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Abstract
The recent developments of information technologies, and the consequent need for
access to distributed services and resources, require robust and reliable authentication
systems. Biometric systems can guarantee high levels of security and multimodal
techniques, which combine two or more biometric traits, warranting constraints that
are more stringent during the access phases. This work proposes a novel multimodal
biometric system based on iris and retina combination in the spatial domain. The
proposed solution follows the alignment and recognition approach commonly
adopted in computational linguistics and bioinformatics; in particular, features are
extracted separately for iris and retina, and the fusion is obtained relying upon the
comparison score via the Levenshtein distance. We evaluated our approach by testing
several combinations of publicly available biometric databases, namely one for retina
images and three for iris images. To provide comprehensive results, detection error
trade‐off‐based metrics, as well as statistical analyses for assessing the authentication
performance, were considered. The best achieved False Acceptation Rate and False
Rejection Rate indices were and 3.33%, respectively, for the multimodal retina‐iris
biometric approach that overall outperformed the unimodal systems. These results
draw the potential of the proposed approach as a multimodal authentication
framework using multiple static biometric traits.

1 | INTRODUCTION

The evolution of technology and the increasing presence of
distributed services and resources have boosted the demand for
secure access systems. The current frontier and the state of
advancement of recognition and authentication systems coin-
cide with the use of multimodal biometric approaches [1]. The
impossibility of obtaining a correct acquisition of one biometric
trait in certain conditions, such as face, fingerprint, palm of the
hand, voice, makes unimodal systems useless in environments,
where the security needs are high. A combination of two or
more biometric traits, called “multimodal systems”, is preferred
to the classic unimodal approaches due to their higher reliability
in all critical environments, where stringent security conditions
have to be met [2–5].

There exist numerous unimodal and multimodal biometric
systems, offering both software and hardware implementations

[6,7]. In the literature, some of those systems—combining
different biometric traits—are implemented using features in
the spatial/structural domain [8,9], whilst the majority in the
frequency domain [10–12]. Even though the terminology used
for fusion in multimodal biometric systems is standardised in
[13], it is difficult to define a proper guideline in terms of both
the various processing stages and specific algorithms that are
generally applicable to multiple biometric traits/features [1].
However, the use of multiple biometric measurements from
independent biometric sensors, traits, or algorithms can ach-
ieve accurate and reliable performance [13]: multimodal sys-
tems improve the robustness and reduce the risk, by making
decisions that rely upon the combination of distinct biometric
traits under different circumstances. To some extent, fre-
quency‐based and space‐based approaches might be seen as
complementary and there is no well‐established clue for
choosing one out of the two strategies. Frequency‐based
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techniques certainly involve a higher computational load,
mainly due to the involved bidirectional mapping into the
transformed domain (e.g. Fourier transform, and wavelets),
with respect to the spatial approaches: this can represent a
limitation in the case of system deployment onto hardware
platforms with limited resources [3,14]. This work has the
objective of devising an innovative methodology for the real-
isation of biometric, unimodal, and multimodal authentication
systems based on the spatial domain, by analysing the same
type of micro‐features. More specifically, the novel part focuses
on the possibility of creating a single system for the feature
extraction, processing, and comparison algorithm based on the
Levenshtein Distance (LD) [15,16]. The final phase leverages a
fusion at the level of comparison score [2,17]. To the best of
our knowledge, the authors are the first to propose an
authentication system based on iris and retina entirely imple-
mented on spatial domain and using the LD for comparison
algorithm. Furthermore, another reason for choosing the iris
and retina as biometric traits is the high level of uniqueness,
performance, universality, and circumvention [12]. In the
literature, only a few publications propose a multimodal
authentication system using iris and retina; the most repre-
sentative ones are [12,18,19], even though they relied upon the
frequency domain alone. Furthermore, the aforementioned
work involved vessel‐based matching by using feature points,
that is minutiae points. It is well‐known that vessel segmen-
tation and minutiae point extraction are time‐consuming tasks.
This is another challenge directly tackled by our contribution,
aiming at realising a system that can also be used in real‐time
by following a novel approach with respect to the methods
proposed in the state‐of‐the‐art so far [20]. For the biometric
terminology, we relied upon standardised vocabularies [13,21].

The main contributions of the work are:

� Most of the literature work based on iris leveraged trans-
forms in the frequency domain (e.g. Daugman approach
[22]). We aimed to investigate a system entirely developed in
the spatial domain

� Pair of biometric traits (i.e. iris and retina) not quite
commonly used in the literature on multimodal systems

� The features extracted from the retina and iris images are
homogeneous and analogous to the well‐known fingerprint
features [23]: end‐points and bifurcations for retina, end‐
points and local peaks (similar to bifurcations) for iris

� The unimodal iris and retina biometric systems are imple-
mented using the same algorithms and the same processing
pipeline

� A general and universal approach that can be extended to
any system operating in the spatial domain and based on
static biometric features

� All databases exploited in the experiments are public, freely
available and used in papers already published in the liter-
ature. This denotes a necessary condition in order to guar-
antee result repeatability and benchmarking

The remainder of this manuscript is structured as follows.
Section 2 outlines the related work. Section 3 describes the

used recognition methodology. Section 4 describes the pro-
posed multimodal retina‐iris biometric system, whilst Section 5
shows the experimental results. Section 6 analyses and dis-
cusses comparisons against the state‐of‐the‐art. Finally,
conclusive remarks and future directions are provided in Sec-
tion 7.

2 | RELATED WORK

Traditionally, unimodal biometric systems might have many
limitations [1,2], which can be addressed and reduced by
combining multiple biometric traits [3,24]. To this purpose,
multimodal biometric systems are based on different biometric
traits and/or introduce various fusion schemes on the extrac-
ted features. The fusion can be performed at: (i) feature‐level
[25]; (ii) comparison score level [12]; (iii) decision level, also by
exploiting Soft Computing techniques [24]. Many researchers
have experimentally demonstrated that the fusion process is
effective, because fused scores provide a notably higher
discrimination than individual scores [2,25]. Regarding the
extracted features, biometric recognition systems can be
implemented using features in the frequency domain (e.g.
Fourier/wavelet transforms [12], and log‐Gabor [11]) or to the
spatial domain (e.g. position, orientation, and structural prop-
erties [8,9]). Such results have been achieved by means of a
variety of fusion techniques. In what follows, some relevant
studies about biometric recognition and authentication sys-
tems, based on iris or/and retina, are briefly described. Waheed
et al. in [9] proposed a retina recognition matching without
using minutiae points, resulting in a simple and fast non‐
vascular based retina recognition system. A similarity measure
was computed via features based on illuminance, contrast, and
structural features from a colour retina image The extracted
attributes were combined by means of an empirically optimised
function to generate a similarity score between two candidate
images. The matching decision was obtained according to the
highest score value. This approach was tested on two retinal
image databases collected from local sources, namely, Retina
Identification database (RIDB) and Armed Forces Institute of
Ophthalmology (AFIO). The proposed system was tested by
calculating the False Rejection Rate (FRR) and False Accep-
tance Rate (FAR) and achieved an average identification rate of
92.50% and 85.75% on the RIDB and AFIO databases,
respectively.

Lajevardi et al. in [10] presented an automatic retina veri-
fication framework based on the Biometric Graph Matching
(BGM) algorithm. The retinal vasculature was extracted using a
family of matched filters in the frequency domain and
morphological operators. Then, the retinal templates were
defined as formal spatial graphs derived from the retinal
vasculature. The BGM algorithm—which is a noisy graph
matching algorithm, robust to translation, non‐linear distor-
tion, and small rotations—was used to compare retinal tem-
plates. The BGM algorithm exploited the graph topology to
define three pairwise distance measures between graphs. A
Support Vector Machine (SVM) classifier was used to
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distinguish genuine and imposter comparisons. By using single
as well as multiple graph measures, the classifier achieved
complete separation on a training set of images from the
VARPA Retinal Images for Authentication (VARIA) database
(60% of the data), achieving comparable performance with the
state‐of‐the‐art for retina verification. Because the available
dataset was small, Kernel Density Estimation (KDE) of the
genuine and imposter score distributions of the training set
were used to assess the performance of the BGM algorithm. In
the one‐dimensional case, the KDE model was validated on
the test set: a 0 Equal Error Rate (EER) on testing showed that
the KDE model is a good fit for the empirical distribution. For
the multiple graph measures, a novel combination of the SVM
boundary and the KDE model was devised to obtain a fair
comparison with the KDE model for the single measure. A
clear benefit in using multiple graph measures over a single
measure to distinguish genuine and impostor comparisons was
revealed by boosting the theoretical error between 60% and
more than two orders of magnitude.

Saha et al. in [12] proposed a multimodal user authentica-
tion system developed by feature‐level fusion of iris and retina
recognition. The ‘curse‐of‐dimensionality’ problem arising in
feature‐level fusion was minimised to some extent by applying a
Principal Component Analysis (PCA) on the augmented feature
template in the frequency domain. To validate this approach,
iris and retina images obtained from the Indian Institute of
Technology Delhi (IITD) and Digital Retinal Images for Vessel
Extraction (DRIVE) databases, respectively, were used. The
achieved Recognition Rate (RR) was 98.37% for the multimodal
approach, whereas it was 96.74% and 94.56% for separate iris
and retina recognition, respectively.

In Choras [18], the iris and retina features were combined
for biometric recognition. In this multimodal biometric system,
the Gabor transform was used to extract the features from the
iris and retina to perform a fusion at feature‐level. The
extraction of the features was not homogeneous, because
different filters and features were used for the iris and retina.
The fused template was obtained by the concatenation of iris
and retina descriptors. No detail was provided by the authors
on the databases used, number of images and comparison
methods, hampering the quantitative evaluation of this
approach. Also Modarresi et al. [26] used a fusion at feature‐
level. In fact, retina and iris features (mean energy, standard
deviation, entropy, contrast and homogeneity) were extracted,
by means of the Contour let transform, and subsequently
fused. The Hamming Distance (HD) was used for the
matching to provide a higher accuracy than unimodal systems,
by obtaining an EER ¼ 0.0413%. Sen and Islam [27] devel-
oped a multimodal biometric system that uses fusion of iris and
retina recognition. Iris feature extraction and template creation
were performed by using 1D log‐Gabor filter. The retina
descriptor was obtained by extracting retinal blood vessels and,
successively, the discrete wavelet transform was used for
feature extraction. The fused multimodal template was ob-
tained by means of concatenation of two (iris and retina)
feature vectors. The achieved results showed that the RR of the
multimodal system outperformed the iris and retina unimodal

recognition systems. The achieved authentication results for
this multimodal system are: FAR ¼ 2.041%, FRR ¼ 0% and
RR ¼ 97.959%. Considering that FAR > FRR, this represent a
represents an anomalous ‘operating point’ with respect to
biometric good practices. Both Modarresi et al. [26] and Sen
and Islam [27] used the Chinese Academy of Sciences, Institute
of Automation (CASIA) and DRIVE databases for iris and
retina.

Latha et al. [19] proposed a multimodal hybrid approach
based on images of both (left and right) irises and retinal im-
ages. The iris characteristics were encoded by means of a 1D
log‐Gabor filter to extract the underlying information and
generate the binary iris template that is used in the HD
matching. The retina template was composed of the blood
vessel intersection points. From the processing point of view,
this system is hybrid because the iris and retina templates
contained frequency and spatial domain information, respec-
tively. Iris and retina images were taken from CASIA v3 and
VARIA databases, respectively. Finally, the irises and retina
recognition scores were combined together using a simple
weighted‐sum fusion rule. This system obtained ERR ¼ 0.01%
and RR ¼ 99.3%.

Kihal et al. in [28] proposed a multimodal biometric
authentication with a multimodal ocular biometric system
based on the iris pattern and the three‐dimensional shape of
the cornea. In this work, the authors showed that the cornea
can be used as a biometric trait, by then proposing an intra‐
ocular fusion with iris features to improve the overall per-
formance of the system. Feature extraction was performed by
modelling the shape of the cornea with a Zernike polynomial
expansion, whilst the iris texture was analysed with a typical
methodology via Gabor filtering and phase encoding. Finally,
the fusion was performed at the matching score level using
min, max, sum and weighted‐sum rules. The experimental
results on a new database constructed for this bimodal study
showed an EER decreasing to 0% with the weighted‐sum
rule.

Un‐like the multimodal approaches described so far,
Meenakshi et al. [29] proposed a fuzzy vault framework to
encrypt both the retina and iris templates to enhance the se-
curity in biometric systems. The proposed multimodal fuzzy
vault was tested with spatial features extracted from retina and
iris images, obtained from the DRIVE and Chinese University
of Hong Kong (CUHK) databases, respectively. Since the
purpose of this study is to improve safety, no recognition result
was reported.

In this work, the main objective is to devise a novel fusion
approach based on a comparison algorithm that can improve
the state‐of‐the‐art on the retina‐iris traits. With the goal of
devising a flexible and extensible biometric framework, we
decided to exploit the spatial domain, considering that most
literature approaches—based on iris and/or retina biometry—
proposed solutions in the frequency domain. Interestingly, our
approach leverages a fusion at a comparison score‐level [17],
and the proposed minutiae‐based comparison algorithm, using
on features extracted in the spatial domain, is invariant to roto‐
translation problems.
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3 | REMARKS ON IRIS BIOMETRY,
RETINA BIOMETRY AND
LEVENSHTEIN DISTANCE

The biometric systems developed in the domain of space and
focused on the comparison of physiological traits are typically
based on the extraction, processing, and comparison of
peculiar micro‐features, commonly called minutiae, obtained
from the scanned digital images [8,10,30].

Once the retrieval phase is accomplished, either manually
or through optical readers, the digital image is processed using
different filters, with the aim of cleaning it from negligible
details and clearly identifying the fundamental features (i.e.
lines, crests, minutiae) useful for comparison purposes. Typi-
cally, in all existing systems, the first step includes the seg-
mentation and binarisation of the image, of which the goal is
to transform the digital image, initially in grey‐scale, into a
binary image. Subsequently, a thinning operation is performed,
which reduces the size of the reference lines contained in the
binary image and represents them as lines composed of a
single pixel of thickness. Next, the identification of the char-
acteristic points via search algorithms and selection of the
minutiae are executed. Finally, the obtained data are processed
and matched for the biometric task. These approaches usually
include a phase of comparison at the level of Cartesian posi-
tioning amongst the minutiae detected, measuring the
Euclidean Distance (ED) or similar metrics, between the
points and verifying if this measurement is lower than a pre‐set
threshold. However, roto‐translation problems could percep-
tibly affect the final result, since two equal images could have
undergone a roto‐translation with a measurement higher than
the fixed threshold value. In such a case, the high ED between
the minutiae would not allow the system to make the appro-
priate assessments, yielding an incorrect negative outcome (i.e.
false negative).

The proposed method, on the other hand, aims to over-
come this problem by making use of distance vectors. The
measured numerical references remain, indeed, the same even
in the case of a strong roto‐translation, since the reference is
set to the mutual EDs of the minutiae rather than to their
individual positions. Thus, the problem of roto‐translation
would be eliminated. Our work presents a comparison phase,
which is not based on the classic ℓ2 ED, but exploits the LD
[15,16]. The LD is typically used to measure the difference of
two strings, defined on an alphabet Ω of symbols, and to
provide the information of the related additions, deletions, and
settings required to identify the two sequences as the same
sequence. The goal of our methodology is to standardise the
extraction phase of the characteristics from different types of
images, the features themselves in the spatial domain and,
eventually, the comparison algorithm. The objective is to
devise a multimodal recognition system in the spatial domain
using a novel and universal approach for all types of static
biometric features. For this reason, we choose to avoid the use
of a hybrid approach for each unimodal authentication
sub‐system, combining spatial and frequency biometric

characteristics. This strategy allows for a high degree of ho-
mogeneity in the treatment of the most common biometric
features.

The basic concepts on retina‐based and iris‐based biom-
etry, as well as the formalism of the LD, are introduced in the
following sections. Finally, the basic concepts about the LD are
introduced.

3.1 | Retina‐based biometry

The retina acquisition is based on the uniqueness of its vascular
scheme, and, for this reason, the main features extracted from
the retinal vascular tree are usually employed as a reference for
comparisons between retinas, namely:

� optic disc: yellow‐whitish area of the retina, which is the
point of convergence of the nerve fibres for the optic nerve
formation. Starting from this branch, the vessels form the
retinal vascular tree;

� bifurcations of the vascular tree: points where a branch di-
vides into two sub‐capillary branches;

� terminations of the vascular tree: end‐points of the indi-
vidual capillaries.

The proposed system focuses on bifurcations and termi-
nations because they are sufficient for a recognition system.
The reliable detection of the optic disc and the certain posi-
tioning inside the retinal vascular tree is currently the subject of
numerous approaches [31]. Indeed, the optical disk is not
included because, due to its considerable size that occupies a
larger area than the aforementioned characteristic points, it is
immediately detectable but does not provide a precise posi-
tioning in terms of (x, y) coordinates. Figure 1 shows an
example of retina processing, from retinal vascular tree
extraction to minutiae detection.

3.2 | Iris‐based biometry

In this work, we process iris images in the spatial domain [32]
leveraging peculiar features extracted from the scanned image
segmentation process. We therefore do not follow the Daug-
man method [22], such as in [33], which identifies an iris‐code
relying upon the frequency domain. Our approach takes care
of detecting and isolating the ring part of the iris in a metic-
ulous manner (to the best of one pixel), excluding negligible
details and possible concealments due to eyelids, reflections,
shadows, and eyelashes. Furthermore, we perform an image
normalisation procedure, based on linearised representation of
iris image with fixed dimensions allowing for quantitative
comparisons (Figure 2). This is necessary because the iris area
for a given eye is not always constant but varies depending on
the dilation of the pupil. For this reason, two images of the
same iris might have distinctive characteristics whilst having
the same spatial location, under different conditions [34].
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Accordingly, the iris is segmented into the following micro‐
features:

� core: variation of the circular symmetry of the pupil
contour;

� valleys: regions that are characterised by a higher pigmen-
tation within the iris, visually corresponding to areas with a
darker shade;

� collarettes: ideal jagged outline that divides the iris into two
zones, the former is near the pupil with a darker shade, and
the latter is next to the sclera having a lighter shade. The
collarettes are usually characterised by the presence of a
thick ray of fibres, which have a darker colour than the rest
of the rainbow crown;

� radiant channels: minutiae present outside the boundary
defined by the collarettes. They have the shape of arcs of
circumference and are characterised by a darker shade than
the pigmentation that surrounds them.

� Accurate iris image analyses revealed a rich textural content.
In particular, the collarette region conveys the highest

texture information amongst the iris‐derived micro‐features
[35]. The proposed system employs only collarettes thanks
to its discriminant characteristics in iris recognition,
following the well‐known literature approach proposed in
[36]. A function that detects the contours is then applied to
the collarette image obtained by the segmentation. Two
types of characteristic points are investigated on the
resulting image:

� terminal points, wherein the detected contour stops;
� local peak points, wherein the contour of the collarette
changes in height.

The output coordinates of the detected characteristic
points are used for the comparison between images.

3.3 | Levenshtein distance

The LD [15,16], also called edit distance, quantifies the
difference between two strings: this metric determines how

F I GURE 1 (a) Retina scan; (b) image after binarization; (c) image after thinning and (d) detected minutiae
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much two strings are dissimilar. This concept has been
effectively applied to multiple areas of interest, such as in
spelling check algorithms or in similarities search between
images, sounds, texts, sequences. With particular interest to
biometry, the LD was only applied to unimodal methods,
such as in the case of binary iris‐code matching (efficiently
outperforming the HD) [33].

Formally, the LD between two strings s1 and s2 is
defined as the minimum number of elementary
modifications that allow us to transform the string s1 into the
string s2. Elementary modifications denote the following
operations:

� deletion of a character;
� insertion of a character;
� replacement of a character with a different one.

This metric, therefore, represents the cost of the optimal
alignment of two strings; the total cost of alignment is
calculated by summing‐up the costs of each position. The
algorithm for calculating the LD between two strings is based

on the following observation. Let s1 ¼ a1a2⋯am and s2 ¼
b1b2⋯bn be two strings. Let e (i, j) denote the LD between the
two prefixes p1 ¼ a1a2⋯ai and p2 ¼ b1b2⋯bj of s1 and s2,
respectively. If e (i� 1, j� 1), e (i� 1, j) and e (i, j� 1) are known,
we can compute e (i, j).

Each of the three values corresponds to an excellent
alignment:

� e (i� 1, j� 1) is the cost of the optimal alignment of a1⋯ai� 1
and b1⋯bj� 1;

� e (i� 1, j) is the cost of the optimal alignment of a1⋯ai� 1
and b1⋯b1;

� e (i, j� 1) is the cost of the optimal alignment of a1⋯ai and
b1⋯bj� 1.

Each of the three alignments can be extended to an
alignment between a1⋯ai and b1⋯bj:

� aligning ai with bj;
� aligning ai with a gap;
� aligning a gap with bj.

F I GURE 2 (a) Iris scan; (b) segmented iris with highlighted collarette (in white) and (c) collarette extracted from the iris
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To achieve the optimality, it is necessary to select the
operation that obtains the minimum cost alignment. Note that
the generic value e (i, j) depends only on e (i� 1, j� 1), e (i, j� 1)
ed e (i� 1, j), and can be calculated by means of Equation (1):

eði; jÞ ¼min

8
<

:

eði � 1; j � 1Þ þ c
�
ai; bj

�

eði; j � 1Þ þ 1
eði � 1; jÞ þ 1

ð1Þ

We can conveniently store these values in an (m þ 1)�(n
þ 1) matrix, such as in Table 1, where the row and column
indices start from zero and ε denotes the empty string.

It is clear that when the alignment of an empty string with a
string x1⋯xi costs i, i characters must be inserted into the empty
string ε to obtain x1⋯xi: e (0, i) ¼ e (i, 0) ¼ i. The alignment
between two empty strings has no cost: e (0, 0) ¼ 0. The LD
matrix in Table 1 can therefore be rewritten as in Table 2, and it
can be incrementally built row‐by‐row, that is from left to right,
and from top to bottom. The value e (m, n) represents the LD
between s1 and s2. Algorithm 1defines the procedure for
computing the LD matrix ML between s1 ¼ a1⋯am and s2 ¼
b1⋯bn.

Algorithm 1 Pseudo‐code of the iterative procedure for constructing the LD
matrix ML

Require Strings s1 ¼ a1⋯am and s2 ¼ b1⋯bn
Ensure Matrix DE
1 Initialise an (m þ 1)�(n þ 1) matrix called ML

2 MLi;0 ← i, for 0 ≤ i ≤ m
3 ML0;j ← j, for 0 ≤ j ≤ n
4 for i ¼ 1, …, m do
5 for j ¼ 1, …, n for
6 if then
7 c ¼ 0
8 else
9 c ¼ 1
10 end if
11 MLi;j ←…
12 minfMLi� 1;j� 1 þ c;MLi;j� 1 þ 1;MLi� 1;j þ 1g
13 end for
14 end for

4 | PROPOSED MULTIMODAL RETINA‐
IRIS BIOMETRIC SYSTEM

Recognition systems based on physiological traits typically
operate on images and Cartesian coordinates. The minutiae
detected by the process described in Section 3 are stored in
M�2 matrices as Cartesian coordinates (x, y), where M
denotes the number of the extracted minutiae that might be
different for each matrix/image. Images are usually
compared by measuring the ED between the detected
minutiae. If this distance is lower than a pre‐set threshold
value, the comparison provides a positive outcome; other-
wise, it yields a negative outcome.

The proposed solution aims to apply the LD algorithm on
the minutiae detected by the retina‐ and iris‐based recognition
systems. The expected result is to obtain the minimum EDs
whether the two scans belong to the same individual, or high
ED values if the two scans belong to distinct individuals.

Figure 3 shows the overall block scheme of the proposed
system. Each component is described in the following sections.

4.1 | Biometric spatial feature extraction

The following description is valid for unimodal recognition
systems based on either retina or iris scanning, analysing the
Cartesian coordinates of the previously extracted minutiae.
Therefore, we obtain two‐dimensional matrices M�2, corre-
sponding to the Cartesian coordinates of the minutiae
computed from the processing of the two biometric images to
be compared. The minutiae under consideration are: (i) ter-
minations/bifurcations, with regard to the retina‐based
recognition; (ii) terminations/local peaks, when considering
iris‐based recognition. Thus, these operations are indepen-
dently performed on both retina‐based and iris‐based minutiae
matrices.

We use a 5�2 coordinate matrix, which is suitable to
represent the preliminary operations to the subsequent com-
parison step on a reduced scale (Table 3), to exemplify our
procedure. Each row represents a minutia, identified by its
coordinates (x, y), within the image. The minutiae are sorted
according to the value of the x coordinate.

TABLE 1 LDs between the two prefix strings p1 ¼ a1a2⋯ai and p2 ¼
b1b2⋯bj

ε b1 b2 … bn

ε e (0, 0) e (0, 1) e (0, 2) … e (0, n)

a1 e (1, 0) e (1, 1) e (1, 2) … e (1, n)

a2 e (2, 0) e (2, 1) e (2, 2) … e (2, n)

… … … … … …

am e (m, 0) e (m, 1) e (m, 2) … e (m, n)

Abbreviations: LDs, Levenshtein distance; P, prefixes.

TABLE 2 LD matrixML (in Table 1) rewritten considering that e (0, i)
¼ e (i, 0) ¼ i, when the alignment of an empty string ε with a string x1⋯xi
costs i, exactly i characters must be inserted into the empty string to obtain
x1⋯xi

ε b1 b2 … bn

ε 0 1 2 … e (0, n)

a1 1 e (1, 1) e (1, 2) … e (1, n)

a2 2 e (2, 1) e (2, 2) … e (2, n)

… … … … … …

am m e (m, 1) e (m, 2) … e (m, n)

Abbreviations: ε, empty string; LDs, Levenshtein distance; ML, LD matrix.
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In the first step, the ED between the minutiae contained in
the two‐dimensional coordinate matrix is obtained. This
operation allows us to quantitatively measure the distance be-
tween all the minutiae of the same image, obtaining informa-
tive values that can be properly assessed in the following
phases. The result of this operation consists of an M�M ma-
trix, in which each row stores the EDs between a given minutia
and the others: the first row contains the ED values measured
between the first minutia of the coordinate matrix and the
others, the second row considers the second detail as its
reference, and so on. This direct correspondence between the
lines of the coordinate matrix and the rows of the DE matrix is
extremely important and is maintained for all the subsequent
processing steps. Table 4 shows the DE matrix obtained
starting from the coordinate matrix used as an example
(Table 3).

In the second step, the ED matrix is sorted in a row‐wise
ascending order: the values of each row are neatly arranged from
the minimum to the maximum values. Table 5 shows the
resulting EDmatrix corresponding to the example in Table 3. As
expected, the first column is composed of only 0 values, since it
corresponds to the ED between the detail taken into consider-
ation and itself. This column can therefore be removed because it
is ineffective for comparison purposes. Table 6 shows the final
DE matrix.

The operations executed so far result in a DE matrix
M�N, with N ¼ M� 1, which consists of M rows with the
ED values arranged in ascending order and are obtained
starting from M minutiae contained in the coordinate matrix
used in the example. Each row can be interpreted as a real
number string that contains unique information on the
associated reference minutiae, as well as on the corresponding
EDs measured from them. Therefore, not only information

F I GURE 3 Overall block scheme of the
proposed multimodal retina‐iris system that performs
a comparison score fusion based on the Levenshtein
distance

TABLE 3 Example of coordinate matrix

x y

11 130

17 310

39 291

96 122

155 97

TABLE 4 ED matrix obtained from the coordinate matrix in Table 4

0 180.10 163.42 85.38 147.73

180.10 0 29.07 203.92 253.80

163.42 29.07 0 178.35 226.04

85.38 203.92 178.35 0 64.08

147.73 253.80 226.04 64.08 0

Abbreviation: ED, Euclidean distance.
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on the Cartesian positioning of the single minutia is obtained,
but also a complete mapping of all the other characteristic
points detected by the system using the ED as a metric.

4.2 | Levenshtein distance for minutiae‐
based comparison

The LD overcomes the problem of descriptors with variable
lengths coming from different images that represent either the
same biometric trait or different biometric traits [15,16]. The
points characterising the various biometric traits in the spatial
domain cannot be always the same for reasons related to noise,
roto‐translation problems, extraction algorithms and the types
of points themselves. The LD, designed to evaluate if parts of
text sequences belong to the same sequence [33], allows us to
manage and perform the matching with biometric descriptors
of variable lengths.

Here, we show how to compare the M�2 coordinate
matrices obtained in the previous step. Our fusion scheme
proposes an algorithm that consists of a series of row‐by‐row
tests between the coordinate matrices, aiming at verifying the
presence of similarities between them. Once the direct cor-
respondence between each minutia detail of the M�2 coor-
dinate matrix and each row of the corresponding DE matrix
is set—i.e. the first row contains the ED values measured
between the first minutia of the coordinate matrix and the
others, the second row has the second detail as its reference,
and so on—a measurement of the ED between the minutiae
to compare is performed. If the value is lower than a
threshold value, which is just useful to avoid comparisons
between too different minutiae (thus assuming the inequality)
and the consequent system overload, the corresponding rows
are compared using the LD algorithm that interprets them as
two sequences.

The function associated with this algorithm requires six
input parameters:

� the first sequence;
� the second sequence;
� the length of the first sequence;
� the length of the second sequence;
� two distance‐based threshold values to increase the reli-
ability in minutiae comparison score computation and
fusion, respectively.

This procedure is sequentially executed for each minutia
and the dL vector is updated accordingly. Each row of the
first DE matrix is compared with each row of the second DE
matrix, after verifying the ED within the threshold. The
result of the developed algorithm consists of a vector of
length M that contains in each cell the minimum value
computed by the LD algorithm for each minutia. Then, the
first cell of the output vector dL denotes the minimum LD
value obtained between the first row of the first DE1 matrix
and all the rows of the second DE2 matrix; the second cell
denotes the smallest value computed between the second row
of the first DE1 matrix and all the rows of the second DE1
matrix, and so on. The reference is set to the smallest value,
since the aim of this algorithm is to find the similarity be-
tween the rows of the matrices DE1 and DE2. An LD value
close to zero, indicates that the two compared sequences are
similar.

If one of the tests between sequences returns the value 0, it
means that the algorithm stopping condition (i.e. the exact
equality according to the LD) is reached and the search ends. In
all the other cases, the tests continue aiming at determining the
calculated minimum value. If a match is not found (i.e. the LD is
higher than the threshold value), an out‐of‐range numerical
value is assigned to identify the failed test. At the end of the
algorithm execution, the yielded result consists of the dL vector
of length M (i.e. the dimension of the largest matrix) that con-
tains either the minimum values for each tested minutiae detail,
or the best correspondences between the sequences analysed by
the LD algorithm. Figure 4 depicts the flow diagram of the
proposed algorithm.

Variables and constants used in the flow chart are defined
as follows:

� C1 and C2 are the coordinate matrices of all minutiae of the
first and second biometric features, respectively;

� DE1 and DE2 are the matrices of the EDs amongst all
minutiae of the first and second biometric features,
respectively, lower than a set threshold θE;

� θE is the maximum ED threshold for considering minutiae
pairs;

� θL is the LD threshold able to determine whether the
comparison was successful;

� dL is the distance vector obtained by the comparison
scheme based on the LD.

To verify the correspondence between the DE matrices
compared, the average μ of the values contained in the dL is
calculated. In this phase, however, this average value cannot
be considered as a precise and reliable indicator, because the

TABLE 6 DE matrix after removing the 0‐valued column

85.38 147.73 163.42 180.10

29.07 180.10 203.92 253.80

29.07 163.42 178.35 226.04

64.08 85.38 178.35 203.92

64.08 147.73 226.04 253.80

TABLE 5 ED matrix sorted in a row‐wise ascending ordered

0 85.38 147.73 163.42 180.10

0 29.07 180.10 203.92 253.80

0 29.07 163.42 178.35 226.04

0 64.08 85.38 178.35 203.92

0 64.08 147.73 226.04 253.80

Abbreviation: ED, Euclidean distance.
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dL vector could also include some out‐of‐range numerical
values, possibly added during the procedure described above.
For this reason, the standard deviation σ amongst these
values is calculated: this statistical dispersion measure,
together with the previously calculated average value, allows
for defining an interval that includes only the useful values,
excluding those that might alter the final result. The
described operation is carried out by a function, which takes
care of checking for each element whether its value in
included in the interval ½μ � σ; μþ σ�: if the current element
is included within this range, it is taken into consideration for
the subsequent calculation of the average; otherwise, it is set
to zero. The aforementioned function is effective regarding
the removal of the out‐of‐range values inserted by the al-
gorithm in the test phase, as well as the exclusion of any
spurious low value under the condition of diversity between
the tested DE matrices. Once only the effective values are
selected via this function, the average of the elements in dL is

more reliably recomputed and stored in VL. By so doing, the
whole procedure yields a single numerical value VL, which
can be evaluated by defining a simple, yet precise, classifi-
cation based on numerical ranges according to each biometric
recognition system currently used. Considering the output
mean LD value VL and setting two distinct thresholds S1 and
S2 (with S1 < S2), the final result is calculated by comparing
the value VL and a result classification based on four distinct
intervals that are associated with the following four different
outcomes:

� VL ¼ 0, exact equality between the examined DE matrices;
� 0 < VL < S1, high degree of similarity between the examined
DE matrices;

� S1 ≤ VL < S2, high degree of uncertainty on the current
comparison, owing to just few correspondences between the
matrices;

� VL ≥ S2, two distinct DE matrices.

F I GURE 4 Overall flow diagram of the iterative minutiae‐based comparison algorithm based on the Levenshtein distance. The i‐th element of the output
vector dL denotes the minimum LD value obtained between the i‐th row of the first DE1 matrix and all the rows of the second DE2 matrix
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With more details, in terms of FAR, a comparison is cor-
rect if the result is higher than S2; considering FRR, a com-
parison is correct if the result is lower than S1. Typically, results
between S1 and S2 are labelled as doubtful cases (i.e. uncertain
correspondence). In this work, in order to obtain a reliable
authentication system in terms of safety (FAR ¼ 0), all un-
certain cases were considered as a non‐matches. From an
algorithmic point of view, this choice is equivalent to having a
single threshold S1.

We aimed at developing a fusion technique at the level of
comparison score: the individual scores are combined into a
single total score representing the decision outcome. More
specifically, the similarity scores for each unimodal system are
fused using the weighted‐sum rule via the coefficients
κr; κi ∈ ½0; 1�, which weight the scores achieved by the indi-
vidual retina and iris authentication systems, respectively. From
now on, the unimodal systems are denoted as sub‐systems. Let
Vr and Vi be the results of the retina and iris sub‐systems,
respectively, the weighting coefficients κr and κi are applied to
achieve the final result, Vfinal, according to Equation (2):

V final ¼ κr � Vr þ κi � V i: ð2Þ

The computational complexity of the LD isOðl ⋅ lÞwhere l1
and l2 denote the lengths of the two vectors (in our case, the
lengths of the currently analysed rows DE1(i) and DE2(j) of the
matrices of the EDs amongst all the minutiae of the first and
second biometric features) that are currently involved in the
pairwise distance calculation. Since the LD calculation is usually
performed recursively, it can be halted if it does not quickly
converge towards zero or a value smaller than a threshold. This
condition corresponds to the equality of the two descriptors. If
the distance does not decrease and stabilises at a value above a
tolerance threshold, then the calculation can be halted and the
two descriptors defined are not equal. It is worth noting that the
computational cost Oðl ⋅ lÞ represents the worst case scenario,
whilst the halting conditions are more likely to occur and lead to
a lower number of iterations. Overall, this calculation is applied
by the pairwise comparison between all the rows #Rows (C1)
and #Rows (C1) of the two coordinate matrices.

4.3 | Software implementation details

The proposed framework was designed and developed using
the MatLab® R2016b (64‐bit version) environment (The
MathWorks, Natick, MA, USA). The Graphical User Interface
(GUI) for the proposed multimodal system was developed
using the GUI Development Environment (GUIDE), inte-
grated in MatLab. The main phases of the multimodal system
are the following:

1. Loading the scanned images;
2. Segmentation process;
3. Loading the database profile: the system requires to load the

second profile to be compared, labelled as 'database

Profile”. The user has to look for the image in the database,
using the name or the identification code of a certain
person;

4. Starting the image processing: the step‐by‐step execution of
the individual processing functions is indicated by the
colour change in the box containing the operation being
performed;

5. At the end of the image processing, an evaluation is per-
formed to choose the right reference minutiae, both for the
retina and iris. The system automatically decides which
characteristic points to use and relies upon user interaction
to start the comparison test.

At the end of the test, the system provides in the “Image
Comparison” box all the results of the comparison test, for
both retina and for iris, which include: the total of the expected
tests, the actually carried out tests (within the threshold), the
average of the minimum values, and the standard deviation.
The final result of the comparison VL is displayed in the
“Resulting final value”, next to a label that is coloured ac-
cording to the location of the resulting value within the ranges.
Furthermore, the result of the comparison is reported in tex-
tual form. Figure 5 shows the final phase of the GUI appli-
cation in the case of negative matching.

5 | EXPERIMENTAL RESULTS

The performance of a biometric system has to be evaluated
according to specific metrics, such as the dimensions of the
realised model, speed of response, and accuracy. In the com-
puter security field, accuracy, to be intended as the capability of
the system in making the correct decision, is a rather critical
parameter.

The proposed solution involves the development of a
retina‐iris multimodal system, which combines the advantages
offered by the two unimodal approaches, whilst overcoming
limits of the single unimodal solution. The proposed solution is
favoured by the fact that these two biometric technologies can
be considered quite similar to some extent and make use of the
same human anatomical organ: the eye. The key concept for
the development of a valid and efficient multimodal biometric
system is the analysis and evaluation on heterogeneous data,
with the aim of providing a single final result that represents an
answer as accurate as possible to a certain authentication
problem. In this case, the results obtained by the unimodal
recognition systems—based on retina and iris scans alone—
must be properly fused into a single comprehensive result. The
values of the coefficients κr and κi, which weight the scores
achieved by the individual sub‐systems, are experimentally
determined. These values were chosen with the goal of opti-
mising the recognition capabilities of the multimodal authen-
tication system (in terms of the achieved FAR and FRR).
Therefore, exhaustive tests were performed, by varying κr and
κi, and evaluating the corresponding FAR and FRR values.

After a description of the used datasets, the experimental
results concerning the developed unimodal and multimodal
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systems are presented in what follows. Moreover, the FAR and
FRR values by varying the coefficients κr and κi are also assessed
for all the three tests. Finally, to confirm that the proposed
multimodal system achieves statistically significant better per-
formance than the unimodal sub‐systems, McNemar test on
paired authentication results [37] was performed. This non‐
parametric test on paired nominal data assesses whether the
accuracy achieved by two classification models is statistically
different. This test uses the null hypothesis: the predicted class
labels from the two compared models have equal accuracy for
predicting the ground‐truth class labels. Since this statistical
analysis involves multiple comparison tests, the authors adjusted
their p‐values using the Bonferroni–Holmmethod [38,39]. In all
the tests, a significance level of α¼ 0:05 was used.

5.1 | Datasets

To test the effectiveness of the proposed multimodal retina‐iris
system, three configurations, exploiting a retina database [40]
and three different iris databases [41], were considered:

1. DRIVE retina database þ University of Bath iris database;
2. DRIVE retina database þ University of Beira Interior Iris

(UBIRIS) [42] iris database;
3. DRIVE retina database þ CASIA [43] iris database.

Unfortunately, there are only very few databases that aim
at recognition purposes. Moreover, in the case of the retina,

the database should provide multiple acquisitions for each
retina image of the same eye to allow for comparisons. In
several literature approaches, the authors built their own
databases starting from a small set of images and applying
geometric transformations (e.g. rotation and scaling) to in-
crease the number of images to analyse, such as in [44].
Another solution could be to collect self‐built databases. This
second alternative undermines the reproducibility of the
recognition performance, and the evaluation with respect to
the state‐of‐the‐art—which uses publicly available databases
—is impossible. To exploit publicly available biometric
databases, the authors combined three (big) databases con-
taining iris images, built for developing recognition systems,
but only one (small, even though well‐prepared and
commonly used) of the retina with a very limited number of
users. Instead of using data augmentation procedures,
sometimes exploited in biometric system experiments [26],
the authors preferred to use small yet publicly available
dataset accessible by the scientific community allowing for
result reproducibility and comparability. Furthermore, since in
the literature there are no databases combining together
retina and iris images of the same person, three datasets were
composed by combining single‐feature belonging to different
databases as follows: an image from the retina database was
coupled with an image from the iris database, thus creating a
new ‘virtual person’ with both biometric traits. Thus,
considering that only a limited number of large‐scale retina
databases is publicly available, in this initial phase the authors
built a ‘virtual’ multimodal retina‐iris database with a

F I GURE 5 The GUI of the proposed multimodal biometric authentication system combining retina and iris. The screenshot shows the comparison, as well
as the corresponding result, between two biometric descriptors belonging to different individuals. GUI, graphical user interface
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satisfactory number of images. With more detail, three
different acquisitions of the same subject were selected for
each unimodal database: in each composed database, each
‘virtual person’ had three scans of the same retina and three
scans of the same iris, in order to constitute three distinct
retina‐iris pairs. This procedure was repeated for 20 in-
dividuals according to Figure 6.

5.2 | Authentication performance

For all the three composed datasets, 1770 tests were per-
formed, distributed as follows:

� number of tests amongst different images: 1710;
� number of tests amongst similar images: 60. For the sake of
clarity, the term similar images refers to images belonging to
the same individual, but which are not identical.

The tests considered useful for the calculation of the FAR
and FRR indices are those between different images (for the
FAR index) and those between similar images (for the FRR
index). In all the experiments, the thresholds θE were set to 4
and 18 for the recognition sub‐systems based on retina and
iris, respectively, whilst the θL was initialised to 500 for the
multimodal fusion. These settings relied upon a calibration
set consisting of a random selection of images from the four
available databases. Furthermore, as a common standard for

the three testing configurations, the comparison ranges
(described in Section 4.2) are set as follows. S1 and are two
thresholds used to determine whether the result of a com-
parison is: (i) correct match, (ii) uncertain, or (iii) non‐
match. With more details, in terms of FAR, a comparison is
correct if the result is higher than S2; considering FRR, a
comparison is correct if the result is lower than S1. Typically,
results between S1 and S2 are labelled as doubtful cases (i.e.
uncertain correspondence). Since an authentication system
must prioritise cautious and safe decisions, in this work, in
order to obtain a reliable authentication system in terms of
safety (FAR ¼ 0), all uncertain cases were considered as a
non‐matches. From an algorithmic point of view, this choice
is equivalent to having a single threshold S1. The best values
of S1 and S2, used in the final implementation, were experi-
mentally determined after a set of tests with variable
thresholds (in the range 30‐60 using 10 as a step) aiming at
optimising the system recognition performance. In particular,
S1 must first minimise the FAR and then also the FRR values.
The value of S2 was set as a margin of 10, according to the
selected S1 value, for uncertain cases. Since an authentication
system must prioritise cautious and safe decisions, all the
uncertain cases were classified as non‐matches. The selected
values were applied to all the three multimodal tests. The best
values of S1 and S2 were 40 and 50, respectively:

� 0 ≤ Vfinal ≤ 40: matching;
� 40 < Vfinal < 50: uncertain correspondence (i.e.
‘undetermined’);

� Vfinal≥50: non‐matching.

The reliability tests carried out on the unimodal recog-
nition systems described so far offer good performance in
terms of safety and robustness, although the two systems are
not yet adequate to be considered truly reliable (Tables 7 and
8). In order to select the best decision threshold S1, the FAR
and FRR values were calculated by varying S1 in the range
[20, 70], with a step of 5.

As stipulated in the ISO/IEC 19,795‐1 standard [45], the
Detection Error Trade‐off (DET) curves for the unimodal
retina and iris recognition sub‐systems are shown in Figure 7.
The Area Under the Receiver Operating Characteristic Curve
(AUC), EER and FNMR1000 (i.e. False Non‐Match Rate
(FNMR) at False Match Rate (FMR) of 0.1%). It is worth to
note that the FAR and FRR indices can be used interchange-
ably with FMR and FNMR, respectively, when no repeated
access attempts are considered during a transaction.

5.2.1 | Test 1—DRIVE retina database þ
bath iris database

The FAR and FRR values achieved by the proposed multi-
modal retina‐iris system on Test 1, by varying the weighting
coefficients κr and κi, are shown in Figures 8a,b, respectively.
This system achieves an excellent 0% in terms of FAR index,
an improvement when compared to both unimodal systems.

F I GURE 6 Block scheme representing the methodology used to
obtain the new datasets combining retina and iris images
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Considering the FRR level, there is a slight improvement
with respect to the unimodal iris system, whilst a consider-
able loss is observed when compared to the 0% obtained by
the unimodal retina‐based system.

5.2.2 | Test 2—DRIVE retina database þ
UBIRIS iris database

The FAR and FRR values achieved by the proposed multi-
modal retina‐iris system on Test 2, by varying the weighting

coefficients κr and κi, are shown in Figures 9a,b, respectively.
The fusion of the two most reliable systems, amongst the
tested configurations, allows the FAR index to reach an
excellent value of 0%, whilst the FRR index remains the same
compared to the unimodal iris system, even though it is worse
than the unimodal retina system which achieved one FRR ¼
0%.

5.2.3 | Test 3—DRIVE retina database þ
CASIA iris database

Figures 10a,b depict the FAR and FRR indices in the case of
Test 3, by varying the weighting coefficients κr and κi.
Comparing the FAR and FRR indices of the multimodal sys-
tem with those of the unimodal iris system CASIA (FAR ¼
12.16%, FRR ¼ 33.3%), the remarkable improvements ob-
tained are evident. More specifically, the FAR index is even
acceptable, whilst the FRR index, although considerably
improved, it might be not yet acceptable.

5.2.4 | Overall experimental findings

Tables 9 and 10 summarise the authentication accuracy, in
terms of FAR and FRR, for each combined dataset used in
the three investigated multimodal retina‐iris tests. For an
ideal authentication system, both the FAR and FRR indices
should be 0. The aforementioned result may be reached by
online biometric authentication systems, because they have
the freedom to reject the low‐quality acquired items. On the
contrary, official ready‐to‐use databases (e.g. DRIVE,
CASIA, Bath and UBIRIS) contain images with highly
different quality, including low‐, medium‐, and high‐quality
biometric acquisitions. For this reason, these databases
cannot achieve the ideal result. To increase the related se-
curity level, the system parameters are usually fixed in order
to achieve the FAR ¼ 0% point and a corresponding FRR
point. Considering the trend of the FAR and FRR revealed
in Figures 8, 9, and 10, the comparison score coefficients, κr
and κi, were chosen to optimise the multimodal
system performance. Indeed, Tables 7 and 8 show the best
trade‐off of FAR and FRR obtained with the following
values:

� retina weighting coefficient κr ¼ 0:6;
� iris weighting coefficient κi ¼ 0:4.

Considering that the retina is generally a more reliable
biometric descriptor than the iris, it was expected to experi-
mentally achieve κr higher than κi. To conclude, the authors
can argue that the fusion technique at the comparison score
level enabled a remarkable improvement of the FAR and FRR
indices with respect to the unimodal biometric sub‐systems.
Figure 11 shows the DET curves for the three investigated
retina‐iris multimodal tests. The AUC, EER and FMR1000
metrics confirm the excellent authentication performance and

TABLE 7 FAR values achieved by the unimodal sub‐systems, by
varying the decision threshold S1

S1 value DRIVE (%) Bath (%) UBIRIS (%) CASIA (%)

20 0.64 0.53 0.58 2.16

25 0.64 0.58 0.64 4.09

30 0.70 0.64 0.64 6.02

35 0.82 0.64 0.64 9.01

40 0.82 0.64 0.64 12.16

45 0.82 0.64 0.64 15.91

50 0.82 0.64 0.64 20.58

55 0.88 0.64 0.64 24.44

60 0.88 0.64 0.64 27.84

65 0.88 0.64 0.64 31.20

70 0.88 0.64 0.64 33.86

Note: Total number of comparisons: 1710. Boldface indicates the results obtained with
the chosen S1 value.
Abbreviations: CASIA, Chinese academy of sciences institute of automation; DRIVE,
digital retinal images for vessel extraction; FAR, false acceptance rate; UBIRIS,
University Of Beira Interior Iris.

TABLE 8 FRR values achieved by the unimodal sub‐systems, by
varying the decision threshold S1

S1 Value DRIVE (%) Bath (%) UBIRIS (%) CASIA (%)

20 8.33 36.67 33.33 85.00

25 8.33 23.33 16.67 68.33

30 6.67 13.33 8.33 55.00

35 0.00 8.33 3.33 41.67

40 0.00 6.67 3.33 33.33

45 0.00 5.00 3.33 33.33

50 0.00 5.00 3.33 25.00

55 0.00 5.00 3.33 21.67

60 0.00 5.00 3.33 20.00

65 0.00 5.00 3.33 20.00

70 0.00 5.00 3.33 18.33

Notes: Total number of comparisons: 60. Boldface indicates the results obtained with
the chosen S1 value.
Abbreviations: CASIA, Chinese academy of sciences institute of automation; DRIVE,
digital retinal images for vessel extraction; FAR, false acceptance rate; UBIRIS,
University of Beira Interior Iris.

CONTI ET AL. - 57



the improvement provided by the multimodal approach,
especially in the case of Test 3.

Finally, relying upon the results shown in Tables 5–8, the
authors selected the single threshold S1 ¼ 40 for all the tests
(the corresponding rows are denoted in boldface). This choice
was motivated by the best compromise between the FAR and

FRR indices to obtain a system with a higher security level, as
also confirmed by the DET curves in Figures 7 and 11. It is
important to point out that the only considered threshold S1
was not fine‐tuned for each experimental condition, but it was
selected according to a correct functioning for all the imple-
mented unimodal and multimodal systems. This characteristic

(a) (b) (c) (d)

F I GURE 7 DET curves for the unimodal sub‐systems on the datasets: (a) DRIVE; (b) Bath; (c) UBIRIS; (d) CASIA. In each figure the AUC, the EER and
the FMR1000 are reported. The practically relevant area of the DET curves (dash‐dotted grey box at the bottom‐left corner) is zoomed in the plots in the
bottom panel. AUC, Area Under the Receiver Operating Characteristic Curve; CASIA, chinese academy of sciences institute of automation; DET, detection
error trade‐off; DRIVE, digital retinal images for vessel extraction; EER, equal error rate; FMR, false match rate; UBIRIS, university of beira interior iris

(a)

(b)

F I GURE 8 Trend of the FAR and FRR indices
by varying the coefficients κr and κi for Test 1. The
two cells in light blue denote the values obtained by the
two unimodal systems. The green cell represents the
value chosen to optimise the accuracy of the final
multimodal system. FAR, false acceptance rate; FRR,
false rejection rate
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is very important because it allows us to keep the ultimate goal
of realising a method that can process and combine mm static
biometric features in a homogeneous manner.

Table 11 shows the p‐values of the McNemar test on the
pairwise comparisons of the authentication results achieved by
the multimodal retina‐iris system and the unimodal sub‐

systems on the three tests described in Section 5.1. The results
confirm that the proposed multimodal retina‐iris system
significantly outperforms the unimodal sub‐systems for both
Tests 1 and 2. As arguable, in Test 3, the retina classification
significantly improves the unimodal iris sub‐system, mostly
affected by the relatively high FRR obtained on the CASIA iris

(a) FAR

(b) FRR

F I GURE 9 Trend of the FAR and FRR indices
by varying the coefficients κr and κi for Test 2. The
two cells in light blue denote the values obtained by the
two unimodal systems. The green cell represents the
value chosen to optimise the accuracy of the final
multimodal system. FAR, false acceptance rate; FRR,
false rejection rate

(a)

(b)

F I GURE 1 0 Trend of the FAR and FRR indices
by varying the coefficients κr and κi for Test 3. The
two cells in light blue denote the values obtained by the
two unimodal systems. The green cell represents the
value chosen to optimise the accuracy of the final
multimodal system. L FAR, false acceptance rate; FRR,
false rejection rate
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dataset. These findings corroborate the significant improve-
ment provided by our multimodal fusion scheme.

6 | DISCUSSION AND COMPARISONS

With reference to the latest advances in computer science,
deep learning approaches have been showing cutting‐edge
performance in supervised classification tasks [46] and, more
recently, also in biometry [47]. However, these feature learning
methods need large‐scale datasets with huge amounts of

accurately labelled samples for training. Importantly, multi-
modal biometric authentication systems aim to effectively
combine two or more physical or behavioural biometric traits
to obtain adequate FAR and FRR indices that are beneficial for
system dependability. We propose here a general framework
based on fully unsupervised techniques that do not require any
training and can be applied to datasets with limited amounts of
unlabelled samples. Our multimodal method combines the
minutiae from two different biometric traits and it is not just a
classification technique.

Currently, no joint retina‐iris database is available and this
represents an inherent limitation for those researchers involved
in the development and testing of multimodal biometric sys-
tems. Indeed, in the literature, only a few multimodal biometric
systems based on retina and iris have been proposed so far
(Table 11).

Latha et al. [19] were the only one proposing a score level
fusion with a hybrid approach using frequency and spatial
characteristics for iris and for retina, respectively. Choras [18],
Modarresi et al. [26], Sen and Islam [27] and Saha et al. [12]
proposed frequency‐based approaches and feature‐level fusion,
nevertheless some important aspects have to be highlighted
(Table 12). Choras [18] did not report any information on
either the databases and the number of images used or the
scores obtained. Modarresi et al. [26] used 40 iris images from
the CASIA database that became 400 after a data augmentation
process by means of 10 random rotations. Sen and Islam [27]
reported an unusual ‘operating point’ in their work. Consid-
ering that the purpose of a biometric system is to increase
the access security, such a system with FAR ¿ FRR (FAR ¼
2.041% and FRR ¼ 0%) represents an anomaly with respect to
biometric good practice, according to which it is preferable
have a system with false rejections rather than with false
acceptances. Lastly, Saha et al. [12] presented a multimodal
user authentication system based on a feature‐level fusion of
iris and retina recognition, by considering features in the fre-
quency domain. The RR for the proposed multimodal bio-
metric system was 98.37%, whereas the distinct unimodal iris
and retina recognition systems achieved 96.74% and 94.56%,
respectively.

There are substantial differences between the proposed
method and the approach in Saha et al. [12]. Primarily, the
features in [12] were extracted in the frequency domain, by
using the Discrete Wavelet Trans‐form (DWT) and the 1D log‐
Gabor filters for retina and iris feature extraction, respectively.
Especially, the feature‐level fusion required a normalisation
step for both unimodal sub‐systems exploiting a DWT‐based
encoding and the Daugman rubber sheet model [22] for retina
and iris feature representation, respectively. Afterwards, the
concatenation of the normalised iris and retinal templates was
not clearly described, especially how the iris and retinal feature
vectors have the same number of components despite the
normalisation step. This feature‐level fusion was not suitable
for our spatial feature vectors: the variable number of minutiae
does not allow us to define any fixed template. Regarding the
dimensionality reduction based on the PCA, after the
augmented feature template, neither the number of principal

TABLE 9 FAR values achieved by the multimodal retina‐iris system
(using κr ¼ 0:6 and κr ¼ 0:4 for the fusion at the comparison score level) on the
three tests described in Section 5.1

S1 value Test 1 (%) Test 2 (%) Test 3 (%)

20 0.00 0.00 0.00

25 0.00 0.00 0.23

30 0.00 0.00 0.23

35 0.00 0.00 0.29

40 0.00 0.00 0.35

45 0.00 0.00 0.35

50 0.00 0.00 0.35

55 0.00 0.00 0.35

60 0.00 0.00 0.41

65 0.00 0.00 0.41

70 0.00 0.00 0.41

Notes: The results were calculated by varying the decision threshold S1. Total number of
comparisons: 1710. Boldface indicates the results obtained with the chosen S1 value.

TABLE 10 FRR values achieved by the multimodal retina‐iris system
(using κr ¼ 0:6 and κr ¼ 0:4 for the fusion at the comparison score level) on the
three tests described in Section 5.1

S1 value Test 1 (%) Test 2 (%) Test 3 (%)

20 13.33 11.67 28.33

25 13.33 10 26.67

30 6.67 5 26.67

35 5.00 3.33 18.33

40 5.00 3.33 18.33

45 5.00 3.33 18.33

50 5.00 3.33 18.33

55 5.00 3.33 18.33

60 5.00 3.33 18.33

65 5.00 3.33 18.33

70 5.00 3.33 18.33

Notes: The results were calculated by varying the decision threshold S1. Total number of
comparisons: 60. Boldface indicates the results obtained with the chosen S1 value.
Abbreviation: FAR, false acceptance rate.
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components nor the selection criteria (e.g. percentage of vari-
ance) are reported. The lack of these important implementa-
tion details hampers the replicability of the method for a
quantitative comparison.

The multimodal retina‐iris authentication system proposed
in this paper presents a novel comparison score level fusion.
More specifically, a large amount of meaningful points for
retina and iris images are extracted in the spatial domain and,
then, a comparison score is obtained for each unimodal sub‐
system. Interestingly, for the first time, the fusion at the level of
comparison score relies upon the LD. Finally, a weighted‐sum
was used to obtain the final score for the multimodal
authentication system. The best pair of FAR and FRR obtained
was of 0% and 3.33%, respectively. With respect to the feature‐

level early fusion (i.e. early phase feature concatenation) used in
[12], our comparison score‐level fusion allows for more flexi-
bility in terms of both used features and integration of addi-
tional biometric traits. More specifically, the LD‐based
comparison can be applied to any spatial feature based on
minutiae, whilst the late fusion scheme can be adapted to a
different set of biometric measurements.

7 | CONCLUSION AND FUTURE
DIRECTIONS

This work aimed to investigate a system that leverages the best‐
performing biometric features, namely, retina and iris. The

(a) (b) (c)

F I GURE 1 1 DET curves for the multimodal sub‐systems on the multimodal retina‐iris datasets: (a) Test 1; (b) Test 2 and (c) Test 3. In each figure, the
AUC, the EER and the FMR1000 are reported. The practically relevant area of the DET curves (dash‐dotted grey box at the bottom‐left corner) is zoomed in
the plots in the bottom panel. AUC, Area Under the Receiver Operating Characteristic Curve; DET, detection error trade‐off; EER, equal error rate; FMR, false
match rate

TABLE 11 McNemar test p‐values for
the pairwise comparison of the authentication
results achieved by the multimodal retina‐iris
system (using κr ¼ 0:6 and κr ¼ 0:4 for the
fusion at the comparison score level)

Test 1 Test 2 Test 3

Multimodal versus unimodal iris 0.0007 0.0015 4.378 � 10� 31

Multimodal versus unimodal retina 0.0425 0.0148 2.379 � 10� 1

Unimodal iris versus unimodal retina 0.5716 0.8450 1.440 � 10� 28

Notes: The unimodal sub‐systems on the three tests described in Section 5.1. (total number of comparisons: 1710). A
significance level of α¼ 0:05 with the Bonferroni‐Holm correction method for multiple comparisons was used [39].
Boldface indicates that the null hypothesis can be rejected.
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proposed multimodal system exploited iris and retina, as well
as the LD [15,16], in an innovative way, allowing us to over-
come the typical issues in spatial approaches, often due to
misalignment of the templates to be compared [48]. The
tests aimed at evaluating the performance of the multimodal
retina‐iris system on multiple retina and iris database
configurations.

The authors used publicly available databases accessible by
the scientific community allowing for result reproducibility and
comparability. In order to provide comprehensive results, the
authors plotted the DET curves, as well as calculated the AUC,
EER and FMR1000 metrics. The best FAR and FRR values
achieved by our multimodal biometric approach were 0% and
3.33%, respectively. The multimodal retina‐iris approach out-
performed the corresponding unimodal systems, so drawing
out its potential in authentication systems. Therefore, these
experimental findings showed that our multimodal solution
can guarantee a high level of reliability and be beneficial to
computer security applications. Adaptive weights for the
comparison score‐level fusion might be employed to cope with
the variability of the environmental conditions that could affect
the quality of the traits acquired by the biometric sensors. For
this reason, it might be useful to consider variable weights in
order to dynamically manage this variability, as proposed
in [49]. Since the authors analyse biometric images acquired in
‘controlled’ environments, the use of dynamic weights is not
mandatory.

The authors are currently attempting to increase the size
of the tested ‘virtual’ multimodal retina‐iris database to vali-
date our approach on a large‐scale database [50]. With the
goal of keeping result reproducibility and comparability, more
public available databases might be combined to achieve
larger datasets, such as in the particular case of retina data-
bases. However, it is worth noting that the majority of retina

databases were collected for the research and analysis in
clinical scenarios tailored to anomaly or disease detection (e.g.
diabetic retinopathy, glaucoma) and are not suitable for bio-
metric purposes. In the near future, the authors aim to
extend the same multimodal approach with other static bio-
metric features that allow for identifying and extracting the
minutiae in the spatial domain. As a matter of fact, The
authors plan to develop a multimodal framework with a
fusion scheme at the template‐level to combine and stan-
dardise multiple biometric approaches into one system [3], in
order to obtain a novel and universal approach for any type
of static biometric features.

Lastly, the authors would like to deploy the proposed
multimodal authentication system onto embedded devices
[6,7], by leveraging the efficiency of the developed unimodal
LD‐based comparison algorithms in the spatial domain.
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