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Abstract
The fast and faithful preparation of the ground state of quantum systems is a challenging but
crucial task for several applications in the realm of quantum-based technologies. Decoherence
limits the maximum time-window allowed to an experiment to faithfully achieve such desired
states. This is of particular significance in systems featuring a quantum phase transition, where the
vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang–bang
protocol, consisting of a time evolution under two different values of an externally tunable
parameter, allows for a high-fidelity ground state preparation in evolution times no longer than
those required by the application of standard optimal control techniques, such as the
chopped-random basis quantum optimization. In addition, owing to their reduced number of
variables, such bang–bang protocols are very well suited to optimization tasks, reducing the high
computational cost of other optimal control protocols. We benchmark the performance of such
approach through two paradigmatic models, namely the Landau–Zener and the
Lipkin–Meshkov–Glick model. Remarkably, we find that the critical ground state of the latter
model, i.e. its ground state at the critical point, can be prepared with a high fidelity in a total
evolution time that scales slower than the inverse of the vanishing energy gap.

1. Introduction

Quantum technologies have seen considerable progress in recent years [1], thanks to the unprecedented
degree of isolation and manipulation capabilities achieved over individual quantum systems [2–4], paving
the way to the development of novel technologies and furthering our fundamental understanding of
quantum information processing [5]. Yet, continued development of these technologies requires fast and
robust schemes to prepare and manipulate quantum states. In particular, reducing the preparation time of
target quantum states would have a profound impact for several quantum technologies, embodying an area
of active research [1, 6].

The ability to prepare ground states of a given Hamiltonian is especially important for many reasons. On
one hand, arbitrary states can be encoded as ground states of suitably arranged Hamiltonians, which is
important for adiabatic quantum computation [7]. On the other hand, the ground state of quantum
many-body systems is pivotal to the investigation of quantum phase transitions (QPTs) [8]. Indeed, close to
the critical point of a second-order QPT, the ground states feature non-analytic behavior, and are very
sensitive to variations of the underlying control parameter. This provides advantages for tasks such as
quantum metrology [9–11]. Critical ground states of many-body systems, that is, ground states at the QPT
of a given system, also often possess a large degree of entanglement, making them an invaluable resource for
several quantum information tasks [12–17]. Nevertheless, the preparation of a critical ground state is
experimentally challenging. This stems from the extremely long time required by adiabatic ground state
preparation, due to the vanishing energy gap close to the critical point of a second-order QPT [8]. Devising
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fast and robust protocols for the generation of critical ground states is thus an important avenue of
research. Such efforts would shed further insight into the study of QPTs, such as the experimental
determination of their universality class and the fundamental time constraints posed by their vanishing
energy gap. Here, we will focus on the preparation of the ground state of a model at the critical point of a
second-order QPT following a unitary evolution, aiming to shorten the time duration of the protocol.

It is worth noting that an adiabatic ramp leading to or crossing the QPT will produce a density of
excitations that increases with the speed of the evolution and to the equilibrium critical exponents of the
QPT, as successfully explained by the Kibble–Zurek mechanism [18–24]. Among the different strategies to
circumvent or reduce the formation of excitations we find assisted adiabatic passage [25], adiabatic tracking
[26], nonlinear protocols [27], control of multiple parameters as in reference [28] and driving of
inhomogeneous systems [29], which entail different scaling laws of the excitations with respect to the ramp
speed.

Currently known fast state-preparation strategies include local adiabatic protocols [30–32], shortcuts to
adiabaticity [33–35] and fast quasi-adiabatic ramps [36]. These methods typically require the system to be
analytically solvable or numerically treatable. In addition, further demanding control in the system,
embodied for instance by additional time-dependent parameters, is often required. Quantum optimal
control (QOC), on the other hand, is preferable because of its wide applicability [37–39]. Such approach
has proven valuable in a variety of contexts, including the research for optimal NMR pulses [40–43].
Common QOC techniques include the Krotov method [44–46], gradient-ascent pulse engineering [47–50],
chopped-random basis quantum optimization (CRAB) [51–54], and machine-learning-based approaches
[55–60]. The associated numerical tasks are rarely solvable exactly, and generally require non-trivial
numerical optimization techniques. This is further highlighted by studies analyzing the complexity of
control landscapes of many-body systems [61].

In this paper, we show that even simple protocols can provide remarkable results, in some cases even
outperforming algorithms as sophisticated as CRAB. We showcase this, in particular, for the task of ground
state preparation close to a second-order QPT. We propose the use of a double-bang protocol, which
consists of two constant evolutions under a Hamiltonian with fixed parameters rather than a single one as
considered in [62, 63]. We focus on two paradigmatic models: the Landau–Zener (LZ) [64], and the
Lipkin–Meshkov–Glick (LMG) one [65]. The latter describes an interacting quantum many-body system
featuring a mean-field second-order QPT [66–70]. Our approaches are remarkably computationally
resource-efficient, owing to the small number of parameters defining the protocol. At the same time, they
allow us to achieve almost-unit fidelities in short times, compared to pulse shapes obtained via
state-of-the-art QOC methods such as CRAB. As further evidence of the good performances of bang–bang
protocols, we show that the time required to achieve the critical ground state of the LMG model with good
fidelity scales slower than the inverse of the minimum energy gap, which is the type of scaling observed in
previous analyses [52, 71]. It is worth pointing out that, even though we focus our analysis on double-bang
protocols, we should not expect such simple protocol to be able to outperform more sophisticated strategies
in all cases. Indeed, already in the case of the LZ model, we find a triple-bang protocol to perform slightly
better than the double-bang. Nonetheless, with this paper we aim at highlighting the fact that such simple
strategies, while being dramatically more computationally efficient than alternatives such as CRAB, perform
surprisingly well even in non-trivial models such as the LMG.

The remainder of this paper is organised as follows. In section 2 we formulate the problem while in
section 3 we discuss the application of optimal control techniques to the ground state preparation problem,
focusing on bang–bang protocols. In section 4 we showcase the performance and advantages of our method
through its application to the LZ and LMG models. Finally, in section 5 we summarise our main findings
and briefly discuss further avenues of investigation.

2. Ground state preparation and fundamental quantum limits

Let us consider a Hamiltonian H which, without loss of generality, we can assume to depend on a single
tunable and dimensionless parameter g according to the decomposition

H(g) = H0 + gH1, (1)

where H0,1 are time-independent Hamiltonian operators. Given the initial and final values g0 and g1 of the
(externally controllable) parameter, our goal is to find a time-dependent protocol g(t) such that |φ0(g0)〉
evolves into |φ0(g1)〉 in the shortest possible evolution time τ , where |φ0(g)〉 denotes the ground state of
H(g). In general, the associated dynamics cannot be solved exactly, making it necessary to resort to
numerical optimization techniques.
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We can broadly identify two distinct dynamical regimes. Given a typical energy scale ω, for evolution
times such that ωτ →∞, any continuous ramp is sufficient to achieve the target state, and the evolving
state follows the instantaneous ground state of the system, as a consequence of the adiabatic theorem [72].
On the other hand, for very short evolution times ωτ � 1, the evolution is far from adiabatic. In such
regime, quantum speed limits [73–81] provide fundamental bounds on the minimum evolution time τ
required to evolve between two states under a given time-independent dynamics. Such time is
lower-bounded by a quantity proportional to the Bures angle between initial and final states, and inversely
proportional of either the variance or the average energy along the trajectory. It is worth stressing here that
such quantum speed limits do not provide any information on the optimal dynamics implementing the target
transition, but rather give an estimate of the evolution time for a given dynamics. The task of finding the
optimal Hamiltonian achieving a given evolution is a more difficult problem, sometimes referred to as the
quantum brachistochrone problem [82] or minimum control time [83].

The notion of control at the quantum speed limit has attracted considerable attention [52, 83–85]. In
particular, it has been observed that the minimal evolution time to generate a ground state scales as
τ ∗ ∝ Δ−1

min where Δmin denotes the minimum energy gap of the Hamiltonian during the evolution [71].
This is particularly interesting for the LMG model, where Δmin occurs at the QPT and vanishes as
Δmin ∝ N−z with N the size of the system and z = 1/3 the dynamical critical exponent [66]. However, we
will provide examples in which this does not hold, and the minimal evolution time τ ∗ scales slower than
Δ−1

min, namely, τ ∗Δmin ∝ N−α with α > 0 a scaling exponent.

3. Optimal control

To find an optimal time-dependent protocol we define the cost function FX as the state fidelity between
output and target state for a given protocol parameterisation gX

FX ≡ F[gX] = |〈ψX(τ)|φ0(g1)〉|2 (2)

where

|ψX(τ)〉 = U(X)
τ ,0 |φ0(g0)〉 ≡ T e−i

∫ τ
0 H◦gX |φ0(g0)〉 (3)

is the output state corresponding to a dynamics with pulse shape gX and FX = |〈ψX(τ)|φ0(g1)〉|2 is the state
fidelity. Here, |φ0(g)〉 is the ground state of H(g), so that |φ0(g0)〉 and |φ0(g1)〉 are initial and target states,
respectively, while T is the Dyson time-ordering operator. Numerical optimization is used to maximise FX

with respect to X. The different methods put forward to achieve this goal differ in how the function gX is
parameterised, that is, on the choice of ansatz being considered. Common choices include CRAB [51, 52],
local adiabatic ramps [30, 31] and bang–bang protocols [62, 63]. Here we focus on bang–bang and in
particular double-bang protocols, benchmarking our results against those obtained via CRAB.

We also constrain the magnitude of the interaction gX(t), imposing |gX(t)| � gmax for all t. This ensures
that the optimized protocols only require finite energy to be implemented, and ensures the existence of a
maximum, i.e. non-zero, evolution time. We refer to appendix A for the details about the employed
optimization procedures.

3.1. Bang–bang protocols
Bang–bang protocols with � bangs involve a piece-wise constant function of the form

g
X,(t1,t�+1)
DB (t) =

�∑
i=1

giχ[ti,ti+1](t), (4)

where χI(t) = 1 for t ∈ I and χI(t) = 0 otherwise. Here, t1 = 0 and t�+1 = τ are the fixed initial and final
evolution times, respectively and X ≡ (g1, . . . , g�, t2, . . . , t�) are the 2�− 1 optimization parameters (with
the added constraints ti−1 � ti � ti+1). Note how bang–bang protocols involving �+ 1 bangs include as a
subset bang–bang protocols with � bangs. In particular, the double-bang protocols we will use have the form

gX,(0,τ)
DB (t) =

{
gA, 0 � t � tB,
gB, tB < t � τ ,

(5)

where X ≡ (gA, gB, tB). When clear from the context, we will omit the explicit functional dependence of gDB

on its parameters, writing gX,(0,τ)
DB ≡ gDB. In double-bang protocols, the control parameter g(t) is thus

instantaneously changed from g0 to gA at the beginning of the protocol, then suddenly quenched to take

3
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Figure 1. Comparison between optimal protocols for the generation of the critical ground state of an LMG model with N = 20
spins as obtained using double-bang (green solid line) and CRAB with Nc = 4 (dashed line) and Nc = 10 (dotted line)
frequencies. The specific values of the parameters used in these simulations, as well as the associated data can be found in
reference [87].

value gB at some time tB, and finally changed into g1 at the end of the evolution4. An example of a
double-bang protocol is given in figure 1. It is worth stressing that our use of the term bang–bang differs
from the way it is used in the context of NMR, where it refers to a technique to avoid environmental
interactions [86].

The piecewise-constant nature of the bang–bang protocols allows one to simplify the time-evolution
operators, which can be written as

Uτ ,0 = e−i(τ−tB)H(gB) e−itBH(gA). (6)

This makes simulating the associated dynamics computationally easier, compared to simulating the
evolution of a state through generic time-dependent dynamics, as required for instance by CRAB or Krotov
protocols.

3.2. Chopped-random basis quantum optimization (CRAB)
In order to benchmark our results and highlight the advantages offered by the bang–bang protocols, we
compare them with the results obtained via CRAB. This method uses a time-dependent pulse shape written
as a modulation of a linear ramp connecting initial and final parameter values. This variation is written in
terms of trigonometric functions with randomly chosen frequencies. More precisely, it uses the ansatz
[51–54]

g(t) = gLin(t)

[
1 + b(t)

Nc∑
n=1

(
xn cos(ωnt) + yn sin(ωnt)

)]
, (7)

where

• gLin(t) ≡ g0 + (g1 − g0)t/τ is the linear ramp connecting g0 and g1 in a total time τ .

• The integer Nc is the total number of frequencies in the ansatz. Its value is set before the start of the
evolution, together with the total evolution time τ .

• The frequencies ωn are uniformly sampled around the principal harmonics, ωn = 2πnω0(1 + ξn) with
ξn ∈ [−1/2, 1/2] independent uniform random numbers. The use of random frequencies implies that
the functional basis being used is not constrained to be orthogonal, a feature that was found to
sometimes enhance the performance of the search algorithm [51, 52].

• The function b(t) is used to normalise the CRAB correction, ensuring g(0) = g0 and g(τ ) = g1. A
possible choice for this is b(t) = ct(t − τ ) for some constant c > 0.

The optimization is run on the 2Nc parameters X ≡ (x1, . . . , xNc , y1, . . . , yNc ). Whereas g0, g1, t0, t1 are set
by the problem, the values of ωn (equivalently, ξn) are chosen empirically (often randomly) before the
evolution starts. The optimization algorithm is often further run for different sets of frequencies ωn,
keeping only the best result.

4 Any experimental realization of these bang–bang protocols will inevitably require of a finite response time τr, and thus instantaneous
variations in g(t) are just an idealization. However, provided τr � 1/ω and τr � τ , with ω the typical energy scale of the system, such
finite time response will not have any impact on the results presented here.
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Notice that while the most general formulation CRAB in principle encompasses a large class of
parameterisations [52] which include bang–bang protocols as a special case, in this work we refer to the
most common CRAB methods based on truncated random Fourier basis.

To compute the evolution of a state through a CRAB protocol we need to numerically simulate the
dynamics through the time-dependent Hamiltonian. This is in general not as efficient as computing the
evolution through piecewise-constant protocols. Notice that the dynamics must be simulated a large
number of times while looking for the optimal protocol, which builds up to a significant difference in
computational times, as illustrated in the example addressed in section 4.1.

4. Applications

We here discuss the effectiveness of bang–bang protocols to generate the ground state at the critical point of
LZ and LMG models, comparing them in particular with the results achieved using CRAB protocols. In [87]
we make available the data as well as all the corresponding parameter values employed to generate the
results. It is worth stressing that the provided examples with LZ and LMG models showcase the effectiveness
of simple bang–bang protocols even in nontrivial scenarios, where significantly more complex pulse shapes
were previously thought to be required.

4.1. Landau–Zener problem
The LZ model describes a spin-1/2 particle in a time-dependent magnetic field. The corresponding
Hamiltonian reads

HLZ(g) = ωσx + gωσz = H0 + gH1, (8)

with H0 ≡ ωσx, H1 ≡ ωσz, and σk the k-Pauli matrix (k = x, y, z). Without loss of generality, we set the
initial state to be the ground state of HLZ(−5), and use as the ground state of HLZ(0), that is the ground
state at the avoided crossing, as a target. The initial Hamiltonian HLZ(−5) is an approximation of the
asymptotic one HLZ(−∞) ∼ −σz. This approximation is sensible in this context, as the state fidelity
between the ground states of HLZ(−5) and HLZ(−∞) is ∼0.99.

We optimize over double-bang protocols for different evolution times. Our goal is to find simple
protocols achieving the transition between initial and target ground states in the shortest possible time. We
thus scan different values of the evolution times τ , optimizing the protocol for each chosen value. As shown
in [88], depending on the imposed constraints and the time τ the control landscape shows a rich structure.
We test both the bang–bang and CRAB protocols with different numerical optimization algorithms, and
find that the double-bang protocols achieve better results 1in shorter τ times, while requiring significantly
less computational time. Studying the optimal protocols at several different times allows us to pinpoint the
minimum value of τ required to reach the target state with our protocol, with a given fidelity. We show in
figure 1 examples of such optimized bang–bang and CRAB protocols (based on Nc = 4 and 10 frequencies).
The first point to appreciate is the difference in the number of parameters that need to be optimized: while
double-bang requires the management of only 3 parameters, CRAB with Nc = 10 frequencies needs 20
coefficients (in addition to the frequencies in the optimization). This can be quite demanding for numerical
optimization toolboxes, with differences in optimization times going from the order of hours for CRAB to
seconds or minutes for double-bang. A second point of notice is that, intuitively, the search space grows
with Nc, thus allowing CRAB to effectively encompass double-bang protocols. However, this would also
make the associated optimization task demanding enough to be practically unfeasible.

In figure 2 we give a representation of the state evolution in the Bloch sphere under the protocols
addressed here, while in figure 3 we report the fidelities obtained optimizing double-bang and CRAB
protocols to achieve the ground state at the avoided crossing. We find that double-bang, despite its
simplicity, realises the target transition with good fidelity faster than CRAB, achieving fidelities
F > 1 − 10−10 in time ωτ ∗ ≈ 0.8. Whereas, CRAB requires ωτ ∗ ≈ 0.9 to reach similar fidelities. We find
that increasing the number of frequencies Nc in CRAB does not bring about significant improvements,
while making the optimization considerably more computationally demanding.

To test further the minimum control time, we also performed the optimization with different protocols.
In particular, we tested a variation of CRAB in which initial and final values of the protocol are also
included in the optimization, as well as triple-bang protocols. We find that both such approaches achieve
F > 1 − 10−10 at a shorter time ωτ ∗ ≈ 0.76. This suggests that the sub-optimality of CRAB for this
particular case might be partly due to the fixed initial and final parameter values and the inherent
continuity of the ansatz. Note that allowing for variable endpoints allows CRAB to encompass a wider class
of protocols, some of which can be closer to those used by the double-bang protocols, which involve an
initial and final sudden quench.
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Figure 2. Representation of the dynamics corresponding to double-bang (red) and CRAB (orange) protocols, optimized to
transport the ground state of a LZ model from H = ωσx + g0ωσz with g0 = −5 to H = ωσx with g1 = 0. Note that
σx|±〉 = ±|±〉, while |1〉 and |0〉 (|R〉 and |L〉) are the eigenstates of σz (σy) with eigenvalue +1 and −1, respectively. The total
evolution time is ωτ = 1, and the CRAB protocol shown has Nc = 4 frequencies. For such evolution time, both protocols reach
the target state up to numerical precision.

Figure 3. Optimization results generating the ground state at the avoided crossing of an LZ model [87]. We given the optimized
fidelity F when using both double-bang and CRAB protocols for different total evolution times ωτ . In each optimization, we
constrain the available energy imposing |g(t)| � 10 ∀t. Each point gives the fidelity obtained optimizing a double-bang (blue
circles) or CRAB (orange crosses and green triangles) protocol to evolve the ground state of HLZ(−5) to the ground state of
HLZ(0). The shaded region marks results for which the numerical precision starts being an important factor, and additional care
must be taken to maintain the required level of accuracy while simulating the state. All the points shown in the figure correspond
to F > 1 − 10−14. Optimizations with up to Nc = 10 CRAB frequencies do not provide a significant improvement in the fidelity.

4.2. Lipkin–Meshkov–Glick model
The LMG model [65], originally introduced in the context of nuclear physics, describes a fully long-range
interaction of N spin-1/2 subjected to a transverse magnetic field. Thanks to its experimental realisation
with cold atoms [89] and trapped ions [90], the model has gained renewed attention [91–95], and has
served as a test bed to study several aspects of quantum critical systems [96–102]. The model is described
by the Hamiltonian

HLMG(g) = ωSz − g
ω

N
S2

x (9)

with Sk =
1
2

∑
i σ

i
k the k = x, y, z collective angular momenta operators. The model exhibits a second order

mean-field QPT at a critical value gc = 1 [66–70] and belongs to the same universality class of the quantum
Rabi [103, 104] and the Dicke [105] models.

We focus on the task of driving the ground state of HLMG(g0 = 0) to the ground state at the critical
point, HLMG(gc = 1). See also reference [106] for a similar task using a variational quantum–classical
simulation [107]. As shown in figure 4, in line with the results achieved for the LZ model, the double-bang

6
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Figure 4. Results for the fidelity associated with the preparation of the critical ground state of the LMG for N = 50 spins using a
double-bang (blue circles) and CRAB protocols based on Nc = 4 (orange crosses) and Nc = 10 (green triangles) frequencies. See
main text and reference [87] for further details.

Figure 5. Fidelity as a function of the double-bang protocol duration ωτ for a LMG model with N = 4, 16, 64, 256, 1024 spins.
See main text and reference [87] for further details.

protocols achieve the target transition with high fidelity faster than CRAB, and with scaling behavior better
than the expected speed-limit scaling τ ∗ ∼ Δ−1

min. More precisely we find, with double-bang protocols,
fidelities F � 0.999 for very short evolution times ωτ ∼ 1. While F � 0.99 for ωτ = 0.75 with a
double-bang protocol, CRAB with Nc = 10 frequencies only achieves F � 0.9 for the same τ . Appendix B
reports further details and results of the performance corresponding to the use of double-bang protocols.

Increasing the system size leads to a closing of the energy gap at the critical point according to
Δmin ∼ N−z with z = 1/3 [66]. Hence, larger systems exhibit a smaller gap, which translates into longer
evolution times to faithfully prepare the ground state at gc. In figure 5 we plot the results upon optimizing
double-bang protocols for different system sizes. Without loss of generality, we choose a constraint
|g(t)| � gmax = 1.7. As argued in reference [52], an optimized protocol will only be able to find F ≈ 1 for
protocols of duration τ � τ ∗ ∝ Δ−1

min. Since the energy gap scales as N−z, it follows that τ ∗ ∼ N z. Hence,
τ ∗Δmin = O(1) should remain constant when the protocol operates at the quantum speed limit. We find
that the double-bang approach allows to prepare critical ground states with fidelities F � 0.999 in a time
τ ∗Δmin ∝ N−α with α > 0. We obtain an estimate of τ ∗ in two different ways: first, as the time at which the
fidelity surpasses F = 0.998 and, second, as the time at which the kink displayed in figure 5 in the fidelity is
reached. Both criteria for τ ∗ lead to the same scaling, as shown in figure 6 where we find τ ∗Δmin ∝ N−α

with α = 0.21(1).
We also study the dependence of the minimal evolution time on the energy constraints imposed on the

protocol. As shown in figure 7, increasing the allowed energy decreases the minimum control time. Another
interesting observed phenomenon is the existence of a threshold, at around F ∼ 0.999, above which it is
harder to push the fidelity. We find that the maximum fidelity, for both bang–bang and CRAB protocols,
increases rapidly at first, but then hits a threshold, at which the increase is very slow with τ . Moreover, this
threshold seems to be unaffected by the allowed energy, suggesting that it cannot be avoided by simply
pumping more energy into the system, being instead related to the constraints inherent to the model under
consideration. This same behavior can be seen also in figures 4 and 5.

7
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Figure 6. The scaling of τ ∗Δmin versus the number of spins N, where Δmin is the energy gap at the QPT and τ ∗ corresponds
either to the location of the kink in F , or when F > 0.998. The dashed line displays the fitted scaling law τ ∗Δmin ∝ N−α with
the exponent α = 0.21(1) obtained for both quantities. We considered systems sizes up to N = 2048 spins. See main text and
reference [87] for further details.

Figure 7. Optimizations of the double-bang protocol to achieve the critical ground state of the LMG model with 50 spins, with
different constraints applied to the total energy: |g(t)| � gmax with gmax = 2, 4, 6, 8. For comparison, we also report the results
achieved by CRAB with 4 frequencies and bound gmax = 8. See main text and reference [87] for further details.

Our findings suggest the optimality of double-bang protocols for this task. Even allowing for more
complex protocols, we never find better fidelities than those achieved using the simple double-bang. More
precisely, we analyzed bang–bang protocols involving three and four bangs [cf equation (4)], finding no
improvement with respect to the performance of double-bang protocols. Indeed, it appears that the optimal
protocols use only two distinct values of the parameter (as opposed to the three values allowed for by
triple-bang protocols). This strongly suggests the optimality of a double bang for this task. As in the LZ
case, this hints at a possible explanation of the sub-optimality of CRAB, which is constrained to use fixed
initial and final values of g(t). Optimal paths that involve a sudden quench at the beginning and/or end of
the protocol are hardly attainable with a continuous CRAB with a finite number of frequencies. As further
evidence in this direction, we considered a variation of CRAB in which the endpoints g0, g1 are also
optimized. Consistently with our conjecture, this improves the results, pushing the minimal time for
N = 50 spins to ωτ ∗ ≈ 1. As can be seen in figure 4, ωτ ∗ ≈ 1.25 for standard CRAB. Thus, the results
obtained with CRAB and optimized endpoints (not shown explicitly) lie between the ωτ ∗ achieved with
double-bang and that of CRAB with fixed initial and final points.

5. Conclusions

We have shown that simple double-bang protocols can be employed for a fast and faithful ground state
preparation. In particular, we have explicitly addressed the paradigmatic LZ and LMG models, the latter to
illustrate the possibility to reliably prepare a critical ground state, i.e., the ground state at the critical point
of a QPT. In these models, optimized double-bang protocols can perform better than well-established
optimal control techniques, such as CRAB. Owing to their nature, these double-bang protocols are very well
suited for optimization purposes, offering a large computational advantage with respect to other optimal
control methods.
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In the LMG model, double-bang protocols allow the preparation of the ground state at the critical point
in a time that scales slower than the inverse of the energy gap at the QPT. Although distinct optimal control
techniques may reach similar results than those reported here under a double-bang scheme, the often large
number of variables to be maximised makes these protocols very difficult to optimize, thus hindering this
key observation. Other quantum critical models can be investigated following similar routes. A preliminary
numerical investigation suggests that double-bang protocols are insufficient in the transverse-field Ising
model. A more thorough analysis of this case is left for future work.

Our results motivate further theoretical studies in the realm of quantum speed limits in many-body
systems. It is worth stressing that our double-bang protocol can be readily implemented in different
experimental setups, allowing for the fast preparation of interesting quantum states, such as highly
entangled states of a large number of ions [63].
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Appendix A. Implementation details

The optimizations reported here have been carried out in PYTHON, using the algorithms provided by the
SCIPY scientific library [108]. We used the Nelder–Mead [109] and Powell [110] optimization methods,
which were found to give the best performances. Nelder–Mead, in its adaptive variant [111], is found to
give better results when using the CRAB protocol, while Powell gives better results to optimize bang–bang
protocols.

Appendix B. Saturated-boundary double-bang protocols

In the phase in which the optimal fidelity increases quickly, before the saturation point, the optimal
double-bang protocols are found to be of the following form: g(t) = gmax for t ∈ [0, τ 1], for τ 1 some
threshold time, and g(t) = −gmax for t ∈ [τ 1, τ ], with τ the total evolution time. We analyse this further in
figure A1, where for different energy constraints gmax, we show the fidelities for the different possible
saturated double-bang protocols, by varying ωτ and τ 1/τ to explore the different possible shapes. We find
that the saturation threshold observed in figures 4, 5 and 7 corresponds to a marked change in behavior of
the fidelity. Although not explicitly shown, we analyse the scaling of the optimal time ωτ ∗ as a function of
the energy constraint gmax, which is found to follow ωτ ∗ = 1.819 · g−0.559

max , where the values are determined
via a numerical fit. For completeness, we also give in figure A2 the fidelities obtained using a constant
protocol based on the use of a gmax value. As expected, in this simple model it is not possible to exploit the
available energy to speed up the transition, and fidelities F > 0.99 are only possible for small energies, and
the times always larger than those obtainable using double-bang.

Figure A1. Saturated double-bang protocol scans for N = 50 spins. In each plot we report the fidelity corresponding to a
saturated double-bang protocol, in which the interaction strength is gmax for times ranging from 0 to ωτ 1, and −gmax between
ωτ 1 and ωτ . All plots use the same color scale, with dark blue corresponding to values close to zero and bright red to fidelities
F > 0.99. The dashed vertical green lines are only used to mark the values ωτ = 0.5, 1.0 and 1.5.

9
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Figure A2. Fidelity as a function of the evolution time, for the LMG model with N = 50 spins, evolving following a constant
protocol. For each total evolution time ωτ and value of gmax, we report the corresponding fidelity. The optimal value of the
fidelity is achieved for all times at values of gmax between 0.5 and 0.9. Recall that the QPT takes place at g = 1.
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[6] Aćın A et al 2018 New J. Phys. 20 080201
[7] Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002
[8] Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press)
[9] Zanardi P, Paris M G A and Campos Venuti L 2008 Phys. Rev. A 78 042105
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