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Abstract. In the present paper we show that it is possible to obtain the well known Pauli group

P = 〈X,Y, Z | X2 = Y 2 = Z2 = 1, (Y Z)4 = (ZX)4 = (XY )4 = 1〉 of order 16 as an appropriate

quotient group of two distinct spaces of orbits of the three dimensional sphere S3. The first of
these spaces of orbits is realized via an action of the quaternion group Q8 on S3; the second one

via an action of the cyclic group of order four Z(4) on S3. We deduce a result of decomposition
of P of topological nature and then we find, in connection with the theory of pseudo-fermions, a

possible physical interpretation of this decomposition.

1. Statement of the main result

The Pauli group P is a finite group of order 16, introduced by W. Pauli in [29], and it is an
interesting 2-group, which has relevant properties for dynamical systems and theoretical physics.
Pauli matrices are

(1.1) X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)
,

and one can check that X2 = Y 2 = Z2 = 11 =

(
1 0
0 1

)
and in addition that

(Y Z)4 = (ZX)4 = (XY )4 = 11, (XY Z)
4

= [XY Z,X] = [XY Z, Y ] = [XY Z,Z] = 11,

in fact

(1.2) P = 〈X,Y, Z | X2 = Y 2 = Z2 = 1, (Y Z)4 = (ZX)4 = (XY )4 = 1〉.
In Quantum Mechanics the role of P is well known (see [21, 27]) and it allows us to detect symme-
tries in numerous dynamical systems. More recently, Pauli groups have been studied in connection
with their rich lattice of subgroups (especially abelian subgroups) and several applications have
been found in Quantum Information Theory. Notable examples are quantum error correcting codes
and the problem of finding mutually unbiased bases (see [16, 17, 22, 24, 32]). It might be useful to
observe that Pauli groups and Heisenberg groups have a precise meaning for their generators and
relations in physics. In particular, the role of Heisenberg algebras has been recently explored in
[1, 2, 3] within the framework of pseudo-bosonic operators.

Here we will describe P in terms of an appropriate quotient of the fundamental group of a
topological space, identifying in this way P from a geometric point of view. A direct geometric
construction of P is one of our main contributions. We involve some methods of general nature, but
develop a series of tools which are designed for P only. This choice is made for a specific motivation:
we want to avoid a universal approach for the notions of amalgamated product and central product
(see [14, 15, 19, 23], or Section 3 later on), even if these two notions may be formalized in category
theory, or in classes of finite groups which are larger than the class of 2-groups. Our approach will
have the advantage to analyse directly P , involving low dimensional topology and combinatorial
results for which we do not need a computational software.

Following [19, 23], π(X) denotes the fundamental group of a path connected topological space
X and X/G the space of orbits of X under a (left) action of a group G acting on X. For the
n-dimensional sphere Sn of the euclidean space Rn+1 we recall that Sn = ∂Bn+1

1 (0), that is, Sn

agrees with the boundary of the ball Bn+1
1 (0) of center at the origin and radius one in Rn+1. The
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terminology is standard and follows [14, 15, 19, 23, 25]. In particular, a manifold M of dimension
dim(M) = n is a Hausdorff space M in which each point of M has an open neighbourhood
homeomorphic to to the open ball Bn1 (0), that is, to Bn1 (0) \ ∂Bn1 (0) (see [23, Definition 11.1]).
Note that Q8 denotes the well known quaternion group of order 8 and Z(m) the cyclic group
of integers modulo m (with m positive integer). On the other hand, we will refer to the usual
connected sum # between manifolds (see [19, 23]). Our first main result is the following.

Theorem 1.1. There exist two compact path connected orbit spaces U = S3/Q8 and V = S3/Z(4)
such that the following conditions hold:

(i) U ∪ V is a compact path connected space with U ∩ V 6= ∅, π(U ∩ V ) cyclic of order 2 and
P ' π(U ∪ V )/N for some normal subgroup N of π(U ∪ V );

(ii) U#V is a Riemannian manifold of dim(U#V ) = 3 and P ' π(U#V )/L for some normal
subgroup L of π(U#V ).

Both in case (i) and (ii), P is central product of π(U) and π(V ).

A separation in (i) and (ii) is made, because we stress that a topological decomposition U ∪ V
cannot produce enough information on the dimension of U#V , or on the fact that it is Riemannian.
The formation of U ∪ V is in fact more general than the formation of U#V . On the other hand,
the algebraic decomposition of P is not affected from the topological ones in Theorem 1.1.

Another interesting result of the present paper is that P can be expressed in terms of pseudo-
fermionic operators. The reader can refer to [5, 6, 7] (or to a final Appendix here) for the main
notions on the theory of pseudo-fermionic operators: these are operators defined by suitable anti-
commutation relations. It is relevant to note that some dynamical aspects of physical systems
(involving pseudo-fermionic operators) are connected with a suitable decomposition of P . This
will be shown later, and is stated by the following theorem.

Theorem 1.2. There are two dynamical systems S and T involving pseudo-fermions with groups
of symmetries respectively Pµ ' P and Q8 but with the same hamiltonian HS = HT . In particular,
there exist dynamical systems admitting larger groups of symmetries, whose size does not affect the
dynamical aspects of the system.

The paper is structured as follows. We begin to recall some facts of Algebraic Topology in
Section 2, where finite group actions are involved on three dimensional spheres. Then Section 3
is devoted to prove some results on central products in combinatorial group theory, separating
a paragraph of general nature from one which is specific on the behaviour of the Pauli group.
Finally, the proofs of our main results are placed in Sections 4 and 5. In particular, connections
with mathematical physics are presented in Section 5 and conclusions are placed in Section 6. A
brief review on pseudo-fermions is given in Appendix.

2. Some facts on the actions of Q8 and Z(4) on S3

Let K be a field and A be a vector space over K with an additional internal operation

• : (x,y) ∈ A×A 7→ x • y ∈ A

such that

(x + y) • z = x • z + y • z, x • (y + z) = x • y + x • z, (ax) • (by) = (ab)(x • y)

for all x,y, z ∈ A and a, b ∈ K. In this situation A is an algebra on K. The quaternion algebra H
(on R) is a different way to endow an algebraic (and topological) structure on the usual euclidean
space R4. Specifically it consists of all the linear combinations a1+ bi+ cj+dk, where a, b, c, d ∈ R
and {1, i, j,k} forms a standard basis for the vector space H, hence

span(1, i, j,k) = span((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) = H.

In addition to the pointwise sum of elements of H and to the usual scalar multiplication on R, we
have the (internal) multiplication in H, given by

x • y = (a11 + b1i + c1j + d1k) • (a21 + b2i + c2j + d2k) = (a1a2 − b1b2 − c1c2 − d1d2)1

+(a1b2 + b1a2 + c1d2 − d1c2)i + (a1c2 − b1d2 + c1a2 + d1b2)j + (a1d2 + b1c2 − c1b2 + d1a2)k.



TOPOLOGICAL DECOMPOSITIONS OF THE PAULI GROUP AND... 3

From this rule, one can check that

(2.1) i • i = i2 = −1, j • j = j2 = −1, k • k = k2 = −1, i • j = k, j • k = i, k • i = j.

and that every nonzero element of H has an inverse (w.r.t. • ) of the form

(a1 + bi + cj + dk)−1 =
1

a2 + b2 + c2 + d2
(a1− bi− cj− dk),

and so every nonzero element of H has a multiplicative inverse. In this context the usual sphere
S3 = {(x, y, z, t) | x2 + z2 + y2 + t2 = 1} ⊆ R4 can be regarded as the set of elements of H with
norm equal to one. On H we may introduce the norm ‖ ‖ which is defined as the usual Euclidean
norm in R4, but on H now the norm ‖ ‖ becomes multiplicative, i.e.

‖x • y‖ = ‖x‖ ‖y‖ for all x,y ∈ H,

so the multiplication of vectors whose norms equal one will result in a vector whose norm equals
one. From [19], we know that such a norm allows us to give a topological structure on H and S3

may be regarded as topological subspace of H, but also as a group with respect to the algebraic
structure of H, because the operation

(x,y) ∈ S3 × S3 7−→ x • y ∈ S3

is well defined and endow S3 of a structure of group.
Let recall some classical notions from [19, 23]. Given a group G and a set X, the map (g, x) ∈

G×X 7−→ g ·x ∈ X is said to be a (left) action if 1 ·x = x for all x ∈ X and if g · (h ·x) = (g ·h) ·x
for all x ∈ X and g, h ∈ G. Then we say that G acts freely on X (or is a free action) if g · x 6= x
for all x ∈ X, g ∈ G, g 6= 1. The following fact is known, but we offer a direct argument:

Lemma 2.1. The groups Q8 and Z(4) act freely on S3.

Proof. The map (x,y) ∈ S3×S3 7−→ x •y ∈ S3 makes S3 a group, and an appropriate restriction
of this map to a subgroup G of S3 allows us to define an action on S3 of the form

(2.2) (g, x) ∈ G× S3 7−→ g · x = g • x ∈ S3.

In particular we look at (2.1) and note that this happens when G is chosen as

Q8 = 〈1, i, j,k | i2 = j2 = k2 = −1, i • j = k, j • k = i, k • i = j 〉,

producing the action

(2.3) (q, x) ∈ Q8 × S3 7−→ q · x = q • x ∈ S3.

The rest follows from the fact that H\{0} contains inverses for all its elements and so the equation
g • x = x is only true for g = 1 or x = 0 where g, x ∈ H. This shows that Q8 acts freely on S3. In
order to show the second part of the result, we consider

h : (z0, z1) ∈ S3 7−→ (e
2πi
4 z0, e

2πi3
4 z1) ∈ S3

and observe that S3, regarded as a group, contains cyclic subgroups of order four, so we may define
the action of Z(4) on S3 by

(2.4) (n, (z0, z1)) ∈ Z(4)× S3 7−→ n · (z0, z1) = hn(z0, z1) ∈ S3.

We need to show that the only element that fixes points in this action is the identity element. This
can be checked easily, since

hn(z0, z1) = (z0, z1) ⇐⇒ (e
2πin

4 z0, e
2πi3n

4 z1) = (z0, z1) ⇐⇒ e
2πin

4 z0 = z0, e
2πi3n

4 z1 = z1.

Since z0 or z1 are different from zero, we have for all k ≥ 0

e
2πin

4 z0 = z0 ⇐⇒
2πin

4
= 0 + 2πik ⇐⇒ n = 4k;

e
2πi3n

4 z1 = z1 ⇐⇒
2πi3n

4
= 0 + 2πik ⇐⇒ 2πi3n = 8πik.

Clearly n ≡ 0 mod 4 and therefore the only fixed points are under the identity action of Z(4).
This means that Z(4) acts freely on S3. ut
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The notion of properly discontinuous action is well known and can be found in [23, P.143],
namely if X is a G-space, that is, X is a topological space possessing a left action · of a group G
on X and in addition the function θg : x ∈ X → g · x ∈ X is continuous for all g ∈ G, we say that
the action · is properly discontinuous if for each x ∈ X there is an open neighbourhood V of x
such that g1 · V ∩ g2 · V = ∅ for all g1, g2 ∈ G with g1 6= g2.

Corollary 2.2. There are properly discontinuous actions of Q8 and Z(4) on S3. Moreover, the
orbit spaces S3/Q8 and S3/Z(4) are compact and path connected.

Proof. From [23, Theorem 17.2] if we have a finite group G that acts freely on a Hausdorff space
X then the action of G on X is properly discontinuous. From [23, Theorem 7.8] and [23, Theorem
12.4] the image of a compact, path connected space is itself compact and path connected. ut

Fundamental groups of spaces of orbits can be easily computed when the actions are given.
Details can be found in [23, Chapters 18 and 19]. Therefore we may conclude that

Lemma 2.3. The fundamental group π(S3/Q8) of the space of orbits S3/Q8 via the action (2.3)
is isomorphic to Q8. Moreover π(S3/Z(4)) ∼= Z(4) via the action (2.4).

Proof. We may apply [23, Theorem 19.4], that is, we have an orbit space X/G produced by a
properly discontinuous action of a group G on a simply connected space X, then the fundamental
group of the orbit space X/G is isomorphic to the underlying group G. ut

Groups acting on spheres deserve attention in literature. There are two conditions that a finite
group G acting freely on Sn must satisfy, according to [19, Page 75].

Remark 2.4. The following conditions are well known

(a) Every abelian subgroup of G is cyclic. This is equivalent to saying that G contains no
subgroup Z(p)× Z(p) with p prime.

(b) G contains at most one element of order 2.

Because of Remark 2.4, it is not surprising that Z(4) acts freely on S3 since it is a finite cyclic
group of order four. On the other hand, it is useful to note that:

Remark 2.5. The dihedral group D8 of order 8 does not act freely on S3 since it fails on condition
(b) of Remark 2.4: There are in fact involutions in D8. Structurally D8 is very similar to Q8, e.g.
[Q8, Q8] ∼= [D8, D8] ∼= Z(2), Z(Q8) ∼= Z(D8) ∼= Z(2) and Q8/Z(Q8) ∼= D8/Z(D8) ∼= Z(2) × Z(2)
but the presence of more involutions makes the difference between Q8 and D8.

In fact Zimmermann and others [31, 33, 34, 35, 36] developed the theory of group actions on
spheres in a series of fundamental contributions, illustrating the properties that finite (or even
infinite) groups must have in order to act on spheres of low dimension, i.e. S2, S3 and S4.

Remark 2.6. It is useful to know that [31, 34, 35, 36] explores the orientation-preserving topolog-
ical actions on S3 (and on the euclidean space R3), while [36] deals specifically with the following
question: Is there a finite group G which admits a faithful topological or smooth action on a sphere
Sd (of dimension d) but does not admit a faithful, linear action on Sd ? For each dimension d > 5,
there is indeed a finite group G which admits a faithful topological action on Sd (but G is not
isomorphic to a subgroup of the real orthogonal group O(d+ 1), see again [36]).

Remarks 2.4, 2.5 and 2.6 show that the theory of actions of groups on spheres may be developed
more generally than what is presented here for S3. We indeed use this theory for our scopes.

3. Central products and subdirect products

We introduce some results of general nature on central products of groups, dividing the present
section in two parts, one with more emphasis on the general constructions, and another one which
is specific for the Pauli group.
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3.1. Classical properties of central products of groups. We need to fix some notation,
mentioned in [23]. The inclusion map i : U → X, where U ⊆ X, is the map that takes a point
x ∈ U to itself in X. And this can induce a homomorphism on fundamental groups that we denote
by i∗. In the language of combinatorial group theory, if X is a topological space; U and V are
open, path connected subspaces of X; U ∩ V is nonempty and path-connected; w ∈ U ∩ V ; then
the natural inclusions i1 : U ∩ V → U , i2 : U ∩ V → V , j1 : U → X and j2 : V → X for the
following commutative diagram

U ∩ V i1−−−−→ U

i2

y yj1
V

j2−−−−→ X
that induces another commutative diagram on the corresponding fundamental groups, given by

π(U ∩ V,w)
(i1)∗−−−−→ π(U,w)

(i2)∗

y y(j1)∗

π(V,w)
(j2)∗−−−−→ π(X,w)

Here it is possible to interpret π(X,w) as the free product with amalgamation of π(U,w) and
π(V,w) so that, given group presentations:

π(U,w) = 〈u1, · · · , uk | α1, · · · , αl〉 = 〈S1 | R1〉;
π(V,w) = 〈v1, · · · , vm | β1, · · · , βn〉 = 〈S2 | R2〉;

π(U ∩ V,w) = 〈w1, · · · , wp | γ1, · · · , γp〉 = 〈S | R3〉;
and one can describe π(X,w) in terms of generators and relators

π(X,w) = 〈u1, . . . , uk, v1, · · · , vm |
α1, . . . , αl, β1, . . . , βn, (i1)∗(w1)((i2)∗(w1))−1, . . . , (i1)∗(wp)((i2)∗(wp))

−1〉
= 〈S1 ∪ S2 | R1 ∪R2 ∪RS〉,

where RS is the set of words of the form (i1)∗(a)((i2)∗(a))−1 with a ∈ S. See details in [23,
Chapters 23, 24, 25 and 26]. There is an alternative way to view a group presentation and that
is as a quotient group of another group; it is well known fact in combinatorial group theory [25].
In order to give a lemma that shows us this let us first recall that the normal subgroup of a
group generated by a set of elements is the smallest normal subgroup containing these elements, or
equivalently, it is the subgroup generated by the set of elements and their conjugates.

Lemma 3.1. Let G have the presentation 〈a, b, c, ... | P,Q,R, ...〉, where a, b, c, ... are generators
of G and P = P (a, b, c, ...), Q = Q(a, b, c, ...), R = R(a, b, c, ...), ... are words in G that give us the
relators. Let N be the normal subgroup of G generated by the words S(a, b, c, ...), T (a, b, c, ...), ... in
G, then the quotient group G/N has the presentation 〈a, b, c, ... | P,Q,R, ..., S, T, ...〉.

Proof. The proof and details can be found in [25, Theorem 2.1]. ut

In particular, we can describe the quotients of the free groups and this gives a powerful tool, in
order to think at arbitrary groups via appropriate quotients of free groups.

Corollary 3.2. If F is the free group on a, b, c, ... and N is the normal subgroup of F generated
by P (a, b, c, ...), Q(a, b, c, ...), R(a, b, c, ...), ..., then F/N = 〈a, b, c, ... | P,Q,R, ...〉.

Proof. See [25, Corollary 2.1]. ut

We reprove [14, Theorem 19.1] via commutative diagrams, since the logic will be useful later on.

Lemma 3.3. Let G1, G2, and H be groups, let εi : Gi → H be an epimorphism, and write
Ki = ker(εi)(i = 1, 2). Let D = G1 × G2 and G = {(g1, g2) : gi ∈ Gi and ε1(g1) = ε2(g2)}. Then
G is a subgroup of D, and there exist epimorphisms δi : G→ Gi such that

(a) ker(δ1) = G ∩G2
∼= K2 and ker(δ2) = G ∩G1

∼= K1,
(b) ker(δ1) ker(δ2) = K1 ×K2, and
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(c) G/(K1 ×K2) ∼= H.

Proof. From the assumptions, we may consider the following commutative diagram, where δi =
πi ◦ ι is clearly an epimorphism, and check that the thesis is satisfied when K1 = ker(δ2) and
K2 = ker(δ1);

G G1 ×G2 G2

G1 ×G2 G1 H

δ2

δ1

ι

ι

π2

π1 ε2

π1 ε1

ut

Following [14], the subgroup G of G1 × G2 constructed in Lemma 3.3 is a subdirect product of
G1 and G2. On the other hand,

Definition 3.4. An arbitrary group C is a central product of its subgroups A and B, if C = AB
and [A,B] = 1.

We use the notation C = A ◦ B when we are in a situation like Definition 3.4. Note that both
A and B are normal in C in Definition 3.4; moreover A ∩ B 6 Z(A) ∩ Z(B), where Z(A) = {a ∈
A | ax = xa ∀x ∈ A} denotes the center of A.

Lemma 3.5. Let A,B be subgroups of a group G, D = A × B and Ā = A × 1 and B̄ = 1 × B.
Then the following statements are equivalent:

(a) G is a central product of A and B;
(b) There exists an epimorphism ε : D → G such that ε(Ā) = A, ε(B̄) = B;

In particular, if G is a central product of A and B, then G is a subdirect product of A and B.

Proof. This proof can be found in [14, Lemma 19.4], but we report it with a different argument
which we will be useful later on.(a)⇒ (b): If G = AB with [A,B] = 1 then the map ε : (a, b) 7→ ab
is clearly an epimorphism with the required properties. (b) ⇒ (a): Since ε is an epimorphism,
we have G = ε(D) = ε(A × B) = ε(ĀB̄) = ε(Ā)ε(B̄) = AB. Moreover, [A,B] = [ε(Ā), ε(B̄)] =
ε([Ā, B̄]) = 1. So the first part of the result follows. In particular, we apply Lemma 3.3 with
G1 = A and G2 = B, so the second part of the result follows. ut

Lemma 3.5 basically says that a group which can be written as the central product of two groups
A and B must be necessarily isomorphic to a quotient of A×B.

3.2. Applications to the group of Wolfgang Pauli. Now one can focus on the Pauli group P
and find an equivalent presentation for (1.2), involving Q8 and Z(4).

Lemma 3.6. The group P can be presented by

P = 〈u, xy, y | u4 = x2 = 1, u2 = y2, uy = yu, yx = xy, x−1ux = u−1〉.
Moreover P = Q8 ◦ Z(4), where

Q8 = 〈u, xy | u4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1〉 and Z(4) = 〈y | y4 = 1〉.

Proof. Consider P as in (1.2) and define

u = XY, x = Y and y = XY Z.

Then we need to show that the relations in (1.2) can be generated by the relations in the thesis.
First of all we will derive the equations X2 = Y 2 = Z2 = 1. We begin to note that

(3.1) x2 = 1 =⇒ Y 2 = 1,

so one equation in(1.2) is obtained and (3.1) allows us to conclude that

(3.2) x−1ux = u−1 =⇒ Y −1XY Y = (XY )−1 =⇒ Y −1XY Y = Y −1X−1 =⇒ XY Y = X−1
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XXY Y = 1 =⇒ X2Y 2 = 1 =⇒ X21 = 1 =⇒ X2 = 1

so a second equation in (1.2) is obtained. Now we need to show that

(3.3) uy = yu =⇒ XYXY Z = XY ZXY =⇒ XY Z = ZXY,

in order to derive the following equation

(3.4) u2 = y2 =⇒ XYXY = XY ZXY Z =⇒ XY = ZXY Z

=⇒ XY = XY ZZ =⇒ 1 = Z2

So we have shown until now that X2 = Y 2 = Z2 = 1.
Now we go ahead to show the equations (Y Z)4 = (ZX)4 = (XY )4 = 1. We begin with

(3.5) u4 = 1 =⇒ (XY )4 = 1,

then with help of (3.3) we derive

(3.6) yx = xy =⇒ XY ZY = Y XY Z =⇒ ZXY Y = Y XY Z

=⇒ ZXY Y = Y ZXY =⇒ ZXY = Y ZX.

Now (3.3) allows us to have two more equations, namely

(3.7) ZXY = Y ZX =⇒ ZXYX = Y ZXX =⇒ ZXYX = Y Z,

(3.8) ZXY = Y ZX ⇐⇒ ZX = Y ZXY =⇒ ZX = Y XY Z.

Therefore we find
(3.9)

(Y Z)4 = Y ZY ZY ZY Z = ZXYXZXYXZXYXZXYX = (ZXY )XZXYXZXYXZXYX

= (Y ZX)XZXYXZXYXZXYX = Y ZXXZXYXZXYXZXYX = Y XY XY ZZXYX

= Y ZZXYXZXYXZXYX = Y (ZZ)XYXZXYXZXYX = Y XY XZXYXZXYX

= Y XY X(ZXY )XZXYX = Y XY X(Y ZX)XZXYX = Y XY XY ZXXZXYX

= Y XY XY Z(XX)ZXYX = Y Z(XX)ZXYXZXYXZXYX

= Y XY XY (ZZ)XYX = Y XY XYXYX = Y (XYXYXY )X

= Y (XY )3X = Y (XY )−1X = Y Y −1X−1X = 1

and in analogy (ZX)4 = 1. This allows us to conclude that (1.2) is equivalent to the presentation
in the thesis. Now we consider the map

ε : (a, b) ∈ Q8 × Z(4) 7→ ab ∈ P

and we note that xy = yx in P , hence for all α, β, γ, δ ∈ {0, 1, 2, 3} we have

ε(uα, yβ)ε((xy)
γ
, yδ) = (uαyβ)((xy)

γ
yδ)

= uαyβxγyγ+δ = uαxγyβ+γ+δ = ε(uα(xy)
γ
, yβ+δ) = ε((uα, yβ)((xy)

γ
, yδ)),

which is enough to conclude that ε is homomorphism of groups, because we checked on the generic
generators of Q8 × Z(4). Finally, ε is surjective by construction, so P = Q8 ◦ Z(4) by Lemma 3.5.

ut

Viceversa the notion of central product can allow us to construct presentations.

Lemma 3.7. If G = A ◦ B with A = 〈S | RA〉 and B = 〈T | RB〉 are presentations for A
and B, then G = 〈S ∪ T | RA ∪ RB ∪ RC ∪ Rε〉, where RC = {(a, b) ∈ S × T | ab = ba} and
Rε = {(a, b) ∈ S × T | ab = 1}.

Proof. From Lemma 3.5 if we have the epimorphism ε : (a, b) ∈ A × B 7→ ab ∈ G, then G =
(A×B)/ ker(ε). A presentation for A×B is of the form 〈S ∪ T | RA ∪RB ∪RC〉, because in the
definition of A × B we require [A,B] = 1. Now ker(ε) induces the additional relation Rε and so
(A×B)/ ker(ε) is presented as claimed, because of Lemma 3.1. ut



8 F. BAGARELLO, Y. BAVUMA, AND F.G. RUSSO

4. Proof of Theorem 1.1

We begin to prove Theorem 1.1.

Proof. Case (i). We refer to [23, Chapter 23] for the formulation of the theorem of Seifert and Van
Kampen, and the corresponding terminology has been reported in Paragraph 3.1 above exactly as
in [23, Chapter 23]. First of all we note that we are in the assumptions of the theorem of Seifert
and Van Kampen because of Lemmas 2.1 and 2.3 and Corollary 2.2. In addition, these results show
that U , V , U ∩V , X are compact and path connected spaces. Therefore π(X,x0) is not dependent
on the choice of x0 ∈ U ∩ V . Now we construct π(X) directly:

π(U) = Q8 = 〈u, xy | u4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1〉 = 〈S1 | R1〉,

π(V ) = Z(4) = 〈y | y4 = 1〉 = 〈S2 | R2〉,

π(U ∩ V ) = Z(2) = 〈u2 | u4 = 1〉 ⊆ π(U),

π(U ∩ V ) = Z(2) = 〈y2 | y4 = 1〉 ⊆ π(V )

and one can check that

(i1)∗ : u2 ∈ π(U ∩ V ) ⊆ π(U) 7→ (i1)∗(u
2) = u2 ∈ π(U),

(i2)∗ : y2 ∈ π(U ∩ V ) ⊆ π(V ) 7→ (i2)∗(y
2) = y2 ∈ π(V )

are homomorphisms in accordance to the theorem of Seifert-Van Kampen. Moreover

S = {u2 | u ∈ π(U)} = {y2 | y ∈ π(V )}

is the set of generators of π(U ∩ V ), but Z(2) has only one generator so we may deduce that

RS = {u2y2 = 1 | u ∈ π(U), y ∈ π(V )} = {u2 = y2 | u ∈ π(U), y ∈ π(V )}

are the relations on π(X) induced by π(U ∩ V ) from the theorem of Seifert and van Kampen.
We conclude that

π(X) = 〈S1∪S2 | R1∪R2∪RS〉 = 〈u, xy, y | u4 = y4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1, u2 = y2〉.

Let N be the normal subgroup generated by [S1, S2] = {s−1
1 s−1

2 s1s2 | s1 ∈ S1, s2 ∈ S2} in π(X).
By Lemma 3.1 we get the following presentation for the quotient group:

(4.1) π(X)/N = 〈S1 ∪ S2 | R1 ∪R2 ∪R3 ∪RS〉

= 〈u, xy, y | u4 = y4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1, u2 = y2, uy = yu, xyy = yxy〉
where

R3 = {s1s2 = s2s1 | s1 ∈ S1, s2 ∈ S2},
and we claim that (4.1) is equivalent to the following presentation of Lemma 3.6

(4.2) P = 〈u, xy, y | u4 = x2 = 1, u2 = y2, uy = yu, yx = xy, x−1ux = u−1〉.

Since (4.1) and (4.2) have the same generators, the relations in (4.2) will be deduced from the
relations in (4.1) and viceversa. Firstly we consider (4.1) and note that

xyy = yxy ⇐⇒ xy2 = yxy ⇐⇒ xy2y3 = yxyy3 ⇐⇒ xy5 = yxy4

⇐⇒ xyy4 = yxy4 ⇐⇒ xy = yx

and so x and y commute. Similarly one can see that u commutes with y. Secondly we have

u2 = (xy)2 ⇐⇒ u2 = x2y2 ⇐⇒ u2 = x2u2 ⇐⇒ u2u2 = x2u2u2 ⇐⇒ u4 = x2u4 ⇐⇒ 1 = x2.

Thirdly we note that

(xy)−1u(xy) = u−1 ⇐⇒ x−1y−1uxy = u−1 ⇐⇒ x−1y−1uyx = u−1

⇐⇒ x−1y−1yux = u−1 ⇐⇒ x−1ux = u−1

Finally all the other relations in (4.1) are clearly present in Lemma 3.6 so our claim follows and
we may conclude that P ∼= π(X)/N . Now we apply Lemma 3.7 and realize that P = π(U) ◦ π(V ).
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Case (ii). From [23, Exercise 11.2 (d)] both U and V are 3-manifolds and so [23, Exercise 11.5
(b)] implies that U#V is a 3-manifold. Now we observe from [11] that the action of Q8 on the
Riemannian sphere S3 (with the round metric dS3 that is derived from the Riemannian metric

ds2 =
4‖dx‖2

(1 + ‖x‖)2
,

where ‖dx‖2 is the usual Riemannian metric on R2) produces the Riemannian space of orbits
U = S3/Q8, with canonical quotient map pU : S3 → U with the induced distance function on
u1, u2 ∈ U ,

dU (u1, u2) = inf
x∈p−1

U (u1),y∈p−1
U (u2)

dS3(x, y)

and similarly this happens for V with dV , because the actions are free and properly discontinuous
(see Lemma 2.1), as well as Q8 and Z(4) being groups of isometries on S3 (see [10, Remark 41]).

According to the terminology of [10, Definition 22], a pair (M,Γ) where M is a Riemannian
manifold and Γ is a (proper) discontinuous group of isometries acting effectively on M is called
“good Riemannian orbifold”. The underlying space of the orbifold is M/Γ. In the case of a good
Riemannian orbifold (M,Γ) it follows that for x, y ∈M/Γ,

d(x, y) = dM (π−1(x), π−1(y)) := inf
x̃∈π−1(x),ỹ∈π−1(y)

dM (x̃, ỹ)

and this is exactly the situation we have here with M = S3 and Γ as indicated in Lemmas 2.1
and 2.3. This means that we can define a metric on the disjoint union of the subspaces U ′ and V ′

(which are U and V without the open balls of a connected sum construction) by:

d′(x, y) =

 dU ′(x, y), ifx, y ∈ U ′
dV ′(x, y), ifx, y ∈ V ′
∞, otherwise.

Using this metric we can endow U#V with the structure of Riemannian space and consider the
quotient semi-metric on U#V in the sense of [11, Definition 3.1.12]

dR(x, y) = inf{
k∑
i=1

d′(pi, qi) | p1 = x, qk = y, k ∈ N},

where R is the equivalence relation induced by #. In particular, dR(x, y) is a Riemannian metric
on U#V , since U ′ ∪ V ′ is compact (see [11, Exercise 3.1.14]).

From [23, Exercise 26.6(c)] we have π(U#V ) ' π(U) ∗ π(V ) and so

π(U#V ) = Q8 ∗ Z(4) = 〈u, xy, y | u4 = 1, u2 = (xy)2, (xy)−1u(xy) = u−1, y4 = 1〉.
Imposing the relations uy = yu, xyy = yxy, u2 = y2, we consider the existence of a normal
subgroup L in π(U#V ) by Lemma 3.1, and get again the presentation (4.1), which we have seen to
be equivalent to that in Lemma 3.6. Therefore P = π(U) ◦ π(V ) and Case (ii) follows completely.

ut

It is appropriate to make some comments here on the choice of S3 in the context of the present
investigations. Looking at [19, Chapters 1, 4] or at [23, Chapter 29], we know that a path connected
space whose fundamental group is isomorphic to a given group G and which has a contractible uni-
versal covering is a K(G, 1) space, also known as Eilenberg-MacLane space (of type one). Roughly
speaking, these topological spaces answer the problem of realizing a prescribed group G as fun-
damental group of an appropriate path connected space X. Eilenberg-MacLane spaces are well
known in algebraic topology, so one could wonder why we didn’t use them.

A first motivation is that X is constructed as a polyhedron (technically, X is a cellular complex,
see [19, Chapter 0]) so it is in general difficult to argue whether X possesses a Riemannian structure
or not, when we construct X with the method of Eilenberg and Mac Lane. Our direct observation
of the properties of S3 allows us to find an interesting behaviour, looking at the final part of the
proof of Theorem 1.1: the Pauli group can be constructed in the way we made and it can be
endowed by a Riemannian structure, arising from the Riemannian metric which we introduced.

Then we come to a second motivation which justifies our approach via S3. Finding a Riemann-
ian structure, in connection with a group, has a relevant meaning in several models of quantum
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mechanics. For instance, Chepilko and Romanenko [12] produced a series of contributions, illus-
trating how certain processes of quantization and some sophisticated variational principles may be
easily understood in presence of Riemannian manifolds and groups. In this perspective one can
also look at [30], which shows again the strong simplification of the structure of the hamiltonian
in presence of models where we have both a Riemannian manifold and a group of symmetries.
There are of course more examples on the same line of research and this shows the relevance of our
construction once more.

Last (but not least) we know from [20, Corollary 9.59, (iv), The Sphere Group Theorem] that:
the only groups on a sphere are either the two element group S0 = {1,−1}, or the circle group
S1, or the group S3 of quaternions of norm one (note that S3 may be identified with SU(2) and
we gave details in Section 2 of the present paper). Note that all of them are compact connected
Lie groups (apart from S0 which is disconnected) and we know from Lie theory that a structure of
differential manifold can be introduced on compact connected Lie groups via the Baker–Campbell–
Hausdorff formalism [20, Chapters 5 and 6]. Therefore the relevance of S3 appears again among
all the possible spheres Sn, which possesses a group structure, because it allows us to produce also
a differential structure on P , realized in the way we made.

We end with an observation which was surprising in our investigation.

Remark 4.1. In [32], it was discussed the decomposition P = D8 ◦ Z(4) with an appropriate
study of the abelian subgroups of P arising from this decomposition; so not only P = Q8 ◦ Z(4) is
true. On the other hand, D8 cannot act freely on any Sn by Remarks 2.4 and 2.5, so one cannot
replace the role of Q8 with D8 in the proof of Theorem 1.1, even if algebraically Q8 and D8 are
very similar. This is a further element of interest for the methods that we offered here.

5. Proof of Theorem 1.2 and connections with physics

In [1, 2] connections between some purely algebraic results and physics, and Quantum Mechanics
in particular, have been considered. The bridge between the two realms was provided by the so-
called pseudo-bosons, studied intensively in a series of recent contributions [4, 5] . In particular,
we refer to [5] for a (relatively) recent review. In this perspective, it is natural to see if and how the
Pauli group P is related to mathematical objects which, in some sense, are close to pseudo-bosons.
As we will show here, this is exactly the case: pseudo-fermions, which are a sort of two-dimensional
version of pseudo-bosons, can be used to describe the elements X, Y and Z of P in (1.1), and,
because of this, they appear to have a direct physical meaning. We refer to [5, 6, 7] for the general
theory of pseudo-fermions, and to [8] for several physical applications of these excitations. We
should also mention that similar pseudo-particles have been considered by several authors in the
past decades. We only cite here few contributions, [26, 28, 18]. To keep the paper self-contained,
we have also given a crash course on pseudo-fermions in Appendix.

The idea is quite simple: we consider two operators a and b on the Hilbert space H = C2

satisfying the following rules:

(5.1) {a, b} = ab+ ba = 11, a2 = b2 = 0,

where {a, b} is the anticommutator between a and b, and 11 is the identity operator on H. Of
course, if b = a†, the adjoint of a, (5.1) returns the so-called canonical anti-commutation relations,
CAR. The operators a and b are the basic ingredients now to define the following operators on H:

(5.2) µ1 = b+ a, µ2 = i(b− a), µ3 = [a, b] = ab− ba.

In particular, the square brackets are called the commutator between a and b. Incidentally we
observe that {a, b} = 11, because of the (5.1). The main result of this section is that the set
Pµ = {µ1, µ2, µ3} is a concrete realization of the Pauli group. The proof of this claim is based on
several identities which can easily be deduced out of (5.1). More in details, we have that

(5.3) µ2
j = 11, j = 1, 2, 3, and µ1µ2 = iµ3, µ2µ3 = iµ1, µ3µ1 = iµ2.

In fact we have

µ2
1 = (b+ a)2 = b2 + ba+ ab+ a2 = {a, b} = 11,
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since a2 = b2 = 0 and {a, b} = 11. Similarly we can check that µ2
2 = 11. Slightly longer is the proof

that µ2
3 = 11. We have

µ2
2 = (ab− ba)2 = abab+ baba− abba− baab = (11− ba)ab+ (11− ab)ba = ab+ ba = 11,

where we have used several times the equalities in (5.1). The proof of the other equalities in (5.1)
is similar, and will not be given here. However, these equalities are relevant to prove that, indeed,
Pµ is a Pauli group. Infact, we have (µ1µ2)4 = (iµ3)4 = i4(µ2

3)2 = 112 = 11. Similarly we can check
that (µ2µ3)4 = (µ3µ1)4 = 11, so that our claim is proved.
Pµ is not the only Pauli group which can be constructed out of pseudo-fermionic operators.

In fact, Pρ = {ρj = µ†j , j = 1, 2, 3} is also a Pauli group, meaning with this that the following
equalities are all satisfied:

ρ2
j = 11, j = 1, 2, 3, and ρ1ρ2 = iρ3, ρ2ρ3 = iρ1, and ρ3ρ1 = iρ2.

In [8, 5] many applications of pseudo-fermions to physics have been discussed. This suggests
that the theory developed here is somehow connected to physics, and in particular to Quantum
Mechanics, as the following result connected to a two-levels atom with damping clearly shows.

In 2007 [13], an effective non self-adjoint hamiltonian describing a two level atom interacting
with an electromagnetic field was analyzed in connection with pseudo-hermitian systems, [9]. Later
(see [6]) it has been shown that this model can be rewritten in terms of pseudo-fermionic operators,
and, because of what discussed in this section, in terms of Pauli groups.

Proof of Theorem 1.2. The starting point is the Schrödinger equation

(5.4) iΦ̇(t) = HeffΦ(t), Heff =
1

2

(
−iδ ω
ω iδ

)
.

Here δ is a real quantity, related to the decay rates for the two levels, while the complex parameter
ω characterizes the radiation-atom interaction. We refer to [13] for further details. It is clear that

Heff 6= H†eff . It is convenient to write ω = |ω|eiθ. Then, we introduce the operators

a =
1

2Ω

(
−|ω| −e−iθ(Ω + iδ)

eiθ(Ω− iδ) |ω|

)
, b =

1

2Ω

(
−|ω| e−iθ(Ω− iδ)

−eiθ(Ω + iδ) |ω|

)
.

Here

Ω =
√
|ω|2 − δ2,

which we will assume here to be real and strictly positive. A direct computation shows that
{a, b} = 11, a2 = b2 = 0. Hence a and b are pseudo-fermionic operators. Moreover, Heff can be
written in terms of these operators as

Heff = Ω

(
ba− 1

2
11

)
.

It is now easy to identify the elements of Pµ, using (5.2). We get

µ1 =
1

Ω

(
−|ω| −iδe−iθ
−iδeiθ |ω|

)
, µ2 = i

(
0 e−iθ

eiθ 0

)
, µ3 =

1

Ω

(
iδ −|ω|e−iθ

−|ω|eiθ −iδ

)
,

which are therefore a (non-trivial, and physically motivated) representation of the Pauli group. In
terms of these operators Heff acquires the following particularly simple expression:

Heff = −Ω

2
µ3.

The elements u, xy and y in Lemma 3.6 can be computed and turns out to be

u = iµ3 =
i

Ω

(
iδ −|ω|e−iθ

−|ω|eiθ −iδ

)
, xy = iµ2 = −

(
0 e−iθ

eiθ 0

)
, y = i11.

This produces an interesting consequence for this model. Since y is proportional to the identity
element, and since Q8 only contains µ2 and µ3, we interpret the elements of Z(4) as the constants
of motion of the physical system described by Heff , or by its generalized form

H ′eff = −Ω

2
µ3 + αµ2,
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for all possible real α. This is an interesting, and somehow unexpected, feature of the model:
going from a larger Pµ to a smaller group Q8 does not affect at all the dynamical aspects (i.e., the
generator of the time evolution) of the system, since these are all contained in Q8. ut

Remark 5.1. It is useful to stress that, while the algebraic construction discussed here is totally
independent of what deduced in the first part of the paper, the last part of the proof above, and
in particular the role of Z(4) and Q8 for this specific system, appears quite interesting, and clearly
open the possibility that similar results can also be found in other quantum mechanical models
described in terms of the Pauli group. The natural question, which we will consider in a future
paper, is whether for this kind of systems the factor group Z(4) (appearing in P = Q8 ◦ Z(4))
always contains the physical constants of motion. In fact, we do not expect this is a completely
general feature, but we believe it can be true under some additional, and reasonable, assumptions.
We will return on this aspect in the conclusions.

We end this section by noticing that the µj return X, Y and Z in (1.1) under suitable limiting
conditions on the parameters: if θ, δ → 0, then u→ −iX and xy → −iY . This shows clearly that
our present representation extends that of the previous sections.

6. Conclusions

Some properties, which have been noted in Theorem 1.2, may be extended to mathematical
models, where pseudo-fermionic operators, or generalizations of them, are involved. This is related
with the structure of P in Theorem 1.1 and Lemma 3.6.

Look at the proof of Theorem 1.1 and at the structure of P = Q8 ◦ Z(4) ' π(U ∪ V )/N , where
U = S3/Q8 and V = S3/Z(4) follow the notations of Theorem 1.1. We noted in the final part of
the proof Theorem 1.2 that going from a larger Pµ to a smaller group Q8 does not affect at all
the dynamical aspects (i.e., the generator of the time evolution) of the system, since these are all
contained in Q8. Looking at Remarks 2.4, 2.5 and 2.6, we believe that:

Conjecture 6.1. Groups of the form A = Q8 ◦ B, where B is an abelian group containing at
most one element of order 2 may have a construction of the Hamiltonian as we made with Heff

in Theorem 1.2, producing the fact that going from a larger group A to a smaller group Q8 all the
dynamical aspects are not affected.

The behaviour, which we have conjectured above (and shown rigorously in Theorem 1.2) can be
justified, on the basis of the results of Sections 2, 3 and 4.

If we look at the proof of Theorem 1.2 from a different perspective, we may note that the
constants of the motion are somehow unaffected by the operator of central product, when we have
P = Q8 ◦ Z(4). Conjecture 6.1 motivates us to think that the same behaviour happens when we
are in presence of an appropriate Hamiltonian and of a group with the structure A = Q8 ◦B, where
B can be, for instance, Z(2m) for any m ≥ 2. In fact all such groups act freely on S3.

Due to [20, Corollary 9.59, (iv), The Sphere Group Theorem], which explains the peculiarity of
S3 among all Sn, we do not think to be reasonable to expect appropriate interpretations of the
constants of the motions for Hamiltonians which can be constructed in the same way we did in
Theorem 1.2 but with groups of the form C = D ◦E for arbitrary choices of finite groups D and E.
Maybe one could think at more general frameworks, not involving pseudo-fermionic operators, but
then one could loose the information at the level of the physics, while working in the direction of
Conjecture 6.1 above, one could get to a significant idea in the mathematical models of quantum
mechanics with pseudo-fermions. We hope to give more results in this direction in a near future.

Acknowledgements

F.B. acknowledges support from Palermo University and from the Gruppo Nazionale di Fisica
Matematica of the I.N.d.A.M. The other two authors (Y.B. and F.G.R.) thank Shuttleworth Post-
graduate Scholarship Programme 2019 and NRF for grants no. 118517 and 113144.

Appendix

The present appendix is meant to make the paper self-contained, by giving some essential
definitions and results on pseudo-fermions. We consider two operators a and b, acting on the
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Hilbert space H = C2, which satisfy the following rules, [6]:

(A.1) {a, b} = 11, {a, a} = 0, {b, b} = 0,

where {x, y} = xy + yx is the anti-commutator between x and y. We first observe that a non zero
vector ϕ0 exists in H such that aϕ0 = 0. Similarly, a non zero vector Ψ0 exists in H such that
b†Ψ0 = 0. This is because the kernels of a and b† are non-trivial.

It is now possible to deduce the following results. We first introduce the following non zero
vectors

(A.2) ϕ1 := b ϕ0, Ψ1 = a†Ψ0,

as well as the non self-adjoint operators

(A.3) N = ba, N† = a†b†.

Of course, it makes no sense to consider bn ϕ0 or a†
n
Ψ0 for n ≥ 2, since all these vectors are

automatically zero. This is analogous to what happens for ordinary fermions. Let now introduce
the self-adjoint operators Sϕ and SΨ via their action on a generic f ∈ H:

(A.4) Sϕf =

1∑
n=0

〈ϕn, f〉 ϕn, SΨf =

1∑
n=0

〈Ψn, f〉 Ψn.

The following results can be easily proved:

(A.5) aϕ1 = ϕ0, b†Ψ1 = Ψ0.

(A.6) Nϕn = nϕn, N†Ψn = nΨn, for n = 0, 1.

If the normalizations of ϕ0 and Ψ0 are chosen in such a way that 〈ϕ0,Ψ0〉 = 1, then

(A.7) 〈ϕk,Ψn〉 = δk,n, for k, n = 0, 1.

Sϕ and SΨ are bounded, strictly positive, self-adjoint, and invertible. They satisfy

(A.8) ‖Sϕ‖ ≤ ‖ϕ0‖2 + ‖ϕ1‖2, ‖SΨ‖ ≤ ‖Ψ0‖2 + ‖Ψ1‖2,

(A.9) SϕΨn = ϕn, SΨϕn = Ψn,

for n = 0, 1, as well as Sϕ = S−1
Ψ and the following intertwining relations

(A.10) SΨN = N†SΨ, SϕN
† = NSϕ.

Notice that, being biorthogonal, the vectors of both Fϕ and FΨ are linearly independent. Hence
ϕ0 and ϕ1 are two linearly independent vectors in a two-dimensional Hilbert space, so that Fϕ is
a basis for H. The same argument obviously can be used for FΨ. More than this: both these sets
are also Riesz bases. We refer to [5] for more details.
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