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Abstract
Despite a growing number of functional MRI studies reporting exercise-induced changes during cognitive processing, a 
systematic determination of the underlying neurobiological pathways is currently lacking. To this end, our neuroimaging 
meta-analysis included 20 studies and investigated the influence of physical exercise on cognition-related functional brain 
activation. The overall meta-analysis encompassing all experiments revealed physical exercise-induced changes in the left 
parietal lobe during cognitive processing. Subgroup analysis further revealed that in the younger-age group (< 35 years old) 
physical exercise induced more widespread changes in the right hemisphere, whereas in the older-age group (≥ 35 years old) 
exercise-induced changes were restricted to the left parietal lobe. Subgroup analysis for intervention duration showed that 
shorter exercise interventions induced changes in regions connected with frontoparietal and default mode networks, whereas 
regions exhibiting effects of longer interventions connected with frontoparietal and dorsal attention networks. Our findings 
suggest that physical exercise interventions lead to changes in functional activation patterns primarily located in precuneus 
and associated with frontoparietal, dorsal attention and default mode networks.
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Introduction

Cognition covers a wide range of mental abilities that 
allow us to perceive, process and store information (Bos-
trom 2009; Herold et al. 2018) although no uniform defini-
tion has yet been reached (Allen 2017; Bayne et al. 2019). 
Consequently, cognitive performance is crucial to success-
fully interact with our environment and thus determine 
several aspects of successful everyday life functioning 
(MacNeill and Lichtenberg 1997; Salthouse 2011). Nota-
bly, there is increasing evidence in the literature show-
ing that specific cognitive abilities such as processing 
speed and episodic memory gradually decline with aging 
(Harada et al. 2013; Hedden and Gabrieli 2004; Park et al. 
2002; Salthouse 2011), and poor cognitive performance 
leads to impairments in several aspects of everyday life, 
including walking, financial management, and driving 
(Cohen et al. 2016; Montero-Odasso et al. 2012; Mor-
ris et al. 2016). Moreover, poorer cognitive performance 
has been shown to predict neurological diseases such as 
dementia (Boraxbekk et al. 2015) and has been associated 
with a higher mortality risk (Shipley et al. 2006). It is 
thus of general importance to preserve cognitive functions 
across the lifespan and particularly in aging populations.

Current approaches to preserve cognitive functions in 
the aging population focus on lifestyle changes and empha-
size the role of regular physical activity and exercise 
(Bherer et al. 2013; Hillman et al. 2008; Kivipelto et al. 
2018; Liu-Ambrose et al. 2018). An increase in physical 
activity level is usually achieved through regular physi-
cal exercise (also referred to as physical training). Indeed, 
accumulating evidence indicates that both acute bout of 
physical exercise (Chang et al. 2012; Ludyga et al. 2016; 
Pontifex et al. 2019) and chronic physical exercise inter-
vention (hereafter referred to as physical training) (Falck 
et al. 2019; Ludyga et al. 2016) can influence cognitive 
performance positively. However, the underlying neuro-
biological processes which lead to an increase in cogni-
tive performance after physical interventions are not fully 
understood.

According to Stillman (Stillman et al. 2016), physical 
exercise interventions induce changes on different levels 
of analysis which, in turn, promote the improvement of 
cognitive performance. In particular, physical exercise and 
physical training lead to changes on (i) molecular and cel-
lular levels (e.g., brain-derived neurotrophic factors); (ii) 
structural and/or functional levels (e.g., hippocampus vol-
ume and hippocampal activity), and (iii) socioemotional 
level (e.g., sleep quality, well-being, self-efficacy) (Still-
man et al. 2016). Currently, there are systematic reviews 
and meta-analysis available which summarize the benefi-
cial effects of acute physical exercise (a single bout of 

exercise) on changes: (i) molecular and cellular level (i.e., 
brain-derived neurotrophic factor) (Coelho et al. 2013; de 
Assis and de Almondes 2017; Dinoff et al. 2017; Knaepen 
et al. 2010); (ii) structural level (Chen et al. 2020; Zheng 
et al. 2019) and (iii) socioemotional level (i.e., sleep) (Kel-
ley and Kelley 2017; Kovacevic et al. 2018). In contrast, 
the effects of physical exercise on functional brain changes 
that accompany acute physical exercise and physical train-
ing are currently less well understood. In this context, pre-
vious qualitative reviews have summarized the effects of 
acute physical exercises (Herold et al. 2020) and physical 
training (Herold et al. 2019; Voelcker-Rehage 2013) on 
functional brain changes, but did not perform a systematic 
quantitative meta-analyses. Moreover, given that some the-
ories of cognitive aging emphasize the importance of com-
pensatory brain activation patterns in distinct functional 
neural networks (Park and Reuter-Lorenz 2009; Reuter-
Lorenz and Park 2014), a deeper understanding of physical 
exercise-induced functional brain activation changes can 
help us to better tailor physical exercise interventions to 
individuals. Hence, this meta-analysis addresses this gap 
in the literature and investigates the influence of physi-
cal exercise interventions on cognition-related changes of 
functional brain activation.

Methods

This study followed the recommendations outlined in the 
Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA) guidelines and has been registered on 
OSF Registries (Registration https ://doi.org/10.17605 /OSF.
IO/674HF ).

Data sources

The literature search was conducted on April 19th, 2020, 
through four electronic databases (Pubmed, Web of Science, 
PsycINFO, and Embase). Search terms related to the object 
of this meta-analysis (for details see the supplementary 
material 1) were used to identify eligible studies based on a 
search in title and abstract. Furthermore, reference lists of 
included articles were manually searched for relevant arti-
cles that were captured through the database searches.

Inclusion criteria and study selection

The screening for relevant studies was conducted adher-
ing to the PICOS-principles which stands for participants 
(P), intervention (I), comparisons (C), outcomes (O), and 
study design (S) (Harris et al. 2014; Moher et al. 2009). 
We included peer-review journal article published in Eng-
lish when they met the following inclusion criteria: (P) no 

https://doi.org/10.17605/OSF.IO/674HF
https://doi.org/10.17605/OSF.IO/674HF
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restrictions were applied and we included all age groups 
regardless of pathologies; (I) only studies performing physi-
cal exercise/physical training were considered as eligible; 
(C) only studies with a pre/post-intervention experimental 
designs and at least one group assigned to physical exercise/
physical training intervention were included; (O) the rel-
evant studies needed to assess cognition-related brain activa-
tion patterns via fMRI, PET or SPECT (task-based imaging 
studies) and needed to report retrievable data in standard 
Talairach or Montreal Neurologic Institute (MNI) coordi-
nates; (S) we included interventional studies, but excluded 
cross-sectional studies. Based on the above-mentioned inclu-
sion criteria, two independent researchers (QY and LZ) 
first screened article titles and abstracts to identify eligible 
articles. Afterwards and as recommended, a more detailed 
screening using the full-text of the article was conducted to 
ensure that all inclusion criteria were met.

Data extraction

The extraction of the relevant data was performed by two 
independent reviewers (QY and LZ) and the following 
information were extracted: (i) name of the lead author; 
(ii) imaging modality; (iii) population characteristics (e.g., 
health status and age); (iv) intervention characteristics (e.g., 
the number of participants, type of physical exercise, exer-
cise duration, exercise intensity, training frequency, training 
duration, and control condition); (v) cognitive task para-
digms employed to assess the effects of the intervention, 
and (vi) functional brain activation results (e.g., the number 
of foci). Risk of bias was independently assessed (by QY and 
LY) using the PEDro scale including 11 items (de Morton 
2009).

Activation likelihood estimation (ALE)

ALE is a coordinate-based meta-analytical method that has 
been used to determine the consistent locations of brain 
activation in included studies that use similar experimental 
conditions. In ALE, activation foci are regarded as prob-
ability distributions centered on the reported coordinates. 
ALE maps are constructed after calculating each space 
voxel’s likelihood to be activated. The null-distributions 
acquired from independent studies’ ALE values is usually 
used to test the reliability of ALE map and this process 
have similarities with permutation test across experiments. 
The contribution of each study is weighted by its sam-
ple size, and each study is considered as a random effect. 
The observed values in the ALE distribution are com-
pared to the null distribution in order to assign probabil-
ity estimates to the observed experimental data. For ALE 
meta-analysis, Eickhoff et al. (2016) recommended that 
17 or more experiments are needed to control excessive 

contribution of a single experiment for the cluster-level 
thresholding; and 14 experiments are necessary for voxel-
level thresholding (Eickhoff et al. 2016). Usually, each 
study will include one or more experiments; each experi-
ment only includes the foci in the same condition (i.e., 
activation status, intervention type).

In this study, we performed ALE analyses with Gin-
gerALE v3.0.2 (http://www.brain map.org/ale/) (Eickhoff 
et al. 2009) in MNI space, and cluster-based family-wise 
error (FWE) was used with a threshold of p < 0.05 (permuted 
1000 times) (Eickhoff et al. 2009). The p-value accounts 
for the proportion of the random spatial relation between 
the various experiments under the null distribution. Coordi-
nates reported in Talairach space in the original studies were 
initially transformed to the MNI space using the Lancaster 
transform icbm2tal software procedure as implemented in 
the Convert Foci tool of GingerALE (Laird et al. 2010). The 
ALE maps were imported into Mango Version 4.1 (http://
ric.uthsc sa.edu/mango /mango .html) software and overlaid 
on an anatomical template in MNI space for visualization 
and comparison.

Anatomical connectivity, functional connectivity 
and functional characterization of the identified 
brain regions

In this study, if a meta-analytic identified cluster included 
more than one peak, we considered the area where the peak 
was centered at as sub-region (radius = 3 mm). Anatomical 
and functional connection patterns of each sub-region were 
further determined by the Brainnetome Atlas and visual-
ized by the Brainnetome Atlas Viewer (V1.0) (Fan et al. 
2016; Liu et al. 2013). The functional characterizations of 
each sub-region are illustrated through probabilistic maps 
reflecting the behavioral domain and paradigm class accord-
ing to meta-data labels of the BrainMap database (http://
www.brain map.org/taxon omy). Overlapping behavioral 
domain(s) or paradigm(s) across sub-regions were subse-
quently selected (Fan et al. 2016; Liu et al. 2013). Brain-
netome Atlas offers a fine-grained and cross-validated atlas 
providing structural information of more than 200 sub-
regions. Brainnetome Atlas also maps the brain structure and 
function to mental processes by reference to the BrainMap 
database. Thus, Brainnetome Atlas provides an effective way 
for researchers to explore the complex relationship between 
anatomy, connectivity and function.

We also used the DPABI, a surface-based fMRI data anal-
ysis toolbox, to explore associations between regions/sub-
regions identified in both overall and subgroup analyses and 
the 7 networks proposed by Yeo et al. (Yan et al. 2016; Yeo 
et al. 2011). DPABI yoked between images were obtained 
from ALE analysis and DPABI template.

http://www.brainmap.org/ale/
http://ric.uthscsa.edu/mango/mango.html
http://ric.uthscsa.edu/mango/mango.html
http://www.brainmap.org/taxonomy
http://www.brainmap.org/taxonomy
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Subgroup analysis

Given that physical exercise-induced changes on the brain 
functional and behavioral level might be influenced by both 
individual characteristics (e.g., health status, age and regular 
level of physical activity) and intervention characteristics 
(e.g., training duration), the included studies were catego-
rized into the following subgroups (as recommended by 
previous reviews Piercy et al. 2018; Stillman et al. 2020)): 
(i) health status (healthy vs. patients)—the patient groups 
included studies conducted in individuals with social anxiety 
disorder, major depressive disorder, cognitive impairment, 
fibromyalgia, Parkinson’s disease, and bipolar disorder; 
(ii) age (“younger-age group: < 35 years old” vs “older-
age group: ≥ 35 years old”). The cut-off of 35 years was 
employed to achieve a relatively balanced number of stud-
ies for each age-related subgroup analysis and was addi-
tionally based on evidence that cognitive function typically 
peaks around 35 years (Hartshorne and Germine 2015); (iii) 
training duration (“shorter-term: < 12 weeks” vs “longer-
term: ≥ 12 weeks”). Based on previous meta-analysis, we 
used a 12-week training duration as the cut-off point for 
subgroup analysis (Piercy et al. 2018); (iv) although physi-
cal activity is characterized by three important components 
(intensity, frequency, and duration), it is reported that total 
amount of physical activity (i.e., minutes of exercise per 
week) is the most important factor for achieving health ben-
efits (Piercy et al. 2018). Hence, weekly total minutes of 
exercise were used to categorize studies into two groups, 
including physically inactive group (PIG) and physically 
active group (PAG). Specifically, we followed the criteria 
from the Physical Activity Guidelines for Americans (2nd 
Edition) to determine the group of each experiment-based 
study with the age-specific cut-off values: (a) 180 min 
per week in children and adolescents aged 6 to 17 years 
(PIG: < 180 min per week; PAG: ≥ 180 min per week); (b) 
150 min (moderate-intensity aerobic exercise) per week in 
adults (PIG: < 150 min per week; PAG: ≥ 150 min per week). 
Notably, individuals aged over 65 years who kept on exercis-
ing were considered as physically active, as suggested by the 
aforementioned guideline (Piercy et al. 2018).

Data and code availability statement

This ALE analysis was conducted with GingerALE v3.0.2 
(http://www.brain map.org/ale/) and Mango Version 4.1 
(http://ric.uthsc sa.edu/mango /mango .html) software were 
used for presentation. Anatomical and functional connec-
tion patterns of each sub-region were further determined by 
the Brainnetome Atlas (http://atlas .brain netom e.org/) and 
visualized by the Brainnetome Atlas Viewer (http://atlas 
.brain netom e.org/downl oad.html). DPABI software (http://
rfmri .org/dpabi ) was used to explore associations among 

identified regions/sub-regions. Study data used for the meta-
analysis are provided in Table 1.

Results

Study selection

The systematic literature search returned a total of 42,302 
records and 7870 duplicates were removed (see Fig. 1). The 
remaining 34,432 records were initially screened by examin-
ing the article titles and abstracts, with 34,195 records being 
excluded due to their failure to meet the pre-determined 
inclusion criteria (e.g., no original research or case reports, 
no cognition-related outcomes). Full-text assessment of 237 
was further conducted by two independent authors (QY and 
LZ), which resulted in 20 eligible studies (26 experiments); 
as shown in Fig. 1, 1217 records were excluded according to 
our selection criteria (review and conference abstract = 24, 
no pre-to-post imaging assessment = 10, no cognition-related 
outcomes = 168, no coordinates of whole-brain analysis = 3, 
non-cognitive task = 2; non-exercise intervention = 10).

Characteristics of included studies

There are 260 foci of activation within 20 studies including a 
total 745 participants with mean age of 47.41 (SD = 22.04): 
283 patients (mean age = 44.01, SD = 20.28) and 463 healthy 
people (mean age = 49.49, SD = 22.83). Study characteristics 
are detailed in Table 1.

Overall analysis: exercise‑induced brain activation 
associated with cognition

Twenty studies that investigated the effects of physical exer-
cise on cognition-associated functional brain activation were 
included in this meta-analysis (Baeck et al. 2012; Boa Sorte 
Silva et al. 2020; Chen et al. 2016; Duchesne et al. 2016; 
Goldin et al. 2012; Gourgouvelis et al. 2017; Hsu et al. 2018; 
Krafft et al. 2014; Li et al. 2019; Liu-Ambrose et al. 2012; 
Martinsen et al. 2018; Metcalfe et al. 2016; Nishiguchi et al. 
2015; Pensel et al. 2018; Schmitt et al. 2019; Smith et al. 
2013; Wagner et al. 2017; Wriessnegger et al. 2014; Wu 
et al. 2018). Overall, 260 foci from all 26 experiments con-
verged onto a 2200  mm3 cluster centered at (−26.2, −57.9, 
45.3) with 4 peaks (Fig. 2a). All 4 peaks were located at the 
parietal lobe of left cerebrum. More specifically, the clus-
ter encompassed regions in the precuneus (69.7%), inferior 
parietal lobule (27.3%), and superior parietal lobule (3%) 
and covered regions the following Brodmann areas 7, 19, 
39, and 40.

Examining the direction of the effects in terms of 
increased activation, 184 foci from 17 experiments were 

http://www.brainmap.org/ale/
http://ric.uthscsa.edu/mango/mango.html
http://atlas.brainnetome.org/
http://atlas.brainnetome.org/download.html
http://atlas.brainnetome.org/download.html
http://rfmri.org/dpabi
http://rfmri.org/dpabi
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included and converged on a 1616  mm3 cluster centered at 
(38.1, −21.9, 4.9) with 3 peaks (Fig. 2b) covering sub-lobar 
and temporal lobe regions in the right brain hemisphere. 
The cluster was primarily located in the lentiform nucleus 
(71.2%) and spread in the adjacent claustrum (17.8%), supe-
rior temporal gyrus (6.8%), as well as the insula (4.1%). 
Accordingly, the activated cluster comprises the Brodmann 
areas 13, 22 and 41 as well as the putamen. With respect to 
decreased activation reported in 9 experiments, no region of 
convergently decreased activation was identified.

Subgroup analysis for health status

For the healthy population (Baeck et al. 2012; Boa Sorte 
Silva et al. 2020; Chen et al. 2016; Krafft et al. 2014; Li 
et al. 2019; Liu-Ambrose et al. 2012; Nishiguchi et al. 2015; 
Pensel et al. 2018; Schmitt et al. 2019; Wagner et al. 2017; 
Wriessnegger et al. 2014; Wu et al. 2018), 168 foci from 14 

experiments were included for the subgroup analysis; and for 
the patient population (Duchesne et al. 2016; Goldin et al. 
2012a,b; Gourgouvelis et al. 2017; Hsu et al. 2018; Mar-
tinsen et al. 2018; Metcalfe et al. 2016; Smith et al. 2013), 
92 foci from 12 experiments were selected. There was no 
activated cluster for either analysis.

Subgroup analysis for age

In the younger-age group (Baeck et al. 2012; Chen et al. 
2016; Goldin et al. 2012a, b; Krafft et al. 2014; Li et al. 
2019; Metcalfe et al. 2016; Schmitt et al. 2019; Wagner et al. 
2017; Wriessnegger et al. 2014), 103 activation foci from 
15 experiments were included and converged on 2112  mm3 
cluster centered at (14.1, −62.2, 30.8) with 3 peaks (Fig. 2c) 
located at the occipital, parietal and limbic lobe. The identi-
fied cluster primarily encompassed the precuneus (78.5%), 
spreading into the adjacent cuneus (10.3%), posterior 

Fig. 1  Flowchart of literature searching, screening and assessment
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cingulate (6.5%), and cingulate gyrus (4.7%). The cluster 
encompassed regions located in Brodmann areas 7 and 31.

In the older-age group (Boa Sorte Silva et al. 2020; Duch-
esne et al. 2016; Gourgouvelis et al. 2017; Hsu et al. 2018; 
Liu-Ambrose et al. 2012; Martinsen et al. 2018; Nishigu-
chi et al. 2015; Pensel et al. 2018; Smith et al. 2013; Wu 
et al. 2018), 157 foci from 11 experiments were included 
and converged on a 2360-mm3 cluster spanning from (−36, 
−72, 40) to (−10, −44, 56), with the center at (−23.7, −60, 
46.2) (Fig. 2d). The 4 peaks of this cluster were located 
in the parietal lobe of the left hemisphere. The identified 
cluster was mainly located in the precuneus (82.2%), and 
additionally encompassed the inferior parietal lobule (6.7%), 
superior parietal lobule (6.7%), and angular gyrus (4.4%). In 
addition, the cluster included regions located in Brodmann 
areas 7, 19 and 39.

Subgroup analysis for intervention duration

For the shorter-term duration interventions (Chen et al. 2016; 
Goldin et al. 2012a,b; Gourgouvelis et al. 2017; Li et al. 2019; 
Liu-Ambrose et al. 2012; Metcalfe et al. 2016; Schmitt et al. 
2019; Wagner et al. 2017; Wriessnegger et al. 2014), 109 
foci from 14 experiments converged on a 2008-mm3 cluster 

centered at (14.1, −62.3, 30.8) with 3 peaks in right hemi-
sphere (Fig. 2e). Among these peaks, 1 peak with the maxi-
mum value was located in the occipital lobe and 2 peaks were 
situated in the limbic lobe. The cluster was primarily located 
in the precuneus (80.2%), spreading into the cuneus (10.9%), 
posterior cingulate (5%), and cingulate gyrus (4%). At the 
brain region level, Brodmann areas 31 and 7 contributed to 
73.3% and 25.7% to this cluster, respectively. For the longer-
term duration interventions (Baeck et al. 2012; Boa Sorte Silva 
et al. 2020; Duchesne et al. 2016; Hsu et al. 2018; Krafft et al. 
2014; Martinsen et al. 2018; Nishiguchi et al. 2015; Pensel 
et al. 2018; Smith et al. 2013; Wu et al. 2018), 151 foci from 
12 experiments converged on a 1968-mm3 cluster centered 
at (−29, −57.2, 45.4) with 4 peaks in the parietal lobe of left 
cerebrum (Fig. 2f). The cluster encompassed the precuneus 
(45.5%), as well as the inferior parietal lobule (45.5%), angular 
gyrus (6.1%), and supramarginal gyrus (3%) corresponding to 
Brodmann areas 7, 19, 39 and 40.

Subgroup analysis for total amount of physical 
activity

In the PIG (Chen et  al. 2016; Duchesne et  al. 2016; 
Gourgouvelis et al. 2017; Hsu et al. 2018; Krafft et al. 

Fig. 2  Activated clusters in overall analysis and subgroup analyses. 
Notes: a activation for overall analysis; b increased activation; c acti-
vation for < 35-year-old subgroup; d activation for ≥ 35-year-old sub-

group; e activation for < 12-week subgroup; f activation for ≥ 12-week 
subgroup; g activation for physically inactive subgroup
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2014; Liu-Ambrose et al. 2012; Martinsen et al. 2018; 
Metcalfe et al. 2016; Nishiguchi et al. 2015; Schmitt et al. 
2019; Wriessnegger et al. 2014; Wu et al. 2018), 85 foci 
from 16 experiments converged on a 1792-mm3 cluster 
centered at (14.3, −63.3, 31.7) with 2 peaks (Fig. 2g). 
Peaks 1 and 2 were located in the right occipital lobe and 
in the right limbic lobe, respectively. The cluster covered 
the occipital lobe, parietal lobe and limbic lobes. The clus-
ter primarily included the precuneus (83.8%), and cuneus 
(33.3%) with additional engagement of the cingulate gyrus 
(5.1%), which correspond to Brodmann area 31 (72.7%) 
and Brodmann area 7 (27.3%). In the PAG (Baeck et al. 
2012; Boa Sorte Silva et al. 2020; Goldin et al. 2012a, 
b; Hsu et al. 2018; Pensel et al. 2018; Smith et al. 2013; 
Wagner et al. 2017), 175 foci from 10 experiments did not 
converge on a robust cluster.

Anatomical connectivity, functional connectivity 
and functional characterizations of activated brain 
regions

In this study, each activated cluster includes more than 
one peak with each one that can generate a sub-region 
(radius = 3 mm). Anatomical and functional connectivity 
of activated sub-regions (4 peaks) in the overall analysis 
and subgroup analyses are shown in Fig. 3. Functional 
characterizations of activated sub-regions in both over-
all analysis and subgroup analyses are summarized in 
Tables 2, 3, and revealed that the identified sub-regions in 
the overall analysis exhibited a strong positive coupling 
with the entire frontoparietal control network and were 
functionally characterized by engagement in core cog-
nitive domains, including attention, executive functions 
and working memory. For the functional characteriza-
tions, sub-regions were connected with spatial cognition 
in the overall analysis. In the subgroup analyses, activated 
sub-regions were associated with explicit memory in the 
younger-age group, shorter-term group, and PIG, whereas 
activated sub-regions were associated with working mem-
ory in the older-age group and longer-term intervention 
group. In addition, in both overall analysis and subgroup 
analysis (older-age group), activated sub-regions were 
associated with paradigms measuring mental rotation.

In the overall analysis, the frontoparietal and dorsal atten-
tion networks were involved in exercise-induced changes in 
functional activation patterns. For subgroup analyses, asso-
ciated networks varied across subgroups: (1) younger-age 
group (frontoparietal network) and older-age group (dorsal 
attention network); (2) shorter-term group (frontoparietal 
and default networks) and longer-term group (frontoparietal 
and dorsal attention networks); (3) PIG (frontoparietal and 
default networks).

Risk of bias assessment

Total score across included studies ranged from 3 to 7 
(M = 4.80 and SD = 1.40) that correspond to poor to good 
quality. Notably, only two studies scored 7. Points in the 
majority of included studies were mainly deducted due to 
their study design such as lack of random allocation (n = 9), 
concealed allocation (n = 14), assessor blinding (n = 18), 
intention-to-treat analysis (n = 18). Detailed information is 
displayed in Supplementary data 2.

Discussion

Exercise‑induced brain activation associated 
with cognition

The overall meta-analysis encompassing data from all origi-
nal studies demonstrated robust exercise-induced changes 
in cognition-related functional activation of the left parietal 
lobe, primarily covering the precuneus (69.7%) and spread-
ing into inferior (27.3%) and superior (3%) parietal lobe. 
The precuneus plays a key role in a range of highly inte-
grated mental processes, ranging from basic cognitive pro-
cesses to regulatory control over performance under stress 
(Cavanna 2006; Zhao et al. 2020). The integrative function 
of the precuneus is further reflected in the functional con-
nectivity profiles of these regions, which include separable 
interactions with networks engaged in sensorimotor and cog-
nitive processes (e.g., executive function, episodic memory, 
visuospatial processing) (LJ 2006). Sporns and Bullmore 
proposed that the precuneus plays a key role in in the fron-
toparietal network by interconnecting parietal and prefron-
tal regions (“small-world network” hub), which provides an 
explanation for the aforementioned activation during cogni-
tive tasks (Bullmore 2009). Moreover, the precuneus is a 
brain region which is commonly affected in individuals with 
mild cognitive impairment and early stages of Alzheimer’s 
disease (Jacobs et al. 2012). In light of this observation, our 
findings suggest that regular physical exercise can be a valu-
able approach to prevent cognitive decline (Alty et al. 2020; 
Bherer et al. 2013; Kivipelto et al. 2018) by enhancing the 
functional integration of the frontoparietal control network 
via effects on the precuneus.

The activated sub-regions were connected with dor-
sal attention network and frontoparietal network, and the 
functional characterizations revealed a strong engagement 
in core cognitive domains, including attention as well as 
executive functions. The frontoparietal network is a func-
tional hub sharing connectivity with diverse brain networks 
and plays an essential role in modulating cognitive control 
(Power et al. 2013). Moreover, the degree of frontoparietal 
network’s coupling with other brain networks (especially 
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Fig. 3  Anatomical connectivity, functional connectivity and functional characterizations of activated brain sub-regions in the overall analysis



612 Brain Structure and Function (2021) 226:601–619

1 3

default mode network) is positively correlated with fluid 
intelligence (e.g., problem solving/executive function and 
visuospatial ability) and overall cognitive ability (Cole et al. 
2015; Sheffield  et al. 2015), which is consistent with our 
results in overall analysis for global cognition (all cognitive 
components were pooled together for the overall analysis). 
The dorsal attention network, centered around the intrapa-
rietal sulcus and frontal eye fields, participates in top-down 
control of attention as well as sensory–motor information 
integration, which support several higher level cognitive 
domains (Fox et al. 2006).

Moderators have impact on exercise‑induced 
cognitive improvement

In this review, age and training duration considerably mod-
erated exercise effects on brain activation that is associated 
with anatomical and functional networks. For instance, in the 
younger-age group, the identified sub-regions are associated 
with explicit memory. This result is strongly supported by 

a recent meta-analysis (including 25 experimental studies) 
demonstrating robust effects of exercise on episodic memory 
function (Loprinzi et al. 2019). Furthermore, the recruited 
participants in 23 studies were reported with age range of 
18 to 30 years old, which coincides with the younger-age 
group (less than 35 years old) in the current review. In the 
older-age group, identified sub-regions are related to execu-
tive functions, including working memory, spatial cognition 
and mental rotation. Such improvements induced by exer-
cise have been well-documented in previous meta-analytical 
studies at the behavioral level (Chen et al. 2020b; Falck et al. 
2019; Northey et al. 2018).

With regard to the moderating effect of training dura-
tion on exercise-induced activation, shorter-term exercise 
interventions induced primarily changes in occipital, parietal 
and limbic regions and the peaks/sub-regions are generally 
linked to explicit memory, whereas the longer-term train-
ing protocols induced changes in activation in the parietal 
lobe. Of note, the shorter-term group included 14 experi-
ments with 7 using acute physical exercise, which is partially 

Table 2  Characterizations of activated brain regions in overall analysis

® and ◎ indicate overlapping behavioral domain(s) or paradigm(s) across sub-regions, respectively

Coordinate Location Likelihood ratio of behavioral 
domain

Likelihood ratio of paradigm

x y z

Peak 1 −18 −66 48 Left Cerebrum. Parietal Lobe. Precu-
neus. Gray Matter. Brodmann area 7

Cognition. Attention 3.44 Counting/calculation 5.31
Action. Execution 3.41 Mental Rotation◎ 4.28
Action. Preparation 2.75 Anti-Saccades 4.23
Cognition. Reasoning 2.10 Imagined Objects/scenes 4.15
Perception. Vision. Shape 1.90 Grasping 2.77
Cognition. Memory. Working 1.82 Spatial/Location. Discrimination 2.65
Cognition. Space ® 1.46 Visual Distractor/Visual. Attention 2.45
Perception. Vision. Motion 1.45 Pointing 2.33

Saccades 2.11
Peak 2 −30 −48 44 Left Cerebrum. Parietal Lobe. Supe-

rior Parietal Lobule. Gray Matter
Brodmann area 7

Perception. Vision. Shape 2.56 Action. Observation 4.34
Cognition. Soma 2.53 Visual Pursuit/Tracking 2.85
Action. Execution 2.45 Mental Rotation◎ 2.77
Cognition. Attention 2.35 Pointing 2.70
Cognition. Memory. Working 2.22 Saccades 2.69
Action. Imagination 1.71 Imagined Movement 2.29
Cognition. Space ® 1.61 Visual Distractor/Visual. Attention 2.20
Action. Observation 1.51 n-back 2.01
Perception. Vision. Motion 1.41

Peak 3 −32 −58 46 Left Cerebrum. Parietal Lobe. Inferior 
Parietal Lobule. Gray Matter

Brodmann area 39

Cognition. Space ® 2.29 n-back 3.1
Cognition. Reasoning 2.06 Wisconsin Card Sorting Test 2.71
Cognition. Working 1.88 Mental Rotation◎ 2.53

Counting/Calculation 2.49
Peak 4 −40 −48 42 Left Cerebrum. Parietal Lobe. Inferior 

Parietal Lobule. Gray Matter
Brodmann area 40

Cognition. Space ® 2.29 n-back 3.1
Cognition. Reasoning 2.06 Wisconsin Card Sorting Test 2.71
Cognition. Working 1.88 Mental Rotation◎ 2.53

Counting/Calculation 2.49
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supported by results from a previous meta-analysis which 
investigated the beneficial effects of acute exercise on epi-
sodic memory as a type of explicit memory (Tulving 1972). 

Meanwhile, researchers emphasized that the timing of acute 
exercise plays an important role in the interaction of exercise 
and memory; such that cognitive improvement was observed 

Table 3  Characterizations of activated brain regions in subgroup analyses

Coordinate Location Likelihood ratio of behavioral 
domain

Likelihood ratio of paradigm

x y z

 < 35 Years Old Subgroup
 Peak 1 14 −64 32 Right Cerebrum. Occipital Lobe. 

Precuneus. Gray Matter. Brod-
mann area 31

Perception. Vision. Motion 2.06 Saccades 2.51
Cognition. Memory. Explicit® 1.94

 Peak 2 12 −52 32 Right Cerebrum. Limbic Lobe. 
Cingulate Gyrus. Gray Matter. 
Brodmann area 31

Cognition. Social Cognition 3.11 Cued Explicit. Recognition 5.88
Cognition. Memory. Explicit® 2.45 Episodic Recall 3.48

Theory of Mind Task 2.46
 Peak 3 12 −54 22 Right Cerebrum. Limbic Lobe. 

Posterior Cingulate. Gray Matter. 
Brodmann area 23

Perception. Vision. Motion 2.06 Saccades 2.51
Cognition. Memory. Explicit® 1.94

 ≥ 35 Years Old Subgroup
 Peak 1 −18 −68 48 Left Cerebrum. Parietal Lobe. Pre-

cuneus. Gray Matter. Brodmann 
area 7

Cognition. Attention 3.44 Counting/Calculation 5.31
Action. Execution 3.41 Mental Rotation 4.28
Action. Preparation 2.75 Anti-Saccades 4.23
Cognition. Reasoning 2.10 Imagined Objects/Scenes 4.15
Perception. Vision. Shape 1.90 Grasping 2.77
Cognition. Memory. Working® 1.82 Spatial/Location. Discrimination 2.65
Cognition. Space® 1.46 Visual Distractor/Visual. Attention 2.45
Perception. Vision. Motion 1.45 Pointing 2.33

Saccades 2.11
 Peak 2 −30 −48 44 Left Cerebrum. Parietal Lobe. 

Superior Parietal Lobule. Gray 
Matter. Brodmann area 7

Perception. Vision. Shape 2.56 Action. Observation 4.34
Cognition. Soma 2.53 Visual Pursuit/Tracking 2.85
Action. Execution 2.45 Mental Rotation 2.77
Cognition. Attention 2.35 Pointing 2.70
Cognition. Memory. Working® 2.22 Saccades 2.69
Action. Imagination 1.71 Imagined Movement 2.29
Cognition. Space® 1.61 Visual Distractor/Visual. Attention 2.20
Action. Observation 1.51 n-back 2.01
Perception. Vision. Motion 1.41

 Peak 3 −32 −58 46 Left Cerebrum. Parietal Lobe. Infe-
rior Parietal Lobule. Gray Matter. 
Brodmann area 39

Cognition. Space® 2.29 n-back 3.10
Cognition. Reasoning 2.06 Wisconsin Card Sorting Test 2.71
Cognition. Memory. Working® 1.88 Mental Rotation 2.53

Counting/Calculation 2.49
 Peak 4 −12 −64 54 Left Cerebrum. Parietal Lobe. Pre-

cuneus. Gray Matter. Brodmann 
area 7

− − − −

 < 12 weeks subgroup
 Peak 1 14 −64 32 Right Cerebrum. Occipital Lobe. 

Precuneus. Gray Matter. Brod-
mann area 31

Perception. Vision. Motion 2.06 Saccades 2.51
Cognition. Memory. Explicit® 1.94

 Peak 2 12 −52 32 Right Cerebrum. Limbic Lobe. 
Cingulate Gyrus. Gray Matter. 
Brodmann area 31

Cognition. Social Cognition 3.11 Cued Explicit. Recognition 5.88
Cognition. Memory. Explicit® 2.45 Episodic Recall 3.48

Theory of Mind Task 2.46
 Peak 3 12 −54 22 Right Cerebrum. Limbic Lobe. 

Posterior Cingulate. Gray Matter. 
Brodmann area 23

Perception. Vision. Motion 2.06 Saccades 2.51
Cognition. Memory. Explicit® 1.94
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with acute exercise occurring before memory encoding, dur-
ing early memory consolidation and during late memory 
consolidation. Positive results on explicit memory function 
may be attributed to improved pattern separation (Suwabe 
et al. 2018; Voss et al. 2019) and attenuated memory inter-
ference (Crawford et al. 2020) following a relatively short 
intervention duration. For the longer-term group, the acti-
vated cluster was located in the parietal lobe and peak areas 
were associated with spatial processing, reasoning and 
working memory. For longer-term exercise, various posi-
tive effects on cognition have been reported at the molecu-
lar and cellular levels (e.g., brain-derived neurotrophic fac-
tor) (Hotting et al. 2016), structural level (e.g., increased 
gray matter volume in frontal and hippocampal regions) 
(Chaddock-Heyman et al. 2014), and behavioral level (e.g., 
improvement in executive function) (Fernandes et al. 2017; 
Kramer et al. 2005).

Of note, the analyses separately examining healthy sub-
jects and patient groups did not converge on a specific brain 
region that exhibited changes. However, when lowering 
the statistical threshold (uncorrected) convergent activa-
tion in the parietal lobe emerged for both, healthy subjects 

and patients (detailed information can be found in sup-
plementary data 3), indicating that the lack of convergent 
activation in the subgroups might be due to the reduced 
number of included experiments in each subgroup analy-
sis. Besides, previous reviews have shown that both healthy 
people (Kramer and Colcombe 2018) and individuals with 
neurological, non-neurological, and psychiatric illnesses 
(Eggermont et al. 2006; Heyn et al. 2004) can benefit from 
physical exercise on the behavioral level. For instance, a 
meta-analysis by Dauwan et al., focusing on individuals 
with chronic disorders (Alzheimer’s disease, Huntington’s 
disease, multiple sclerosis, Parkinson’s disease, schizophre-
nia, and unipolar depression), suggested that exercise inter-
ventions can improve several cognitive domains (attention, 
working memory and executive function) with small but 
significant effect sizes (Dauwan et al. 2016). In addition, an 
activated cluster was only observed in PIG, but not in PAG. 
Such results might be explained by physiological and psy-
chological (cognitive) adaptation, which refers to that cel-
lular stress and the resultant metabolic signals have reached 
relatively stable status (MacInnis and Gibala 2017). It is well 
known that fMRI measures brain activation by detecting 

Table 3  (continued)

Coordinate Location Likelihood ratio of behavioral 
domain

Likelihood ratio of paradigm

x y z

 ≥ 12 weeks subgroup
 Peak 1 −32 −58 46 Left Cerebrum. Parietal Lobe. Infe-

rior Parietal Lobule. Gray Matter. 
Brodmann area 39

Cognition. Space® 2.29 n-back 3.10
Cognition. Reasoning® 2.06 Wisconsin Card Sorting Test 2.71
Cognition. Memory. Working® 1.88 Mental Rotation 2.53

Counting/Calculation 2.49
 Peak 2 −40 −48 42 Left Cerebrum. Parietal Lobe. Infe-

rior Parietal Lobule. Gray Matter. 
Brodmann area 40

Cognition. Space® 2.29 n-back 3.10
Cognition. Reasoning® 2.06 Wisconsin Card Sorting Test 2.71
Cognition. Memory. Working® 1.88 Mental Rotation 2.53

Counting/calculation 2.49
 Peak 3 −20 −64 46 Left Cerebrum. Parietal Lobe. Pre-

cuneus. Gray Matter. Brodmann 
area 7

Cognition. Reasoning® 3.25 Saccades 3.54
Cognition. Memory. Working® 2.92 Delayed Match To Sample 3.37
Cognition. Attention 2.81 Stroop Task 2.73
Perception. Vision. Motion 2.37 Mental Rotation 2.68
Cognition. Space® 1.72 Wisconsin Card Sorting Test 2.45
Perception. Vision. Shape 1.68 Task Switching 2.44

 Peak 4 −12 −64 54 Left Cerebrum. Parietal Lobe. Pre-
cuneus. Gray Matter. Brodmann 
area 7

− − − −

Physically inactive subgroup
 Peak 1 14 −64 32 Right Cerebrum. Occipital Lobe. 

Precuneus. Gray Matter. Brod-
mann area 31

Perception. Vision. Motion 2.06 Saccades 2.51
Cognition. Memory. Explicit® 1.94

 Peak 2 12 −52 32 Right Cerebrum. Limbic Lobe. 
Cingulate Gyrus. Gray Matter. 
Brodmann area 31

Cognition. Social Cognition 3.11 Cue Explicit. Recognition 5.88
Cognition. Memory. Explicit® 2.45 Episodic Recall 3.48

Theory of Mind Task 2.46

® and ◎ indicate overlapping behavioral domain(s) or paradigm(s) across sub-regions, respectively
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blood-oxygen-level dependent response to cognitive tasks. 
Regarding the total amount of exercise, if cognitive benefits 
reach a peak at 150-min exercise or below, activation may 
no longer last as the amount of exercise increases due to 
blood-oxygen metabolism and neural adaptation (Logothetis 
et al. 2001).

In addition, currently there is no sufficient number of 
studies available, which would allow to investigate how 
other important moderators, namely type of exercise and 
exercise intensity, can influence functional brain activation 
patterns. In this context, behavioral data suggest that coordi-
native exercise leads to greater benefits than purely aerobic 
exercises (Chen et al. 2020a; Ludyga et al. 2020). Hence, it 
seems a promising area for further research do investigate 
the underlying neural processes (e.g., functional brain acti-
vation patterns) driving this difference in behavioral find-
ings. With regard to exercise intensity, the evidence from 
behavioral data is not univocal. In physical training studies 
no clear effect of exercise intensity could be observed (Lud-
yga et al. 2020), whereas in acute exercise studies the moder-
ating effect of exercise intensity was clearly demonstrated as 
an exercising at higher intensity improves cognitive perfor-
mance to a greater extent (Chang et al. 2012; Oberste et al. 
2019). Hence, further studies are necessary to investigate 
whether the difference in behavioral findings, caused by the 
moderators type of exercise and exercise intensity, are mir-
rored in altered cognition-related functional brain activation 
patterns.

Implications

This is the first study to systematically examine the relation-
ship between functional brain activation and cognition as a 
function of exercise practice. Therefore, the present results 
can be used to guide future research on exercise effects on 
brain health and cognition. Firstly, in the subgroup analyses 
of age and training duration, activation was observed in dif-
ferent brain regions. Follow-up studies should explore the 
associations between hemispheric lateralization and mod-
erators (age and duration). Secondly, only the improvement 
of spatial cognition was observed in the overall analysis 
without consideration of moderators, while the benefits on 
various cognitive components like explicit memory, working 
memory and reasoning were found in the subgroup analyses. 
It can be inferred that the cognitive benefits from participat-
ing in physical exercise interventions are specifically influ-
enced by age and training duration, which is consistent with 
previous behavioral meta-analytical reviews (Verburgh et al. 
2014; Xue et al. 2019). Thirdly, because of the limited num-
ber of studies available for analysis, we cannot determine 
the influences of sex, exercise type, exercise intensity, and 
disease type on cognitive improvement. Given the high het-
erogeneity in the approaches to describe and report exercise 

intensity in the reviewed studies, a more standardized pre-
scription of exercise intensity would be highly desirable to 
facilitate a meta-analytical data analysis and to simplify the 
reproducibility of the studies (Gronwald et al. 2019; Herold 
et al. 2020), although the optimal approach to describe exer-
cise intensity is still debated (Herold et al. 2019, 2020; Her-
old 2020; Jamnick et al. 2020).  However, these moderators 
should be examined in future well-designed exercise–cogni-
tion studies using neuroimaging techniques. Fourthly, the 
small number of included experiments has limited research-
ers to focus on two age groups only for subgroup analysis. 
Furthermore, original imaging studies on this topic that 
focused on children and adolescent, middle-aged people, 
young-old (55–65 years old) group, oldest-old population 
are still in its infancy, which requires further investigation. 
Fifth, results in this current meta-analysis are generated from 
pre-to-post experiment, instead of between-group contrast. 
As a result, observed positive changes could be attributed 
to a variety of other factors that interact with the physical 
exercise interventions. For example, when people start an 
physical exercise program, they may change their diet and/or 
have more social interaction that are highly associated with 
improved cognitive function (Bailey et al. 2019; Hardman 
et al. 2020; Yu et al. 2020). Thus, future imaging studies 
should include active and/or passive control group (s) in 
order to draw a firm conclusion about the cognitive ben-
efits of physical exercise intervention (Herold et al. 2020). 
Lastly, when using the well-recognized PEDro scale for 
risk of bias assessment, the majority of included studies 
scored 7 below (blinding of participants and instructor are 
relatively difficult in physical exercise intervention, leading 
to 9 points in total). Moreover, the most of the reviewed 
has a relatively small sample size which can result in a low 
power influencing effect size estimation and reproducibility 
negatively (Button et al. 2013). Thus, more well-designed 
randomized controlled trials with an adequate sample size 
should be conducted on this topic to enhance the robustness 
of the findings.

Conclusions

The evidence for exercise effects on cognition is extensive 
but still growing. Combined with structural brain effects and 
behavioral data from previous studies, this article demon-
strates that exercise-induced changes in functional brain acti-
vation in parietal regions (precuneus, superior and inferior 
parietal lobule, cingulate gyrus and posterior cingulate) and 
associated networks (frontoparietal network, dorsal attention 
network and default mode network) may neutrally mediate 
exercise-induced cognition enhancement. Furthermore, the 
present findings emphasize that the brain functional effects 
of exercise vary as a function of age and duration.
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