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ABSTRACT: The severe acute respiratory syndrome coronavirus
(SARS-CoV-2) pandemic is setting the global health crisis of our
time, causing a devastating societal and economic burden. An
idiosyncratic trait of coronaviruses is the presence of spike
glycoproteins on the viral envelope, which mediate the virus
binding to specific host receptor, enabling its entry into the human
cells. In spite of the high sequence identity of SARS-CoV-2 with its
closely related SARS-CoV emerged in 2002, the atomic-level
determinants underlining the molecular recognition of SARS-CoV-
2 to the angiotensin-converting enzyme 2 (ACE2) receptor and,
thus, the rapid virus spread into human body, remain unresolved. Here, multi-microsecond-long molecular dynamics simulations
enabled us to unprecedentedly dissect the key molecular traits liable of the higher affinity/specificity of SARS-CoV-2 toward ACE2
as compared to SARS-CoV. This supplies a minute per-residue contact map underlining its stunningly high infectivity. Harnessing
this knowledge is pivotal for urgently developing effective medical countermeasures to face the ongoing global health crisis.

The latest outbreak of a severe viral pneumonia, commonly
referred as coronavirus disease 19 (COVID-19), origi-

nated in December 2019 in the city of Wuhan, China, has soon
thereafter spread worldwide, being officially declared on March
11 a pandemic by the World Health Organization.1,2 As of April
6th, COVID-19 had infected over 1.3 million patients and
caused over 70 000 deaths worldwide. The pathogen responsible
for this disease is a novel β-coronavirus (β-CoV) named severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after
its closely related SARS-CoV,3 which, in 2002, caused 8096
cases and 774 deaths worldwide.4 Additionally, a distinct
coronavirus (Middle East respiratory syndrome coronavirus,
MERS-CoV), in 2012, also spread in 27 different countries,
causing 2494 cases and 858 deaths.5 These numbers and the
recurrence of this phenomenon underline that future outbreaks
of new zoonotic threatening transmissions are likely to be
expected in the future.
Similarly to other β-CoVs, the receptor-binding domain

(RBD) of the homotrimeric viral spike (S) glycoprotein of
SARS-CoVs mediates the molecular recognition to the host
cellular receptor, acting as the Trojan horse for the virus entry
into host cells. Hence, the S protein is considered a key
molecular target for the design and development of specific
antibodies6 and is currently the object of burgeoning structural
vaccinology studies. Stunningly, the phylogenetically similar S
proteins of SARS-CoV and SARS-CoV-2 possess a sequence
identity of about 77%,3 both hijacking angiotensin-converting
enzyme 2 (ACE2), a zinc metallopeptidase entailed with

cardiovascular and immune systems regulation,7,8 to enter and
infect human cells. The structural features of the interactions
between the S protein and ACE2 are currently being addressed
in many biophysical studies, aiming to clarify the reasons
underlying the high human-to-human transmissibility of SARS-
CoV-2 as compared to its closely related SARS-CoV variant.
Cryo-EM and biophysical (surface plasmon resonance) studies
provided insights on structure of the S glycoprotein’s RBD in
complex with ACE2, suggesting a higher binding affinity of
SARS-CoV-2 toward ACE2 as compared to SARS-CoV.9,10 This
was corroborated by a cytometry analysis and immunofluor-
escence staining-based study.11 Conversely, two distinct studies,
based on biolayer interferometry, proposed that the RBD of the
two SARS variants share a similar binding affinity toward
ACE2.12,13 In light of the ongoing global health emergency, this
controversial evidence urgently calls for a rapid clarification.
Aiming to extricate this puzzling scenario at the atomic level, we
performed microsecond-long all-atom explicitly solvated mo-
lecular dynamics (MD) simulations of the RBD of SARS-CoV-2
and SARS-CoV/ACE2 adducts (Supplementary Movies S1 and
S2), starting from their recently released structures (PDB IDs
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6M0J and 6ACJ),14,15 respectively (see Supporting Information
for a detailed description). Most of the SARS-CoV(-2)’s
residues binding to ACE2 belong to the RDB’s receptor-binding
motif (RBM, Figure 1A), which is made of four loops divided by
two small β-strands.
During the MD simulations, the two SARS-CoV(-2)/ACE2

adducts establish stable interfacial interactions (Figure S1),
showing structurally similar binding features. The main
differences are restricted to a loop of the RBM (composed by
Thr470-Pro491 and Asn457-Pro477 for SARS-CoV-2 and
SARS-CoV, respectively, Figure 1B), which engages persistent
interactions with ACE2. This recognition loop (hereafter also
referred as loop 3, L3) is markedly more rigid in the SARS-CoV-
2/ACE2 adduct as compared to its older variant (Figures S2 and
S3). Indeed, L3@SARS-CoV-2 possesses a more defined
secondary structure (composed by small β-sheets) that is
preserved along the MD simulations (Figure S4). Ostensibly,
L3’s length is different in the two SARS variants, being

characterized by the insertion of Gly482 in SARS-CoV-2. This
makes L3 longer and more structured, enabling it to gain
stabilizing interactions (namely, the mutated residues Gly485
interacts with Cys488 and Gln474 with Gly476, Figure 1B) in
the SARS-CoV-2/ACE2 adduct. This insertion, along with other
amino acidic mutations (Figures 1B, 2A), converts a
nonessential part of the RBM into an effective recognition
grasp for ACE2, allowing SARS-CoV-2 to stiffen by establishing
stronger interfacial interactions.
Indeed, the hydrogen (H-)bond analysis of the adducts

pinpoints a larger number of more persistent H-bonds and salt
bridges at the interface of SARS-CoV-2/ACE2 (Figure 2B and
Table S1) as compared to its SARS predecessor. The residues
establishing the most important H-bond interactions have been
confirmed also in other simulation studies.16−19

This translates to a substantial difference of binding free
energy (ΔGb) between the two adducts, as obtained with a
Molecular Mechanics Generalized Born Surface Area (MM-

Figure 1. (A) Adduct between angiotensin-converting enzyme 2 (ACE2, blue) and RBD of SARS-CoV-2 (pink) with the RBM highlighted (green).
Glycans and Zn2+ ions are depicted in van der Waals spheres and colored in cyan, red, and yellow for carbon, oxygen, and zinc atoms, respectively. (B)
Alignment of the most representative structures of the RBD of SARS-CoV-2 (cyan) and SARS-CoV (orange), as obtained from a cluster analysis of the
molecular dynamics trajectories. The insets compare the loops’ (L1−2−3−4) structural organization.

Figure 2. (A) Sequence alignment of SARS-CoV-2 and SARS-CoVRBM.Consensus residues are highlighted in red and shownwith their letter code. A
total sequence identity of 49% for the RBM is reported. (B) The number of H-bonds established at the two proteins’ interface versus their persistence.
Per-residue binding free energy (ΔGb, kcal/mol), calculated using the MM-GBSA method20 of (C) the RBM and (D) ACE2.
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GBSA)method, which favors SARS-CoV-2/ACE2 by 20.8 kcal/
mol (Table S2), with the highest observed difference of 29.5
kcal/mol in the last part of the trajectory. Both the electrostatic
and van der Waals components contribute to the enhanced
ΔGb.

20,21 This remarkable difference in the ΔΔGb of SARS-
CoV(-2)/ACE2 adducts is overestimated by the employed
methodology, being nevertheless qualitatively consistent with
the experimental Kd trend, which pinpoints a higher ACE2
binding affinity toward the novel coronavirus (15−44 and 185−
326 nM for SARS-CoV-2 and SARS-CoV, respectively).9,10

Since a detailed atomic-level map of the key residues
stabilizing the interactions of SARS-CoV-2 is pivotal for
structure-based peptide design and vaccinology studies, we
dissected the contribution (Figures 2C and D and Table S3) of
each RBM’s residue to the ΔGb. Remarkably, most of the
residues differing in the RBM of the two SARS-CoV variants
(i.e., Leu455/Tyr442, Phe456/Leu443, Gln493/Asn479, and
Gln498/Tyr484 in SARS-CoV-2/SARS-CoV, respectively)
contribute to increasing the binding affinity (i.e., decrease the
ΔGb) of the SARS-CoV-2/ACE2 adduct. As an example,
Gln498@SARS-CoV-2 (Tyr484@SARS-CoV) strongly H-
bonds with Lys353@ACE2 and Asp38@ACE2-α1, resulting in
a ΔGb gain of −4.8 kcal/mol (Figures 2C and D, Figure 3). A

local reshaping of the interfacial H-bonds enables even the
conserved residues to intertwine a stronger network of
interactions with the receptor. Namely, the conserved
Asn487@SARS-CoV-2 (Asn473@SARS-CoV) on L3 gives a
larger contribution toΔGb in the SARS-CoV-2/ACE2 adduct by
H-bonding with Tyr83@ACE2-α2 (persistence 80.7%, Figure 3
and Table S1). Due to the higher L3 flexibility in the SARS-
CoV/ACE2 adduct (Figure S2), this H-bond is lost, inducing a
ΔGb decrease of 4 kcal/mol.
This detailed per-residue topological signature of the binding

interface also discloses that Asp480@SARS-CoV has a negative
impact on ΔGb. This residue forms only a low-persistent salt-
bridge with Lys439@SARS-CoV which, due to RBM’s
flexibility, breaks for most of the MD trajectory. Thus, because
Asp480 destabilizes the SARS-CoV/ACE2 adduct owing to the
electrostatic repulsion with two nearby negatively charged
residues (Glu35 and Asp38@ACE2-α1, Figures 2C and D), the
mutation to Ser494@SARS-CoV-2 resolves this unfavorable
contribution.

Finally, a comparison of the electrostatic potential at the
ACE2’s interface with the two SARS variants did not reveal
marked differences. In particular, SARS-CoV-2 showed only a
slightly wider negatively charged surface (Figure S5).
To better decrypt the relative importance of the distinct

components of RBM, we computed the Pearson-based cross-
correlation matrix (CCM) of both SARS-CoV(-2)/ACE2
adducts, capturing the dynamically coupled motions and
pinpointing dynamical differences between the two β-CoV
variants.22 Although by comparing the two matrices no
difference has been detected on the ACE2’s dynamics (Figure
S6), by focusing on the interfacial residues, some diversities
appear. Strikingly, all the RBM’s loops besides L2, which is the
farthest from ACE2, exhibit an increased correlation in SARS-
CoV-2/ACE2 (Figure 4) as compared to SARS-CoV/ACE2
adduct. This is particularly true for L3, whose increased content
of secondary structure (Figure S4) affects the strength of the
interactions, and in turn the positive correlations, with the
residues of the two interfacial ACE2’s α-helices (residues 19−
45@ACE2-α1 and 79−83@ACE2-α2, respectively). As well, L1
and L4 increase the grip to ACE2, gaining correlations with its
nearby residues (324−330, 351−357, 386−393).
By summing the per-residue correlations of these matrices

(i.e., measuring the per-residue correlation significance), we
pinpoint the cardinal RBM’s residues for ACE2 recognition
(Table S3). Among these, the atomic fluctuations of Asn501@
SARS-CoV-2 have a striking impact on the surrounding
interactions, being at the center of an intricate H-bonding
network. Because of its intermolecular H-bond with Gln498@
SARS-CoV-2, Asn501 enables it to firmly interact with Asp38@
ACE2-α1 and Lys353@ACE2. Remarkably, this analysis
pinpoints the relevance of another mutated residue located on
L3, i.e. Phe486@SARS-CoV-2, as compared to Leu472@SARS-
CoV, which performs π-stacking interaction with Tyr83@
ACE2-α2 (Figure 3), contributing to L3 stabilization and thus to
ACE2 recognition.
Our results support and expand the first attempts to capture

the key interactions of the SARS-CoV-2/ACE2 complex
performed at structural and bioinformatics levels,23,24 predicting
the importance of critical residues (i.e., Gln498 and Phe486
mutations in SARS-CoV-2). The so-far available experimental
structures of the SARS-CoV-2(RBD)/ACE215,25 supplied
precious information on their interfacial H-bond network.
Nevertheless, these structural studies can provide only a static
picture, being unable to exhaustively unravel the relative
importance of these key interfacial interactions. Our finite
temperature all-atom simulations complement these pieces of
information, uncovering the relative strengths and persistence of
the principal interactions engaged by key mutations occurring in
SARS-CoV-2 (Table S4). As a result, the critical chemical
determinants for the higher stability of the SARS-CoV-2/ACE2
adduct. Additionally, ourMD simulations disclose an induced fit
of the ACE2-α1 helix which, along the MD trajectory, better
adapts to the RBD@SARS-CoV-2 by increasing its tilt (Figure
S7).
Owing to its extremely high contagiousness, the COVID-19

pandemic is dramatically hitting every country one by one while
taking an increasingly deadly toll of lives. Because no therapeutic
options are available for COVID-19, identifying effective
medical countermeasures is a current global clinical urgency.
Despite the high sequence identity between SARS-CoV and
SARS-CoV-2, potent neutralizing antibodies specific for
targeting ACE2’s binding site of SARS-CoV/ACE2 (Figure

Figure 3. Key residues engaging hydrogen bonds and π-stacking
interactions at the SARS-CoV-2/ACE2 interface (blue and green
ribbons, respectively), as evidenced by MD simulation trajectory.
Hydrogen bonds are highlighted as black dashed lines.
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5A),29,30 failed to bind SARS-CoV-2 spike protein.9,13

Remarkably, the crystal structure of the CR3022 antibody,

isolated from a convalescent SARS patient,31 disclosed a cryptic
epitope on the S protein of SARS-CoV-2 (Figure 5B),28 for
which no competition with ACE2 is required. This suggests that
this virus has a complex interactome to unravel and exploit for
vaccine and drug design studies. In this context, the structural
and dynamical differences recorded at the interfaces of the
SARS-CoV(-2)/ACE2 adducts and the higher ΔGb of SARS-
CoV-2 toward ACE2 provide a rationale to this lack of cross-
reactivity, fostering the identification of novel epitopes as
exclusive and specific hallmarks of SARS-CoV-2.
In conclusion, our outcomes unprecedentedly disclose the key

molecular traits underlying the higher affinity of SARS-CoV-2
toward the human host ACE2 receptor, supplying a meticulous
atomic-level topological map of the critical residues and the

pivotal interactions triggering SARS-CoV-2’s entrance into the
host cells. The very first step of SARS viral infection is, indeed,
the ACE2 receptor recognition by the S protein. Hence, the
enhanced binding affinity of SARS-CoV-2 toward ACE2, as
compared to that of SARS-CoV, disclosed by us and by recent
experimental studies,9,11 is most likely correlated with its
remarkable human-to-human transmissibility.12,32 Besides
rationalizing the high infectivity of SARS-CoV-2, our study
provides novel fundamental advances for boosting the urgent
development of effective therapeutic strategies such as peptide
or antibody design, able to exploit and optimize the identified
interactions. Moreover, with SARS-CoV-2 being highly specific
toward its receptor, even compared with the closely related
angiotensin-converting enzyme (ACE, Figure S8), ACE2 may
also represent a new target for the development of antivirals as a
potential strategy for new COVID-19 treatment. This
information will contribute to facing the ongoing COVID-19
pandemic and possibly to fighting future coronavirus outbreaks.
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Movie S1 shows the key interacting residues, during our
molecular dynamics simulations, of the SARS-CoV-2/
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molecular dynamics simulations, of the SARS-CoV/
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