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Abstract: We are studying first order differential inclusions with periodic boundary conditions where
the Stieltjes derivative with respect to a left-continuous non-decreasing function replaces the classical
derivative. The involved set-valued mapping is not assumed to have compact and convex values,
nor to be upper semicontinuous concerning the second argument everywhere, as in other related
works. A condition involving the contingent derivative relative to the non-decreasing function
(recently introduced and applied to initial value problems by R.L. Pouso, I.M. Marquez Albes, and
J. Rodriguez-Lopez) is imposed on the set where the upper semicontinuity and the assumption to
have compact convex values fail. Based on previously obtained results for periodic problems in the
single-valued cases, the existence of solutions is proven. It is also pointed out that the solution set is
compact in the uniform convergence topology. In particular, the existence results are obtained for
periodic impulsive differential inclusions (with multivalued impulsive maps and finite or possibly
countable impulsive moments) without upper semicontinuity assumptions on the right-hand side,
and also the existence of solutions is derived for dynamic inclusions on time scales with periodic
boundary conditions.

Keywords: differential inclusion; periodic boundary value condition; Stieltjes derivative; impulse;
dynamic equation on time scales

MSC: 34A06; 28B20; 34B37; 34N05

1. Introduction

The theory of differential equations involving the Stieltjes derivative [1] instead of the
usual derivative has recently developed significantly (we refer to [2–4] and the references
therein). The reason is the fact that it offers another point of view on the theory of measure
differential problems [1,5–8] and, in particular cases, it yields new results for ordinary
differential equations, for difference equations, or for impulsive differential equations [1–3].
At the same time, it allows one to assert new results for the (also recent) theories of dynamic
equations on time scales and generalized differential equations [7,9,10]. This is the main
reason for the use of Stieltjes derivatives.

On the other hand, it is clear that passing from single-valued problems to the set-
valued setting [11–15], thus studying Stieltjes differential inclusions, widens the field of
possible applications of theoretical results.

Aware of the significance of periodic boundary conditions when studying real life
processes, the present work focuses on the analysis of a first-order differential inclusion
with periodic boundary value conditions{

u′g(t) + p(t)u(t) ∈ F(t, u(t)), µg−a.e. t ∈ [0, T]
u(0) = u(T)

(1)
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involving the Stieltjes derivative with respect to a left-continuous non-decreasing function
g : [0, T]→ R and a real function p, Lebesgue-Stieltjes integrable with respect to g.

This problem was investigated in the single-valued framework in [16] and then gener-
alized to the multivalued setting in [17] under the assumptions that F : [0, T]×Rd → P(Rd)
has convex, compact values and it is a Carathéodory multifunction.

Applying now an idea presented (and used in the study of initial value problems)
in [4], we prove that the existence results in [17] can be obtained in the less restrictive case
where F is convex, compact-valued, and upper semi-continuous with respect to its second
variable, except for a set (which can be dense in Rd, e.g., Example 3.11 in [4]), where a
condition involving the notion of contingent g-derivative must be imposed. We also obtain
the compactness (in the topology of uniform convergence) of the solution set.

The technical tool used in the proof is a successive approximation, combined with
weak compactness criteria in the space of Lebesgue-integrable functions.

By taking specific nondecreasing functions g, we then derive the existence of solutions
for impulsive differential inclusions with periodic boundary assumptions, in both cases,
the number of abrupt perturbations being finite or countable (i.e., allowing Zeno behavior,
see [18]) and present an example to illustrate the wide applicability of the developed study.
The result provided includes already published results, see for instance [14,19–21] or [13]
(alternative studies for this kind of problems concern equations with variable impulsive
time, e.g., [22], fractional periodic first-order impulsive inclusions, e.g., [23] or problems
with constraints, such as [24,25]). The generalization is double: besides imposing convex,
compact values and upper semicontinuity everywhere, in all these works the impulsive
maps are single-valued, while we allow set-valued impulsive mappings.

Finally, given the equivalence (under a rather convenient hypothesis) of the theory
of Stieltjes differential equations with that of measure differential equations [1,3] and
consequently (cf. [7], see also [9]) with the theory of dynamic equations on time scale
domains, we derive an existence result for dynamic inclusions on bounded time scales with
periodic boundary conditions. We thus generalize several results in the literature, such
as the multivalued results in [10,26,27] (or the single-valued results in [28,29]) where the
multifunction on the right-hand side was supposed to be convex, compact-valued, and
upper semicontinuous concerning the second argument.

2. Preliminaries

A function u : [0, T] → Rd having limits u(t+) and u(s−) at every points t ∈ [0, T),
s ∈ (0, T] is regulated. A collection A of regulated functions is said to be equiregulated
if for every ε > 0 and every t0 ∈ (0, T] there exists δε,t0 > 0 such that for all u ∈ A:
‖u(t)− u(t0−)‖ < ε whenever t0 − δ < t < t0 (and similarly at the right).

In [30] (Theorem 5.1) it was proved the following Ascoli-type theorem.

Theorem 1. If an equiregulated sequence of maps converges pointwise, then the convergence
is uniform.

Let Dg be the set of the discontinuity points of the nondecreasing left-continuous
function g (which is at most countable). Then the measurability w.r.t. the σ-algebra defined
by g will be called g-measurability, µg stands for the Stieltjes measure generated by g
and the Lebesgue-Stieltjes (shortly, LS-) integrability w.r.t. g means the abstract Lebesgue
integrability w.r.t. the Stieltjes measure µg. Let L1

g([0, T]) be the space of real functions
LS-integrable w.r.t. g on [0, T]. It is well known that if f ∈ L1

g([0, T],Rd), the primitive∫ ·
0 f (s)dg(s) =

∫
[0,·) f (s)dg(s) is a function of bounded variation, therefore it is regulated.

Let us see an auxiliary result.



Mathematics 2022, 10, 55 3 of 17

Lemma 1. Let A be a collection of Rd-valued functions on [0, T], LS-integrable w.r.t. g. If there
exists φ ∈ L1

g([0, T]) satisfying

‖u(t)‖ ≤ φ(t), µg − a.e., for all u ∈ A,

then the set of primitives
{∫ ·

0 u(s)dg(s) : u ∈ A
}

is equiregulated.

Proof. Let ε > 0 and t0 ∈ [0, T). Then there is δε,t0 > 0 such that∥∥∥∥∫ t

0
φ(s)dg(s)−

∫ t0+

0
φ(s)dg(s)

∥∥∥∥ < ε

whenever t0 < t < t0 + δε,t0 .
It immediately follows that, for every u ∈ A,∥∥∥∥∫ t

0
u(s)dg(s)−

∫ t0+

0
u(s)dg(s)

∥∥∥∥ ≤ ∫ t0+

t
‖u(s)‖dg(s) ≤

∫ t0+

t
φ(s)dg(s) < ε

for all t0 < t < t0 + δε,t0 .
As the inequality for the left limit can be proved in the same way, the equiregulatedness

is verified.

In our study, the usual derivative will be replaced by a notion of Stieltjes derivative
([1], see also [31]) which has already found significant applications in real life problems
(e.g., [2,32,33]). The Stieltjes or g-derivative of a function u : [0, T]→ Rd with respect to g
at a point t ∈ [0, T] is (in the case of existence of limits)

u′g(t) = lim
t′→t

u(t′)− u(t)
g(t′)− g(t)

if g is continuous at t,

u′g(t) = lim
t′→t+

u(t′)− u(t)
g(t′)− g(t)

if t ∈ Dg.

Note that if t ∈ Dg, it suffices that u have right limit u(t+) in order to have

u′g(t) =
u(t+)− u(t)
g(t+)− g(t)

.

The particular cases of the theory of Stieltjes differential equations are coming from
taking particular non-decreasing functions g. More precisely: when g(t) = t we get
ordinary differential equations, in the case where g is a sum of step functions we retrieve
difference equations, while for the situation where g is a sum of the identical function with
step functions we arrive at impulsive problems. This is the advantage of using Stieltjes
derivatives: we are studying various problems under one roof.

The following result concerning the g-derivative of a limit of a sequence of g-absolutely
continuous functions will be useful in the main proof. A function u : [0, T] → Rd is g-
absolutely continuous (see [34] or [1]) if for every ε > 0 there is δε > 0 such that

m

∑
j=1
‖u(t′′j )− u(t′j)‖ < ε

for any set {(t′j, t′′j )}m
i=1 of non-overlapping subintervals of [0, T] with ∑m

j=1(g(t′′j )− g(t′j)) < δε.

Lemma 2 ([4] (Lemma 3.8)). Let (uk)k be a sequence of g-absolutely continuous Rd-valued
functions on [0, T], pointwisely convergent to some u : [0, T]→ Rd. If there exists φ ∈ L1

g([0, T])
such that for all k ∈ N,

‖(uk)
′
g(t)‖ ≤ φ(t), µg − a.e.,
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then u is also g-absolutely continuous and

u′g(t) ∈
⋂
i∈N

co
∞⋃

k=i

{(uk)
′
g(t)}, µg − a.e.

We rely on an existence result provided in [17] for the single-valued linear peri-
odic problem {

u′g(t) + p(t)u(t) = f (t), µg −a.e. in [0, T],
u(0) = u(T),

(2)

under the nonresonance assumption:

1− p(t)µg({t}) 6= 0, for every t ∈ [0, T].

An important matter is to realize that the sign of 1− p(t)µg({t}) has to be considered.
As in [2], the set

D−g = {t ∈ Dg : 1− p(t)µg({t}) < 0}

is finite and, if we denote its elements by t1 < ... < tk (and, for the sake of convenience,
take t0 = 0 and tk+1 = T), we define

α(t) =
{

1, i f t ∈ [0, t1]
(−1)i, i f t ∈ (ti, ti+1], i = 1, ..., k

and

p̃(t) =

{
p(t), i f g continuous at t
−log|1−p(t)µg({t})|

µg({t}) , i f t ∈ Dg.

Theorem 2 ([17] (Theorem 2, Remarks 2 and 3)). Let f ∈ L1
g([0, T],Rd). Then the problem (2)

has a unique solution,

u(t) =
1

α(t)

∫ T

0

α(s)
1− p(s)µg({s})

g̃(t, s) f (s)dg(s),

where

g̃(t, s) =
1

α(T)e
∫ T

0 p̃(r)dg(r) − 1

{
α(T)e

∫ T
0 p̃(r)dg(r)−

∫ t
s p̃(r)dg(r), i f 0 ≤ s ≤ t ≤ T

e−
∫ t

s p̃(r)dg(r), i f 0 ≤ t < s ≤ T.

Let us remind [16] of the fact that the mapping (s′, s′′) ∈ [0, T]2 7→ e
∫ s′′

s′ p̃(s)dg(s) is
bounded, say by

M = sup
(s′ ,s′′)∈[0,T]2

e
∫ s′′

s′ p̃(s)dg(s).

Moreover there are two positive constants δ, δ such that

δ < |1− p(t)µg({t})| < δ, ∀t ∈ Dg,

whence

min
(

1,
1
δ

)
≤ 1
|1− p(t)µg({t})|

≤ max
(

1,
1
δ

)
for every t ∈ [0, T].

As we place ourselves in the multivalued framework, some basic notions of set-valued
analysis are needed.
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A compact, convex-valued mapping Γ : IΓ ⊂ R→ P(Rd) is upper semicontinuous at
u ∈ IΓ if, for every ε > 0, there exists δε,u > 0 satisfying the inclusion Γ(v) ⊂ Γ(u) + Bε(0),
for any v ∈ Bδ(u).

Let
GraphΓ = {(t, x); t ∈ IΓ, x ∈ Γ(t)}.

Remind the reader of a concept which generalizes the Bouligand’s contingent cone
to a given set ([11], page 177) to multifunctions: the contingent derivative [35] of Γ at
(t0, x0) ∈ GraphΓ. It is the set-valued map DΓ(t0, x0) : R → P(Rd) defined as follows:
DΓ(t0, x0)(u) contains all v ∈ Rd for which there exist a sequence (tn, xn)n ⊂ GraphΓ
convergent to (t0, x0) and a sequence (hn)n ∈ R+ with

lim
n→∞

hn · (tn − t0) = u and lim
n→∞

hn · (xn − x0) = v.

A single-valued function γ : IΓ → Rd satisfying γ(t) ∈ Γ(t) almost everywhere is
called a selection of Γ. Finally, we denote, for a set A ⊂ Rd, by

|A| = sup{‖u‖; u ∈ A}.

3. Main Result

Consider, as announced, the set-valued Stieltjes differential problem with periodic
boundary condition{

u′g(t) + p(t)u(t) ∈ F(t, u(t)), µg−a.e. t ∈ [0, T]
u(0) = u(T).

The concept of solution we are searching for is given in [17] (Definition 4): u : [0, T]→
Rd is a solution of problem (1) if it is g-absolutely continuous and satisfies

u′g(t) + p(t)u(t) = f (t)

with f (t) ∈ F(t, u(t)), µg − a.e. in [0, T], together with the equality u(0) = u(T).
In [17] (Theorem 4) the existence of solutions of (1) is proved under the hypotheses that

F is convex, compact-valued and upper semicontinuous with respect to its second argument.
We now prove that these assumptions can be relaxed, by using the notion of contingent

g-derivative, recently introduced in [4].

Definition 1. Let Γ : IΓ ⊂ R→ P(Rd). The contingent g-derivative of Γ at (t0, x0) ∈ GraphΓ is
the set DgΓ(t0, x0) containing all y ∈ Rd for which there exists a sequence (lk)k ∈ R+ convergent
to 0, such that (t0 + lk, xk)k ⊂ GraphΓ and

lim
k→∞

xk − x0

g(t0 + lk)− g(t0)
= y.

In the single-valued case, one falls on the concept of g-derivative (see [4]), while in the
case where g(t) = t one gets the usual contingent derivative for u = 1, DΓ(t0, x0)(1).
Indeed, if v ∈ DΓ(t0, x0)(1), one can find a sequence (tn, xn)n ⊂ GraphΓ convergent to
(t0, x0) and a sequence (hn)n ∈ R+ with

lim
n→∞

hn · (tn − t0) = 1 and lim
n→∞

hn · (xn − x0) = v.

Then

v = lim
n→∞

hn · (xn − x0) = lim
n→∞

xn − x0

tn − t0
(tn − t0)hn = lim

n→∞

xn − x0

tn − t0
∈ Dg(t)=tΓ(t0, x0).
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Conversely, if v ∈ Dg(t)=tΓ(t0, x0), there exists a sequence (lk)k ∈ R+ convergent to 0
such that (t0 + lk, xk)k ⊂ GraphΓ and

lim
k→∞

xk − x0

t0 + lk − t0
= v.

So there exist (tk = t0 + lk, xk)k ⊂ GraphΓ convergent to (t0, x0) and hk = 1
lk

> 0
such that

1 = lim
k→∞

hk(tk − t0) and v = lim
k→∞

hk(xk − x0),

whence v ∈ DΓ(t0, x0)(1).

Theorem 3. Let F : [0, T]×Rd → P(Rd) satisfy the following hypotheses.

Hypothesis 1. for every regulated function u : [0, T] → Rd, F(·, u(·)) has g-measurable selec-
tions;

Hypothesis 2. (i) for every t ∈ [0, T] ∩ Dg, F(t, ·) is convex and compact-valued and it is
upper semicontinuous;

(ii) for µg-a.e. t ∈ [0, T] \ Dg, F(t, ·) is convex compact-valued and upper semicontinuous on
Rd \ K(t), where the set K(t) is empty or there exists a countable family of maps Kj : Ij ⊂
[0, T] \ Dg → P(Rd), j ∈ N, such that

K(t) =
⋃

j:t∈Ij

Kj(t)

and whenever u ∈ Kj(t),(⋂
ε>0

coF(t, Bε(u))− p(t)u

)
∩ DgKj(t, u) ⊂ F(t, u)− p(t)u; (3)

Hypothesis 3. there is a function φ, LS-integrable w.r.t. g, such that

|F(t, u)| ≤ φ(t)

for µg-almost all t ∈ [0, T] and all u ∈ Rd.

Then the periodic Stieltjes differential inclusion (1) admits solutions. Besides, the solu-
tion set is compact in the space of g-absolutely continuous functions with respect to the uniform
convergence topology.

Proof. Let u0 ∈ Rd and choose a g-measurable selection f0 of F(·, u0). By Hypothesis 3,
f0 ∈ L1

g([0, T],Rd) and so, Theorem 2 yields the existence of a unique solution u1 of the
periodic Stieltjes differential problem{

u′g(t) + p(t)u(t) = f0(t), µg −a.e. in [0, T],
u(0) = u(T),

namely

u1(t) =
1

α(t)

∫ T

0

α(s)
1− p(s)µg({s})

g̃(t, s) f0(s)dg(s), t ∈ [0, T].
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Next, let f1 be a g-measurable (therefore, LS-integrable w.r.t. g) selection of F(·, u1(·)).
By Theorem 2, there exists a unique solution u2 of problem{

u′g(t) + p(t)u(t) = f1(t), µg −a.e. in [0, T],
u(0) = u(T),

given by

u2(t) =
1

α(t)

∫ T

0

α(s)
1− p(s)µg({s})

g̃(t, s) f1(s)dg(s), t ∈ [0, T]

and we continue the process: for each n ≥ 2, choose a selection fn ∈ L1
g([0, T],Rd) of

F(·, un(·)). There exists a unique solution un+1 of problem{
u′g(t) + p(t)u(t) = fn(t), µg −a.e. in [0, T],
u(0) = u(T),

given by

un+1 =
1

α(t)

∫ T

0

α(s)
1− p(s)µg({s})

g̃(t, s) fn(s)dg(s), t ∈ [0, T].

It can be written as

un+1 =
1

α(T)e
∫ T

0 p̃(r)dg(r) − 1[
α(T)
α(t)

e
∫ T

0 p̃(r)dg(r)e−
∫ t

0 p̃(r)dg(r)
∫ t

0

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· fn(s)dg(s)

+
1

α(t)
e−
∫ t

0 p̃(r)dg(r)
∫ T

t

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· fn(s)dg(s)

]
.

The sequence ( fn)n is relatively compact in the weak topology of L1
g([0, T],Rd) by

(Hypothesis 3), therefore, one can find a subsequence (not relabelled) convergent in this
topology to some f ∈ L1

g([0, T],Rd). As for all t ∈ [0, T]∣∣∣∣∣ α(t)e
∫ t

0 p̃(r)dg(r)

1− p(t)µg({t})

∣∣∣∣∣ ≤ max
(

1,
1
δ

)
·M, (4)

we derive that, for each t ∈ [0, T],

∫ t

0

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· fn(s)dg(s)→

∫ t

0

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· f (s)dg(s),

∫ T

t

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· fn(s)dg(s)→

∫ T

t

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· f (s)dg(s).

So, (un)n tends pointwise to u : [0, T]→ Rd defined by

u(t) =
1

α(T)e
∫ T

0 p̃(r)dg(r) − 1[
α(T)
α(t)

e
∫ T

0 p̃(r)dg(r)e−
∫ t

0 p̃(r)dg(r)
∫ t

0

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· f (s)dg(s)

+
1

α(t)
e−
∫ t

0 p̃(r)dg(r)
∫ T

t

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· f (s)dg(s)

]
.
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Again by Theorem 2, u is the unique solution of{
u′g(t) + p(t)u(t) = f (t), µg −a.e. in [0, T],
u(0) = u(T).

Let us check that it is a solution of our differential inclusion (1). By basic properties of
Lebesgue-Stieltjes integrals, it is g-absolutely continuous.

Since the sequence ( fn)n ⊂ L1
g([0, T],Rd) is relatively weakly compact, one can find a

sequence of convex combinations of { fm : m ≥ n} µg-a.e. convergent to f , so let us consider
a µg-null set E ⊂ [0, T], such that, for every t ∈ [0, T] \ E, u′g(t) + b(t)u(t) = f (t) and the
specified sequence of convex combinations of { fm : m ≥ n} is convergent, at the point t,
to f (t).

Define for each j ∈ N the set

K̃j =
{

t ∈ [0, T] \ (E ∪ Dg) : u(t) ∈ Kj(t),

u(s) /∈ Kj(s) for all s ∈ (t, t + δ(t)) with δ(t) > 0
}

.

As in [4], µg(K̃j) = 0. Then the set

Ẽ = E ∪
∞⋃

j=1

K̃j

is of µg-null measure and suppose Hypothesis 2.(ii) is verified except for t ∈ Ẽ ∪ Dg.
Take now t ∈ [0, T] \ Ẽ and consider, in order to prove that

u′g(t) + p(t)u(t) ∈ F(t, u(t)),

the following possible situations.
Case I. t ∈ Dg or (t ∈ [0, T] \ (Ẽ ∪ Dg) and u(t) /∈ K(t)). Then F(t, u(t)) is convex and

compact and F(t, ·) is upper semicontinuous at u(t). It means that for every ε > 0 there is
δε,t > 0 such that

F(t, y) ⊂ F(t, u(t)) + Bε(0), for all y ∈ Bδ(u(t)).

Consequently, for every ε > 0 one can find nε,t ∈ N such that

F(t, un(t)) ⊂ F(t, u(t)) + Bε(0), for all n ≥ nε,t.

Since f (t) is a limit of convex combinations of { fm(t) : m ≥ n} it follows that, in this
case, u′g(t) + p(t)u(t) = f (t) ∈ F(t, u(t)).

Case II. t ∈ [0, T] \ (Ẽ ∪ Dg) and u(t) ∈ K(t). There exists some j ∈ N such that
u(t) ∈ Kj. Obviously, t /∈ K̃j and so, there exists a sequence (lk)k ⊂ R+ convergent to 0
such that u(t + lk) ∈ Kj(t + lk) for all k and, as u is g-differentiable at t, by Definition 1,

u′g(t) = lim
k→∞

u(t + lk)− u(t)
g(t + lk)− g(t)

∈ DgKj(t, u(t)).

At the same time, Lemma 2 implies that

u′g(t) ∈
⋂
i∈N

co
∞⋃

k=i

{(uk)
′
g(t)} µg − a.e.

For every ε > 0, there exists iε ∈ N (depending on t) such that

‖uk(t)− u(t)‖ ≤ ε, for all k ≥ iε
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and, as

u′g(t) ∈ co
∞⋃

k=iε

{(uk)
′
g(t)},

it is the limit, as m → ∞, of a sequence (ym(t))m such that for each m ∈ N, ym(t) ∈
co
⋃∞

k=iε{(uk)
′
g(t)}. For each m one can thus find l̃m ∈ N and λm

j > 0, j = 1, ..., l̃m with

∑l̃m
j=1 λm

j = 1 and also αm
j ∈ N, j = 1, ..., l̃m such that

ym(t) =
l̃m

∑
j=1

λm
j (uiε+αm

j
)′g(t).

But

(uiε+αm
j
)′g(t) ∈ F(t, uiε+αm

j
(t))− p(t)uiε+αm

j
(t)

⊂ F(t, Bε(u(t))− p(t)uiε+αm
j
(t)

whence

ym(t) ∈ coF(t, Bε(u(t))− p(t) ·
l̃m

∑
j=1

λm
j uiε+αm

j
(t)

and, as m→ ∞,
u′g(t) ∈ coF(t, Bε(u(t))− p(t)u(t).

Using Hypothesis 2.(ii) one gets

u′g(t) ∈ F(t, u(t))− p(t)u(t)

and the fact that u is a solution is achieved.

To prove the compactness of the solution set, let us choose a sequence (un)n of solu-
tions. For each n ∈ N, one can find a selection fn ∈ L1

g([0, T],Rd) of F(·, un(·)) satisfying:{
(un)′g(t) + p(t)un(t) = fn(t), µg −a.e. in [0, T],
un(0) = un(T).

In the same way as before, ( fn)n is, by Hypothesis 3, relatively weakly compact in
L1([0, T],Rd), thus one can find a subsequence (labelled with the same indexes) convergent
in this topology to some f ∈ L1

g([0, T],Rd) and one gets the pointwise convergence of (un)n

towards u : [0, T]→ Rd, which is the unique solution of{
u′g(t) + p(t)u(t) = f (t), µg −a.e. in [0, T],
u(0) = u(T).

On the other hand, the sequences of the primitives involved when explicitly writing
each un, namely(∫ ·

0

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· fn(s)dg(s)

)
n

, resp.

(∫ T

·

α(s)e
∫ s

0 p̃(r)dg(r)

1− p(s)µg({s})
· fn(s)dg(s)

)
n

are, due to the inequality (4) combined with Lemma 1, equi-regulated. It follows, by
Theorem 1, that the convergence is uniform.

In other words, (un)n tends uniformly to u : [0, T]→ Rd.
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Looking at the proof of the similar step of the existence part, it is clear that, similarly,
it can be shown that u is a solution of (1) and the compactness of the solution set is
verified.

4. Existence Results for Periodic Impulsive Inclusions without Upper Semicontinuity

As already discussed, the theory of Stieltjes differential equations contains, in a particu-
lar case, the theory of impulsive equations. In what follows we shall deduce from our main
Theorem 3 the existence of solutions for impulsive differential inclusions with periodic
boundary conditions, without upper semicontinuity assumption on the multifunction on
the right-hand side.

Consider thus a first order periodic differential inclusion

u′(t) + p(t)u(t) ∈ F̃(t, u(t)) a.e. in [0, T] \ {τi, i = 1, . . . , m},
u(τi+)− u(τi) ∈ Ii(u(τi)), i = 1, . . . , m

u(0) = u(T),

(5)

with multivalued jumps Ii : Rn → P(Rn), i = 1, . . . , m, where 0 < τ1 < · · · < τm < T and
F̃ : [0, T]×Rn → P(Rn).

This problem can be seen as a measure differential problem of type (1) with

g(t) = t +
m

∑
i=1

χ(τi ,T](t),

F(t, u) =

{
F̃(t, u), if t ∈ [0, T] \ {τi, i = 1, . . . , m},

Ii(u), if t = τi, i = 1, . . . , m

as a consequence of the definition of the g-derivative:

u′g(τi) =
u(τi+)− u(τi)

g(τi+)− g(τi)
= u(τi+)− u(τi) for i = 1, . . . , m.

Traditionally, a function u : [0, T]→ Rd is a solution of the specified impulsive problem
if it is continuous at every t ∈ [0, T] \ {τ1, ..., τm}, left continuous at every t ∈ {τ1, ..., τm}, it
has right limit at every point τi, i = 1, ..., m, and, of course, it satisfies the conditions in (5).

We derive from Theorem 3 the following existence result.

Theorem 4. Let F̃ : [0, T]×Rd → P(Rd) satisfy the following hypotheses.

Hypothesis 4. For every regulated function u : [0, T]→ Rd, F̃(·, u(·)) has measurable selections.

Hypothesis 5. (i) for every i = 1, ..., m, Ii : Rd → P(Rd) is convex, compact valued and it
is upper semicontinuous; besides, there exist some constants M1, ..., Mm such that for each
i ∈ {1, ..., m}

|Ii(u)| ≤ Mi, for all u ∈ Rd;

(ii) for a.e. t ∈ [0, T] \ {τ1, ..., τm}, F̃(t, ·) is convex, compact-valued and upper semicontinuous
on Rd \ K(t), the set K(t) being empty or the union

K(t) =
⋃

j:t∈Ij

Kj(t),

where each Kj satisfies condition (3) with DKj(t, u)(1) instead of DgKj(t, u).



Mathematics 2022, 10, 55 11 of 17

Hypothesis 6. There exists a function φ̃, Lebesgue-integrable on [0, T], such that∣∣F̃(t, u)
∣∣ ≤ φ̃(t)

for almost all t ∈ [0, T] \ {τ1, ..., τm} and all u ∈ Rd.

Then the periodic differential inclusion (5) admits solutions.

Proof. Since all the other hypotheses in Theorem 3 are easy to check, let us only note that
φ : [0, T]→ R, defined as

φ(t) =
{

φ̃(t), if t ∈ [0, T] \ {τi, i = 1, ..., m}
Mi, if t = τi, i = 1, ..., m

satisfies Hypothesis 6.

But, what is more, from our main result we can deduce the existence of solutions for
the first order differential inclusions with periodic boundary conditions when infinitely
many instantaneous modifications occur in the behavior of the process, more precisely
when there are countably many impulses. We thus significantly generalize the known
results, since for periodic impulsive boundary value problems this case is not, as far as the
authors know, covered in the literature.

We are thus concerned with

u′(t) + p(t)u(t) ∈ F̃(t, u(t)) a.e. in [0, T] \ {τi, i ∈ N},
u(τi+)− u(τi) ∈ Ii(u(τi)), i ∈ N
u(0) = u(T),

(6)

with multivalued jumps Ii : Rn → P(Rn), i ∈ N, where 0 < τ1 < · · · < τm < ... < T and
F̃ : [0, T]×Rn → P(Rn). Suppose that the set of points where (τi)i accumulate is of null
Lebesgue measure.

We can write it as a measure differential problem of type (1) with

g(t) = t +
∞

∑
i=1

1
2i χ(τi ,T](t),

F(t, u) =

{
F̃(t, u), if t ∈ [0, T] \ {τi, i ∈ N},

2i Ii(u), if t = τi, i ∈ N.

(7)

In this framework, we can deduce the following result.

Theorem 5. Let F̃ : [0, T]×Rd → P(Rd) satisfy the following hypotheses.

Hypothesis 7. For every regulated function u : [0, T]→ Rd, F̃(·, u(·)) has measurable selections.

Hypothesis 8. (i) for every i ∈ N, Ii : Rd → P(Rd) is convex, compact valued and it is upper
semicontinuous; besides, there exist some constants Mi, i ∈ N with ∑∞

i=1 Mi < ∞ such that
for each i ∈ {1, ..., m}

|Ii(u)| ≤ Mi, for all u ∈ Rd;

(ii) for a.e. t ∈ [0, T] \ {τi, i ∈ N}, F̃(t, u) is convex and compact for all u ∈ Rd \ K(t) and
F̃(t, ·) is upper semicontinuous on Rd \ K(t), the set K(t) being empty or the union

K(t) =
⋃

j:t∈Ij

Kj(t),
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where Kj, j ∈ N satisfy the condition (3) with DKj(t, u)(1) replacing DgKj(t, u).

Hypothesis 9. There exists a function φ̃, Lebesgue-integrable on [0, T], such that∣∣F̃(t, u)
∣∣ ≤ φ̃(t)

for almost all t ∈ [0, T] \ {τi, i ∈ N} and all u ∈ Rd.

Then the periodic differential inclusion (6) admits solutions.

Proof. It is enough to note that, when defining the set E in the proof of Theorem 3, we can
suppose that it includes the set of accumulation points of (τi)i which are not impulsive
points (this is µg-null), while, at the accumulation points belonging to {τi : i ∈ N}, the
upper semicontinuity and the convexity and compactness of the values are checked. By the
expression on g in this case, obviously at any t which is not a point where τi accumulate,
DgKj(t, u) = DKj(t, u)(1).

Let us study the following periodic impulsive problem without upper semicontinuity.

Example 1. Consider the problem

u′(t) + p(t)u(t) ∈ F̃(t, u(t)) a.e. in [0, 1] \ {τi, i ∈ N},
u(τi+)− u(τi) ∈ Ii(u(τi)), i ∈ N
u(0) = u(1),

where
τi =

1
2
+

1
2 + i

, for every i ∈ N

and let F̃ : [0, 1]×R→ R be the multifunction given in [4] (Example 3.11), which is not upper
semicontinuous, nor convex compact-valued on a dense subset of R, but satisfies the Hypotheses 7,
8(ii) and 9 in Theorem 5. If each Ii : R→ P(R) is defined by

Ii(u) = B 1
2i
(0), for all u ∈ R,

it is easy to see that it satisfies the Hypothesis 8(i) so the existence of solutions for the considered
problem is guaranteed by Theorem 5. Let us notice that there are countably many impulse moments
that accumulate at the middle of the interval, so, it is a hybrid system with a Zeno behavior, which
cannot be studied using the classical theory of impulsive differential inclusions.

Remark 1. It is easy to construct from here an example of Stieltjes differential problem of type (1)
for which Theorem 3 applies, by considering g and F given by (7).

5. Existence Result for Periodic Dynamic Inclusions on Time Scales without
Upper Semicontinuity

We prove in this section that our Theorem 3 also yields an existence result for dy-
namic inclusions on time scales with periodic boundary conditions (for a comprehensive
introduction in the time scales theory, see [36]).

Let T ⊂ [0, T] be a bounded time scale (i.e., a nonempty and closed subset of R, with
the standard topology inherited from R). Suppose 0 = minT, T = maxT. For two points
a, b in T, let [a, b)T = {t ∈ T : a ≤ t < b} be the time scales interval.

The forward jump operator σ : T → T is defined by σ(t) = inf{s ∈ T : s > t}. By
convention, σ(T) = T.

A point t ∈ T is called right-dense, resp. right-scattered, if σ(t) = t, resp. σ(t) > t. It is
known (Lemma 3.1 in [37]) that the set of right-scattered points of T is at most countable; let
τi, i ∈ N be its elements. Suppose that the set of right-dense points where the right-scattered
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points accumulate is of null Lebesgue measure (it happens, for instance, if T is a typical
time scales domain, see [2]).

The Lebesgue measure on T, µ∆, was introduced and studied in [37], while for the
Lebesgue ∆-integral we refer to [36–39] or [40].

Let us recall that, by [37] (Theorem 5.2), if f : T→ Rd, for any a < b ∈ [0, T],∫
[a,b)T

f (s)∆s =
∫
[a,b)∩T

f (s)ds + ∑
i:τi∈[a,b)

f (τi)(σ(τi)− τi).

On the other hand, following [41], let g : [0, T]→ R be defined by

g(t) = inf{s ∈ T : s ≥ t}

which is left-continuous and nondecreasing and satisfies

g(t) = t and σ(t) = g(t+) whenever t ∈ T.

It follows, by the definition of the Lebesgue-Stieltjes integral, that∫
[a,b)T

f (s)∆s (8)

=
∫
([a,b)∩T)\{τi ,i∈N}

f (s)ds +
∫
[a,b)∩{τi ,i∈N}

f (s)ds + ∑
i:τi∈[a,b)

f (τi)(σ(τi)− τi)

=
∫
([a,b)∩T)\{τi ,i∈N}

f (s)dg(s) + 0 + ∑
i:τi∈[a,b)

f (τi)(g(τi+)− g(τi))

=
∫
[a,b)

f (s)dg(s).

Definition 2. The function f : T→ Rd is said to be ∆-differentiable at t ∈ T if there is an element
f ∆(t) ∈ Rd (the ∆-derivative of f at t) such that for any ε > 0 there is a neighborhood of t such that∥∥∥ f (σ(t))− f (s)− f ∆(t)[σ(t)− s]

∥∥∥ ≤ ε|σ(t)− s| on this neighborhood.

In [39] (Theorem 1.3) it was proved that:
(i) f is continuous at any point where it is ∆-differentiable;
(ii) at a right-scattered point where f is left-continuous, it is ∆-differentiable and

f ∆(t) =
f (σ(t))− f (t)

σ(t)− t
.

In this section, the focus is on a dynamic inclusion on time scales with periodic
boundary condition {

u∆(t) + p(t)u(t) ∈ F(t, u(t)), t ∈ T
u(0) = u(T)

(9)

where p : T→ R is Lebesgue ∆-integrable and F : T×Rd → P(Rd).
We say that u : T→ Rd is a solution for the considered problem if it is ∆-absolutely

continuous, there exists a selection f of F(·, u(·)) Lebesgue ∆-integrable with u∆(t) +
p(t)u(t) = f (t), µ∆-a.e. and u(0) = u(T). For completeness, let us recall [10] that u is
∆-absolutely continuous if for every ε > 0 there is δε > 0 such that

m

∑
j=1
‖u(t”j)− u(t′j)‖ < ε

for any set {(t′j, t”j)}m
i=1 of non-overlapping intervals with t′j, t”j ∈ T and ∑m

j=1(t”j − t′j) < δε.
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For any function u : T→ Rd we define its Slavik extension [41]

ug : [0, T]→ Rd, ug(t) = u(g(t)).

Let us also extend, in the same way, the multifunction F in order to get Fg : [0, T]×Rd →
P(Rd), Fg

(t, u) = F(g(t), u).

Lemma 3. A function u : T→ Rd is a solution of problem (9) if and only if ug is a solution of{
u′g(t) + p(t)u(t) ∈ Fg

(t, u(t)), µg−a.e. t ∈ [0, T]
u(0) = u(T)

(10)

which is a problem of type (1).

Proof. Let u be a solution of (9). Then one can find a selection f of F(·, u(·)), Lebesgue
∆-integrable on T, such that

u∆(t) + p(t)u(t) = f (t), t ∈ T.

Since if u is left-continuous at the right-scattered points one can see (as in [2]) that, for
every t ∈ T,

u∆(t) = (ug)′g(t),

so it follows that (ug)′g(t) + p(t)ug(t) = f (t) for every t ∈ T. At the same time, the g-
derivative of ug does not make sense on [0, T] \ T as g is constant, but µg([0, T] \ T) = 0,
therefore

(ug)′g(t) + p(t)ug(t) = f (t), µg − a.e.t ∈ [0, T]

and on the set where the equality holds,

f (t) ∈ F(t, u(t)) = F(g(t), ug(t)) = Fg
(t, ug(t))

since g(t) = t on T.
Also, ug(0) = u(0) and ug(T) = u(T), so ug is indeed a solution of (10).
Conversely, let y be a solution of (10). Then the function u : T → Rd given by

u(t) = y(t) for every t ∈ T is a solution on the dynamic problem (9) since

u∆(t) = (yg)′g(t) = y′g(t), for all t ∈ T.

This characterization allows us to deduce the existence of solutions of (9) from
Theorem 3.

Theorem 6. Let F : T×Rd → P(Rd) satisfy the assumptions below.

Hypothesis 10. For every regulated function u : T→ Rd, F(·, u(·)) has measurable selections.

Hypothesis 11. (i) for every right-scattered t ∈ T, F(t, ·) is convex, compact valued and it is
upper semicontinuous;

(ii) for µ∆-a.e. right-dense t ∈ T, F(t, ·) is convex compact-valued and upper semicontinuous on
Rd \ K(t), the set K(t) being empty or the union

K(t) =
⋃

j:t∈Ij

Kj(t),
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where for each j ∈ N, Kj : T→ P(Rd) satisfies the inclusion (3) with DKj(t, u)(1) instead
of DgKj(t, u);

Hypothesis 12. there exists a function φ, Lebesgue ∆-integrable on T, such that∣∣F(t, u)
∣∣ ≤ φ(t)

for µ∆-almost all t ∈ T and all u ∈ Rd.

Then the dynamic inclusion with periodic boundary conditions (9) has solutions.

Proof. When F satisfies our assumptions, Fg satisfies the hypotheses of Theorem 3. To see
this, it suffices to note that, when defining the set E in the proof of Theorem 3, we may
consider that it contains the right-dense points where (τi)i accumulate (this is a µ∆-null
set). At the accumulation points belonging to {τi : i ∈ N} we have upper semicontinuity
and convex compact values. Finally, at any t which is not a point where τi accumulate,
DgKj(t, u) = DKj(t, u)(1).

It follows that the Stieltjes differential problem (10) has at least one solution whence,
by Lemma 3, the dynamic problem on time scales (9) has solutions.

Following the same idea as in Example 1, let us see a periodic dynamic problem
on time scales without upper semicontinuity for which the existence of solutions can
be provided.

Example 2. Consider the time scale domain

T =

[
0,

1
2

]
∪
{

1
2
+

1
2 + i

; i ∈ N
}

and the impulsive problem {
u∆(t) + p(t)u(t) ∈ F(t, u(t)), t ∈ T
u(0) = u(1),

where p ∈ L1
∆(T) and F : T× R → R is the multifunction given in [4] (Example 3.11) for

t ∈
[
0, 1

2

]
, respectively

F(t, u) = B 1
2i
(0), if t =

1
2
+

1
2 + i

, i ∈ N.

The set of right-dense points where the right-scattered points 1
2 + 1

2+i , i ∈ N accumulate is of

null Lebesgue measure (it consists in
{

1
2

}
).

F obviously satisfies the Hypotheses 10 and 12 in Theorem 6.
Besides, for any right-scattered point (i.e., for any 1

2 + 1
2+i , i ∈ N), F(t, ·) is compact convex-

valued and constant, thus upper semicontinuous.
At almost any right-dense point (i.e., almost everywhere in

[
0, 1

2

]
), F(t, ·) is not upper semi-

continuous, nor convex compact-valued on a dense subset of R, but satisfies the Hypothesis 11(ii),
thus the existence of solutions for the considered problem is a consequence of Theorem 6.

6. Conclusions

In this work, an existence theory was developed for first-order differential inclusions
with periodic boundary conditions, leading to a very general result (Theorem 3) due to
the substitution of the usual derivative of the state with the Stieltjes derivative related
to a nondecreasing function. For a particular non-decreasing function, the existence of
solutions of impulsive differential problems with finitely or countably many impulsive
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moments and set-valued impulses was derived (Theorems 4, respectively 5). Furthermore,
being aware of the tight connection between the theory of Stieltjes differential equations
and that of dynamic equations on time scales, an existing result for dynamic inclusions on
time scales with periodic conditions on the boundary was provided (Theorem 6). Future
directions connected to this work could focus on generalized differential equations with
similar conditions on the boundary.

Besides the generality of our outcome following from the remark that the measure
differential equations encompass a large number of classical problems (such as ordinary dif-
ferential equations, difference equations, impulsive and generalized differential equations),
we highlight that this is the first study of differential inclusions with periodic boundary
conditions involving Stieltjes derivative where the hypotheses on the right-hand side to
have convex compact values and to be upper semicontinuous are relaxed.
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