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Abstract: Obesity-related dysmetabolic conditions are amongst the most common causes of death
globally. Indicaxanthin, a bioavailable betalain pigment from Opuntia ficus-indica fruit, has been
demonstrated to modulate redox-dependent signalling pathways, exerting significant anti-oxidative
and anti-inflammatory effects in vitro and in vivo. In light of the strict interconnections between in-
flammation, oxidative stress and insulin resistance (IR), a nutritionally relevant dose of indicaxanthin
has been evaluated in a high-fat diet (HFD) model of obesity-related IR. To this end, biochemical and
histological analysis, oxidative stress and inflammation evaluations in liver and adipose tissue were
carried out. Our results showed that indicaxanthin treatment significantly reduced body weight,
daily food intake and visceral fat mass. Moreover, indicaxanthin administration induced remark-
able, beneficial effects on HFD-induced glucose dysmetabolism, reducing fasting glycaemia and
insulinaemia, improving glucose and insulin tolerance and restoring the HOMA index to physiologi-
cal values. These effects were associated with a reduction in hepatic and adipose tissue oxidative
stress and inflammation. A decrease in RONS, malondialdehyde and NO levels, in TNF-α, CCL-2
and F4-80 gene expression, in p65, p-JNK, COX-2 and i-NOS protein levels, in crown-like struc-
tures and hepatic inflammatory foci was, indeed, observed. The current findings encourage further
clinical studies to confirm the effectiveness of indicaxanthin to prevent and treat obesity-related
dysmetabolic conditions.

Keywords: indicaxanthin; Opuntia ficus-indica; phytochemicals; insulin resistance; obesity; inflammation;
oxidative stress; dysmetabolism

1. Introduction

Obesity is a major, global health problem, affecting approximately 500 million adults
and 40 million children worldwide [1]. Prospective studies highlight that obesity increases
the risk of several pathological conditions, such as type-2 diabetes (DM), hypertension and
coronary heart disease, being responsible for almost 3 million deaths every year [2]. Obesity
stems from a chronic imbalance between energy intake and expenditure and involves the
accumulation of excessive body fat within adipose tissue. Due to its spectacular complexity,
as both a nutrient sink and endocrine organ, adipose tissue is a key district where metabolic
regulations and immunological responses are highly integrated and the proper function
of each depends on the other. Along these lines, an obesity-induced disruption of this
delicate equilibrium results in the development of inflammatory-dependent, dysmetabolic
conditions, including insulin resistance (IR), DM and non-alcoholic fatty liver disease
(NAFLD) [3].
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IR is the reduced ability of an organism to mount a normal and coordinated glucose-
lowering response via tissue-autonomous and crosstalk-dependent mechanisms [4]. From
a mechanistic perspective, IR originates from a chronic caloric imbalance that generates
adipose tissue hypertrophy and hyperplasia [5–7]. In response to hypertrophic signals,
adipocytes have the innate capacity to secrete pro-inflammatory adipokines and hor-
mones, establishing a state of chronic, systemic, low-grade inflammation [3,8,9]. The
increased release of these mediators, then, stimulates the recruitment, retention and acti-
vation of M1 macrophages within the white adipose tissue itself. Here, the activation of
pro-inflammatory signalling pathways, involving both c-Jun NH2-terminal kinase (JNK)
and NF-κB, leads to the elaboration of paracrine mediator system, including tumour necro-
sis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. As a result, the release of these
pro-inflammatory cytokines into the bloodstream impairs insulin signalling in the hyper-
trophic adipocytes, thus increasing adipocyte lipolysis. The chronically increased efflux
of non-esterified fatty acids (NEFA) favours their ectopic deposition (lipotoxicity) in the
liver and skeletal muscle [4,10–12]. On the other hand, excessive storage of the intrahepatic
fat that characterises hepatic steatosis is regarded as an obesity-associated liver pathology
strictly linked with IR [12,13]. The IR state, caused by pro-inflammatory (JNK- and NF-κB-
dependent), oxidative and lipotoxic mediators, is initially accompanied by a compensatory
increase in pancreatic β cell insulin secretion for the maintenance of euglycemia [13,14]. If
compensatory insulin secretion fails, β cells collapse, becoming unable to produce sufficient
insulin, and a transition from IR to DM occurs.

In recent times, Opuntia ficus-indica cladodes have been exploited for nutraceuti-
cal and health-promoting purposes since they exert a plethora of beneficial effects on
both lipid and glucose dysmetabolism [15–20]. Conversely, much less attention has been
paid to the fruit, hallmarked by a phytochemical fingerprint different from the cladode
one. Opuntia ficus-indica fruits are, indeed, enriched in the betalains pigments, exclusively
present within Caryophyllales and in some genera of higher fungi, wherein they replace
anthocyanins. Amongst the betalains of Opuntia ficus-indica fruit, indicaxanthin has been
investigated over the last 20 years for its biochemical, pharmacological and nutraceu-
tical properties [21]. This phytochemical, an adduct of betalamic acid with proline, is
highly bioavailable in humans [22]. Indeed, the ingestion of a single serving of the yel-
low cultivar of Opuntia ficus-indica fruit generates, in humans, an indicaxanthin plasma
peak concentration of 7 µM after 2 h. Relevantly, thanks to its reducing and amphipathic
properties, indicaxanthin was shown to interfere with cellular, redox-dependent signal
transduction pathways in several experimental models of inflammatory-related, oxidative
stress-dependent pathological conditions [21,23]. Along these lines, significant reduc-
ing, anti-oxidative, anti-inflammatory, anti-proliferative, anti-tumoral, spasmolytic and
neuromodulatory and neuroprotective [24] effects of indicaxanthin have been reported
both in vitro and in vivo [21]. Interestingly, NF-κB has been proposed as one of the cru-
cial molecular targets that indicaxanthin can interact with, to exert its anti-inflammatory
effects [25–29].

In light of the strict interconnections between obesity, oxidative stress, inflammation, IR
and hepatic steatosis, and taking into account the redox-modulating and anti-inflammatory
properties of indicaxanthin, we here investigated the potential beneficial effects of the phy-
tochemical in an in vivo animal model of diet-induced obesity. To this end, a nutritionally
relevant dose of indicaxanthin, extracted from the yellow cultivar of Opuntia ficus-indica
fruits, was evaluated, in mice fed a high-fat diet (HFD), which progressively develops
a pathology similar to human metabolic syndrome, including obesity, hyperglycaemia,
IR and hepatic steatosis [30,31]. In particular, indicaxanthin’s impact was evaluated on
glucose and lipid dysmetabolism, as well as on oxidative stress and inflammation.

2. Materials and Methods

Unless otherwise specified, all reagents and chemicals were purchased from Merck
(Milan, Italy) and of the highest purity grade available.
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2.1. Extraction and Purification of Indicaxanthin

Indicaxanthin was extracted from Opuntia ficus-indica fruits (yellow cultivar, San Cono,
Sicily, Italy) as detailed in the Italian Patent Application No. 102021000015167 filed on
10.06.2021. Briefly, the fruits were peeled and finely chopped, the pulp was separated from
the seeds and weighed, and 100 g pulp samples were homogenised and centrifuged at
3000× g for 10 min. The supernatant was recovered while the pellet was extracted with
100 mL of distilled water and centrifuged as above reported. The combined supernatants
were subjected to cryodesiccation, and the phytochemical, in the resulting aqueous extract,
was separated by size exclusion chromatography on a Sephadex G-25. Fractions containing
the pigment were subjected to cryodesiccation, followed by solid-phase extraction (SPE) on
J.T. Baker, Bakerbond SPE C18 columns (VWR, Milan, Italy). The eluate was subjected to
rotary evaporation to remove methanol and the residue dissolved in phosphate-buffered
saline (PBS). Indicaxanthin concentration was assessed by spectrophotometric revelation at
482 nm with an extinction coefficient of 48 mM−1 cm−1 [27]. All samples were portioned
and stored at −80 ◦C until further use.

2.2. Animals

Four-week-old male C57BL/6 J (B6) mice (n = 24) purchased from Envigo (San Pietro
Al Natisone Udine, Italy) were housed under standard conditions of light (12 h light:12 h
darkness cycle) and temperature (22–24 ◦C), with free access to water and food. Mice
were allowed to acclimate for 1 week prior to the implementation of the special diets. The
animals were randomly assigned to a diet group: either to a standard diet (STD) (code
4RF25, Mucedola, Milan, Italy) or to a high-fat diet (HFD) with 60% of energy derived from
fat (code PF4051/D, Mucedola). After 10 weeks on their respective diet, the HFD group was
further randomly subdivided into further sub-groups: one group fed an HFD and the other
one fed an HFD and receiving indicaxanthin orally at a calculated dose of 0.4 mg/kg twice
a day for 4 weeks (HFD+IND group). During the 14 weeks of the experiment, changes
in body weight and food intake, determined by measuring the difference between the
pre-weighed chow and the weight of chow at intervals of 24 h, were measured weekly and
results from the different groups of animals were compared. At the end of the experimental
protocol, biochemical analyses were performed; then, the animals were weighed and
sacrificed by cervical dislocation. Adipose tissue and liver were removed and weighted.
One part of each tissue, fixed in 4% neutral formalin solution, was used for the histological
analysis and another part was stored at −80 ◦C for the biomolecular analyses.

2.3. Biochemical Analyses

Plasma triglyceride and cholesterol concentrations were measured by using Biochem-
istry Analyzer MultiCare (Biochemical Systems International-Srl, Arezzo, Italy). Plasma
glucose levels were measured using a commercial glucometer (GlucoMen LX meter, Menar-
ini, Italy) in blood collected from the tail vein. Plasma insulin was quantified by a mouse
ELISA kit (Alpco diagnostics, Salem, NH, USA). Intraperitoneal glucose tolerance test
(IPGTT) and insulin tolerance test (ITT) were carried out in mice fasted overnight. For
IPGTT, the animals were injected intraperitoneally (i.p.) with glucose (2 g/kg body weight)
in 0.9% saline. For ITT, mice were given an i.p. injection of insulin (0.5 U/kg body weight)
(Insuman Rapid, Sanofi Aventis, Italy) in 0.9% saline. Blood glucose was measured at
different time intervals (0, 15, 30, 60, 120 min from the administrations). The Homeostasis
Model Assessment of basal Insulin Resistance (HOMA-IR) was calculated as the product of
fasting insulin (ng/mL) and fasting glucose (mg/dL) divided by the constant 22.5.

2.4. Quantification of Hepatic Lipids

Total liver lipids were determined as previously described [29]. Briefly, ~1 g of tissue
hepatic sample was homogenised in 25 mL ice-cold chloroform:methanol (2:1) solution for
1 min. The homogenate was centrifuged at 3000× g for 10 min to collect the supernatant.
For removal of polar lipids, the solvent was washed with 25% of total volume NaCl
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solution (0.9%), vortexed vigorously for 30 s and centrifuged at 2000× g for 5 min in order
to separate the two phases. The upper phase was discarded and the lower phase containing
the fat was collected and evaporated in a rotary evaporator under vacuum. The weight
difference between the starting empty tube and the tube containing the dried lipids was
the lipid amount.

2.5. Liver and Adipose Tissue Histology and Immunohistochemistry

Liver and visceral white adipose tissues (WAT) were isolated and fixed in 4% formalde-
hyde solution. The samples were then embedded in paraffin and sliced at a thickness of
5 µm. Liver and WAT morphology was evaluated by staining with haematoxylin/eosin.
Under the light microscope, 5 liver fields were chosen at random and were analysed for
inflammation assessment, counting the infiltrating cell aggregates in the liver parenchyma
at a magnification of 20×. The adipocyte number per fat deposit was determined at a mag-
nification of 20×. Oil Red O staining was performed in frozen liver sections to detect the
presence of fat. For Oil Red O staining, livers were snap-frozen, embedded at an optimum
cutting temperature and sectioned on a cryostat microtome. Adipocyte size was determined
in µm2 using image analysis software (Visilog 6, Courtaboeuf, France), with each cell being
individually identified and measured. Images of the liver and WAT sections were acquired
using a light microscope (Leica DMLB, Meyer instruments, Houston, Texas) furnished with
a DS-Fi1 camera (Nikon, Florence, Italy) and were analysed at 10× and 20×magnification.
For the immunohistochemistry, adipose tissue sections were deparaffinised in xylene and
endogenous peroxidase activity was depleted with 3% hydrogen peroxide for 30 min
at room temperature. Sections were then washed in PBS and incubated overnight with
primary antibody Mac-2 (1:2800, Cedarlane, ON, Canada CL8942AP). Then, the sections
were washed three times with PBS and incubated with the biotinylated secondary antibody
(Anti-Mouse IgG/Rabbit IgG) (1:400, Vector Laborato-ries, BA-4001) for 30 min at room
temperature. ABC Reagent included in the Elite ABC kit (Vector Laboratories, Burlingame,
CA, USA) and diaminobenzidine (Sigma, Milano, Italia) were used according to provided
protocols. The presence and numbers of crown-like structures (CLS) were recorded and
expressed as number of CLS/10,000 adipocytes.

2.6. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA from liver and visceral adipose tissue was extracted using the RNeasy
Plus Mini Kit (Qiagen, Valencia, CA, USA), following the manufacturer’s instructions. The
adipose tissue RNA was first isolated by the Trizol method and then applied to Rneasy
columns. cDNA was prepared by reverse transcription of 2 ng of total RNA using the
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA, USA).
The primers used in PCR analysis are listed in Table 1. The amplification cycles included
denaturation for 5 min at 94 ◦C, denaturation for 45 s at 95 ◦C, annealing for 45 s at 52 ◦C
and elongation for 45 s at 72 ◦C. After 40 cycles, the PCR products were separated on a
1.8% agarose gel and visualised by ultraviolet (UV) light using E-Gel GelCapture (Thermo
Fisher Scientific, Monza, Italy). The signal intensity of the products was analysed using
E-Gel GelQuant Express Analysis Software (Thermo Fisher Scientific, Monza, Italy) and
normalised to its respective β-actin signal intensity to obtain the expression levels of the
gene targets.

Table 1. Oligonucleotide sequence of primers for RT-PCR.

Gene Forward Primer Reverse Primer Size (bp)

TNF-α 5′-AGCCCACGTCGTAGCAAACCA-3′ 5′-GCAGGGGCTCTTGACGGCAG-3′ 260
F4-80 5′-GCCACGGGGCTATGGGATGC-3′ 5′-TCCCGTACCTGACGGTTGAGCA-3′ 360
CCL-2 5′-TCTGTGCTGACCCCAAGAAGG-3′ 5′-TGGTTGTGGAAAAGGTAGTGGAT-3′ 273
β-actin 5′-GGATCCCCGCCCTAGGCACCAGGGT-3′ 5′-GGAATTCGGCTGGGGTGTTGAAGGTCTCAAA-3′ 289



Antioxidants 2022, 11, 80 5 of 18

2.7. Tissue Homogenates

Liver and adipose tissue were washed in ice-cold 0.9% NaCl and weighted. A
10% (w/v) homogenate was prepared in ice-cold 40 mM Tris-HCl by using a micro ho-
mogeniser [28,32].

2.8. Malondialdehyde (MDA) Assay

Evaluation of MDA levels in liver and adipose tissue homogenates was performed
according to Ohkawa et al. [33]. Briefly, the reaction mixture contained 0.2 mL of whole
homogenate, 0.2 mL of 8.1% sodium dodecyl sulphate (SDS), 1.5 mL of acetic acid solution
adjusted at pH 3.5 with NaOH and 1.5 mL of 1% thiobarbituric acid (TBA) aqueous
solution. The mixture was finally made up to 4.0 mL with distilled water and heated
at 95 ◦C for 60 min. After cooling with tap water, 1.0 mL of distilled water and 5.0 mL
of a n-butanol/pyridine solution (15/1, v/v) were added, and the mixture was shaken
vigorously. After centrifugation at 4000 rpm for 10 min, the absorbance of the organic layer
was measured at 532 nm. MDA levels were expressed as nmol MDA/g tissue, using 1,1,3,3,
tetramethoxypropane as an external standard.

2.9. RONS Assay

RONS levels were detected in liver and adipose tissue homogenates using 2′,7′-
dichlorodihydrofluorescein diacetate (H2DCF-DA), as previously reported [34]. Briefly,
the whole homogenate was centrifuged at 3500 rpm for 10 min at 4 ◦C and 100 µL of the
supernatant was mixed with 5 µL of H2DCF-DA (final concentration 10 µM). The mixture
was incubated for 30 min at 37 ◦C, protected from light and the fluorescence intensity was
detected at 490 nm (excitation) and 540 nm (emission) by using a plate reader [35].

2.10. Nitrite Assay

Nitrogen levels in liver and adipose tissue homogenates were determined using Griess
reagent [36].

2.11. Western Blot Analysis

To determine the protein levels of insulin receptor β (INSR β), cyclo-oxygenase-2
(COX-2) and inducible nitric oxide synthase (iNOS), liver and adipose tissue samples
were homogenised on ice-cold buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl,
1 mM EDTA, 1% Triton X-100, 24 mM sodium deoxycholate, 0.01% SDS, 10 mM sodium
pyrophosphate, 100 mM sodium fluoride, 10 mM sodium orthovanadate, 1.5 µM aprotinin,
1 mM phenylmethanesulfonylfluoride (PMSF) and 2.1 µM leupeptin. The homogenates
were centrifuged at 12,000× g at 4 ◦C for 30 min and the supernatants were used for
protein determination [37]. Sample buffer (62.5 mM Tris-HCl, 10% glycerol, 2% SDS,
33.2 mM dithiothreitol (DTT) and 0.01% bromophenol blue; pH 6.8) was added to the su-
pernatants. Samples containing 50 µg protein were subjected to SDS-PAGE electrophoresis
on 12% acrylamide gels and were then electroblotted onto nitrocellulose membranes. Mem-
branes were blocked for 2 h in 5% (w/v) skimmed dry milk and subsequently incubated
in the presence of the corresponding primary antibodies (Santa Cruz, Milan, Italy, 1:1000
dilution, Table 2) overnight at 4 ◦C. After incubation for 90 min at room temperature in
the presence of secondary, HRP-conjugated antibodies (Dako, Milan, Italy, 1:10,000 dilu-
tion), proteins were visualised utilising an enhanced chemiluminescent substrate (1.1 mM
luminol sodium salt, 2.0 mM 4-iodophenylboronic acid, 5.3 mM hydrogen peroxide and
0.1 M Tris–HCl, pH 8.6). Chemiluminescent bands were evaluated with a C-Digit Blot
Scanner (LI-COR, Lincoln, NE, USA) and band intensities were analysed using LI-COR
Image Studio 4.0.
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Table 2. Primary antibodies employed in Western blot analysis.

Protein Catalogue Number Clone Size (kDa)

COX-2 sc-376861 H-3 72/70
iNOS sc-7271 C-11 130
p-JNK sc-6254 G-7 54/46

p65 sc-8008 F-6 65
INSR β sc-57342 CT-3 95
β-actin sc-47778 C4 43

To determine the protein levels of either cytosolic p-JNK or nuclear p65 subunit,
corresponding fractions were prepared according to Seubwai et al. [38]. Briefly, liver and
adipose tissue samples were homogenised in hypotonic buffer (10 mM HEPES KOH at
pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM EDTA, 1% NP-40, 0.5 mM DTT, 1 mM PMSF and
10 µg/mL aprotinin). After centrifugation at 2600× g for 3 min at 4 ◦C, the supernatant
containing the cytosolic fraction was collected. The pellet was used as the nuclear fraction,
lysed with nuclear lysis buffer (20 mM HEPES KOH at pH 7.9, 10% glycerol, 420 mM
NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM DTT, 1 mM PMSF and 10 µg/mL aprotinin)
and incubated on ice for 30 min. The nuclear fraction was obtained by centrifugation at
21,000× g for 10 min at 4 ◦C. Samples of the nuclear and cytosolic fractions containing 50 µg
protein were used for analyses of p65 and p-JNK levels as above described. All results were
expressed as mean ± SD of the densitometric band analysis obtained from 3 replicates per
group. All results were normalised to β-actin. For each biomarker monitored by Western
blot, a representative lane was selected to compose the figures.

2.12. Statistical Analysis

The results are reported as mean ± SEM. Statistical analysis was performed by
ANOVA, followed by Bonferroni post hoc test using Prism 6.0, GraphPad (San Diego,
CA, USA). Results with a p value < 0.05 were considered statistically significant.

3. Results
3.1. Impact of Indicaxanthin Treatment on Body Weight

During the period of study, all mice gained weight. The final body weight reached by
HFD mice, the daily food intake and the visceral and subcutaneous mass were significantly
higher than those of STD mice. Interestingly, the weight gain, the daily food intake and the
visceral and subcutaneous fat mass of indicaxanthin-treated HFD mice were significantly
lower than those of HFD animals (Figure 1A–D).

3.2. Impact of Indicaxanthin Treatment on Adipocyte Morphology

Adipocyte area and adipocyte size distribution (%) were analysed in visceral adipose
tissue. Adipocyte diameter and area in HFD mice were significantly higher than those
in STD mice; however, the degree of increase was significantly reduced in indicaxathin-
treated mice, suggesting that indicaxanthin decreases the adipose tissue hypertrophy
(Figure 2A–C). The analysis of frequency distribution confirmed this result, revealing
that adipocyte sizes in visceral adipose tissue from STD and HFD mice were shifted
towards smaller adipocytes after indicaxanthin treatment and thus the proportion of large
adipocytes was reduced (Figure 2D).
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3.3. Impact of Indicaxanthin Treatment on Glucose Dysmetabolism

Indicaxanthin treatment induced beneficial effects on glucose dysmetabolism. In
fact, the indicaxanthin-treated HFD mice showed fasting glycaemia values that were sig-
nificantly lower than those of HFD mice (Figure 3A). Moreover, they showed improved
glycaemic control, as indicated by the reduction in blood glucose levels during the i.p.
glucose tolerance test (Figure 3B,C), higher insulin sensitivity as suggested by the insulin
tolerance test (Figure 3D,E) and lower plasma insulin concentration (Figure 3F) in com-
parison with untreated HFD mice. Interestingly, the HOMA index, measured to quantify
insulin resistance, was significantly higher in HFD mice than in the STD- or HFD+Ind
animal groups (Figure 3G), suggesting that indicaxanthin treatment was able to prevent
the insulin resistance induced by HFD consumption. This observation was strengthened
by the molecular analysis. Indeed, we found reduced expression of the insulin receptor
in the visceral adipose tissue of HFD mice in comparison with STD mice. However, the
insulin receptor expression in HFD+Ind mice was significantly higher than that in HFD
mice and similar to that in STD animals (Figure 3H,I), confirming that insulin resistance
was prevented by indicaxanthin treatment.
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3.4. Impact of Indicaxanthin Treatment on Lipid Disorders

As previously shown [32], HFD ingestion for the experimental period caused an in-
crease in the plasma triglyceride and cholesterol levels, at intrahepatic lipid concentrations,
without a significant difference in the liver weight (Figure 4A–C). In addition, histological
analysis of liver sections stained with haematoxylin and eosin or Oil Red O revealed marked
micro- and macrovesicular steatosis in comparison with STD mice (Figure 4D,E). However,
indicaxanthin treatment failed to prevent the changes associated with HFD consumption
(Figure 4A–E).
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Figure 3. Indicaxanthin treatment improves glucose dysmetabolism in HFD mice. Fasting gly-
caemia (A), glucose tolerance test (GTT) (B), area under the curve (AUC) for GTT (C), insulin tolerance
test (ITT) (D), area under the curve for ITT (E), plasma insulin levels (F), HOMA index (G), pro-
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quantification (I). Results are shown as means ± SEM of 8 animals/group. ns: p > 0.05; * p ≤ 0.05;
** p ≤ 0.01; *** p ≤ 0.001 (ANOVA associated with Bonferroni’s correction).

3.5. Indicaxanthin’s Impact on HFD-Induced Oxidative Stress in Liver and Adipose Tissue

Plenty of evidence clearly demonstrates that the HFD regimen significantly increases
hepatic and adipose tissue oxidative stress, contributing to the development of IR and
glucose dysmetabolism [39]. To evaluate whether indicaxanthin treatment could affect the
HFD-induced oxidative stress, we next assessed the hepatic and adipose tissue levels of
MDA, RONS and NO.

As shown in Figure 5, when compared to the STD group, the HFD mice showed a
significant increase in all the above-mentioned oxidative stress markers in both liver and
adipose tissue (p ≤ 0.05, Figure 5A–F). Conversely, indicaxanthin significantly prevented
the HFD-induced oxidative stress, in the same tissues, as evidenced by the decreased levels
of all the parameters evaluated, in comparison with the HFD group (p ≤ 0.05, Figure 5A–F).
Notably, treatment with the phytochemical restored hepatic and adipose tissue MDA as
well as adipose tissue NO levels to control values (STD group) (Figure 5A,D,E). Moreover,
hepatic RONS values were reduced by indicaxanthin treatment even below control values
(Figure 5C, p < 0.01).
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3.6. Impact of Indicaxanthin Treatment on HFD-Induced Inflammation in Liver and Adipose Tissue

Chronic subclinical inflammation is a mechanistic link between obesity and IR, leading
to alteration of insulin signalling in specific, key, metabolic districts such as the liver and
adipose tissue [40]. Along these lines, we next evaluated the impact of indicaxanthin
treatment on the HFD-induced inflammation. To this end, adipose tissue CLS density,
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hepatic inflammatory foci, hepatic and adipose tissue TNF-α, CCL-2 and F4-80 gene
expression as well as iNOS, COX-2, pJNK and p65 protein levels were, then, assessed.

As shown in Figure 6, when compared to the STD group, the HFD mice showed a
significant increase in all the above-mentioned inflammatory parameters, both in the liver
and adipose tissue (p ≤ 0.05, Figure 6A–L). On the other hand, when compared to the HFD
group, the HFD+IND mice showed a significant reduction in macrophage infiltration in
visceral adipose tissue, as evidenced by a decrease in CLS density (p < 0.001, Figure 6A,B).
Accordingly, treatment with the phytochemical significantly decreased cytokine production
and other markers of macrophage infiltration, as evidenced by a reduction in TNF-α, CCl-2
and F4-80 gene expression levels in both tissues (Figure 6C,D,G,H). Coherently with the
reduced macrophage infiltration, HFD-induced iNOS overexpression was significantly
reduced in the liver (p < 0.01) and restored to control values in adipose tissue, while COX-2
overexpression was diminished below control values in both tissues (Figure 6E,F,I–L).
Notably, indicaxanthin treatment was also able to inhibit HFD-induced NF-κB activation
as nuclear levels of p65 were significantly reduced in the liver (p < 0.001) and restored to
control values in the adipose tissue of the HFD+IND group (Figure 6E,F,I–L). Relevantly, in
the same group, these effects were paralleled by a JNK inhibition as the treatment with the
pigment reduced adipose tissue p-JNK levels below control values (p < 0.05) and restored
the hepatic ones to control levels (Figure 6E,F,I–L). Finally, a reduction in the hepatic
inflammatory foci number was also induced by indicaxanthin treatment (Figure 6K,L).

1 
 

 

Figure 6. Cont.
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1 
 

 Figure 6. Indicaxanthin treatment prevents inflammation in visceral adipose tissue and liver of HFD-
fed mice. Immunohistochemistry analysis in epididymal visceral adipose tissue (VAT) for MAC-2
positive macrophages forming CLS (arrows) (magnification 10×) (A); density of MAC-2 positive
CLS in VAT (B); mRNA expression of TNF-α, F4-80, and CCL-2 and β-actin by PCR in VAT (C) and
liver (G); densitometric analysis of PCR results in VAT (D) and liver (H); representative Western blot
bands of adipose tissue (E) and hepatic (I) p65, pJNK, iNOS, COX-2 and β-actin protein expression;
densitometric analysis of adipose tissue (F) and hepatic (J) p65, pJNK, iNOS and COX-2 protein levels
normalised for β-actin levels; liver histology of examined by H&E staining (K). Arrows indicate the
points of inflammatory foci (magnification 10×). Quantification of inflammatory foci per 5 random
fields under 20× magnification (L). Results are shown as means ± SEM of 8 animals/group. ns:
p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001 (ANOVA associated with Bonferroni’s correction).

4. Discussion

This work falls within the remit of intense research on phytochemical-based therapies
for the treatment of obesity-associated disorders. Along these lines, we here demonstrate
that indicaxanthin, extracted from the yellow cultivar of Opuntia ficus-indica fruit, orally
administered at a nutritionally relevant amount, prevents and improves obesity-related
glucose dysmetabolism and IR in an animal model of metabolic syndrome. Inhibition of
HFD-induced inflammation, oxidative stress and NF-κB/JNK activation emerge as key
mechanisms underlying the indicaxanthin-mediated benefits.

Consumption of HFD by mice mimics the consequences of Western-style diets in
humans in terms of gain weight and obesity [41]. We here observed that mice fed the HFD
and treated with indicaxanthin gained less weight than those fed the HFD alone. In line
with these results, treatment with the phytochemical prevented WAT fat accumulation
as compared to the untreated HFD-fed mice. Indicaxanthin-mediated anti-obesogenic
effects are particularly relevant given the role of WAT in the development of systemic
adverse effects through the release of adipokines, growth factors and pro-inflammatory
mediators [40,42,43].
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Several studies have suggested the use of Opuntia cladodes as a dietary supplement to
prevent obesity, thanks to its fibre content and/or to the presence of phenolic compounds
such as quercetin, isorhamnetin or kaempferol [17–19]. Relevantly, the current results repre-
sent the first experimental evidence for an anti-adiposity effect exerted by a phytochemical
of the Opuntia fruit. Further experiments are needed to clarify the mechanisms responsible
for the anti-obesogenic effects, by verifying the eventual involvement of the hormones
controlling food intake.

It is well-known that an increase in adipocyte size induces a functional cellular re-
modelling that stimulates the secretion of adipokines associated with the development of
obesity-associated comorbidities [44–46]. Interestingly, our results showed a reduction in
the visceral WAT hypertrophia in the indicaxanthin-treated mice that could be linked to the
reduction in the inflammatory state observed in the same animal.

On the other hand, the anti-obesogenic effects exerted by the treatment with the yellow
betalain were not paralleled by a significant reduction in plasma triglyceride or cholesterol
concentrations. Accordingly, no differences were found in the total liver lipid levels between
untreated HFD and indicaxanthin-treated HFD mice, ruling out any potential impact of
the yellow phytochemical on lipid dysmetabolism. The present evidence on indicaxanthin
somehow differs from that in which plant-based whole food and phytochemicals such as
polyphenols, alkaloids, flavonoids and saponins exert significant, positive effects on lipid
dysmetabolism in vitro or in vivo [32,47–49]. Notably, our results suggest a specific effect
of indicaxanthin on glucose metabolism.

In our experimental conditions, obesity was associated with the development of
hepatic steatosis, as judged by histological analysis in the liver. In fact, consistently with
previous studies [50], HFD mice showed microvesicular and macrovesicular steatosis, with
large fat droplets in the hepatocytes that displaced the nucleus peripherally and higher lipid
accumulation in comparison with STD mice. Coherently with the inability to improve the
plasma lipid profile, indicaxanthin treatment also failed to alleviate the structural damage
and lipid deposits in the liver caused by HFD feeding. These results further confirm that
this phytochemical is not responsible for the benefits on lipid dysmetabolism reported for
Opuntia fruits both in humans and animal models [51–53].

As previously reported, chronic HFD consumption by C57BL/6J mice leads to a pro-
found alteration of glucose metabolism, evident from the increase in fasting plasma glucose
and insulin levels, and from the impairment of both glucose and insulin tolerance [41].
A remarkable finding of the present study is that indicaxanthin treatment had a strong
impact on glucose dysmetabolism and markedly improved glucose homeostasis. Indeed,
we here demonstrate for the first time that treatment with the phytochemical resulted
in a significant reduction in fasting glycaemia and insulinaemia and in an improvement
in both glucose tolerance and insulin sensitivity. Accordingly, the HOMA-IR index, the
most trusted parameter to evaluate the degree of IR, was significantly decreased to control
levels. Consistently, the insulin receptor expression was increased by the administration
of indicaxanthin, suggesting that IR development was prevented. In terms of biochem-
ical mechanisms, disruption of glucose homeostasis can be envisaged as the result of a
self-feeding cycle between systemic, chronic inflammation and oxidative stress, initiated
by excess nutrient consumption. Along these lines, one potential explanation for the
beneficial effects of indicaxanthin supplementation on insulin sensitivity may lie in its
anti-inflammatory properties [25,26,28,54,55].

In obesity-related conditions, low-grade, systemic chronic inflammation is established
through the sustained recruitment and infiltration of macrophages in metabolic active
tissues [42]. Interestingly, our results clearly show that indicaxanthin treatment reduced
liver and adipose tissue macrophage infiltration, decreasing hepatic inflammatory foci,
restoring VAT CLS to control levels and reducing F4-80 and CCL2 mRNA expression in
both tissues.

Relevantly, not only did indicaxanthin treatment inhibit the infiltration of macrophages,
but it also impaired their activation and the consequent spreading of the inflammatory
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response in the liver and adipose tissue. Here, levels of HFD-induced, pro-inflammatory
mediators, such as TNF-α mRNA and iNOS and COX-2 proteins, were, indeed, significantly
reduced by the phytochemical treatment. In this regard, indicaxanthin-induced effects on
TNF-α tissue levels are particularly relevant. This cytokine, indeed, plays a key role in the
impairment of insulin signalling pathways, reducing insulin-receptor substrate-1 (IRS-1)
activation and blocking of GLUT4 translocation [56,57]. Collectively, these data suggest
that indicaxanthin treatment has an anti-inflammatory effect in both hepatic and adipose
tissues, targeting macrophage infiltration and activation. This hypothesis is consistent with
previous evidence from our research group demonstrating that the phytochemical exerts
significant anti-inflammatory effects in vivo at the same dose employed in the present
study [28] and significantly counteracts macrophage activation in vitro [29].

Upregulation of the cytokines, chemokines and pro-inflammatory enzymes underlying
macrophage infiltration and activation is a coordinated process under the control of NF-κB-
and JNK-dependent signalling pathways [40,43,58]. Plenty of evidence, moreover, presents
NF-κB and JNK as a molecular bridge between inflammation and glucose dysmetabolism.
Their activation, indeed, impairs IRS-1 activity, leading to the downregulation of the
insulin cascade [4,11,59]. Our results demonstrate that indicaxanthin treatment effectively
inhibited HFD-induced NF-κB and JNK activation both in the liver and adipose tissue.
Their inhibition could be, therefore, crucial to explain the beneficial effects exerted by the
pigment against the HFD-induced macrophage infiltration, activation and IR development.
The ability of indicaxanthin to inhibit NF-κB signalling in this HFD model is consistent with
our previous observations in other inflammatory-related models, where the yellow betalain
was shown to counteract inflammation and tumour progression via NF-κB inhibition, both
in vivo and in vitro [26–29,54,55].

An overwhelming amount of evidence states that the NF-κB and JNK activation pro-
cess is under the control of endocellular redox modifications [60]. Along these lines, the
capacity of indicaxanthin treatment to suppress HFD-triggered NF-κB/JNK activation
could be, in part, due to its previously reported ability to inhibit NADPH oxidase and re-
duce RONS generation [54,55]. In line with this hypothesis, our current results clearly show
how indicaxanthin treatment significantly counteracts HFD-induced RONS generation
both in the liver and adipose tissue. It has been shown that an HFD-induced RONS increase
can enhance MDA levels in the liver and adipose tissue [61]. This reactive aldehyde has
been shown to irreversibly form adducts with macromolecules, modifying cell function
and contributing to IR development [62,63]. Coherently with the reduction in RONS, the
phytochemical treatment also reduced the HFD-induced increase in hepatic and adipose
tissue lipid peroxidation, restoring MDA levels to control values. These results appear of
interest as they confirm, for the first time in an in vivo context, the already demonstrated
ability of indicaxanthin to counteract lipid peroxidation in vitro or ex vivo [22,64].

Identifying active components of fruits and vegetables that provide protection against
the adverse effects of consuming Western-style diets can have a major impact on human
health. Moreover, understanding the mechanisms by which these components act, modify-
ing cell functions, is crucial to define public recommendations in terms of diets and potential
supplementation. This work has demonstrated the capacity of indicaxanthin to mitigate
the development of obesity and to significantly ameliorate the glucose dysmetabolism
and IR promoted by the chronic consumption of an HFD in mice. Our results suggest
that the disruption of the HFD-induced cycle of inflammation, oxidative stress and NF-
κB/JNK activation can be central in the capacity of indicaxanthin to mitigate HFD-induced
glucose dysmetabolism and IR. The current findings encourage further clinical studies
to confirm the effectiveness of indicaxanthin supplementation against the adverse health
consequences of chronic caloric overload and excessive fat consumption. Moreover, in light
of the key role played by IR in neurodegenerative diseases [65] and taking into account
the ability of indicaxanthin to cross the BBB [66] and differentially distribute within the
central nervous system [67], the present findings motivate further investigations to explore
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whether the phytochemical can ameliorate central glucose metabolism, thus preventing
IR-mediated neurodegeneration.

5. Conclusions

As a whole, our results suggest that indicaxanthin, at a nutritionally relevant dose,
modulates the expression of crucial genes and proteins involved in the oxidative stress-
dependent inflammatory reaction underlying the obesity-related IR. Further studies are
necessary to clarify the potential of this nutraceutical as an additive to prevent and treat
obesity-related IR in humans and to consider indicaxanthin as a novel, potential, therapeutic
agent for obesity-related disorders.

6. Patents

Indicaxanthin was isolated from Opuntia ficus-indica fruits (yellow cultivar) as detailed
in the Italian Patent Application No. 102021000015167 filed on 10.06.2021.
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