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Abstract
Modern smart environments pose several challenges, among which the design of intel-
ligent algorithms aimed to assist the users. When a variety of points of interest are
available, for instance, trajectory recommendations are needed to suggest users the most
suitable itineraries based on their interests and contextual constraints. Unfortunately, in
many cases, these interests must be explicitly requested and their lack causes the so‐called
cold‐start problem. Moreover, lengthy travelling distances and excessive crowdedness of
specific points of interest make itinerary planning more difficult. To address these aspects,
a multi‐agent itinerary suggestion system that aims at assisting the users in an online and
collaborative way is proposed. A profiling agent is responsible for the detection of groups
of users whose movements are characterised by similar semantic, spatial and temporal
features; then, a recommendation agent leverages contextual information and dynamically
associates the current user with the trajectory clusters according to a Multi‐Armed Bandit
policy. Framing the trajectory recommendation as a reinforcement learning problem
permits to provide high‐quality suggestions while avoiding both cold‐start and preference
elicitation issues. The effectiveness of the approach is demonstrated by some de-
ployments in real‐life scenarios, such as smart campuses and theme parks.
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1 | INTRODUCTION

Creating effective itineraries between points of interest (PoIs)
represents a difficult task for users, given the quantity and the
variety of constraints to be considered. In general, human
mobility is intentional [1], since people move from one place
to another in order to fulfil a real‐life goal, such as borrowing a
book in a library, or seeing an artwork in a museum. Therefore,
in the design of an intelligent system capable of suggesting
trajectories, the first constraint to be considered is the semantic
of the PoIs and the people's movements: realistic trajectories
should allow the inclusion of multiple and different semantic
classes of PoIs. Furthermore, users may express different
personal preferences for PoIs belonging to the same semantic

class. If users do not have much time available, for instance,
their choice will be biased towards trajectories with the mini-
mum travelling distance or queueing times among PoIs.
Moreover, a user moving in an unknown area may find it
difficult to proceed among a multitude of PoIs. All these as-
pects point out the need for automatic tools capable of filtering
several information and suggesting trajectories aligned with
semantic, temporal and spatial constraints. In this context,
Recommender Systems (RSs) play a fundamental role in
maximising users' satisfaction in situations where multiple
constraints may also be subject to real‐time factors [2]. In
particular, smart environments, where measurements gathered
by a pervasive sensory infrastructure [3] are used to provide
intelligent services to users [4], represent a significant scenario

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. CAAI Transactions on Intelligence Technology published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing
University of Technology.

CAAI Trans. Intell. Technol. 2021;1–17. wileyonlinelibrary.com/journal/cit2 - 1

https://doi.org/10.1049/cit2.12056
https://orcid.org/0000-0002-5963-6236
mailto:marco.morana@unipa.it
https://orcid.org/0000-0002-5963-6236
http://wileyonlinelibrary.com/journal/cit2


which may benefit from properly designed trajectory RSs.
Smart museums, for instance, are characterised by customers
wishing to spend their visit time for their preferred master-
pieces, and conveniently postpone the contemplation of
currently over‐crowded artworks. Similarly, in a smart campus
[5], it is useful to track libraries with free seats or parking
spaces with available slots which can be included in the rec-
ommendations. Among the most effective recommendation
algorithms, collaborative filtering approaches are based on
collecting and analysing a large amount of information on
users' preferences in order to build a model representing their
past behaviour, and predict interesting items for the current
users based on their similarity with other ones [2]. In the
context of trajectory recommendation, this paradigm assures
that suggested trajectories have always been travelled before by
other users, thus increasing the reliability of recommendations.
However, many approaches for suggesting trajectories show
some drawbacks, ranging from the lack of considering se-
mantic information not explicitly related to geographic co-
ordinates, to the need for collecting user preferences explicitly.
Moreover, traditional collaborative filtering approaches pre-
sent an entry barrier in terms of users' past interactions needed
to make accurate predictions. This is known as the cold start
problem, which arises when a new user, without any previous
history, requests a recommendation [6]. Nevertheless, sup-
porting the itinerary decisions of unknown users is especially
important in scenarios where users have only few interactions
with the RS, for instance, the visitors of a museum. An
emerging way [7–9] to deal with this challenging problem lies
in adopting a reinforcement learning strategy, considering the
two‐faced aim of a RS: on the one hand, it aims to maximise
user satisfaction with the immediate itinerary suggestion
(exploitation of known knowledge), on the other hand, it
wants to gain new knowledge about user preferences (explo-
ration of new information) to improve long‐term reward,
although with some effect on short‐term satisfaction. This
dilemma is typically conjugated in the context of RSs as a
Multi‐Armed Bandit problem [7, 10]. According to this model,
using an arm of an imaginary row of slot machines corre-
sponds to selecting an action according to a specific policy. The
player (i.e. the RS) has to select which arm to use, and that
choice produces the element to suggest.

This work proposes a collaborative and context‐aware
intelligent system for trajectory recommendation. It is based
on a multi‐agent architecture that allows to collect and pro-
gressively exploit user feedbacks, following a reinforcement
learning approach. Semantic, spatial and temporal features of
users' movement behaviours are extracted by a profiling agent.
A clustering algorithm aggregates users with similar behav-
iours, originating sets of trajectories that share characteristic
traits. A recommendation agent analyses contextual informa-
tion and current user's past interactions in order to establish its
most significant coupling with one of the clusters of trajec-
tories, following a Multi‐Armed Bandit policy, and to provide
the most appropriate suggestions. Such coupling is dynamically
updated accordingly to user feedback, so that the system can
refine its recommendations after new knowledge acquisition.

We have validated our approach on a dataset of mobility traces
of users moving in a smart campus [11, 12] and on five public
datasets of users visiting attractions in theme parks [13]. The
experimental results show that our system provides accurate
recommendations, and that the proposed profiling method can
correctly identify separate classes of movement behaviour.

The remainder of the paper is organised as follows: Sec-
tion 2 discusses related work in human mobility profiling and
trajectories recommendation. Section 3 outlines the proposed
system architecture, discussing the features and the clustering
methodology to extract groups of similar users from the data,
and describing the Multi‐Armed Bandit framework beneath
the recommendation agent. Section 4 describes the experi-
mental setting together with the metrics used to evaluate the
performance of the intelligent system and analyses our
experimental results. Conclusions are presented in Section 5.

2 | RELATED WORK

In recent years, the proliferation of location‐aware technolo-
gies, caused by the widespread use of personal smart devices,
has allowed a vast amount of studies aiming at understanding
various aspects of human mobility. In what follows, some of
these studies will be discussed, highlighting the mobility fea-
tures considered in turn.

A first simple approach for defining groups of people with
similar movement behaviours entails the comparison of the
single places they visit. In [14], the authors cluster foursquare
check‐ins by means of topic modelling: users who visit PoIs
falling into the same topic are grouped together. This approach
does not take into account the concept of trajectory, as it ne-
glects the sequential nature of users' movements. Similarly, in
[15], the information on visits distribution is interpreted in a
probabilistic manner for building a user mobility profile, which
is then used for predicting only the next place to visit.

The research study in [16] defines a mobility index by
combining the frequency and geographical range of move-
ments in order to capture temporal and spatial aspects
of mobility behaviours. This index implies the calculation of
several features such as the number of trips, the number
of unique regions where users lingered for a significant amount
of time (also called stay points), the specific sequences of
visited PoIs, the total distance and travel time. This rich feature
set misses more specific considerations on the temporal as-
pects of mobility, such as its weekly recurrent nature [19].

The authors of [17] characterise human mobility by
selecting features as the amount of movement, the distribu-
tions of visits to PoIs, the entropy of a user's location history
and its degree of predictability. We opted for the adoption of
the entropy in our work as the characteristic feature, in order to
provide a measure of the uncertainty of users' movements.

In [18], the authors use an event‐based algorithm to cluster
individuals according to their mobility behaviour. They analyse
the periods of presence/absence in particular regions by
imposing 6 classification rules, which consider the possible
sequence of events during each day of the week. This work
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introduces the important concept of differentiating users' be-
haviours based on their weekly mobility patterns, which we
also exploit in our work by computing the features separately
for each day of the week.

The authors of [8] studied the discriminative power of
several features in distinguishing between different datasets of
human mobility traces. The features considered include as
follows: the convex hull enclosing all users positions, the en-
tropy of individual trajectories and the degrees of freedom
required to describe a particular trajectory. Although the
convex hull represents an interesting point of view on
the spatial representation of trajectories, it goes beyond the
scope of this work, where we focus on trajectories settled in
a single smart environment with a modest quantity of PoIs
(see Section 4.1), thus, multiple trajectories would share the
same convex hull.

Our work borrows a mixture of the features proposed in
the described studies. Research studies have shown that con-
tent information on the visited PoIs provides important con-
tributions to the inference of personal interests, for example a
user who visits a PoI with semantic tag ‘vegetarian restaurant’
gives information on his diet [19]. This is the reason why we
add the sequences of visited semantic classes of PoIs as a
mobility feature. Moreover, users' activities show strong tem-
poral cyclic patterns in terms of hour of the day and day of the
week [20, 21], therefore, we also take into account the arrival
time in PoIs semantic classes, and we compute our set of
features separately for each day of the week. In this way, the
clustering algorithm will take into account the semantic, spatial
and temporal behaviour similarity in the different weekdays.
The set of features we adopt is discussed in detail in Sec-
tion. 3.1. A tabular representation of the features considered in
the discussed studies is presented in Table 1. The motivations
behind the features chosen for this study will be described in
Section 3.1, together with the definition of the feature set.

Several surveys provide a comprehensive overview on the
trajectory recommendation problem in the tourism domain.
The authors of [22] present a set of relevant recommendation
paradigms for this scenario by highlighting the type of service
offered to the end user, for example suggesting hotels available

in a certain period of the year, or finding a specific combina-
tion of PoIs reachable within a certain time range. In [23],
different approaches that face recommendation as an optimi-
sation problem with multiple constraints dictated by user needs
are discussed. In [24], the authors provide multiple points of
view on the recommendation problem in the tourism domain,
addressing the different methods to gather information about
tourists' behaviour, and the composition of a coherent tour
both for individuals or groups.

Since a trajectory is a concatenation of visited PoIs, a
related research area to trajectory recommendation is the top‐k
PoIs recommendation [25, 26]. These approaches perform a
variant of the matrix factorisation algorithm which leverages
several context information [13]. Unfortunately, as shown in
[27], the transition probability between different PoIs is non‐
uniform, meaning that venue visits are not independent of
each other. Thus, the sequential nature of a trajectory has to be
taken into account in order to perform effective recommen-
dations. In [28], the proposed system expects a visit sequence
of semantic PoIs' categories as input in order to match specific
geographic routes, resulting in an onerous interaction request
from the user. In [13], geo‐referenced photos taken in theme
parks are used to infer queueing times at attractions, and tra-
jectories with the least amount of waiting time are recom-
mended. The system also maximises user interests scores and
attraction popularity. However, this approach requires starting
and ending PoIs as input which may not always be known a
priori, and heavily suffers from the cold start problem, needing
a tree of visit counts in order to select the next PoI in the
trajectory. In [29], the set of potentially interesting PoIs for the
user are arranged in a graph structure where edges are
weighted with the shortest route travel time, and then, a score
function is used to filter the paths according to context and
users' preferences related to PoIs categories. But users' pref-
erences are collected by means of a form proposed during the
registration phase, and a query to the recommender system has
to include explicit parameters such as the starting and desti-
nation point or the maximum number of PoIs to visit, thus
reducing the automation of the approach. All trajectory
recommendation systems discussed so far are not collaborative

TABLE 1 Summary of the features
considered in the discussed studies on human
mobility profiling

Features

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

[14, 15] ✓

[16] ✓ ✓ ✓ ✓ ✓

[17] ✓ ✓ ✓ ✓

[18] ✓ ✓

[8] ✓ ✓ ✓

Our approach ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: These features are as follows: (1) number of trips; (2) number of unique stay points; (3) radius of gyration; (4) travel
time; (5) sequence of visited PoIs; (6) sequence of visited PoIs semantic flags; (7) visits distribution; (8) entropy of user
history; (9) predictability of user history; (10) arrival time for PoIs semantic labels; (11) average stay time for PoIs semantic
labels; (12) convex hull; (13) degrees of freedom; and (14) features computed on a weekly basis.
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filtering‐based systems, therefore, trajectories never travelled
before could be suggested to users.

In Ref. [13], geo‐tagged photos are also exploited by sys-
tem in [30], where visual features (such as the colour histogram
and other vectorial representations coming from SIFT de-
scriptors) are merged into the matrix factorisation model,
allowing a better management of the cold start problem.
However, the approach requires a simultaneous use of multiple
machine learning algorithms to process photos' contents,
which can be computationally demanding. In [31], a first pre-
processing phase aims at learning vectorial representations of
PoIs from textual information retrieved from Wikipedia. These
textual information are merged with user‐PoIs visit relation-
ships and PoIs semantic classes in order to compute a profit
score for each PoI, and a variant of the travelling salesman
problem is adopted to build a trajectory. However, this
approach heavily suffers from the user cold‐start problem,
being unable to recommend trajectories to users with no
previous visiting history.

Among the recommendation approaches which leverage
clustering algorithms to infer common traits in user behav-
iours, [32] adopts the k‐means algorithm in order to group
similar users and suggest elements according to the cluster
they belong. Such an approach requires each user to belong
to only one group; conversely, in our approach, the cluster of
belonging may change over time, according to the online
feedback received by the user. The method in [33] provides a
different perspective, performing a hierarchical clustering al-
gorithm to aggregate PoIs in order to identify a path of
maximum interest for the current user. However, this
approach requires the specification of the initial and final
PoIs, which may not always been known in advance, espe-
cially when visiting an unknown environment. The AGREE
model [34] adopts a bidirectional recurrent neural network in

order to infer affinity between users' preferences and provide
a route suggestion; however, even this approach is not
capable of dynamically associating users with groups as new
feedback responses are provided. The authors of [35] pro-
pose a system to extract relevant features from call for ten-
ders, leveraging the k‐means algorithm to infer and suggest
the most suitable call for the particular skill set of a given
company. However, this clustering approach requires an a
priori specification of the number of clusters, making it
difficult to set up an online recommender system. In [36], a
collaborative neighbourhood‐based approach for movie rec-
ommendations is proposed. The recommendations exploit
the k‐means algorithm, which enables the identification of
groups of similar users, and the Mahalanobis distance in
order to compute the similarities of users belonging to the
same cluster. Even this approach fails in accounting for the
variable nature of the association of a user to a given cluster,
which is an aspect of utmost importance in the design of a
dynamic system. The work in [37] adopts the k‐medoids al-
gorithm to infer the neighbourhoods of users with shared
preferences, as well as items with similar features, and tags
labels underlying the same interests. The identified clusters
are then refined based on friend relationships retrieved from
social media. However, the approach neglects the possibility
for users to change their interests over time.

In the broader research field of Recommender Systems,
our proposal relates to the collaborative filtering bandit
subfield, where existing literature proposes different design
choices for modelling the recommendation problem in
terms of arms to explore or exploit. In a pioneering work
[10], all the individual elements of the application domain
are considered directly as arms, their attributes are used as
context information to guide future suggestions. A different
modelling choice entails considering users as arms which

TABLE 2 Notations for the MAB
problem formulation

Notation Description

t Round

T Horizon

C Set of K clusters (arms)

ck k ‐ th arm

At Arm pulled (cluster selected) in round t

ηck Number of times in which the cluster ck has been selected

zt Recommended trajectory in round t, extracted from the selected cluster At

rAt
Reward by pulling the given arm in the t − th round

Ξt Sequence of past interactions < At−1; rAt−1 > observed until round t

π Policy for sequential trajectories recommendation

μck Experimental mean for arm ck

σT;π Cumulative Reward after T rounds following policy π

ρT;π
Cumulative Regret after T rounds following policy π
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will be chosen as potential neighbours [38], this choice al-
lows to add uncertainty in the classic neighbourhood‐based
collaborative filtering scheme.

Considering the above review of the state‐of‐the‐art liter-
ature, this study proposes a context‐aware collaborative system
for trajectory recommendation in smart environments equip-
ped with a pervasive structure of sensors for position detec-
tion, such as smart campus, museum or theme park.
Differently from earlier works, our system focusses on
grouping similar users by means of a weekly set of semantic,
spatial and temporal features, and dynamically finding the best
pair < user, cluster > by means of the online feedback against
the recommendation.

3 | MULTI‐AGENT
RECOMMENDATION SYSTEM

The aim of our system is the recommendation of trajectories to
users in an online and collaborative mode, exploiting a cloud
architecture. The system reckons on two agents addressing
logically distinct phases, as shown in Figure 1. The aim of the
Profiling Agent (Sec. 3.1) is two‐fold: it deals with the detection
of a weekly set of features encoding semantic, spatial and tem-
poral behaviours; it then performs a clustering algorithm to

extract groups of similar users. The extracted clusters represent
trajectories which share latent parameters mirroring the be-
haviours of the grouped users. The Recommendation Agent
(Sec. 3.2) exploits the clusters as sources of recommendations,
and suggests a trajectory according to the occurrence fre-
quencies in the chosen cluster. A reinforcement learning sub‐
agent (implementing a Multi‐Armed Bandit policy) is respon-
sible for the choice of the best‐fitting cluster for the behaviour
of the current user, whose selection is further refined by means
of the received feedback. Context information regarding the
crowdedness of the PoIs, and the travelling distances between
them is integrated by a Monitoring Infrastructure sub‐agent,
which is responsible for modifying the probabilities of trajec-
tories extraction according to the data received from physical
sensors, for example wireless sensor networks (WSNs) [39],
body area networks [40], or other pervasive data gathering
technologies related to ambient intelligence [41] and crowd‐
sensing methods [42].

3.1 | Profiling agent

The first step of the Profiling Agent is the identification of
different groups of users according to semantic, spatial and
temporal features. Since human mobility can be modelled as a

F I GURE 1 Overview of the
collaborative filtering bandit system for
trajectory recommendation
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periodic routine, for example on a weekly basis [19], it is
profitable to track separately the behavioural patterns for each
day of the week. Therefore, in order to formulate a vectorial
representation of user's movements, we chose to adopt a set of
9 features which are computed independently for each day (see
Figure 2).

The vectorial representation of a given user u, F u is
defined as follows:

F u ¼ ½F1; F2; F3; F4; F5; F6; F7�; ð1Þ

where each Fd is the vector of features computed for the d ‐ th
weekday. Each Fd is composed of a set of 9 features:

Fd ¼ ½f 1;…; f 9�: ð2Þ

Generally, PoIs have a semantic tag which refers to the
intended functionality and the underlying activity that is to
be performed, such as park, school, library [1], or associ-
ated to the type of available resources [43]. For this
reason, trajectories between PoIs can be interpreted in two
ways: as a sequence of integers representing the identifiers
of the PoIs, for example PoI 32→ PoI 54; or as a
sequence of the semantic tags associated with the PoIs, for
instance Library→ Park. The latter reflects the concept of
semantic trajectory, first proposed in [44]. The generic
i ‐ th trajectory ti is thus composed of the sequence of X
visited PoIs: td ¼ fx1;…; xXg. Some of the behavioural
features we adopt are computed separately for each se-
mantic class of PoIs. In such cases, we denote with ϕj the
single feature value computed for the j ‐ th semantic class,
and then, with

f q ¼ ½ϕ1;…;ϕs�; ð3Þ

the comprehensive value of the q − th feature for the s
PoIs semantic classes contained in the considered
dataset.

As described in Eq. 2, we adopted nine features which are
now formally defined together with the motivation behind
their choice:

� f 1 → frequency of visits for each semantic class: let ϕj be
the frequency of visits for the j ‐ th semantic class, which is
defined as the ratio

ϕj ¼
# trajectories containing j − th class

# trajectories
; ð4Þ

The feature f 1 is aimed to collect information about all the
PoIs, f 1 ¼ ½ϕ1;…;ϕs�.

The frequency of visits for every semantic class allows to
characterise the activities performed by the users, according to
the PoIs they have visited most often.

� f 2 → PoI with longest permanence time: it is defined as the
couple

f 2 ¼ ½x; y�; ð5Þ

where x is the unique identifier of the PoI, and y is its
semantic class. This feature emphasises the predilection to-
wards a specific PoI as a means to assess the similarity
between users.

� f 3 → average permanence time for each semantic class: the
stay time in each PoI category is averaged against all visits,
thus the single ϕj for the j − th semantic class is computed
as follows:

ϕj ¼

P
stay time @ j − th semantic class

# visits to j − th semantic class
; ð6Þ

and the comprehensive value of the feature is the set
f3 ¼ ½ϕ1;…;ϕs�.

F1

F2

F3

F4

F5

F6

F7

Weekly EmbeddingBehavioral Features

f1
f2
f3
f4
f5
f6
f7
f8
f9

F I GURE 2 Features detection mechanism.
Trajectories are processed in order to extract
significant semantic, spatial and temporal
characteristics, computed independently for each day
of the week
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The average stay time for PoIs semantic labels enables a
temporal categorisation of users based on which places, and
which activities, they spend most of their time.

� f 4 → typical arrival time for each semantic class: we
decomposed a day into 48 time slots of 30 min each. We
then considered the three most frequent arrival times ϕjk
for each j − th semantic class, with k ∈ ½1; 2; 3�, thus, the
comprehensive feature is composed of the following:

f 4 ¼ ½½ϕ11;ϕ12;ϕ13�;…; ½ϕn1;ϕn2;ϕn3��; ð7Þ

The arrival time for PoIs semantic labels allows to distin-
guish users based on which portion of the day they prefer to
conduct their trips.

� f 5 → average travel time: it is defined as the ratio

f 5 ¼

P
i
P

j stay time @ j − th PoI ∈ i
# trajectories

; ð8Þ

where i represents the i − th trajectory of the current user, and
j the j ‐ th PoI in trajectory i.

The travel time enables a categorisation of users based
on the quantity of time they invest in their trips, which is
an effective feature to identify users who travel for work or
leisure, and in the latter case, a means to identify people
taking small breaks or longer ones with their family.

� f 6 → radius of gyration: it is defined as the characteristic
distance travelled by a user, centred in the trajectory's
centre of mass [45]. Let Ni be the number of samples (e.g.
GPS ðlat; lonÞ coordinates) recorded for the i ‐ th trajec-
tory, and Mud be the number of trajectories for the user u
in day d, the computation of the radius of gyration is as
follows:

f 6 ¼

PMud
ψ¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ni

PNi
n¼1ðsn − scmÞ2

q

Mud
; ð9Þ

where sn ¼ ðlatn; lonnÞ are the coordinates of the n ‐ th sam-
ple, and scm ¼ ðlatcm; loncmÞ are the coordinates of the centre
of mass. If the dataset under examination does not contain a
complete set of position measurements for the users, this
feature is computed by considering only the coordinates of the
visited PoIs in trajectories.

The radius of gyration provides information on the area
swept by the user's movements, allowing to distinguish be-
tween persons accustomed to travelling long or short distances.

� f 7 → entropy of movement: it measures the degree of
predictability of a user [19]. Let ti ¼ fx1;…; xXg be the
sequence of X PoIs visited by a user in the i ‐ th trajectory,
the entropy is computed as follows:

f 7 ¼ −
X

t0i⊂ti

pðt0iÞ ⋅ log2pðt
0
iÞ; ð10Þ

where pðt0iÞ is the probability of finding a particular time‐
ordered pair, t0i, in trajectory ti, that is
t0i ∈ ffx1; x2g;…; fxX−1; xXgg. An entropy value f 7 ¼ 0 im-
plies extreme regularity and predictability of movements.

The entropy of user history permits to distinguish between
users who exhibit a methodical behaviour from those whose
movements are less predictable.

� f 8→ semantic trajectories: it is defined as the user's history
of visited PoIs semantic classes sequences. Each PoI is
associated with a specific semantic label which provides
information about the nature of the activity that can be
performed. The i ‐ th semantic trajectory sti consists of the
sequence of Y semantic classes associated to the PoIs
visited in a day:

sti ¼ ½y1;…; yY �: ð11Þ

Hence, the history of semantic trajectories is defined as
follows:

f 8 ¼ ½st1;…; stT �; ð12Þ

where T is the total number of trajectories travelled by the
current user.

Reasoning upon the visited semantic classes allows to
discriminate users according to the activities they enjoy during
their trips.

� f 9 → PoI ids trajectories: it is defined as the user's history of
visited PoIs ids' sequences. The generic i ‐ th trajectory ti is
composed of the sequence of X visited PoIs:

ti ¼ fx1;…; xXg: ð13Þ

Then, the feature f 9 is defined as follows:

f 9 ¼ ½t1;…; tT �; ð14Þ

where T is the total number of trajectories followed by the
user. This feature complements f 8 and allows to obtain more
precise information to evaluate the similarities between users,
analysing not only the activities but also the specific locations
and sequence of visited PoIs.

The Profiling Agent is also aimed to identify the user
groups with similar habits. First, we use a min‐max scaling
approach to project features into the range ½0; 1�. However, not
all features have an algebraic interpretation, and an alternative
distance measure has to be defined in order to perform clus-
tering. In particular, for feature f 2 (PoI with longest perma-
nence time), we assign the minimum distance value 0 when the
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PoIs are identical, an intermediate value of 0.25 when they
share the semantic flag, and the maximum value 1 when they
are totally different. We adopted the Damerau Levenshtein
distance [46] DLða; bÞ to compute the distance between tra-
jectories. It is generally used to calculate the distance between
two strings, and corresponds to the number of steps needed
for converting string a into string b by adding, deleting,
substituting single characters, or transposing two adjacent
characters. In order to obtain a value in the range ½0; 1�, we
then consider the ratio:

Distða; bÞ ¼
DLða; bÞ

MaxðLengthðaÞ;LengthðbÞÞ
ð15Þ

to be the actual distance between two strings, where DLð⋅Þ
is the Damerau Levenshtein distance, and Lengthð⋅Þ denotes
the number of characters in the string. In the scenario
addressed here, we consider each single PoI in a trajectory
as a single character in a string, therefore, the measure
Distða; bÞ discussed above can be used to assess the dis-
tance between two trajectories a and b. This formulation
allows to compare the behaviours encoded by features f 8
and f 9. In particular, for these features, we consider the
histories of trajectories Hui;Huj of users ui and uj as sets,
then, we consider the Cartesian product Hi �Hj and
compute the average DL distance between all its couples in
order to evaluate the distance between the users. A similar
reasoning can be done for the f 4 feature, where each ϕjk is
interpreted as a single character in a string.

Once the features F u have been extracted for each user
u in the dataset, the Quality Threshold Clustering (QTC)
algorithm [47] is used in order to group together similar
users. This choice is motivated by its feature of not
requiring the a priori specification of the number of clusters
to be found. Indeed, elements are progressively grouped
while maintaining the quality of each cluster above a certain
threshold, in terms of intra‐cluster distances. In order to
compute such distances, we adopted a compound distance
measure, with the peculiarities for features f 2; f 4; f 8; f 9
above discussed. QTC requires the choice of two parame-
ters, namely the maximum cluster diameter dmax, and the
minimum number of users mu a cluster has to contain. In
this work, we automatically compute these parameters as
follows: let U be the number of users with at least one
trajectory in the dataset, and let Ω ∈RUxU be the matrix of
the inter‐user feature distances, we define m¼ 3⋅U

100 as the 3%
of users in the dataset and d ¼meanðΩÞ as matrix Ω mean
value. The value of m depends on the minimum number of
elements needed to create a cluster; in our smart campus
scenario, for instance, we chose to consider clusters
composed of at least 5 users, so as to observe a small
variance in the trajectories extracted from each cluster. This
choice corresponded to set m as the 3% of the users
available in the dataset. We measured the effectiveness of
such choices against a synthetic dataset of mobility traces,
which exhibits the ground truth labels of the users
belonging to specific groups (see Section 4.1).

3.2 | Recommendation agent

The Recommendation Agent is responsible for providing
trajectories' recommendations aligned with users' preferences,
which are learnt in real time by means of the received feedback.
The main idea is to consider each cluster identified by the
Profiling Agent as an arm in the Multi‐Armed Bandit (MAB)
paradigm (see Figure 3), where a policy infers the best
pair < user, cluster > and modifies future recommendations
accordingly.

The MAB problem (see notation in Table 2) deals with the
tradeoff between the exploration of new actions to accomplish
a goal, which involves the accumulation of new information
that could increase profit in the long term, and the exploitation
of the empirical best action as soon as possible, thus max-
imising the immediate profit [48]. In the traditional formula-
tion, a k‐Armed Bandit problem is composed of k slot
machines (also called ‘one‐armed’ bandits or arms) with their
own reward probability distribution. A gambler tries to maxi-
mise, within a limited number of T rounds, the total obtainable
profit by pulling the arm deemed most profitable in each
round. The pulling process concludes with a reward returned
by the selected slot machine.

In the context of our work, being C ¼ fc1; c2;…; cKg the
set of K users' clusters identified by the Profiling Agent, these
are interpreted as the K arms to pull in order to obtain a
reward. The gambler is represented by an agent who chooses
an action At ∈ C for each round t ∈ f1;…;Tg. Choosing an
action At implies the extraction of a trajectory zt from those
grouped in the selected cluster, according to their frequency of
occurrence. The current user u returns a reward (feedback) rAt

in response to the recommendation of trajectory zt from
cluster At ≡ ck. This feedback helps the agent in refining the
selection of the best pair < u; ck >. Indeed, the choice of At
depends on the user history, which is defined as the set of
couples < action; reward > observed in the past, that is
Ξt ¼ f< A1; rA1 >;…;< At−1; rAt−1 >g. The arm selection

...

Quality Threshold
Clustering

C1

C2

...

Ck

Bandit
Algorithms

Monitoring Agent

F I GURE 3 Users' clusters are interpreted as arms in a MAB fashion.
An arm pull corresponds to the extraction of a trajectory from the
corresponding cluster. A monitoring infrastructure integrates information
about the current user context
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strategy is governed by an agent, embodied by a MAB policy,
which is a mapping π from history to actions, that is
π : Ξt → At; ∀t ∈ ½1;T �. For each arm, the policy tracks the
experimental mean, which is defined as the arithmetical mean

of the observed pulling reward: μck ¼
PT

t¼1
rAt

ηck
with At ≡ ck,

where ηck is the number of times in which the k − th arm has
been selected. The experimental means are estimates of the
arms' true reward probability distribution: more selections of
the same arm refine its reward probability estimate. The
effectiveness of an agent's selection policy is measured both in
terms of its cumulative reward and regret. Given a policy π,
the cumulative reward after T rounds is defined as
σT ;π ¼

PT
t¼1rAt, and it represents the total profit gained by the

policy following its choices. In contrast, the cumulative regret
measures the loss in the total reward due to the execution of a
non‐ideal policy π, and it is defined as
ρT ;π ¼

PT
t¼1rA)

−
PT

t¼1rAt, where A) corresponds to the
actual user's cluster.

In our trajectory recommendation setting, in each round
t, a policy draws a trajectory to suggest zt from a certain
cluster of users ck. The trajectory zt is drawn in a proba-
bilistic manner by considering the frequencies of occurrence
in ck as probabilities of being selected. In order to perform
an offline evaluation of the approach, we adopted the
already mentioned Damerau‐Levenshtein distance [46]: we
compare the recommended zt with the most ξ similar tra-
jectories in the current user history Ξt, where ξ is a tunable
parameter, for example we used ξ¼ 5 because five of the
six datasets we considered have an average number of tra-
jectories for users less than 5.

An online deployment of the system may interactively
benefit from the real‐time user feedback about zt. The
system can be used to recommend both semantic or PoIs
ids trajectories (see Section 3.1). The trajectories' selection
probabilities are influenced from the Monitoring Infra-
structure in the following way: the extraction probability of
each trajectory is multiplied for the reciprocal of its visited
PoIs' crowdedness (i.e. the number of people currently
present in the PoI). Then, considering the current position
of the user, a distance‐based ranking of the trajectories is
imposed by multiplying their extraction probabilities for the
reciprocal of the total travel distance covered. Indeed, users
tend to visit nearby destinations before visiting farther
destinations when the semantic meaning behind places is
equal [49]. This context integration mechanism is depicted in
Figure 4.

For the cluster selection phase, we tested several bandit
policies in order to empirically assess which is the best option
for every dataset considered:

� Random: a random cluster is selected in each round.
� ϵ‐greedy [48]: a random cluster is selected with probability ϵ,

whereas the cluster c) with the highest experimental mean
is greedily selected with probability 1 − ϵ

� Thompson Sampling [50]: according to the original algo-
rithm formulation, each cluster ck is modelled by means of a
Beta distribution ðαck; βckÞ ¼ ð1; 1Þ updated against user
feedback according to the following rule:

c); with probability ð1 − ϵÞ
ci ∼ C; with probability ðϵÞ

�

ð16Þ

ðαck; βckÞ þ ¼ ðrAt1 − rAtÞ with At ≡ ck: ð17Þ

In each round t, all the Beta distributions are sampled, and
the cluster corresponding to the highest value is selected.

� Upper Confidence Bound (UCB) [48]: the cluster with the
highest upper statistical bound is chosen in each round,
adopting an optimistic view which privileges insufficiently
explored clusters. UCB algorithms either select the cluster
with highest experimental mean or highest uncertainty in its
estimate, by choosing At ¼ argmaxck μck þ Boundðck; tÞ for
each round t. Different algorithms adopt distinct upper

TABLE 3 QTC evaluation metrics against our UniPa Smart Campus
dataset

ARI AMI HO CO VM

0.319 0.343 0.446 0.429 0.438

Cluster trajectories

0.1 0.6 0.3
Frequencies

of occurrence

PoIs crowdedness Distance covered crowded

2km 1.5km700m
100 200

Monitoring Agent

800 500

Cluster trajectories

0.5 0.1 0.4
Context-aware

probabilities

F I GURE 4 The Monitoring Infrastructure agent is responsible for the
integration of context information: PoIs' crowdedness and the trajectories'
covered distances are used to refine the extraction probabilities of the
trajectories in the selected cluster, and suggest less congested trajectories
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bounds, which have diverse impacts on the cumulative re-
grets' lower bound of the policy. UCB1 [48] defines its
confidence bound as follows:

UCB1ðck; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αlnðtÞ

ηck

s

; ð18Þ

where α > 0 is an exploration rate. As the number of
rounds increases, the confidence bound of the most per-
formed actions decreases exponentially, which means that we
are more confident about the estimate of their average
reward. In UCB2 [48], the rounds are divided into epochs.
In each new epoch, a single action ak is performed for a
number τðγi þ 1Þ − τðγiÞ of times, where τ is an exponential
function and γk is the number of epochs in which the ak
action was performed. The confidence bound is defined as
follows:

UCB2ðck; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ αÞlnðet
�

τðγiÞÞ
2τðγiÞ

s

; ð19Þ

where τðrÞ ¼ ½ð1þ αÞr�. The novelty of UCB2 as compared to
UCB1 is to ensure that we test the same arm for a significant
amount of time before trying a new one, by also allowing to
periodically take a break from exploitation, in order to re‐
explore the other arms.

Another method, KL‐UCB [51] uses Kullbeck‐Leibler
divergence to compute the upper confidence bound for the
arms, which has been shown to reach a higher cumulative
reward for short time horizon T [52]. The KLUCB confidence
bound is defined as follows:

KLðck; tÞ ¼maxfbμ ∈ ½0; 1�

: kldðμck;t−1; bμÞ ≤ log2ðtÞg ð20Þ

where kldðp; qÞ ¼ p ⋅ logðpqÞ þ ð1 − pÞ ⋅ logð1−p
1−qÞ is the

Kullback‐Leibler divergence [51].
The last approach of the UCB paradigm considered in

this work is the MOSS [53] algorithm. With respect to
UCB1, this method takes into account the number of
previous choices of an arm in formulating its confidence
bound instead of the general number of elapsed rounds.
This ensures a narrower exploration phase. The confi-
dence bound for the MOSS algorithm is defined as
follows:

MOSSðck; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxðlogð Ttηck
Þ; 0Þ

ηck

v
u
u
t

ð21Þ

� Exp3 [54] and Softmax [55]: the cluster pulling chance is
proportional to an exponential function of either its cu-
mulative reward or experimental mean:

pt;ck ¼
expðλσt−1;ckÞ

PK
j¼1expðλσt−1;cjÞ

Exp3

pt;ck ¼
expðλμckÞ

PK
j¼1expðλμcjÞ

Sof tmax

8
>>>>><

>>>>>:

; ð22Þ

where λ > 0 is the learning rate, and
σt;ck ¼

Pt
i¼1rAi with Ai ≡ ck is the cumulative reward for

selecting ck observed until round t.
As will be discussed in Section 4.4, KLUCB achieves the

best values for the considered performance metrics; thus, it is
selected as the MAB policy underneath the Recommendation
Agent.

4 | EXPERIMENTAL EVALUATION

In this section, we discuss the experimental setting for evalu-
ating our proposal, describing the adopted datasets (Sec-
tion 4.1) and performance metrics (Sec.4.2). Then, we perform
preliminary tuning of the hyperparameters underneath the
MAB policies adopted (Section 4.3), and we evaluate the per-
formances of different MAB policies underneath our system's
recommendation agent, by either considering or neglecting the
presence of contextual information (Section 4.4). Finally, we
compare the performances of our method with different state‐
of‐the‐art itinerary recommender systems (Section 4.5).

4.1 | Datasets

In order to assess the effectiveness of our approach, we
exploited 5 public datasets1 of geo‐tagged PoIs selected in
theme parks (Disneyland, Epcot, California Adventure, Disney
Hollywood and Magic Kingdom) [13]. The theme park datasets
exhibit a profit score for the PoIs which represents their
popularity among users. We use this score similarly to the
crowdedness information provided by the monitoring infra-
structure of our system.

Moreover, we also validate our system against a dataset
of mobility traces within a simulated Smart Campus (the
University of Palermo, UniPa) [11]. A smart campus [56, 57] is
a digitally augmented campus where pervasive instrumented
objects and spaces are made responsive to the state of the
environment and its inhabitants. In a smart campus, in addition
to the ubiquity of users' smartphones [58, 59], several other
sensory devices, such as cameras, RFID readers, bluetooth
beacons, and Wireless Sensor Networks collect raw measure-
ments that can be exploited by an intelligent system in order to
reason upon current context and supply advanced services to
users. For these reasons, a smart campus is a great environ-
ment to test trajectories' recommendation applications, since
there are thousands of students who perform various daily

1https://sites.google.com/site/limkwanhui/datacode
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activities within it, and they would benefit from tailored PoIs'
suggestions.

Using synthetic datasets also allows to support the
empirical evaluation of the clustering phase. We simulated the
mobility traces for 150 users during an academic year, each
user having 165 trajectories on average. The dataset contains
54 PoIs belonging to eight different semantic classes present in
the dataset. Basically, each user's PoI transition pattern is
modelled by means of a different fifth order Markov model for
each day of the week. Considering the set of 9 weekly
behavioural features described in 3.1, we evaluated different
clustering quality metrics: the adjusted rand index (ARI) [60]
and adjusted mutual information score (AMI) [61] which
measure the similarity between true labels and predicted labels
assignment; the homogeneity (HO) [62] which measures
whether a cluster contains only members of a single class; the
completeness (CO) [62] which measures the portion of mem-
bers of a given class assigned to the same cluster; and finally,
the v‐measure (VM) [62] which is the harmonic mean between
the Completeness and the Homogeneity measures. As already
mentioned (see Section 3.1), we adopt the Quality Threshold
Clustering (QTC) algorithm, with m¼ 4 (3% of users in the
synthetic dataset) and d ¼ 0:247 (mean value of the inter‐users
distances matrix). With these parameters, QTC extracts 9
clusters of users, achieving the quality metrics values reported
in Table 3. Similar values for HO and CO (0.446 and 0.429,
respectively) suggest that the clustering is not biased towards
errors in mapping every single ground‐truth class of users to a
unique cluster (CO) or viceversa (HO). Positive and similar
values for ARI and AMI (0.319 and 0.343, respectively) point
out howQTC performs well in assigning a cluster to groups of
ground‐truth users of the same dimension (ARI ) and unbal-
anced dimension (AMI ) [63].

The descriptive statistics of all the adopted datasets are
presented in Table 4. All the datasets are preprocessed by
filtering out users with less than 2 distinct trajectories in their
histories. The profiling phase for the theme park datasets cannot
benefit from aweekly computation of themobility features, since
the average number of trajectories per user is included in the
range ½3; 5�. Therefore, for these datasets, we cluster users
considering the feature f 9 as described in Section 3.1 without any
weekly embedding. In particular, QTC extracts the following
number of clusters for the theme park datasets:
Disneyland → 7, Epcot → 7,Calif orniaAdventure → 11,
Disney Hollywood → 10, Magic Kingdom → 7. These re-
sults suggest that even with several hundreds of users contrib-
uting to the trajectories dataset, the differentmobility behaviours
can be traced back to a limited range of general habits.

4.2 | Performance metrics

Since we state the trajectory recommendation as a Reinforce-
ment Learning problem, cumulative reward and regret can be
used to assess the algorithm effectiveness by means of the
Damerau‐Levenshtein similarity between recommended and
followed trajectories, as discussed in Section 3.2. Moreover, the

most common metrics to evaluate trajectory recommendation
systems can be used: precision, recall and f‐score in the scenario
addressed here that can be defined as follows [31].

Let Treal and Trec denote the real‐life and the recom-
mended trajectory, respectively, and let Preal and Prec denote
the set of PoIs in trajectory Treal and Trec, respectively. The
three metrics can be defined as follows:

precision¼
jPreal ∩ Precj

jPrecj

recall ¼
jPreal ∩ Precj

jPrealj

f ‐ score¼ 2 ⋅
precision ⋅ recall
precisionþ recall

ð23Þ

Evaluation is performed for each recommended trajectory
against the ξ most similar (according to the Damerau‐
Levenshtein similarity) trajectories in the current user history
Ht, where ξ is a tunable parameter that we set to 5, given that
the average number of trajectories per user in five of the six
datasets we considered is lower than 5 (see Table 4). A varia-
tion of the leave‐one‐out evaluation is used, where in every
iteration, we consider the current user trajectories history as
test set, and the histories of all the other users as training set.

4.3 | Recommendation agent parameters
tuning

The input parameters of the Multi‐Armed Bandit policies
adopted in this study vary according to the application sce-
nario. For evaluating the performance of the UCB1 algorithm,
the exploration rate has been set as α¼ 2, according to the first
proposal of the method [48]. Conversely, in order to select the
best parameters' values for the ϵ‐greedy, UCB2, Exp3 and
Softmax algorithms, we performed a comparative analysis of
their f ‐ score achieved in different datasets. This evaluation

TABLE 4 Relevant features of the datasets adopted for evaluation

Features

Datasets

(a) (b) (c) (d) (e) (f)

Users 150 1006 584 600 470 886

Trajectories 24,824 5458 2275 2870 1663 3738

Unique trajectories 9653 3880 1547 2078 1174 2771

Average trajectories per user 165 5 3 4 3 4

PoIs 54 30 17 25 13 27

PoIs semantic classes 8 6 5 7 4 7

User‐trajectory matrix sparsity 0.982 0.998 0.997 0.997 0.997 0.998

Note: Users with less than 2 distinct trajectories are removed from the datasets. The
datasets are as follows: (a) UniPa Smart Campus; (b) Disneyland theme park; (c) Epcot
theme park; (d) California Adventure theme park; (e) Disney Hollywood theme park; (f)
Magic Kingdom theme park.
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has been performed by running T ¼ 100 trials for each user of
the six different datasets, considering also the contextual in-
formation. The ϵ parameter in ϵ‐greedy represents the prob-
ability to explore a new cluster; for this reason, we tested values
within a range ½0; 1�. The α parameter in UCB2 controls the
amount of exploration performed by the policy, the higher α
the higher the upper confidence bound for a given cluster, thus
increasing its probability of being explored; we tested the
values within a range ½0:1; 0:9�, as suggested in the original
study [48]. Finally, the learning rate λ in Exp3 and Softmax
controls the focus of the policy on the arm with the largest
cumulative reward and mean, respectively, so that the higher λ
the higher the exploitation phase of the most profitable arm;
also in this case, we verified the values in a range ½0:1; 1�.

The results of these experiments are summarised in
Figure 5, which shows the f ‐ score obtained for the ϵ‐greedy,
UCB2, Exp3 and Softmax policies by varying their input pa-
rameters. Even though slightly different values are obtained in
the different dataset, a common trend can be noticed. In
particular, the best parameter values are those which give more
emphasis to the exploitation phase w.r.t. the exploration phase.
These are values close to 0.1 for ϵ in ϵ‐greedy, and α in UCB2.
On the other hand, values of λ close to 0.9 in Exp3 and

Softmax cause a longer exploitation phase which ensures a
more effective cluster recognition. The same trend will be
confirmed by the results discussed in Section 4.4, since policies
with narrower exploration phases allowed to reach the highest
values for all the considered performance metrics. The values
highlighted in cyan in Figure 5 have been chosen as input
parameters to the respective policies during the experiments
described in the following subsection.

4.4 | Recommendation agent experimental
results

The performances of the recommendation agent were assessed
while varying the selected multi‐armed bandit policies. Since
our system extracts trajectories from clusters according to their
frequency of occurrence, we perform 10 distinct experiments
with T ¼ 100 trials for each user (i.e. 100 trajectories are rec-
ommended to each user) in order to mitigate the effects of
chance on the evaluation. We consider the ðlat; lngÞ pair of the
first PoI in each trajectory as the current position of the cur-
rent user in order to compute the total distance travelled in a
single trajectory.

(a)

(b)

(c)

(d)

F I GURE 5 Multi‐Armed Bandit policies parameters tuning against the six adopted datasets. The bars highlighted in cyan, represent the value chosen for the
corresponding policy
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Generally, considering user context actually improves the
cumulative reward, precision, recall and f‐score for every MAB
policy, while also decreasing the cumulative regret. In partic-
ular, averaging the mean values across all datasets and MAB
policies, taking into account contextual information allows to
achieve mean reward, precision, recall and f‐score score values
of about 51%; 50%; 32%; 52%, respectively, while achieving a
lower regret mean value of about 35%; this suggests that
context information is important in determining the correct
users cluster membership. For our UniPa Smart Campus
dataset, the improvement in considering contextual informa-
tion reflects our simulator implementation [11] where users
typically prefer to reach closer PoIs under the same semantic
class, as suggested in a related research study [49]. The cu-
mulative reward results exhibit a clear lower pattern of values
with respect to precision against the theme park datasets, this is
due to the nature of the Damerau‐Levenshtein similarity
measure employed in our computation of the agents rewards,
as it also takes into account the temporal arrangement of the
PoIs, penalising the asynchronous sequences between recom-
mended and actual trajectories. This aspect is neglected by

precision and recall measures, and the reason why this tem-
poral aspect does not affect our synthetic dataset reward
values is that the high amount of trajectories per users has
given us the opportunity to cluster users with a more fine
grained resolution, taking into account the temporal aspects of
their weekly movement behaviour patterns, as we discussed in
Section 4.1.

In regard to the assessment of the performances of the
MAB policies against the various datasets, Figure 6 sum-
marises cumulative reward and regret, precision, recall and f‐
score values. Each coloured bar represents the mean value of
the corresponding metric, with error bars which show the
95% confidence interval of the mean. The random policy
uniformly pulls every cluster without any heuristics, thus
collecting the lowest performance metrics. The ϵ greedy
policy is the second best performing policy, pointing out
how even with few iterations, the agent is able to assign
high probability to the real cluster of the current user.
Thompson Sampling have a wider exploration stage with
respect to ϵ greedy, thus collecting a slightly lower accuracy.
Amid UCB algorithms, KLUCB has the highest

(b)

(a)

F I GURE 6 Performance metrics of different MAB policies against the adopted datasets. The MAB policies are as follows: (1) Random; (2) ϵ‐ greedy; (3)
Thompson Sampling; (4) UCB1; (5) UCB2; (6) KLUCB; (7) Exp3; (8) Softmax; and (9) MOSS
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performance metrics values, and this is attributable to the
Kullback‐Leibler divergence which significantly increases the
upper confidence bound value for the highest rewarding
cluster, thus narrowing the exploration phase of incorrect
clusters. With regard to policies with exponential pulling
probabilities, Exp3 exhibits higher metrics values with
respect to Softmax, suggesting that focussing on the arms'
experimental means allows for a wider exploitation of the
real users' clusters. Summarising, best performances for the
trajectory recommendation problem with MAB policies are
achieved with KLUCB, and in general, with policies having
narrower exploration phases. This highlights how user
feedback has a high informative value on its cluster mem-
bership and the potentially rewarding trajectories. In light of
these results, we consider KLUCB as the MAB policy
beneath our Recommendation Agent.

4.5 | Comparative analysis

In this section, we compare our approach against three state‐
of‐the‐art itinerary recommendation baselines. In order to
perform a fair comparison, we follow the experimental pro-
tocol described in [13] considering, for each trajectory in the
ground truth, a recommended trajectory that shares the
starting and ending PoIs. For this simulation, we adopt the
KLUCB policy for the recommendation agent as it resulted to
be the most proficient policy (see Section 4.4), we then
consider the travelled distance as contextual information for
the monitoring agent. As baselines, we selected the following
three methods:

� PersQ [13]: uses the Monte Carlo Tree Search method to
find an itinerary maximising the interest of the user
(calculated considering the labels of the PoIs in the training
itineraries), the popularity of the visited PoIs (calculated as
the frequency of visit for all users in the dataset), as well as
minimising the queueing time at the PoIs (calculated start-
ing from the knowledge of how long it takes to make a turn
in the particular attraction);

� IHA [64]: employs a heuristic search algorithm to propose
the itinerary which maximises both user interests and PoIs
popularity, respecting a given user's budget in terms of
travelling duration;

� PersTour [65]: infers user interests from its visit durations
with a comparison to other users, it then employs two
weighting approaches to evaluate the contribution of PoIs
popularity and interest preferences for the active user.

In order to make a clear comparison with the state of the
art, experiments were performed by exploiting the 5 public
datasets discussed so far. Table 5 shows the precision, recall
and f‐score of PersQ [13], IHA [64], PersTour [65], against
our approach. The method we propose exhibits the highest
precision values for all the considered datasets, with an
improvement which ranges from 39:2% to 181:6% with
respect to the baselines. Considering the recall, our method T
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shows an improvement ranging from 1:3% to 116:8%
compared to the other baselines, with the exceptions for the
California Adventure, Disney Hollywood and Magic Kingdom
datasets, where our approach achieved lower recall values
compared to PersQ. However, our approach outperforms
PersQ's in terms of fscore in all the dataset, except Disney
Hollywood. The different results provided by the two ap-
proaches can be explained by analysing the general recom-
mendation paradigm they adopt. In particular, we chose a
collaborative filtering paradigm, meaning that only trajectories
already travelled by other users in the dataset will be rec-
ommended to the current user. Conversely, PersQ belongs
to the content‐based paradigm, meaning that the approach
may propose trajectories never travelled before and which
may be of potential interest for the current user. These
considerations both implies that in our approach, the sug-
gested trajectories will not overfit on the particular current
user's interests (causing lower recall values), and that they
will instead be effectively travelled trajectories coming from
the identified cluster of similar users (causing higher preci-
sion values). Finally, our approach has greater versatility than
other methods, which consists in letting the user cluster
membership change over time based on feedback, and in
overcoming the need for providing the starting and ending
PoIs of the itinerary, which are instead required in PersQ
and IHA.

5 | CONCLUSIONS

In this study, we presented a novel approach for trajectory
recommendation in smart environments. Suggestions are
provided by exploiting two agents that are responsible for the
profiling phase, where users are grouped on the basis of similar
behaviours, and for the recommendation phase, where the
associations between groups and itineraries are computed by
solving a Multi‐Armed Bandit problem. Differently from other
works that are mainly based on geographic features, the pro-
posed system also exploits context information in the form of
travelling distance and crowdedness of PoIs. Moreover, one
major contribution lies in the adoption of the reinforcement
learning paradigm for modelling the trajectory recommenda-
tion problem as a MAB policy, which allows to reduce the
amount of information required from users in order to drive
the collaborative filtering process. We assessed the effec-
tiveness of our approach against six datasets, measuring five
different metrics, and comparing the results with those
achieved by three different state‐of‐the‐art itinerary recom-
mendation methods. The experimental results showed the
importance of context information in providing more rele-
vant recommendations, and the superior accuracy of MAB
policies with narrower exploration phases, for example
KLUCB. The choice of the proper context and its integra-
tion with the MAB policy represent the most critical points
for guaranteeing the effectiveness of the suggestions. Future
work can concern the evaluation of different sources of
contextual information. For instance, assuming the system is

aimed to provide suggestions to the students of a smart
campus, relevant information can be inferred by analysing
the lessons timetable, or considering the activities performed
by friends or colleagues. Moreover, context information can
be exploited directly from the MAB policies beneath our
recommendation agent, using heuristics such as LinUCB [66]
or Exp4 [54].
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