω|
)
.

Here

� =
√

|ω|2 − δ2,

which we will assume here to be real and strictly positive. A direct computation
shows that {a, b} = 11, a2 = b2 = 0. Hence a and b are pseudo-fermionic operators.
Moreover, Heff can be written in terms of these operators as

Heff = �

(
ba − 1

2
11

)
.

It is now easy to identify the elements of Pμ, using (5.2). We get

μ1 = 1

�

( −|ω| −iδe−iθ

−iδeiθ |ω|
)

, μ2 = i

(
0 e−iθ

eiθ 0

)
,

μ3 = 1

�

(
iδ −|ω|e−iθ

−|ω|eiθ −iδ

)
,

which are therefore a (non-trivial, and physically motivated) representation of the
Pauli group. In terms of these operators Heff acquires the following particularly
simple expression:

Heff = −�

2
μ3.

The elements u, xy and y in Lemma 3.6 can be computed and turns out to be

u= iμ3= i

�

(
iδ −|ω|e−iθ

−|ω|eiθ −iδ

)
, xy = iμ2=−

(
0 e−iθ

eiθ 0

)
, y = i11.

This produces an interesting consequence for this model. Since y is proportional to
the identity element, and sinceQ8 only contains μ2 and μ3, we interpret the elements
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of Z(4) as the constants of motion of the physical system described by Heff , or by
its generalized form

H ′
eff = −�

2
μ3 + αμ2,

for all possible real α. This is an interesting, and somehow unexpected, feature of
the model: going from a larger Pμ to a smaller group Q8 does not affect at all the
dynamical aspects (i.e., the generator of the time evolution) of the system, since these
are all contained in Q8.

Remark 5.1 It is useful to stress that, while the algebraic construction discussed here
is totally independent of what deduced in the first part of the paper, the last part of
the proof above, and in particular the role of Z(4) and Q8 for this specific system,
appears quite interesting, and clearly open the possibility that similar results can also
be found in other quantum mechanical models described in terms of the Pauli group.
The natural question, which we will consider in a future paper, is whether for this
kind of systems the factor group Z(4) (appearing in P = Q8 ◦ Z(4)) always con-
tains the physical constants of motion. In fact, we do not expect this is a completely
general feature, but we believe it can be true under some additional, and reasonable,
assumptions. We will return on this aspect in the conclusions.

We end this section by noticing that the μj return X, Y and Z in (1.1) under
suitable limiting conditions on the parameters: if θ, δ → 0, then u → −iX and
xy → −iY . This shows clearly that our present representation extends that of the
previous sections.

6 Conclusions

Some properties, which have been noted in Theorem 1.2, may be extended to math-
ematical models, where pseudo-fermionic operators, or generalizations of them, are
involved. This is related with the structure of P in Theorem 1.1 and Lemma 3.6.

Look at the proof of Theorem 1.1 and at the structure of P = Q8 ◦ Z(4) �
π(U ∪V )/N , where U = S3/Q8 and V = S3/Z(4) follow the notations of Theorem
1.1. We noted in the final part of the proof Theorem 1.2 that going from a larger Pμ

to a smaller group Q8 does not affect at all the dynamical aspects (i.e., the generator
of the time evolution) of the system, since these are all contained in Q8. Looking at
Remarks 2.4, 2.5 and 2.6, we believe that:

Conjecture 6.1 Groups of the form A = Q8 ◦ B, where B is an abelian group
containing at most one element of order 2 may have a construction of the Hamiltonian
as we made with Heff in Theorem 1.2, producing the fact that going from a larger
group A to a smaller group Q8 all the dynamical aspects are not affected.

The behaviour, which we have conjectured above (and shown rigorously in
Theorem 1.2) can be justified, on the basis of the results of Sections 2, 3 and 4.
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If we look at the proof of Theorem 1.2 from a different perspective, we may note
that the constants of the motion are somehow unaffected by the operator of central
product, when we have P = Q8 ◦Z(4). Conjecture 6.1 motivates us to think that the
same behaviour happens when we are in presence of an appropriate Hamiltonian and
of a group with the structure A = Q8 ◦ B, where B can be, for instance, Z(2m) for
any m ≥ 2. In fact all such groups act freely on S3.

Due to [20, Corollary 9.59, (iv), The Sphere Group Theorem], which explains the
peculiarity of S3 among all Sn, we do not think to be reasonable to expect appro-
priate interpretations of the constants of the motions for Hamiltonians which can be
constructed in the same way we did in Theorem 1.2 but with groups of the form
C = D ◦ E for arbitrary choices of finite groups D and E. Maybe one could think
at more general frameworks, not involving pseudo-fermionic operators, but then one
could loose the information at the level of the physics, while working in the direc-
tion of Conjecture 6.1 above, one could get to a significant idea in the mathematical
models of quantum mechanics with pseudo-fermions. We hope to give more results
in this direction in a close future.

Appendix

The present appendix is meant to make the paper self-contained, by giving some
essential definitions and results on pseudo-fermions. We consider two operators a

and b, acting on the Hilbert space H = C
2, which satisfy the following rules, [6]:

(A.1)

where {x, y} = xy + yx is the anti-commutator between x and y. We first observe
that a non zero vector ϕ0 exists in H such that a ϕ0 = 0. Similarly, a non zero vector
�0 exists in H such that b† �0 = 0. This is because the kernels of a and b† are
non-trivial.

It is now possible to deduce the following results. We first introduce the following
non zero vectors

ϕ1 := b ϕ0, �1 = a†�0, (A.2)

as well as the non self-adjoint operators

N = ba, N† = a†b†. (A.3)

Of course, it makes no sense to consider bn ϕ0 or
(
a†

)n
�0 for n ≥ 2, since all

these vectors are automatically zero. This is analogous to what happens for ordinary
fermions. Let now introduce the self-adjoint operators Sϕ and S� via their action on
a generic f ∈ H:

Sϕf =
1∑

n=0

〈ϕn, f 〉 ϕn, S�f =
1∑

n=0

〈�n, f 〉 �n. (A.4)
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The following results can be easily proved:

aϕ1 = ϕ0, b†�1 = �0. (A.5)

Nϕn = nϕn, N†�n = n�n, for n = 0, 1. (A.6)

If the normalizations of ϕ0 and �0 are chosen in such a way that 〈ϕ0, �0〉 = 1,
then

〈ϕk, �n〉 = δk,n, for k, n = 0, 1. (A.7)

Sϕ and S� are bounded, strictly positive, self-adjoint, and invertible. They satisfy

‖Sϕ‖ � ‖ϕ0‖2 + ‖ϕ1‖2, ‖S�‖ � ‖�0‖2 + ‖�1‖2, (A.8)

Sϕ�n = ϕn, S�ϕn = �n, (A.9)

for n = 0, 1, as well as Sϕ = S−1
� and the following intertwining relations

S�N = N†S�, SϕN† = NSϕ . (A.10)

Notice that, being biorthogonal, the vectors of both Fϕ and F� are linearly inde-
pendent. Hence ϕ0 and ϕ1 are two linearly independent vectors in a two-dimensional
Hilbert space, so that Fϕ is a basis forH. The same argument obviously can be used
for F� . More than this: both these sets are also Riesz bases. We refer to [5] for more
details.
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