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Abstract: A system consisting of two qubits and a resonator is considered in the presence of different
sources of noise, bringing to light the possibility of making the two qubits evolve in a synchronized
way. A direct qubit–qubit interaction turns out to be a crucial ingredient, as well as the dissipation
processes involving the resonator. The detrimental role of the local dephasing of the qubits is also
taken into account.
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1. Introduction

Synchronization of physical systems plays an important role in many fields [1]. It
consists of a dynamical alignment of systems, which means that different physical systems,
characterized by different natural frequencies, due to some coupling, turn out to evolve
in such a way that they exhibit a common frequency, usually different from the natural
ones. The systems can be classical, as for example two clocks or metronomes [2,3], people
walking on a bridge [4], or biological systems [5], but they can also be quantum. The
typical situation involves two or more interacting quantum oscillators, possibly forming
a network, where clusters of synchronized oscillators can be obtained [6–8]. In the realm
of quantum mechanics, also two-level systems have been considered, as for example the
case of two interacting two-state systems undergoing dissipation, which dynamically
align after a certain time [9,10], or two atoms in a cavity coupled through the relevant
mode [11]. In all such cases, the key ingredients to obtain synchronization are the for-
mation of correlations (typically in the form of entanglement) and dissipation, which
drives the system towards suitable superpositions of a limited number of states sharing
one frequency or different frequencies, but very close ones. Indeed, generally speaking,
the persistence of quantum correlations and entanglement in dissipating systems even at
equilibrium has extensively been proven [12–14], but in out-of-equilibrium systems, such
correlations can induce dynamical alignment. Recently, the possibility of obtaining the
synchronization of two quantum harmonic oscillators coupled to the same dissipating
qubits has been predicted [15]. Here, we want to analyze the complementary situation,
consisting of two qubits interacting with a dissipating harmonic oscillator, which are driven
to synchronization. In fact, in standard applications, for example in quantum information
and technologies, qubits play a fundamental role. Therefore, realizing networks of syn-
chronized qubits that exchange information, instead of the typical networks of oscillators,
could be of significant usefulness.

There are several physical scenarios that one can focus on, but superconducting de-
vices are one of the most promising. For example, over the last few decades, circuit QED
involving superconducting artificial atoms has proven to be a more versatile scenario
than the more traditional counterpart, i.e., cavity QED [16,17]. Superconducting circuits
offer for example the possibility to reach a strong coupling regime where the joint system
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becomes anharmonic, allowing experiments in nonlinear optics and quantum information
at the single-photon level [18]. Superconducting devices can be fabricated using modern
integrated circuit technology, and their properties, as for example their energies, can be
adjusted in situ and determined by circuit parameters, allowing for implementing devices
with the desired features [17]. These systems thus offer a rich space of parameters and
possible operation regimes allowing for the realization of a plethora of Hamiltonian models
involving artificial atoms (including qubits as a special case) and resonators [19]. More-
over, superconducting quantum circuits are privileged candidates for large-scale quantum
computing, and they have been used or proposed to implement quantum gates [20,21], as
well as to generate entangled states [22], to show the violation of Bell-type inequalities [23],
or to study thermodynamics at a quantum level [24–27].

Similar to natural atoms, superconducting artificial atoms are plagued by the pres-
ence of environments, so that generally, one has to take into account both dissipation
and decoherence. In this case also, however, we can explore different regions of the
parameters characterized by the nonunitary dynamics of the system. Indeed, different
values and hierarchies of the relevant dissipation and dephasing rates can be considered,
depending for example on whether we are considering transmonic qubits coupled to a
waveguide [28], charge qubits coupled to a superconductor resonator [19], or other possible
configurations [29–31]. The key tool to take into account environmental effects is a master
equation. Generally speaking, in the case of different interacting physical systems, the
master equation can be obtained with a phenomenological approach, by summing up
the dissipators associated with different sources of noise that the single subsystems are
subjected to or by deriving the microscopic master equation starting from the complete
system–environment Hamiltonian, including the interaction between the subsystems from
the beginning [32]. In superconducting devices, microscopic models for the dephasing
mechanisms are available [33], which could be reconsidered in the presence of the inter-
action of the qubits with each other and with the resonator. Generally speaking, in the
weak damping limit, the predictions coming from phenomenological and microscopic
models essentially coincide [34,35]. Therefore, since in this paper, we will focus on the
weak damping, for the sake of simplicity, we will use a phenomenological approach as in
Blais et al. [19].

Dissipation is not necessarily a detrimental occurrence, since in some cases, it can
even help to obtain interesting physical behaviors, as mentioned before in connection
with dynamical alignment. In fact, we show in this paper that a dissipating resonator
can drive two qubits interacting with it in a synchronized state of motion. The material
is organized as follows. In Section 2, the Hamiltonian model describing the system, as
well as the master equation governing its dynamics are presented. Section 3 is devoted
to the discussion of the appearance of possible protected states, and under appropriate
conditions, the occurrence of synchronization phenomena is predicted. Numerical simula-
tions corroborate the theoretical analysis. The detrimental effect of local qubit dephasing
and dissipation is also discussed. Then, in Section 4, the peculiarity of microcanonical
evolutions under pure dephasing is discussed and analyzed. Finally, in Section 5, we give
some conclusive remarks.

2. The Model
2.1. Hamiltonian and Dissipators

Our model consists of two qubits with different energy gaps interacting with a quan-
tum harmonic oscillator (resonator) whose frequency is, in general, different from those of
the two qubits. We also consider a possible direct interaction between the qubits:

H = ∑
j=A,B

Ωj

2
σ

j
z + Ωra†a + ∑

j=A,B
κj(σ

j
−a + σ

j
−a†) + κAB

(
σA
−σB

+ + σA
+σB
−

)
, (1)

where ΩA and ΩB are the natural frequencies of the qubits described by the relevant
Pauli operators σ

j
z, σ

j
x, and σ

j
y; Ωr is the natural frequency of the oscillator described by
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the annihilation and creation operators a and a† and by the number operator a†a; κA
and κB are the qubit–resonator coupling strengths, while κAB is the qubit–qubit coupling
strength; both couplings involve the circular Pauli operators σ

j
± = (σx ± iσy)/2. The

qubit–resonator terms are given in the rotating wave approximation, which is a necessary
approximation since it influences the structure of the eigenstates and, then, as we will see,
the structure of the stable states, which are responsible for the synchronization processes.
This approximation is valid because of the fact that, in the physical conditions we focus on,
the qubit–resonator coupling constant is much smaller than the natural frequencies of the
qubits and oscillator.

Since all the parts of the system interact with the environment, different sources of
noise are present whose effects can be effectively described through a phenomenological
master equation involving local dephasing and dissipation for the qubits and dissipation
for the resonator [19]:

ρ̇ = −i[H, ρ] + γrD[a]ρ + ∑
j=A,B

γjD[σ
j
−]ρ + ∑

j=A,B
γ̃jD[σ

j
z]ρ , (2)

where:
D[X]ρ = XρX† − 1

2
{X†X, ρ} , (3)

and γr, γA, and γB are the decay rates associated with the dissipation processes of the
resonator, qubit A and qubit B, respectively, while γ̃j (j = A, B) are the rates of the local
dephasing processes of the two qubits. We observe that there is no thermal pumping
(which would imply terms such as D[a†] and D[σj

+]), due to the fact that superconducting
devices usually operate at a low temperature.

Generally speaking, one could wonder whether the presence of interactions between
the parts of the system can change the form of the master equation, in the sense that,
starting from a microscopic model of the interaction between the whole system and the
environment and considering the interactions between the subsystems (each qubit and the
resonator), one reaches the so-called microscopic master equation [32], which is proven to
differ from the one obtained by evaluating the dissipator before considering the interaction
between the subsystems. Nevertheless, since deviations between the two approaches occur
in the high-decay regime [34,35], while we focus on the weak-damping limit, for the sake
of simplicity, we use the master equation (2).

2.2. Conservation of the Excitation Number

An important property of the Hamiltonian in (1) is that the total number of excitations,

N̂ = a†a + σA
z + σB

z + 2 , (4)

is a constant of motion, due to the fact that both the free terms and the interaction terms in
the rotating wave approximation conserve it. Here, the constant 2 allows for having only
positive eigenvalues.

This fact implies a block structure for the Hamiltonian involving quadruplets, when
the number of excitations is greater than unity:

|n〉|−−〉 , |n− 1〉|+−〉 , |n− 1〉|−+〉 , |n− 2〉|++〉 , n ≥ 2 . (5)

Then, there is also the triplet with one-excitation states,

|1〉|−−〉 , |0〉|+−〉 , |0〉|−+〉 , (6)

and the singlet, given by the sole ground state |G〉 ≡ |0〉|−−〉, whose energy is EG =
−(ΩA + ΩB)/2.
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In the presence of dephasing, the number operator is still conserved, since the opera-
tors σ

j
z commute with N̂. On the contrary, when dissipation is present, whether involving

the qubits, the oscillator, or both, subspaces with different numbers of excitations are
incoherently coupled and the number operator is not conserved.

3. Protected States and Qubit Synchronization
3.1. Theoretical Analysis

Let us focus on the case γA = γB = γ̃A = γ̃B = 0 and γr 6= 0. Therefore, we have two
two-state systems (the qubits) interacting with a dissipating oscillator (the resonator). Re-
cently, the complementary situation consisting of two oscillators coupled with a dissipating
two-state system has been analyzed [15], and it has been brought to light that, under suit-
able hypotheses, the two oscillators reach an almost stationary regime where they oscillate
at the same frequency, thus leading to their synchronization. The reason for this occurrence
is that there is the possibility to define two new modes (not necessarily the normal modes),
one of which is coupled to the two-state system, then ‘indirectly’ undergoing dissipation,
while the second one is decoupled and then insensitive to dissipation. After a long time,
the dissipating mode loses all its energy, while the other one persists, imposing that the
two oscillators move with a common frequency.

We try here to reproduce a similar behavior, driving the two qubits towards com-
mon oscillations corresponding to some protected transitions. Basically, we look for a
decoherence-free subspace [36,37]. In order to be insensitive to the noise, a quantum state
should belong to the kernel of the dissipator (which implies it does not have a direct
coupling to the environment) and to the kernel of the qubit–oscillator coupling (in order
to avoid indirect coupling to the environment), thus obtaining a state that is interaction-
free [38,39] with respect to the qubit–resonator coupling. By imposing the second condition,[

a
(

κAσA
+ + κBσB

+

)
+ a†

(
κAσA

− + κBσB
−

)]
|P〉 = 0 , (7)

we find:
|P〉 = cos θ|0〉|+−〉+ sin θ|0〉|−+〉 , tan θ = −κA/κB , (8)

as the only possible solution. This state (i.e., the corresponding projector) belongs to the
kernel of the dissipator, since it factorizes the ground state |0〉. However, this is still not
enough to prevent the waste of energy from the state |P〉. Indeed, if it is coupled through
the other Hamiltonian terms (even free terms) to other states that are noise-sensitive, it
can effectively decay. Therefore, we tune the strength of the qubit–qubit interaction to a
specific value, which allows for |P〉 to be an eigenstate of the Hamiltonian. We in particular
require that H|P〉 = EP|P〉, with EP to be determined. Since H|P〉 = [(−κB(ΩA −ΩB)/2 +
κAκAB)|0〉|+−〉+ (κA(ΩB −ΩA)/2− κBκAB)|0〉|−+〉]/(κ2

A + κ2
B)

1/2, we obtain:

κAB =
(ΩA −ΩB)κAκB

κ2
A − κ2

B
, (9)

EP =
(ΩB −ΩA)(κ

2
A + κ2

B)

2(κ2
A − κ2

B)
. (10)

By tuning the qubit–qubit coupling constant κAB to the value of (9), we obtain that
the state |P〉 turns out to be protected from noise. There is another noise-insensitive state,
which is the ground state |G〉. Therefore, after a long time, the only two surviving states
are |P〉 and |G〉, and the system evolution is characterized by a single frequency, which
is the |P〉 − |G〉 transition frequency. It is interesting to note that under the condition
κB/κA =

√
ΩB/ΩA, the energies EP and EG turn out to be equal, which implies the

absence of oscillations in the long-time regime.
It is the case to observe that when κA = κB, the eigenvalue equation can be satisfied

for any value of κAB, provided ΩA = ΩB. However, this is a trivial case that we are not
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interested in, since the two qubits would be synchronized from the beginning, having the
same natural frequencies. Finally, we emphasize that there is no solution for κA = κB and
ΩA 6= ΩB.

3.2. Simulations

Our theoretical analysis is supported by numerical calculations. Since the master
equation describing our system is time-independent, its numerical resolution can be easily
performed through the evaluation of the exponential of the matrix representing the master
equation, multiplied by the time t. Concerning the parameters, we considered typical
values for the natural frequencies and the coupling constants [16,17,19]. The first ones
should lie in the range 5–15 GHz, while the qubit–resonator coupling strength should lie
in the range 10–200 MHz. Compatibly (on a κA = 100 MHz basis), we mainly considered
ΩA/κA = 55, ΩB/κA = 70, Ωr/κA = 64, while κB is of the same order of κA. Regarding
the decay and dephasing rates, the local ones related to the qubits can be made rather
small, having 0.02 MHz for local qubit dissipation and 0.3 MHz for local qubit dephasing,
compatible with γj/κA ∼ 0.0002 and γ̃j/κA ∼ 0.003. The resonator decay rate can be
made even smaller than the qubit counterparts. Nevertheless, since we want to use the
dissipation process of the resonator to induce qubit synchronization, we require the use
of a less protected resonator (which is clearly always in the grasp of experimentalists) in
order to have γr larger than the other rates. In most simulations, we assumed γr/κA = 0.5.

In Figure 1, we report the appearance of a synchronized evolution of the two qubits,
singled out by the time evolution of the two expectation values 〈σ̂j

x〉, j = A, B, and
explained in terms of the populations of the two stationary states |P〉 and |G〉. The system
was assumed to be prepared in the state |ψ(0)〉 = (|P〉+ |G〉+

√
2|1〉|−−〉)/2, which is an

equal-weight superposition of the two protected states ‘soiled’ by a nonprotected one. We
assumed no local qubit dissipation or dephasing. The wide-range plot (Figure 1a) shows a
general loss of energy of the system associated with a diminishing of the amplitude of σ̂B

x .
The short-time plot (Figure 1) shows that the two signals are very different in the very first
part of the evolution, while after a long time, as shown in Figure 1c, the two expectation
values become two clean sinusoidal signals with the same frequency. From Figure 1d, we
inferred that the dynamical alignment of the two qubits is concomitant with the increase
of the population of the ground state, to the point where only |P〉 and |G〉 are present in
the state of the system. In Figure 2, we consider the effects of the local dissipation and
dephasing of the qubits. It is well visible that the amplitudes of the oscillations are smaller
than in the previous case, but not dramatically smaller, making the effect still appreciable.

In Figure 3, we analyze a situation similar to that of Figure 1, but in connection with
a different initial condition: |ψ(0)〉 = (|2〉|−−〉 + |1〉|−−〉)/

√
2. Since the amount of

coherence 〈P|ρ(t)|G〉 (with ρ(t), the state of the system at time t) at t = 0 is very small, its
final value turns out to be small even at a long time, which implies oscillations with very
small amplitudes. It is also well visible that the final population of the state |P〉 is rather
small, though not vanishing.

In Figure 4, we plot the long-time coherence as a function of κB and γr (here forcing the
model to the strong-damping limit, since we reach the value γr = 10κA), for two different
initial conditions. In Figure 4a, a coherent state is considered for the resonator, while the
two qubits are in their natural ground state: |ψ(0)〉 = |α〉|−−〉, with α = 1; in Figure 4b,
the same situation is reported, but in the presence of local qubit dissipation and dephasing.
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Figure 1. Time evolution of the mean values 〈σA
x 〉 (bold red line) and 〈σB

x 〉 (thin blue line) in different time windows and of
the populations of the states |P〉 (solid black line) and |G〉 (cyan dashed line) in the wide range. Time is given in units of
κ−1

A . The initial state of the system is |ψ(0)〉 = (|P〉+ |G〉)/2 + |1〉|−−〉/
√

2. The parameters are (in units of κA): ΩA = 55,
ΩB = 70, Ωr = 64, κB = 3, γr = 0.5, γA = γB = γ̃A = γ̃B = 0. The coupling κAB is determined by the decoupling condition
in (9). The three time-windows considered for the expectation value of 〈σj

x〉 are the wide-rage (a), the short-time (b) and the
long-time (c). The populations of the protected and ground states are considered only in the wide-range (d).
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Figure 2. The same initial condition and parameters of Figure 1, except for the local qubit dephasing and dissipation rates:
γA = γB = 0.0002 and γ̃A = γ̃B = 0.003. Only the wide-range (a) and long-time (b) plots are reported.
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Figure 3. Time evolution of the mean values 〈σA
x 〉 (bold red line) and 〈σB

x 〉 (thin blue line) in different time windows and of
the populations of the states |P〉 (solid black line) and |G〉 (cyan dashed line) in the wide range. Time is given in units of κ−1

A .
The initial state of the system is |ψ(0)〉 = (|2〉|−−〉+ |1〉|−−〉)/

√
2. The parameters are (in units of κA): ΩA = 55, ΩB = 70,

Ωr = 64, κB = 3, γr = 0.5, γA = γB = γ̃A = γ̃B = 0. The coupling κAB is determined by the decoupling condition in
(9). The three time-windows considered for the expectation value of 〈σj

x〉 are the wide-rage (a), the short-time (b) and the
long-time (c). The populations of the protected and ground states are considered only in the wide-range (d).

(a) (b)

Figure 4. Modulus of the coherence 〈P|ρ(t)|G〉 at time t = 200/γr as a function of κB/κA and log(γr/κA), for the initial
state |α〉|−−〉, with α = 1, in the absence of dephasing (a) and in the presence of dephasing (b). The relevant parameters are
(in units of κA): ΩA = 55, ΩB = 70, Ωr = 64, γA = γB = 0, and κAB is determined by the decoupling condition in (9). In
(a), we have γA = γB = γ̃A = γ̃B = 0, while in (b), γA = γB = 0.0002 and γ̃A = γ̃B = 0.003.
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4. Dephasing

The appearance of the synchronized motion of the two qubits is based on the interac-
tion between the two-state systems and the dissipating resonator, which drives most of the
two-qubit states towards the ground state, leaving only a specific two-state superposition
involving only a transition frequency. Local qubit dissipation and dephasing processes
instead tend to destroy synchronization, as is well visible, for example, in Figures 2 and 4.

Pure dephasing itself is an interesting phenomenon from the thermodynamical point
of view, since it is the main mechanism of the relaxation of a system into a microcanonical
state. Usually, dephasing does not alter the energy of the system and induce a random
distribution of the states with equal energies. Since, in our case, the dephasing mechanism
does not conserve the energy of the system, but only its total number of excitations, it is
interesting to observe the structure of the equilibrium state in such a situation. Let us then
focus on the pure dephasing (thus, assuming γr = γA = γB = 0):

ρ̇ = −i[H, ρ] + ∑
j

γ̃j(σ
j
zρσ

j
z − ρ). (11)

The microcanonical state related to a subspace with a fixed number of excitations is a
stationary state: ρ = g−1

n Π̂n ⇒ −i[H, ρ] + ∑j γ̃j(σ
j
zρσ

j
z − ρ) = 0, where Π̂n denotes the

projector onto the subspace with n excitations and gn is the relevant degeneracy.
It is possible to prove that this is the only possible stationary state, unless specific

conditions (given below) are satisfied. Indeed, assume ρn = ∑k pnk|ψnk〉〈ψnk|, where
∑k pnk = 1 and |ψnk〉’s form an orthonormal basis of the subspace with n excitations. The
action of the Lindbladian gives:

− i(∑
k

pnk|ψnk〉〈φnk| −∑
k

pnk|φnk〉〈ψnk|)

+ ∑
j

γ̃j

[
∑
k

pnkσ
j
z|ψnk〉〈ψnk|σ

j
z −∑

k
pnk|ψnk〉〈ψnk|

]
, (12)

where |φnk〉 = H|ψnk〉 are non-normalized states. In order to make this quantity vanish,
the first two sums must give zero, which implies |φnk〉 ∝ |ψnk〉, i.e., the states |ψnk〉 are
Hamiltonian eigenstates. In order to obtain zero, the other two terms should compensate
each other. Since the states |ψnk〉 are orthogonal, the only possibility is that, for every
k, σ

j
z|ψnk〉 = eiϕnkj |ψnmj〉, provided pnk = pnm. Of course, in such a case, one also has

σ
j
z|ψnm〉 = e−iϕnkj |ψnkj

〉. Therefore, unless specific eigenstates of the Hamiltonian exist

that are eigenstates of both the σ
j
z or are mapped by such operators to other Hamiltonian

eigenstates, there is no stationary state different from the microcanonical one.
On the basis of the previous results, one can expect that when the system is prepared as

an eigenstate of the number operator N̂ (i.e., every state belongs to a multiplet with fixed n),
the evolution naturally brings the system toward the microcanonical state, which is charac-
terized by a maximum von Neumann entropy (S(ρ) ≡ −Tr(ρ log ρ)→ S(g−1

n Π̂n) = log gn)
and a minimum linear entropy (P(ρ) ≡ Trρ2 → P(g−1

n Π̂n) = g−1
n ). In Figure 5a, we show

the time behavior of the linear entropy when the system is prepared in different states. The
two initial conditions belonging to the triplet with n = 1 lead to an asymptotic purity of
1/3, while the initial state belonging to the quadruplet with n = 2 evolves in such a way
to give a purity equal to 1/4, as expected. In Figure 5b, an example of the evolution of
the populations of states belonging to the quadruplet with n = 2 is given, assuming that
the system is prepared in a state with two excitations. As is well visible, all populations
eventually reach the value 1/4.

The peculiarity of the microcanonical state the system approaches is that it does not
describe a situation where all the eigenstates of the Hamiltonian with the same energy
have equal probability. Since the given constraint relates to the number of excitations, the
uniform probability distribution refers to the states with the same number of excitations.
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Figure 5. In (a), we report the time evolution of the linear entropy for different initial states: |1〉|−−〉 (blue solid line),
|2〉|−−〉 (red dotted line), and the mixed state (|0〉〈0| ⊗ |−+〉〈−+|+ |0〉〈0| ⊗ |+−〉〈+−|)/2 (green dashed line). In (b), the
time evolutions of the populations of the states |2〉|−−〉 (red line), |1〉|+−〉 (blue line), |1〉|−+〉 (green line), and |0〉|++〉
(black line) are plotted, when the system is prepared in |ψ(0)〉 = (|0〉|++〉+ |2〉|−−〉)/

√
2. Time is given in units of κ−1

A .
The coupling κAB is determined by the decoupling condition, while the other parameters are (in units of κA): ΩA = 55,
ΩB = 70, Ωr = 64, κB = 3, γ̃A = γ̃B = 0.003, γr = γA = γB = 0.

5. Discussion and Conclusions

In this paper, we studied a pseudo-Dicke model describing the interaction between
a harmonic oscillator (the resonator) and two two-state systems (qubits), which can be
realized with superconducting devices. The qubit–resonator coupling was assumed to be
in the rotating wave approximation, which allows for the conservation of the total number
of excitations. Besides this interaction, a direct qubit–qubit coupling was considered.
Moreover, since all the components were subjected to an interaction with the environment,
dephasing and dissipation processes were also included in the model.

We see that it is possible to identify a state that is insensitive to the qubit–resonator
interaction and that, by suitably tuning the qubit–qubit coupling, such a state can be made
an eigenstate of the Hamiltonian, hence allowing for the relevant qubit state to be stationary.
This state and the ground state of the system form a protected subspace. Therefore, after
a large enough time, the system inevitably relaxes toward a mixture involving these two
states with a possible residual coherence. As a consequence, the two-qubit system exhibits
oscillations at the frequency that separates the protected and the ground states. This
leads to an effective synchronization, which provides the complementary scenario to that
analyzed in [15], where two oscillators synchronized due to the common interaction with
a dissipating two-state system. The direct coupling between the qubits plays a crucial
role, since it allows for avoiding transitions from the state that is insensitive to the qubit–
resonator coupling towards states that are affected by that interaction term.

We also analyzed the role of local qubit dissipation and dephasing processes, showing
that they are able to damage the processes inducing synchronization. On the other hand,
dephasing itself makes the system relax towards a pseudo-microcanonical state, which is
characterized by the equiprobability of the states with the same number of excitations. This
analysis shows how rich the superconducting-device dynamics can be.
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