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Abstract: This paper investigates the spatio-temporal spread pattern of COVID-19 in Italy, during
the first wave of infections, from February to October 2020. Disease mappings of the virus infections
by using the Besag–York–Mollié model and some spatio-temporal extensions are provided. This
modeling framework, which includes a temporal component, allows the studying of the time
evolution of the spread pattern among the 107 Italian provinces. The focus is on the effect of
citizens’ mobility patterns, represented here by the three distinct phases of the Italian virus first wave,
identified by the Italian government, also characterized by the lockdown period. Results show
the effectiveness of the lockdown action and an inhomogeneous spatial trend that characterizes the
virus spread during the first wave. Furthermore, the results suggest that the temporal evolution of
each province’s cases is independent of the temporal evolution of the other ones, meaning that the
contagions and temporal trend may be caused by some province-specific aspects rather than by the
subjects’ spatial movements.

Keywords: Besag–York–Mollié model; COVID-19; disease mapping; spatio-temporal models

1. Introduction

The coronavirus SARS-CoV-2 (COVID-19) and the triggered disease were unknown
before the outbreak began in Wuhan, China, in December 2019, and spread worldwide
quickly. COVID-19 was declared a public health emergency of international concern
(PHEIC) in January 2020, and Italy was the first and most affected European country
during the first wave. Indeed, spatial-temporal information on the spread of the virus is of
paramount importance for policy decision-makers.

Recent studies show the relevance of accounting for spatial and temporal patterns to
explain and model the evolution of the pandemic with greater accuracy [1–6]. Refs. [7,8]
deal with the outbreak and spread of the COVID-19 at a national level and global scale,
respectively. Both of these papers describe the geographical distribution of the COVID-19
observations. Ref. [9] studies the epidemic spread in Iran through linear spatial models to
identify the variables that have significantly impacted the virus infections size. Several au-
thors have resorted to complex epidemiological SIR models. See, for example, Refs. [10–13],
to name a few.

Unfortunately, the poor quality of public data, only available at the area level, limits
the description of the spatial-temporal evolution of the virus’s spread. Ref. [14] states that,
despite involving many excellent models, best intentions, and highly sophisticated tools,
forecasting efforts have largely failed. The authors blame poor data input about critical
features of the pandemic, which can heavily bias these estimates, exposing the reliability of
any theory-based forecasting effort. Nevertheless, epidemic forecasting is unlikely to be
abandoned. As discussed in [15], this paper focuses on the COVID-19 data limitations terms
of availability and quality. This key aspect may be limiting for carrying out conclusive
studies for this worldwide issue (see also [16] for more details). Moreover, the COVID-19
diffusion in Italy from February to October 2020, is modeled by the Besag–York–Mollié
(BYM) model [17] and its spatio-temporal formulation.
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This model has been applied also in disease mapping for areal aggregated data [18,19],
supplying risk surfaces and spotting high-risk areas or hot-spots. Roughly speaking,
spatial models can be distinguished into continuous and discrete domain models. Both
classes of models are extensively considered in disease mapping. Indeed, calculating and
visualizing disease risk across space is of paramount importance in epidemiology. When
point-referenced data are available, Log–Gaussian Cox processes (LGCPs) are often applied
as continuous domain models [20]. If point data are not available, models for areal data are
the best choice. The Besag–York–Mollié (BYM) model, a discrete domain model, can be
used to describe count data per spatial unit.

The BYM model represents a particular case of the LGCP, with piecewise constant rel-
ative risk within regions [21]. A methodology for describing aggregated disease incidence
data with spatially continuous LGCP is proposed in [22], including an augmentation step
sampling from the exact locations’ posterior distribution of an MCMC algorithm.

The BYM model accounts also for the neighborhood structure of the available count
data, modeling the number of cases per district (denoting the general spatial unit), identify-
ing the high-risk areas. The spatio-temporal extension of the BYM model, accounting also
for the temporal domain, explores whether it is possible to highlight any specific evolution
of the risk disease among the different phases of the Italian virus first wave.

The paper is structured as follows. Section 2 contains a discussion on the issues of the
Italian COVID-19 data. Section 3 introduces the spatial and spatio-temporal models for
areal data. In Section 4, we apply these models to the spread of COVID-19 infections in
Italy from February to October 2020. In particular, Section 4.2 focuses on the Northern Italy
regions, to assess the efficacy of the lockdown action in March 2020. Then, in Section 4.2
spatio-temporal models are fitted for all the Italian provinces, for assessing the effectiveness
of the Italian Government restricting actions, that have characterized the Italian COVID-19
first wave. Finally, Section 5 outlines some future hints.

2. Concerns Related to the Italian COVID-19 Data

The Civil Protection publishes the COVID-19 Italian data as aggregated and reports
the infected counts for regions and provinces every day. Unfortunately, these data present
several issues that severely affect their quality. Firstly, there is no unique protocol for data
transmission, so each regional healthcare organization has a different collection system.
This lack of homogeneity may influence the reliability and makes their comparison in
time and space difficult or even useless. The data issues can be broadly classified into
delays in reporting cases, lack of comparable data, and time-varying under-reporting of
COVID-19 cases.

• Delays in reporting cases. These occur because counts are updated on the notification
day rather than aligned to a more appropriate date. Deaths may be counted on the
day of the reporting instead of on the day of the outcome, and positive status may
also be counted when test results are received, with swabs being done from one day
to weeks after symptoms’ onset. Moreover, the reporting procedure may differ from
area to area, making the data not comparable in space;

• Lack of comparable data. In Italy, up to the end of April 2020, only the total number
of daily positive swabs were available, with neither information on swabs or tested
individuals. This information would have been essential to use the swabs’ count to
model the whole first pandemic wave;

• Time-varying under-reporting of COVID-19 cases. It is well established that peo-
ple diagnosed with COVID-19 disease are only a tiny fraction of the infected ones.
The swabs’ count changes over time since the tracking was highly symptoms’ driven
in the first phase of the outbreak, and it continued to change following the different
policies adopted. In particular, the swabs’ count has continued to increase significantly
due to the increased availability of swabs since they became crucial for determining
local government actions.
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Following these considerations, our analysis focuses on a limited time interval, which
corresponds to the first infection wave, to give an insight into the spatio-temporal spread
of the COVID-19 in Italy, without explicitly inferring results. This time interval, which
goes from February to October 2020, is divided into three phases identified by the Italian
government, and some temporal indicators of the pandemic are aggregated accordingly.
Specifically, we focus on the number of daily positives (i.e., people infected), which is
an incidence indicator. Although being measured with some errors, these measurements
still represent important indicators for monitoring of the pandemic [23]. Finally, we
do not consider external covariates in the models, since our aim is not to identify the
evolution determinants of the pandemic in Italy. Indeed, this ambitious task would require
homogeneity and quality data, which is today still unavailable. In this regard, a COVID-
19 dataset containing the number of daily cases registered in the regions of Catalonia
(Spain), since the pandemic beginning to the end of August 2020, is analyzed in [24],
by statistical models of different levels of complexity. The author shows that the choice of a
specific statistical model may have a severe impact on the inferred associations between
the covariates and the response variable. However, the author demonstrates that proper
spatio-temporal models are helpful for the comprehension of the pandemic evolution both
in space and time.

3. Spatial and Spatio-Temporal Models for Disease Mapping

The BYM model extends the intrinsic conditional autoregressive (ICAR) model, ob-
tained by adding spatially unstructured random effects to the spatially structured ones.
The latter is a realization of a Gaussian Markov random field (GMRF) with zero mean and
a sparse precision matrix capturing strong spatial dependence. The unstructured random
effect can be considered as a set of independent random intercepts associated to the areal
units. Therefore, a piecewise constant risk surface can be considered, depending on the
selected spatial unit, assuming that the risk is uniform across that unit.

Let Yi be a random variable denoting the number of cases in the region Di, i = 1, . . . , n,
and Ei the expected cases count for the i-th spatial unit, computed externally through
population’s information. The number of expected cases can be obtained in several ways.
For count data, expected rates for the disease of interest can be based on the age–sex
structure of the local population. Refer to [25] or [26] for further proposed estimators of Ei.
The BYM model, in its general form, is defined as:

Yi ∼ P(Eiλi)

log(λi) = α + X′i β + ui + vi (1)

ui + vi ∼ BYM(σ2
v , σ2

u).

One advantage of the BYM model is the possibility to account for further external
potential risk factors introduced as additive covariates. Here Xi is a vector of area-level
covariates with coefficients β, and α is the intercept representing the average areas counts.
The random spatial process is obtained as the sum of two effects specific of the area, ui
and vi. In particular, the former is an independent Gaussian process with variance σ2

u ,
and the latter is a GMRF with variance σ2

v . For each area, the value of the GMRF component
depends on the average from the neighboring areas

vi|v−i, σ2
v ∼ GMRF

(
∑i∼j vj

di
,

σ2
v

di

)
,

where v−i are all the area-specific effects except the i-th, i ∼ j denotes that areas i and j are
neighbors, and di is the number of areas sharing boundaries with the i-th one. Before es-
timating the model, we have to assign the set of the borough neighbors, considering the
graph from a shapefile with information on all the area boundaries. We define neighboring
districts if they share a common border, but weighted options are also possible, as the
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variance-stabilizing coding scheme proposed by [27], and the proposal of [28], dividing the
weights by the minimum of the maximum-row-sums and maximum-column-sums. The
parameter ui represents the unstructured residual, modeled as

ui|σ2
u ∼ N (0, σ2

u).

When the ratio σ2
u/σ2

v increases, the random spatial dependence rises up as well,
providing a smoother surface for the intensity.

However, Ref. [29] note that this specification is not correct without previously scal-
ing the precision matrix of the spatially structured random effect, and that the variance
components in the BYM model are not identifiable from the data. See also [30]. Hence,
only the sum ui + vi is identifiable. For dealing with the identifiability issue, Ref. [31]
proposed a modification of the BYM model. Ref. [32] addresses both the identifiability
and scaling issue of the BYM model. More recently, [33] proposed a new parametrization
of the BYM model called BYM2 which makes parameters interpretable and facilitates the
assignment of meaningful penalized complexity (PC) priors [34]. The intrinsic Gaussian
CAR prior results in a spatially smooth risk surface, which has the advantage of using
information from multiple areas to estimate the random effects, but is not ideal if the aim
is to identify clusters of high-risk areas [35]. Indeed, a cluster of areas with high risk may
have low-risk neighbors, and, therefore, the estimated risk for these areas can be less visible
using geographical smoothing [36].

The spatio-temporal disease mapping extension of the BYM model is widely used in
disease surveillance studies [18,19]. In practice, the model in (1) is modified for accounting
for a temporal component, which is indexed by t = 1, . . . , T. For each time t, either a
parametric structure [37]

log(λi) = α + ui + vi + (β + δi)× t (2)

or a non parametric one [38]

log(λi) = α + ui + vi + γt + φt

can be specified for the log-intensity.
In practice, the term γt represents the temporally structured effect, added to the spatial

effects ui and vi. The parameter γt can be modeled dynamically by a first (or second) order
random walk, and it is defined as γt|γt−1 ∼ N (γt−1, σ2

γ). Finally, φt is modeled with a
Gaussian exchangeable prior φt ∼ N (0, 1/τφ).

The spatio-temporal model can be further extended to allow for interactions between
space and time components, to study the evolution of the temporal trend among different
areas, by

log(λi) = α + ui + vi + γt + φt + δit. (3)

The parameter vector δ = {δ11, . . . , δnT}, containing all the δit, has a Gaussian distribution
with a zero mean and a precision matrix given by τδRδ where τδ is an unknown scalar,
while Rδ is a structure matrix, identifying the type of temporal and spatial dependence
between the elements of δ [39].

Ref. [38] introduces four different types of specification for the precision matrix
Rδ which implies different degree of prior dependence for the interaction parameters,
and corresponds to the product of one of the two spatial with one of the two temporal
main effects. Let ⊗ denotes the Kronecker product, we summarize the four different
interpretations below, following [40].

• Type I assumes that the two unstructured effects ui and φt, give rise to the structure
matrix Rδ = Ru ⊗ Rφ = I ⊗ I = I, because both u and φ do not have a spatial or
temporal structure. Consequently, we assume no spatial or temporal structure on the
interaction either and, therefore, δit ∼ N (0, 1/τδ);
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• Type II combines the structured temporal main effect γt and the unstructured spatial
effect ui. We write the structure matrix as Rδ = Ru ⊗ Rγ where Ru = I and Rγ is
the neighborhood structure specified for instance through a first- or second-order
random walk. This leads to the assumption that for the i-th area the parameter
vector {δi1, . . . , δiT} has an autoregressive structure on the time component, which is
independent from the ones of the other areas;

• Type III combines the unstructured temporal effect φt and the spatially structured
main effect vi. We write the structure matrix as Rδ = Rφ ⊗ Rv, where Rφ = I and
Rv is a neighboring structure defined through the CAR specification. This leads to
the assumption that the parameters of the t-th time point {δ1t, . . . , δnt} have a spatial
structure independent from the other time points.

• Finally, Type IV is the most complex type of interaction, assuming that the spatially and
temporally structured effects vi and γt interact. The structure matrix can be written as
Rδ = Rv ⊗Rγ, which basically assumes that the temporal dependency structure for
each area is not independent from all the other areas anymore, but depends on the
temporal pattern of the neighboring areas as well.

Identifiability issues in spatio-temporal CAR model have been recently addressed
by [41], recommending to reparameterize the spatio-temporal model using the spectral
decomposition of the precision matrices of the random effects before fitting, stating that
if integrated nested Laplace approximation (INLA) is used to fit models, appropriate
constraints must be identified and used, and this gives correct results without incurring
the extra computing time required to fit the reparameterized model.

The computational ease is a key advantage of the intrinsic CAR formulation [42,43].
The BYM models belong to the class of Bayesian hierarchical models, which are crucial tools
for describing and explaining complex stochastic structures in spatial or spatio-temporal
processes. Generally, dealing with these complex models, posterior distributions expressed
in closed-form can not be available, and computationally demanding MCMC algorithms are
considered for inference [44]. Alternatively, INLA is computationally efficient algorithm for
estimating latent Gaussian models [45]. Indeed, INLA combines analytical approximations
and numerical integration, overcoming the convergence issues of the MCMC methods. For
further details on the inferential process, we refer to [45–47]. INLA solves inferential issues
in many case studies with space-time applications. For example, it is applied to global
climate data [48], epidemiology [49], disease mapping and spread [50,51], air pollution risk
mapping [52], and econometrics [53].

All the analyses of the proposed study are carried out using the R-INLA package of
the software R [54], and the codes of the carried out analyses throughout the paper are
available on request. We also refer to [55], which developed an application designed to
fit an extensive range of fairly complex spatio-temporal models to smooth the very often
extremely variable standardized incidence or mortality risks or crude rates. The application
is built with the R package shiny and relies on the well founded INLA technique for model
fitting and inference.

4. Modeling COVID-19 Infection Spread

This section will study the number of daily positive case numbers of COVID-19 in
Italy by conducting: a spatial analysis on the Northern Italian regions before and after the
lockdown; a spatio-temporal research of the consecutive phases characterizing the first
wave of COVID-19 spread.

4.1. Lockdown Effectiveness in Northern Italy

The dataset analyzed in this section refers to the number of people infected by the
COVID-19 in the 47 Northern Italian provinces from 24 February to 26 April 2020. In detail,
the analysis focuses on the provinces of the eight Northern Italy regions. Figure 1 shows in
red the eight regions (Aosta Valley, Piedmont, Liguria, Lombardy, Emilia-Romagna, Veneto,
Friuli-Venezia Giulia, and Trentino-Alto Adige/Südtirol) and, in black, the 47 provinces.
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We aim to investigate the number of the cases, i.e., the infected people per district in this
area, which is also the most affected one in Italy and is considered the probable hot-spot of
the spread of COVID-19 in Europe. For this purpose, we split the period (from 24 February
to 26 April) into two-time frames. The 22 March was the date identified to divide the
period. Note that on 8 March, the Italian Prime Minister announced the lockdown action.
This upsetting action led people to a sweeping quarantine and restricted movements for
about a quarter of the country’s population to limit contagions at the epicentre of Europe’s
outbreak. The effects of the quarantine on a virus diffusion can be expected after at least
14 days, and this temporal lag was the reason for 22 March as the time interval change-
point. We refer to the first time frame as the pre-lockdown period and the second one as the
post-lockdown period. Indeed, the social distance (which includes closure of educational
institutions), the travel restriction measures (that are individual movement restrictions like
curfew and national lockdown) and measures of personal protective equipment (PPE) will
have varying impacts on Rt [56].

The number of cases divided by the province-specific number of inhabitants and
multiplied by 1000 are represented in Figure 1. The darker the color, the higher the total
number of cases, corrected by the population size, in a given province. Before the lockdown,
most of the observed cases have been recorded in Bergamo, (Lombardy), which is also
one of the darkest provinces in the map of the top panel of Figure 1. Indeed, Bergamo is a
sad emblem for the COVID-19 Italian spread during the first wave. After the lockdown,
the observed cases have overall increased, and most of them are recorded in Cremona
(bottom panel of Figure 1), meaning that most of the newly infected people are detected in
the provinces closest to Bergamo. Brescia is the second most affected province in Lombardy.
Outside Lombardy, high values for the provinces of Aosta Valley and Rovigo are ascribable
to the very low density of population in those districts.

For each time frame [24 February–22 March] and [23 March–26 April], two spatial
BYM models are fitted with log-linear predictor specified as log(λi) = α + vi + ui (see
Equation (1)). The model does not include external covariates (i.e., risk factors). Therefore,
the mean number of cases per province is modeled for each time frame, including an
intercept common to all the districts and two area-specific effects vi and ui. For estimating
the model, a set of the neighbors for each borough has to be assigned. We define neighbors
if a common border is shared, obtaining that each district borders with 4.55 other districts.
The random effects (vi and ui) posterior means can be plotted also by maps [57].

In Figure 2, the posterior means’ map for the detecting cases relative risk specific
of the province ζ = exp(v + u), in the Northern Italy, is plotted for the pre- and post-
lockdown models. A darker area identifies a higher infection risk in the given province. We
observe that in the BYM model estimated for the pre-lockdown period, the higher number
of cases occurred in the provinces width the highest risks, together with some neighbor
provinces, i.e., Milan, Bergamo, and Brescia with a relative risk higher than 8, and Turin,
Lodi, Cremona, and Piacenza with a relative risk higher than 5. Moreover, although in the
post-lockdown some provinces still have a high relative risk of cases, the overall risk is
lower than the risk observed in the pre-lockdown period [15].
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Figure 1. Total number of cases recorded per province corrected by 1000 inhabitants. Top panel:
Pre-lockdown period. Bottom panel: Post-lockdown period.
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Figure 2. Detecting cases relative risk specific of the province ζi = exp(vi + νi) in the disease
mapping models. Left panel: pre-lockdown model. Right panel: post-lockdown model.

In this particular BYM model specification, it is possible to assess the proportion of the
variance explained by the structured spatial component. Since σ2

v and σ2
u are not directly

comparable, we need first to get an estimate of the posterior marginal variance for the
structured effect empirically, by:

s2
v =

∑n
i=1(vi − v̄)2

n− 1
, (4)

where v̄ is the average of v , and where n is a large number (100,000 in our case) representing
the values that are extracted from the corresponding marginal posterior distribution of ui
for computing the empirical variance, following the simulation-based approach adopted
by [40]. Therefore, the percentage of the variance explained by the structured spatial
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component is obtained as the ratio between s2
v in (4) and s2

v + σ2
u , with σ2

u being the posterior
marginal variance of the unstructured effect. For the Northern Italian data, this quantity
is 0.42 (pre-lockdown BYM model) and 0.03 (post-lockdown one). Therefore, it seems
that, unlike the post-lockdown model, in the pre-lockdown model, the structured spatial
component explains a considerable part of the variability. This result can be observed for
the overall spatial structure, explaining more variability in the pre-lockdown model than
the corresponding one of the post-lockdown BYM model.

These results corroborate the hypothesis that in the post-lockdown period the COVID-
19 spread is not mainly influenced by the spatial displacement of the provinces since the
number of movements among provinces has massively decreased. Otherwise, the overall
increase in the observed cases among the provinces could be rather due to any features
specific of the provinces. To account for these characteristics, individual scale information
should be considered in different type of models, rather than the aggregated one, as in the
BYM model.

4.2. Spatio-Temporal Spread of COVID-19 in the Whole Italian Territory during the First Wave

In this section, the number of people infected by the COVID-19 pandemic, from
24 February to 7 October 2020, in the 107 Italian provinces, is analyzed. On 7 October
a new rise of the of the recorded coronavirus cases has been observed, then the Italian
government postponed the state of emergency end to 31 January 2021. To limit the spread
of the COVID-19, they introduced stricter rules, such as the use of protection mask outdoors
and forbidding any activity gathering people. For this reason, the date 7 October is chosen
as the end of the first wave of infections in Italy and as the beginning of the second wave
(not included in this analysis).

Therefore, a spatio-temporal analysis is carried out, introducing also the temporal
domain information and splitting the time frame into three windows. Indeed, the lockdown
identifies the start of the Italian COVID-19 history, identified by three phases. The first
one, from 9 March to 3 May, frames the time period of the national lockdown action,
leading people to a sweeping quarantine and significantly restricting the movements of the
country’s population. The second phase frame, from 4 May to 14 June, identifies a reduction
in cases and a consequential loosening of restrictions. Freedom of movements was re-
established, and other non-essential activities restarted. From 18 May, most businesses
have reopened, and free movement has been granted to all the citizens within their region.
Furthermore, on 3 June, free movement within the whole national territory and, also to
foreign countries, was restored. Finally, the third phase, which has continued since 15 June.

At that time, Italy was undergoing the second wave and, therefore, on 4 November
2020, the Prime Minister announced a new lockdown, dividing the country into three
zones depending on the severity of the pandemic. Lombardy, Piedmont, Aosta Valley, and
Calabria, known as “Red Zones”, were put under a strict lockdown, similar to the one
which was implemented from March to May 2020. A less strict lockdown was implemented
in the “Orange Zones” of Apulia and Sicily, while the rest of the country was declared
“Yellow Zone”, with a few restrictions. The region-specific severity of the pandemic is
continuously monitored and evaluated.

Therefore, we considered the following temporal time frames:

• Phase 1: lockdown (9 March 2020–3 May 2020);
• Phase 2: easing of containment measures (4 May 2020–14 June 2020);
• Phase 3: coexistence with COVID-19 (15 June 2020–7 October 2020).

These phases are represented in Figure 3 together with the overall number of new
cases unrecorded in each day of the first wave of the Italian infections.
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Figure 3. Daily new cases in Italy during the first wave of infections. The vertical blue straight lines
individuate the three phases.

It is worth to notice that a further splitting of the third phase time frame, considering
additional temporal change-points given by some dates that may be crucial for the cases
spread increase (e.g., the schools reopening the 14 September), would not change our
conclusions and is not reported here for the sake of brevity. In further analysis, we also
considered time at finer scale resolutions (but never with a daily resolution, for the same
quality-related issues on the data stated in Section 2), leading to similar results.

First, a spatial BYM model without covariates is estimates, with the log-linear pre-
dictor specified as in (1), fitting a unique spatial model referring to the whole time period
[9 March–7 October]. Then, a spatio-temporal model as in Section 3 is estimated, where the
time component is defined by the three phases and different kind of interactions among
the random effects are considered [38].

More in detail, we investigate and compare the following models:

• A purely spatial disease mapping model in (1);
• A spatio-temporal disease mapping model with a linear temporal trend as specified

in (2);
• Four spatio-temporal disease mapping models with the four types of interactions as

in (3).

Model selection is carried out comparing the DIC values, and reported in Table 1.
Next, we focus on the II type model. Note that models with interaction-type I and III
have similar DIC values as the II one. However, the model with the interaction of type II
provides interesting interpretations of the studied spread pattern phenomenon.

Table 1. DIC values for the spatial and spatio-temporal fitted models.

Model Interactions Spatial Correlation Temporal Correlation DIC

BYM – – – 135,642.433
Linear T – – – 52,002.912
Type I ui and φt – – 4695.569
Type II ui and γt – X 4695.264
Type III φt and vi X – 4695.281
Type IV vi and γt X X 5441.607

In particular, the II type model suggests that the structured temporal main effect γt and
the unstructured spatial effect ui interact. Therefore, for each i-th area, the parameter vector
δi1, . . . , δiT describe the temporal component by an autoregressive structure, independent
of the ones of the other areas.

The posterior means of the random effects vi and ui [57] are also mapped, providing
useful information. In Figure 4, we show the map of the posterior means of the province-
specific relative risk of detecting cases ζ = exp(v + u) in Italy among the time frames,
for the selected spatio-temporal model (i.e., with temporally structured interaction of
type II). These maps are represented conditionally to the three Italian macro-regions (North,
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Center, and South) for easy reading. The darker is the area, the higher is the risk of infection
in the given province.
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Figure 4. Province-specific relative risks of COVID-19 cases ζi = exp(vi + ui) in Italy under the
chosen model (temporally structured interaction) by macro-region for the three phases considered.

The color scales are also fixed by macro-region to compare the overall spatial risk
of infection better. The overall risk is way higher in the Northern regions and provinces,
decreasing from the North to the South of Italy for the given temporal frames.

Conditioning to the macro-region, the temporal evolution of the spread can be ana-
lyzed. Indeed, given each macro-region, in the first phase (starting with the imposed Italian
government lockdown) the infection risk is overall lower. In the second phase, it increases
in each macro-region, and further increases in the third phase. In the central macro-area,
the most affected province is Rome, the Italian capital. In the Southern regions, the most
affected city is Naples.

To get a closer look, we report the specific estimated risk of the most affected provinces
in the three macro-regions (also the most populated ones) in Figure 5.
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Figure 5. Top province-specific estimated risk for the three macro-regions.

The overall risk increases among these provinces, although the strict lockdown action
is the most effective restriction in limiting the spatial spread of contagion. Specifically,
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the provinces that witnessed the higher risk for each macro-region remain the same over
time, indicating that some further missing information needs to describe the spatial dis-
placement and the risk spread better.

5. Conclusions

This paper investigated the spread pattern of the COVID-19 in Italy by proposing a
spatio-temporal model. We studied and interpreted the evolution of the spread among the
107 Italian provinces. Moreover, the different phases of the COVID-19 history, identified by
the Italian government, that are proxies of the citizens’ mobility patterns are considered.

At this aim, we fitted a Besag–York–Mollié model to the disease count data of the
COVID-19, spread out the provinces of Italy. Indeed, since the available infection data
are counts per spatial unit, the BYM-type model seems appropriate for their description.
Furthermore, the BYM model can deal with the description of the spatial neighborhood
structure. Since the hierarchical structure of the considered models, the BYM is also
computational challenging, using the advantages of the INLA approach for inference. In
detail, we first provided the spatial distribution of infections, occurred after the lockdown
action in the North of Italy.

Furthermore, by comparing different specifications of the spatio-temporal interaction,
we draw some conclusions also about the temporal spread pattern of the disease in the
whole Italian territory. Based on the selected spatio-temporal model, both the spatial and
temporal random effects are significant. In addition, the interaction between the structured
temporal component and the unstructured spatial one is also significant.

Therefore, the results of the proposed analyses are as follows:

• During the pre-lockdown period, the spread of the COVID-19 in the provinces under
study could be ascribable to the spatial arrangement of provinces, the same conclusion
can not be drawn for the post-lockdown period, since the decreasing number of people
moving among provinces;

• The selected spatio-temporal model suggests that the temporal evolution of cases
that occurred in each province is independent of the temporal evolution of the other
provinces. This means that the number of contagions and their temporal trends may
not be caused by the spatial movements of people, but by some aspects that are specific
of the considered provinces. That is, for a better comprehension of this spreading
phenomenon, point process, even accounting for external information, would be
more appropriate;

• The proposed models are our best option for dealing with aggregated data at the
district level. Indeed, starting from this low-detailed scale dataset and the absence of
geocoded health data, our study still shows the proposed BYM models’ advantages;

• The estimated posterior means of the district-specific relative risk identified the
highest-risk areas, confirming that the most at-risk provinces are in Lombardy (i.e.,
Milan, Bergamo and Brescia) and Piedmont (Turin).

As a general conclusion, our analysis aimed at describing the spread of the infections of
COVID-19 cases, and we have not included risk factors or covariates deliberately. However,
with the beginning of the so called “second wave” of contagions, it has been established
as a known fact that, due to the peculiar infectiousness of this disease, a large portion
of the actual infected individuals are asymptomatic. The percentage of asymptomatic
individuals can, of course, vary in space and also in time. In any case, these subjects are
usually recorded, and, therefore, they are not counted in national databases nor are let
alone considered in the available studies. This issue is a further limitation of the known
analyses that do not account for the main cases inducing the spread of the COVID-19
disease in space and time. For instance, one could wonder how the population shifting
affected the spatial pattern of COVID-19 in Italy. As future work, this could be investigated
by means of the inclusion of such information both in the construction of the neighboring
scheme, and in the linear predictor as covariates.
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As a further hint, it could be crucial making available more complete datasets, such as
geocoded health data; that would allow using models that account for the self-exiting fea-
tures of the epidemic phenomena, together with external factors, such as covariates [58,59].
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