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Abstract: The appealing properties of surfactant-intercalated Montmorillonites (Organo-montmorillonite,
OMt) were successfully investigated to propose an effective drug delivery system for metronidazole
(MNE) antibiotic therapy. This represents a serious pharmaceutical concern due to the adverse drug
reactions and the low targeting ability of MNE. The non-ionic surfactant Tween 20 was used to
functionalize montmorillonite, thus accomplishing the two-fold objective of enhancing the stability
of clay dispersion and better controlling drug uptake and release. The adsorption process was
performed under different experimental conditions and investigated by constructing the adsorption
isotherms through high-performance liquid chromatography (HPLC) measurements. Powder X-ray
diffraction (XRD) measurements were performed to characterize the MNE/OMt compounds. The
gathered results revealed that the uptake of the drug occurs preferentially in the clay interlayer, and it
is governed by positive cooperative processes. The presence of surfactant drives the adsorption into
clay interlayer and hampers the adsorption onto external lamella faces. The good performances of the
prepared OMt in the controlled release of the MNE were proved by investigating the release profiles
under physiological conditions, simulating oral drug administration. Cytotoxicity measurements
demonstrated the biocompatibility of the complexes and evidenced that, under specific experimental
conditions, nanodevices are more biocompatible than a free drug.

Keywords: montmorillonite; organoclay; metronidazole; surfactant; adsorption; release; drug deliv-
ery system

1. Introduction

In the few last decades, the use of surfactant-modified clay minerals (organoclays) in
biomedical and pharmaceutical applications is gaining momentum, offering a promising
strategy in solving cogent problems related to adverse effects and low targeting [1–7].

The functionalization with surfactants improves the already valuable performances of
clay minerals [8–19] in terms of affinity towards organic drug molecules and stability of
the formulation [20–26].

In this context, a great deal of interest [27–34] was focused on the montmorillonite
(Mt), a layered aluminosilicate (~1 nm in thickness) belonging to the smectite group, where
sheets of octahedrally-coordinated Al atoms and tetrahedrally-coordinated Si atoms are
stacked in a 2:1 ratio to form a T-O-T layer. The idealized structural formula for Mt is
(Na,Ca)0.3(Al,Mg)2Si4O10(OH)2·nH2O [35]. Due to the extensive isomorphic substitutions,
Mt clay is characterized by a high cation exchange capacity, which results in a high abil-
ity to adsorb cationic species. Furthermore, the presence of additional pH-dependent
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charges arising on the broken edges of the clay, open routes to the possibility to properly
modulate the adsorption features of the clay to selectively adsorb and release molecules
of different nature. The above-mentioned structural features of Mt clay, together with
its easy availability and biocompatibility, make this mineral clay particularly suitable for
pharmacological applications.

Calabrese et al. [36] reported a study where the K10-montmorillonite was successfully
exploited to formulate a drug delivery system for metronidazole (MNE), a powerful
antibiotic mostly used for the treatment of intestinal amoebiasis [37,38]. The administration
of MNE constitutes a serious pharmacological due to several adverse drug reactions and
the low targeting ability related to both systemic and intravenous therapy [39–44]. To exert
its efficient action against intestinal amoebiasis, MNE must be delivered directly in the
colon [45–47]. However, the pharmacokinetic profile of the commercial oral formulation of
the antibiotic indicates a very high absorption from the upper gastrointestinal tract, which
reflects into severe unwanted systemic effects and a minimal amount reaching the colon
for local action [48–53].

A comparison between the MNE/Mt hybrid materials with the commercial formula-
tion of the MNE unveiled that the encapsulation of the drug onto Mt clay presents some
important advantages, i.e., very low releasing rate of the MNE from the Mt formulation
in the simulated gastric fluids (pH = 1.0) and sustained release in the simulated intestinal
fluids (pH = 6.8).

In light of the effectiveness of the drug delivery system proposed by Calabrese
et al. [36] and in response to the always growing demand for more performant formu-
lations, the surfactant-functionalization of the Mt clay was here proposed as a strategy
to (i) enhance the uptake toward the drug, (ii) obtain a better control the adsorption and
release, and (iii) increase the dispersion stability in aqueous media.

The Polysorbates 20 (Tween20) was chosen as surfactant for the modification of clay
surface, mainly due to its non-toxicity and biocompatibility, which allows the application in
pharmacological formulations. In addition, previous studies [54] allowed us to assess the
stabilization effect brought about by the adsorption of the surfactant on the Mt dispersions.
The stability of the clay mineral dispersion is a crucial parameter for applications in
pharmaceutical formulations since it strongly improves the degree of repeatability of the
drug adsorption process and the bioavailability of the drug.

The release profiles of MNE from the organo-montmorillonite (OMt) in both simulated
gastric and intestinal fluids pH were obtained. Preliminary to the releasing study, the
systems were characterized from a physico-chemical point of view. Equilibrium studies
were carried out to elucidate the adsorption mechanism of the MNE into the OMt and
establish the nature of the interactions involved in the hybrid MNE/OMt formation.
Moreover, the sites of interactions of the clay mineral surface were proposed based on
the XRD results. To have a complete picture of the applicability of the new tailor-made
systems, the cytocompatibility of nanodevices’ constituents, i.e., Tween20, Mt, OMt, and
that of the drug-loaded organo-clay was evaluated through MTS assay.

2. Materials and Methods
2.1. Materials

K10-montmorillonite (K10), polyoxyethylene sorbitan monolaurate (Tween 20), hy-
drochloric acid (HCl), and sodium hydroxide (NaOH) standard solutions were purchased
from Sigma Aldrich (St. Louis, MO, USA).

K10 is an acid-treated montmorillonite with a partially destroyed structure, extensively
exploited as sorbent in biomedical, industrial, and environmental applications [55–62].

It possesses a BET surface area of 220 m2/g, CEC of 119 meq/100 g, and the following
structural formula [63]:

(K0.25Na0.118Ca0.022)(Al1.06Fe0.206Mg0.166)(Si7.39Al0.61)O20(OH)4.
The Zeta potential of K10 is negative at all the pH values [64], therefore the clay does

not present an isoelectric point and the surface is always negatively charged.
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Metronidazole (MNE), 1-hydroxyethyl-2-methyl-5-nitroimidazole was provided
from Fluka.

SpectraPor dialysis tubing, with a nominal molecular weight cut-off (MWCO) of
1000 Da, was purchased from Spectrum Laboratories, Inc. (Palazzo Pignano, Italy). Hard
gelatine capsules were purchased from Sigma Aldrich.

All materials were used as received.
Stock solutions of all chemicals used were prepared by weight before use. Deionized

water from reverse osmosis (Elga, model Option 3), having resistivity higher than 1 MΩ cm,
was used to prepare all solutions.

2.2. Organo-Montmorillonite Preparation

The OMt samples were prepared at pH = 2.5, according to the procedure previously
described [21].

TGA measurements previously performed [21] indicate that the Tween20 weight frac-
tion (χs) in the organo-clays, obtained by using the rule of mixtures [65], is 0.23 ± 0.01 wt%.

2.3. MNE/OMt Preparation

The metronidazole was adsorbed onto the OMt at three different pH (pH 0.2, pH 2.5,
pH 5.0), by keeping constant the concentration of OMt (30 mg·mL−1) and varying the
concentration of metronidazole in the range 0.3–8.0 mg·mL−1 at 25.0 ◦C.

These experimental conditions were selected because the pKa (2.5) of the metronida-
zole ensure, for pH < pKa and pH > pKa, the prevalent presence in aqueous solutions of
the cationic species and neutral species, respectively, while at pH = pKa both the cationic
and neutral species represent the absorbable molecules.

Aqueous HCl solutions at the desired pH (0.2, 2.5, and 5.0) were prepared by proper
dilution of the standard solutions.

MNE aqueous stock solutions were prepared by weighting the antibiotic and dissolv-
ing it with the aqueous HCl solution at the required pH.

Clay aqueous suspensions were prepared by crushing the OMt in an agate mortar and
then mixing the requested amount of powder with the aqueous HCl solution prepared as
described above. The obtained dispersions were stirred for about 2 h before use.

In both cases, the pH of the aqueous solutions/dispersions were measured and, when
necessary, it was adjusted to the proper value by adding microvolumes of HCl or NaOH
standard solutions.

The MNE/OMt hybrids, at a given pH, were obtained by following the procedure
previously described [36]. Briefly, appropriate aliquots of the drug aqueous solution were
added to the aqueous OMt dispersions. The obtained dispersions were stirred at 100 rpm
for 5 h, a stirring time that ensures that the adsorption processes reach the equilibrium,
as demonstrated by preliminary kinetic experiments, and then, centrifuged for 10 min
at 8000 rpm through a Centra MP4R IEC centrifuge (Thermo Fisher Scientific, Waltham,
MA, USA).

Then, the solid was either first frozen and after lyophilized by using a Freeze Dry
System Labconco or air-dried for 2 days and then crushed in an agate mortar. The former
treatment allowed us to prepare the samples to be used for both the release and cyto-
toxicity tests while the latter one was applied for obtaining the samples to be used for
XRD characterization.

2.4. Chromatographic Measurements

The concentration of metronidazole in aqueous solutions was evaluated via high-
performance liquid chromatography (HPLC) using Liquid Chromatography (1100 Series,
Agilent Technologies, Deutschland GmbH, Ehningen, Germany) equipped with a UV–vis
detector model Kontron 432. For the chromatographic separation, an inverse phase column
Gemini C18 110 Å from Phenomenex was used as stationary phase, and a mobile phase
composed by a mixture of acetonitrile and a 5-mmol·L−1 KH2PO4 (pH = 3.0) aqueous
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solution in the ratio 8/92 (v/v), the applied flow velocity was 1 mL·min−1. Samples were
monitored at 313 nm [66]. The validity of the Lambert–Beer law was verified over a wide
range of drug concentrations (0.005–1.1 mg·mL−1).

HPLC calibration curve is reported in the Supplementary Material (Figure S1).

2.5. Adsorption Isotherms

The adsorption process of MNE onto the biocompatible organo-clays was studied
over a wide range of concentration of antibiotic by keeping constant the concentration of
the organo-clay at fixed pH values (pH = 0.2, 2.5, 5.0), according to the procedure described
in the above section (sample preparation) The adsorption isotherms were collected by
determining the metronidazole equilibrium concentration (Ce) in the supernatant, then, the
amount of adsorbed drug (Cs) onto the OMt was estimated from the difference between
the initial antibiotic concentration and Ce.

The MNE equilibrium concentration was estimated through HPLC as reported above.
Experiments were carried out in triplicate and the results were reported as average values.

2.6. Kinetic of MNE Release

The MNE/OMt samples containing the highest amount of loaded drug were selected
for studying the in vitro MNE kinetic release, at 37.0 ◦C, in simulated gastric fluid (SGF,
pH 1) and simulated intestinal fluid (SIF, pH 6.8), to reproduce the oral drug administration
under physiological pH conditions [67,68]. The MNE release measurements from the
MNE/OMt hybrids were carried out in two steps. In the first step, 500 mg of the sample
were encased in a hard gelatine capsule that was placed inside a dialysis membrane to
which were then added 5 mL of HCl 0.1 mol·L−1 (SGF). The membrane containing the
capsule was immersed in a beaker filled with 100 mL SGF and incubated at 37 ◦C under
continuous stirring (100 rpm) in an Orbital placed (Thermo Fisher Scientific, Waltham, MA,
USA) for 2 h at 37.0 ◦C. In the second step, after 2 h, the membrane was taken away and put
in a cylinder glass containing 100 mL of phosphate buffer at pH 6.8 (SIF), and the system
was maintained at 37.0 ◦C in the Orbital Shaker for 6 h. In both steps at scheduled time
intervals, 1 mL of the release medium was withdrawn and analyzed by HPLC. The release
medium volume was kept constant by adding 1 mL of fresh solutions of either 0.1 mol·L−1

HCl or phosphate buffer at pH 6.8 to replace the collected one. The pH inside the dialysis
membrane and in the release medium was checked at the end of the experiments.

The reported results are averaged over three experiments.

2.7. XRD Characterization

Powder X-ray diffractometry measurements were performed for the MNE/OMt
hybrids, prepared in the whole pH range and, for the sake of comparison, for the clay in
the absence of additives. The samples were mounted on aluminum plates and the XRD
patterns were acquired at room temperature with a Philips X-ray diffractometer (PW 1729,
Netherland) using Ni-filtered Cu Kα radiation with λ 1.5406 Å, in the range of scattering
angles 2θ = 4–25◦ at the rate of 0.01◦ s−1.

2.8. Cell Viability Assay on Human Colon Cancer (HCT116) Cells

Cell viability was assessed by the MTS assay on human colon cancer (HCT116) cell
lines, (purchased from Istituto Zooprofilattico Sperimentale della Lombardia e dell’ Emilia
Romagna, Italy) a model of colorectal cancer cells [69,70] using a commercially available
kit (Cell Titer 96 Aqueous One Solution Cell Proliferation assay, Promega).

The MTS assay is based on the ability of mitochondrial dehydrogenases in viable
cells to convert the MTS salt into a colored formazan product, which can be quantitatively
detected by spectrophotometry at a λmax of 490 nm. The obtained absorbance is directly
proportional to the number of living cells in the culture.

HCT116 cells (2.5 × 104 cells/well) were seeded in 96 well plates and grown in
Dulbecco’s Minimum Essential Medium (DMEM) with 10% FBS (foetal bovine serum)
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and 1% of penicillin/streptomycin (10,000U/mL penicillin and 10 mg/mL streptomycin)
at 37 ◦C in 5% CO2 humidified atmosphere. After 24 h, the medium was replaced with
200 µL of fresh culture medium containing the free drug and the drug loaded onto Mt
and OMt. The concentration per well of MNE was varied in the range 0.75–15 µg·mL−1.
After 4 and 24 h, DMEM was replaced with 100 µL of fresh medium, and 20 µL of a MTS
solution was added to each well. Plates were incubated for an additional 2 h at 37 ◦C. Then,
the absorbance at 490 nm was measured using a microplate reader (Multiskan, Thermo,
Heysham, UK). A pure cell medium was used as a negative control.

The same experiment was performed incubating HCT116 cells with Tween20
(0.011–0.22 mg·mL−1), OMt (0.05–1 mg·mL−1), and K10 (0.02–1 mg·mL−1).

Results were expressed as percentage reduction of the control cells. All culture
experiments were performed in triplicates.

3. Results
3.1. Adsorption Isotherms

The amount of antibiotic adsorbed per gram of organo-clay (Cs, mmol·g−1) was
evaluated from the absorbance values of the equilibrium process and plotted as a function
of the equilibrium concentration of metronidazole in the solution (Ce, mol·L−1) (Figure 1).

It can be observed, that, analogously to the MNE uptake onto non-functionalized
Mt [36], the loading capacity is a function of pH, and, specifically, it decreases on an
increasing pH.

Different models, currently applied in the analysis of adsorption data (i.e., Langmuir,
Freundlich, Dual-mode Langmuir, Dual-mode Freundlich, Hill models) were applied. The
discrimination between the models was performed through some statistical criteria, as
reported in Table 1. The reader can refer to Merli et al. [71] for a detailed description of
these statistics.

Table 1. Selected figures of merit for the models applied to the experimental adsorption isotherms.

Adsorption Isotherm Model Figures of Merit pH 0.2 pH 2.5 pH 5.0

Langmuir
Cs =

qm ·KL ·Ce
1 + KL ·Ce

R2 0.98 0.98 0.94
χ2 6.1 × 10−6 1.4 × 10−5 1.4 × 10−5

ESS 2.4 × 10−5 6.2 × 10−5 5.7 × 10−5

ANOVA F value 866 200 94

Freundlich

CS = KF·C
1

nF
e

R2 0.94 0.98 0.94
χ2 3.0 × 10−5 7.9 × 10−6 1.6 × 10−5

ESS 1.2 × 10−4 3.2 × 10−5 6.3 × 10−5

ANOVA F value 174 394 84

Dual mode
Langmuir

Cs =
qm ·KL ·Ce
1 + KL ·Ce

+ K′ Ce

R2 0.98 0.97 0.94
χ2 6.8 × 10−6 2.1 × 10−5 1.8 × 10−5

ESS 2.0 × 10−5 6.2 × 10−5 5.5 × 10−5

ANOVA F value 522 100 49

Dual mode
Freundlich

CS = KF·C
1
n
e + K′ Ce

R2 0.98 0.99 0.94
χ2 1.1 × 10−5 9.7 × 10−6 2.1 × 10−5

ESS 3.1 × 10−5 2.9 × 10−5 6.3 × 10−5

ANOVA F value 335 214 42

Hill
Cs =

qm ·CnH
e

KH + CnH
e

R2 0.99 0.99 0.99
χ2 3.9 × 10−6 1.5 × 10−6 1.7 × 10−6

ESS 1.2 × 10−5 5.8 × 10−6 5.2 × 10−6

ANOVA F value 903 1217 519
Note: Cs = amount of adsorbed drug, Ce = drug equilibrium concentration, qm = maximum adsorption capacity,
KL = Langmuir adsorption constant, KF = Freundlich adsorption constant, nF = empirical constant, K’ = Partition
coefficient, KH = Hill adsorption constant, nH = Hill cooperativity coefficient.
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Figure 1. Adsorption isotherms of metronidazole onto organo-montmorillonites at pH = 0.2 (A),
pH = 2.5 (B), pH = 5 (C). T = 25.0 ◦C. Symbols denote experimental points; line corresponds to the fit
by Hill model. Vertical bars represent the SD, results are shown as mean ± S.D.; n = 3.

It was found that the model that better reproduces experimental data is the Hill model,
which assumes that adsorption is a cooperative phenomenon, where the ligand binding
ability at one site on the substrate, may influence different binding sites on the same
substrate [72]. Sorption parameters are reported in Table 2.

Table 2. Sorption parameters of the Hill model for the adsorption isotherms of metronidazole onto
organo-montmorillonite.

pH 0.2 2.5 5.0

qm/mmol·g−1 0.061 ± 0.004 0.08 ± 0.01 0.033 ± 0.002
KH/L·mol−1 130 ± 20 33 ± 4 52 ± 3

n 1.3 ± 0.2 2.4 ± 0.3 4.1 ± 0.7
R2 0.98985 0.99671 0.99138



Minerals 2021, 11, 1315 7 of 16

Comparison between the sorption parameters (Table 1) indicated that the maximum
adsorption capacity (qm) is higher at pH = 2.5.

3.2. Analysis of XRD Data

The adsorption site of the drug into the OMt was investigated by means of powder
X-ray diffraction measurements. X-ray diffraction patterns of the organoclays loaded with
the metronidazole at the three different pH and, for comparison, those of the organoclays
in the absence of drug, were registered (Figure 2).
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Figure 2. XRD patterns of organo-montmorillonite (a) and metronidazole/organo-montmorillonite
complexes prepared at pH 0.2 (b), pH 2.5 (c), and pH 5.0 (d). Montmorillonite (Mt), muscovite (Mu),
and quartz (Q).

According to the literature [60,73], the XRD pattern of K10 is characterized by the
presence of a weak and broad reflection d001 at 2θ~5◦ (d001~17.5 Å), related to montmo-
rillonite clay minerals, and a sharp peak at 2θ~8.9◦ (d001 = 9.9 Å), which is attributed to
clay mineral of the mica group (muscovite). Reflections corresponding to quartz are also
present in the pattern at 2θ = 26.5◦ (d101 = 3.4 Å) and 2θ = 20.9◦ (d112 = 4.2 Å).

The clay structure is maintained during the adsorption process of the drug at any
investigated pH value. However small changes in the low angle region can be recognized,
thus assessing the successful intercalation of the drug in the Mt clay interlayer. A better
view of this effect is provided in Figure 3 where the superimposition of the smoothed XRD
patterns in this region is reported.

Regardless of the loading pH of metronidazole, the interaction between the drug and
organoclay gives rise to an additional reflection at 2θ = 4.15◦ (d = 21.3 Å), whose intensity
decreases on increasing the loading pH, which proves the successful intercalation of the
drug in the clay interlayer, following the same trend of the adsorption capacity obtained
from the adsorption isotherms.

The characteristic peak of the Mt, corresponding to a d spacing of 17.7 Å remains
almost unchanged for the hybrids prepared at pH 2.5 and 5.0, thus suggesting a partial
filling of Mt basal spacing, while it completely disappears in the case of strong acidic
conditions, demonstrating the complete filling of the clay interlayer. It is worth underlaying
that, in the absence of surfactant functionalization [36], almost no change in the clay
interlayer were detected at a low pH.
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3.3. MNE Release Profiles from Organo-Clay Hybrids

The in vitro release of metronidazole, from the MNE/OMt complexes, was studied by
dialysis, using two different release media, the first at pH 1.0 and the second at pH 6.8 to
mimic the gastric and intestinal fluids, respectively [67,68], thus reproducing the oral drug
administration and physiological release.

Normalized UV-Vis spectra of the released drug were registered and compared with
the MNE spectrum obtained at pH 6.8 (Figure 4). The absence of significant changes both in
the position and in the band shape clearly suggests that the kind of interaction between the
organoclay and drug does not induce any change in the chemical nature of the an-tibiotic.
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Moreover, it is worth underlining that the retention time of the released drug remains
unaltered, thus indicating no chemical modification of the antibiotic.

These are very important results that indicate that the drug activity is preserved, and
the proposed formulation could be fruitfully exploited to successfully prolong the action of
drug in the desired site.
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The release profiles of MNE from OMTs in SGF and SIF, obtained at 37.0 ◦C under
mechanical stirring conditions, are shown in Figure 5.
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Figure 5. Kinetics of release of metronidazole from the organo-montmorillonites loaded with metron-
idazole at pH 0.2 (�), pH 2.5 (N), and pH 5.0 (#) and from the commercial tablet (�) [55]. Line
corresponds to the fit by the zero-order model (in the release medium at pH = 1.0, 0 < t < 120 min)
and by first-order model (release medium at pH 6.8, 120 < t < 480 min). Vertical bars represent the
SD, results are shown as mean ± S.D.; n = 3.

Results are reported in terms of percentage of the released drug (relative to the total
amount of adsorbed drug) to make comparable results obtained for different OMTs with
different antibiotic content.

The amount of drug released from the organoclays, for the first two hours at acidic pH
(system mimicking the stomach), is about half of the amount released from the commercial
tablet. On passing time (6 h) all the investigated systems release almost 100% of drug in
the buffered medium at pH = 6.8 (intestine).

In order to better understand the release mechanism, different kinetic models [74,75]
were tested and the choice of the model that better reproduces experimental data was
performed based on the statistical criteria reported in Tables 3 and 4.

Table 3. Selected figures of merit for the models applied to the experimental release kinetic profiles
in SGF.

Kinetic Model Figures of Merit pH 0.2 pH 2.5 pH 5.0

Zero order
Qt = Qe + k0t

R2 0.98 0.99 0.99
ESS 18 17 4

ANOVA F value 186 291 2500

First order
Qt = Qe

(
1− e−k1t

) R2 0.97 0.98 0.98
χ2 5.3 1.1 0.8

ESS 10.7 20.3 10
ANOVA F value 54 254 1049

Second order
Qt = Qe

(
Qek2t

1 + Qek2t

) R2 0.94 0.95 0.99
χ2 6.2 5.9 1.5

ESS 18.6 17.8 5.5
ANOVA F value 69 72 462

Note: Qt = amount of released drug at time t, Qe = amount of released drug at the equilibrium time, k0 = zero-order
kinetic rate constant, k1 = first-order kinetic rate constant, k2 = second-order kinetic rate constant, A1 , A2 = pre-
exponential factors related to two parallel reactions, k′, k” = kinetic rate constants related to two parallel reactions.
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Table 4. Selected figures of merit for the models applied to the experimental release kinetic profiles
in SIF.

Kinetic Model Figures of Merit pH 0.2 pH 2.5 pH 5.0

First order
Qt = Qe

(
1− e−k1t

) R2 0.99 0.99 0.99
χ2 2.0 3.8 0.7

ESS 12.3 22.98 3.6
ANOVA F value 10,517 5410 23,700

Second order
Qt = Qe

(
Qek2t

1 + Qek2t

) R2 0.72 0.73 0.87
χ2 296 256 88.9

ESS 2078 1868 533
ANOVA F value 105 112 289

Double exponential model
Qt = Qe − A′e−k′t − A′e−k′t)

R2 0.99 0.99 0.99
χ2 3.1 5.6 1.21

ESS 12.1 22.6 365
ANOVA F value 4213 2199 8536

Note: Qt = amount of released drug at time t, Qe = amount of released drug at the equilibrium time, k0 = zero-order
kinetic rate constant, k1 = first-order kinetic rate constant, k2 = second-order kinetic rate constant, A1, A2 = pre-
exponential factors related to two parallel reactions, k′, k” = kinetic rate constants related to two parallel reactions.

It has been found that the model that better reproduces the release profiles in an acid
environment is the zero-order model, which implies that the rate of desorption of the drug
is independent of the amount of drug loaded on the organo-clay. As for the MNE release at
pH 6.8, it was found that it follows a first-order rate law, which implies that the drug is
released proportionally to the amount of the drug bound to the clay mineral.

The kinetic rate constants (k0 and k1), obtained from the fitting of the experimental
data, are reported in Table 5 together with other characteristic parameters [75], i.e., the
amount of drug released in a certain time, t%, and the dissolution efficiency, DE%.

Table 5. Release parameters in the simulated gastric fluids (SGF) and simulated intestinal fluids
(SIF) media.

Simulated Gastric Fluids Simulated Intestinal Fluids

t120% DE% k0/min−1 t480% DE% k1/min−1

Commercial
formulation 44 18 0.48 ± 0.03 100 72 (1.1 ± 0.1) × 10−2

MNE/OMt
pH 0.2 20 9.5 0.20 ± 0.01 100 87 (2.63 ± 0.07) × 10−2

MNE/OMt
pH 2.5 24 10 0.21 ± 0.01 100 89,5 (2.6 ± 0.1) × 10−2

MNE/OMt
pH 5.0 26 14 0.23 ± 0.01 100 75 (1.02 ± 0.05) × 10−2

Note: t120% = amount of drug released at time = 120 min, t480% = amount of drug released at time = 480 min,

DE% = dissolution efficiency (DE% =
∫ t

0 ydt
y100 t·100, where y is the drug % dissolved at time t).

3.4. Cell Viability Assay on Human Colon Cancer (HCT116) Cells

The cytocompatibility of the constituents of the proposed formulations was inves-
tigated. Figure 6 reports data obtained incubating HCT116 cells with pure Tween 20
(Figure 6a) and with OMt (Figure 6b). Surfactant and clay concentrations correspond to the
amounts contained in MNE/Mt and MNE/OMt hybrids.
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In Figure 7, the cytocompatibility profiles for free MNE, MNE/Mt, and MNE/OMt
are reported.
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4. Discussion

Results obtained from the construction of the adsorption isotherms (Figure 1) indicates
that acidic conditions favor the drug uptake, due to the presence of H+ ions promoting the
intercalation of the drug in the interlayer region [76]. The same behavior was observed for
drug uptake onto pristine montmorillonite [36].

Comparison with the adsorption isotherms of the same metronidazole onto the non-
functionalized montmorillonite [36] showed that the presence of the surfactant leads to a
decrease of the adsorbed amount. This could be ascribed to the steric hindrance effect of
the Tween20 in the clay interlayer and it could be taken as an indication that, regardless of
the pH of preparation of the complexes, the adsorption occurs preferentially in the clay
interlayer, rather than onto the lamella faces of the clay.

The occurrence of the Hill model indicates that the affinity of the drug toward
the organoclay increases on increasing the amount of drug already adsorbed. Simi-
lar results were recently obtained in the case of the adsorption of cinnamic acid onto
Tween20/montmorillonite hybrids [6] and for the cellular uptake of boronated porphyrin [76].

As for the n parameter, which is related to the cooperative process, it indicated that
the cooperative effect is higher at a higher pH.

Analysis of the XRD results, and in particular the behavior observed at strong acidic
conditions, in comparison with the results of Calabrese et al. [36], evidence that the func-
tionalization with the surfactant somehow drives the adsorption of the protonated form of
the drug into the clay interlayer.
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This can be taken as an indication of the occurrence of cationic exchange processes in
the clay interlayer involving the cationic form of the drug, while electrostatic interactions
with the external lamella negative faces are hampered.

The small changes involving the adsorption process at higher pH values, in contrast
with the behavior reported in [36] for the adsorption onto pristine clay, could be taken as
an indication of the negligible adsorption of the neutral form of the drug predominating at
pH = 5.0.

In the light of the obtained results, it was proposed that the adsorption of MNE
onto OMt occurs preferentially in the clay interlayer through cationic exchange processes,
while the electrostatic interactions onto the external surface and the intercalation of the
neutral form of the drug through protonation reactions are prevented by the presence of
the surfactant.

It can be concluded that strong acidic pH represents the optimal condition for the
adsorption of MNE onto OMt since it promotes the complete intercalation of the drug and
avoids adsorption onto other available sites in the clay.

Concerning the release profiles, the different behavior observed in the two physiologi-
cal conditions may be ascribed to the different kind of exchangeable cations present in the
media, i.e., H+ in the stomach pH mimicking medium, and Na+ and K+ in the intestinal
pH mimicking medium, and to the different affinity of the OMt toward the drug and the
different cations that follow the order H+ < MNE < Na+/K+.

The low release of MNE from all systems at acid pH, simulating the stomach en-
vironment, could allow for overcoming the undesirable side effects of MNE after oral
administration, decreasing stomach damage and achieving sustained release of MTZ for
efficient clinical use [77]. Worthy of note is that the complete release in the target point, i.e.,
the intestine, was not always reached in the case of the non-functionalized clay mineral [36].

The release profiles obtained in the case of other tailor-made drug delivery systems, re-
ported in the literature [77–79] indicates comparable results in the SGF medium, but, again,
the formulation proposed in the present work ensures a better release in the target point.

A perusal of data reported in Table 5 indicates that, in both SGF and SFI medium, the
release rate of the drug does not depend on the pH of the sample preparation, except for
the release from the hybrid prepared at pH 5 which, in the SFI medium, is slightly slower,
compared to the other organo-clays, which is due to the stronger interaction between the
clay mineral and the neutral form of the drug. Analogously, the other release parameters
are quite similar for the different hybrid complexes. This can be taken as a demonstration
of the drug uptake onto the clay mineral interlayer, regardless of the pH. Comparison with
the data obtained from the investigation of the drug release from the non-functionalized
clay mineral, allow us to assess that the surfactant drives the intercalation of the antibiotic
into the interlamellar space.

The release profiles, common to all samples, allows us to consider the MNE/OMt
complexes good candidates for the modified release of metronidazole in the context of the
problem of intestinal amoebiasis. The MNE/OMt complexes satisfy the conditions for the
local (intestinal) and not systemic treatment of infections caused by Entamoeba histolytica.

The other aspect to be considered to verify the efficacy of the proposed formulation, is
the cytocompatibility. Concerning this point, negligible effect and no significant differences
in cell viability were detected both after 4 and 24 h, for all tested materials and range of
concentration, with respect to the untreated control, indicating a good cytocompatibility of
the constituents of the devices.

The data show that for all systems, cell viability is comparable to control. In more
detail, cell viability is more than 80% even after 4 and 24 h of incubation under all ex-
perimental conditions. Moreover, although after 24 h (Figure 7b) the differences between
free drug and nanodevices are not statistically significant, the viability of HCT116 cells
incubated for 4 h (Figure 7a) with pure metronidazole is lower than the viability of HCT116
cells incubated with nanodevices.
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Cytotoxicity measurements allow one to assess the biocompatibility of the prepared
complexes and evidenced that, under specific experimental conditions, nanodevices are
more biocompatible than the free drug.

5. Conclusions

The main purpose of the present work was the exploitation of the peculiar features of
tailor-made organoclays materials based on the non-ionic surfactant Tween20 and the Mt
clay mineral, in the design of carrier systems for the administration of the metronidazole
antibiotic. The work was aimed at improving the already valuable properties of montmo-
rillonite/metronidazole nanodevices through the functionalization of the clay mineral with
the surfactant to enhance the stability of the clay mineral dispersion and to better control
drug adsorption and release.

The uptake process was investigated through systematic equilibrium studies and XRD
characterization, which allows us to assess that the adsorption of MNE occurs preferentially
in the clay mineral interlayer.

Drug release kinetics, performed under physiological pH conditions simulating the
oral drug administration and delivery, showed excellent release profiles for the cure of
intestinal amoebiasis, especially when compared with the commercial formulation. More-
over, the clay mineral functionalization with the non-ionic surfactant accomplishes the
target objectives of i) improving the dispersion stability of the clay mineral, thus preventing
flocculation and increasing the bioavailability of the drug, and ii) driving the adsorption
of both the protonated and neutral form of the drug onto the clay mineral interlayer, thus
allowing better control of the uptake and release of the drug.

Good biocompatibility of the prepared nanodevices completes the picture that makes
them very promising for the preparation of effective antibiotic formulations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/min11121315/s1, Figure S1: HPLC calibration curve.
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