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Abstract
To study heterochromatin distribution differences among tamarins, we applied LINE-1 
probes using fluorescence in situ hybridization onto chromosomes of Saguinus mystax, 
Leontocebus fuscicollis, and Leontopithecus rosalia with the aim to investigate possi-
ble evolutionary implications. LINE-1 repeats were shown to be involved in genome 
architecture and in the occurrence of chromosomal rearrangements in many verte-
brates. We found bright LINE-1 probe signals at centromeric or pericentromeric areas, 
GC rich, on almost all chromosomes in three tamarin species. We also found non-
centromeric signals along chromosome arms. In a phylogenetic perspective, we ana-
lyzed the pattern of LINE-1 distribution considering human chromosomal homologies 
and C banding patterns. Our data indicate that LINE-1 centromeric expansions and 
accumulation presumably arose in a common tamarin ancestor and that the presence 
of LINE-1 at the junction of human chromosome associations is presumably linked to 
interchromosomal rearrangements. For example, we found bright centromeric signals 
as well as non-centromeric signals on chromosomes 1 and 2, in all species analyzed, 
in correspondence to human chromosome associations 13/9/22 and 20/17/13, which 
are synapomorphic for all tamarins. Furthermore, we found other faint signals that 
could be apomorphisms linked both to intrachromosomal rearrangements as well as 
to retro-transposition events. Our results confirm that the three species have similar 
karyotypes but small differences in LINE-1 and heterochromatin amplification and 
distribution; in particular on chromosome pairs 19–22, where we show the occur-
rence of small inversions, in agreement with previous classic cytogenetic hypotheses.
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Astratto
Per studiare la distribuzione dell'eterocromatina nei tamarini, si è applicata la sonda 
LINE-1 mediante l'ibridazione in situ fluorescente sui cromosomi di Saguinus mystax, 
Leontocebus fuscicollis e Leontopithecus rosalia con l'obiettivo di indagare sulle loro 
possibili implicazioni evolutive. È stato, infatti, dimostrato che le ripetizioni di LINE-1 
sono coinvolte nell'architettura del genoma e nella comparsa di riarrangiamenti 
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1  |  INTRODUC TION

Tamarins (Saguinus, Leontopithecus), along with marmosets (Callithrix, 
Cebuella), are New World monkeys (Platyrrhini), members of the 
Callitrichinae subfamily of the Cebidae family (Rylands et al., 2016). 
In Callitrichinae, the traditionally proposed divergence starts with 
Saguinus genus followed by Leontopithecus, Callimico, Callithrix, Mico, 
and Cebuella, in agreement with the phyletic dwarfism hypothesis. 
This hypothesis proposes an evolutionary trend from larger-sized 
ancestral forms to the smallest platyrrhines, which are the most de-
rived (Perelman et al., 2011).

Through morphology as well as cytogenetic and molecular ev-
idence (Matauschek et al., 2011), it has been recently proposed to 
divide Saguinus group into two genera: the small-bodied group of 
tamarins into the genus Leontocebus and the large-bodied group of 
tamarins into the genus Saguinus.

Heterochromatin, including repetitive DNA such as telomeric or 
rDNA sequences as well as Long Interspersed Elements (LINEs), has 
been extensively investigated in order to clarify their possible role in 
genome evolution and organization (Ahmed & Liang, 2012; Biscotti 
et al., 2015; Dumas et al., 2016; Mazzoleni et al., 2017, 2018; Paço 
et al., 2019). In primates, repetitive sequences (TEs) constitute about 
50% of their genome and are linked to chromosome evolution (Jurka 
et al., 2007; Kvikstad & Makova, 2010; Xing et al., 2007). Among TEs, 
transposable elements of the family LINE-1 are the most abundant 
TEs in Primates and mammalian genomes (Boissinot & Furano, 2001; 
Richardson et al., 2015).

Molecular cytogenetic studies through chromosomal mapping 
of LINE-1 show different distribution patterns with the consensus 
target site for insertion enriched with adenine and thymine (AT-rich), 
although active elements do not preferentially insert themselves 

in specific genomic regions in mammals (Ovchinnikov et al., 2001; 
Waters et al., 2004) and few other species accumulate these ele-
ments preferentially in centromeres (Bulazel et al., 2006; Carbone 
et al., 2012; Kapitonov et al., 1998; Waters et al., 2004). The bio-
logical role of this repetitive DNA fraction has been linked to ge-
nome structure, evolution, and disease (Dobigny et al., 2017; Klein & 
O’Neill, 2018): it is involved in genome architecture, including DNA 
packaging, centromere stability and plasticity, gene expression, and 
epigenetic mechanisms (Cridland et al., 2014; Garagna et al., 1997; 
Kim & Han, 2015); these sequences promote genomic evolution-
ary changes and biological diversity among vertebrates, possibly 
playing an important role in speciation (Böhne et al., 2008); indeed, 
TEs have been found in chromosomal breakpoint regions, strongly 
suggesting that they work as a driving force in the occurrence of 
chromosomal rearrangements (Belyayev, 2014; Gray, 2000; Paço 
et al., 2015).

Despite their significant incidence, distribution patterns of TEs 
on primate chromosomes have been poorly investigated. In the be-
ginning, LINEs-1 were studied using different approaches, including 
the use of restriction enzymes or whole-genome screening; LINEs-1 
were used, respectively, to infer a close phylogenetic link (Seuanez 
et al., 1989) and a burst of these sequences in simians (Ohshima 
et al., 2003). In anthropoids including humans, LINE-1 sequence 
comparisons permitted to group them into subfamilies with a high 
rate of amplification (Boissinot & Furano et al., 2001; Ovchinnikov 
et al., 2002). Other studies suggest that rates of LINE-1 amplification 
differ substantially between the Homo and Pan lineages, indicating 
that LINE-1 amplification may have changed rapidly during primate 
evolution (Mathews et al., 2003). LINE activity has also been shown 
in Saimiri, Saguinus (Callitrichinae, Platyrrhini), and Ateles lineages 
(Boissinot et al., 2004; Sookdeo et al., 2018).

cromosomici in molti vertebrati. Si sono riscontrati segnali luminosi della sonda LINE-1 
nelle aree centromeriche o pericentromeriche, ricche di GC, su quasi tutti i cromosomi 
in tre specie in analisi ed anche segnali non centromerici lungo i bracci dei cromosomi. 
In una prospettiva filogenetica, si è analizzato il “pattern” di distribuzione delle LINE-1 
considerando le omologie cromosomiche umane e i bandeggi. I dati ottenuti indicano 
che le espansioni centromeriche e l'accumulo di LINE-1 sono sorte presumibilmente 
in un antenato comune dei tamarini o di tutti i primati e che la presenza di LINE-1 alla 
giunzione delle associazioni cromosomiche umane è presumibilmente legata ai riar-
rangiamenti intercromosomici nei tamarini. Ad esempio, i segnali centromerici non 
centromerici sui cromosomi 1 e 2, in tutte le specie analizzate, sono in corrispondenza 
delle associazioni cromosomiche umane 13/9/22 e 20/17/13, che sono sinapomorfiche 
per tutti i tamarini. Inoltre, sono stati evidenziati altri deboli segnali che potrebbero 
essere apomorfismi legati sia a riarrangiamenti intracromosomici che a eventi di ret-
rotrasposizione. I risultati confermano che le tre specie hanno cariotipi simili ma con 
piccole differenze nell'amplificazione e distribuzione di LINE-1 e dell’eterocromatina; 
in particolare sulle coppie cromosomiche 19-22, dove si dimostrano il verificarsi di pic-
cole inversioni, in accordo con le precedenti ipotesi citogenetiche classiche.
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In this perspective considering LINE pattern variation, we char-
acterized the karyotype of representative species of tamarins, 
Saguinus mystax (Spix, 1803), Leontocebus fuscicollis (Spix, 1823), and 
Leontopithecus rosalia (Linnaeus, 1766), through C banding and fluo-
rescence in situ hybridization (FISH) of the LINE-1 sequence probes 
with the aim to investigate possible evolutionary implications.

Molecular cytogenetic studies by FISH with human probes 
permitted to show no interchromosomal rearrangements in rep-
resentative species from Saguinus and Leontopithecus genera 
(Gerbault-Serreau et al., 2004; Neusser et al., 2001). On the other 
hand, intrachromosomal rearrangements have been suggested in 
part by classic G banding (Nagamachi et al., 1997, 1999) and also by 
analyses of single locus or BAC probe mapping on tamarins (Dumas 
& Sineo, 2012, 2014; Dumas et al., 2015; Scardino, Milioto, et al., 
2020); indeed inversions, as well as variations in the size and distri-
bution of heterochromatic blocks, are the major cytogenetic differ-
ences among tamarin karyotypes.

2  |  MATERIAL S AND METHODS

Following the standard protocol (Small et al., 1985), metaphases 
were obtained from fibroblast cell line cultures, from one individual 
each of: S. mystax (Spix, 1803), L. fuscicollis (Spix, 1823), and L. rosalia 
(Linnaeus, 1766), as detailed in Table 1.

The metaphases obtained through cell culture and chromosome 
harvesting were stained before and after FISH using CMA3 (staining 
GC-rich region) and DAPI (staining AT-rich region) according to a re-
cent protocol, with some adjustments (Lemskaya et al., 2018).

DNA extraction from the cell culture pellet derived from 
the fibroblast cell line was done according to the basic DNA ex-
traction protocol from Invitrogen. The LINE-1 retrotransposon 
was amplified through Polymerase Chain Reaction (PCR) using the 
following primers: L1R, 5′-ATTCTRTTC CAT TGG TCT A-3′ and 
L1F 5′-CCA TGC TCATSGAT TGG −3′ (Waters et al., 2004), and 
200 ng of the genomic DNA was amplified in 50 μl reactions using 
an Applied Biosystems SimpliAmp Thermo Cycler (Thermo Fisher 
Scientific); products were visualized on 1% agarose gel. The PCR 
amplification products were labeled through Nick translation using 
11-dUTP-Fluorescein.

FISH was performed following previously described protocols 
(Dumas et al., 2012; Milioto et al., 2019; Scardino, Mazzoleni, et al., 
2020; Vizzini et al., 2021); C banding was done sequentially, post-
FISH, according to a protocol which includes denaturation with for-
mamide (Fernàndez et al., 2002).

DAPI images were inverted with a photo editing program (Adobe 
Photoshop) ad karyotypes reconstructed; inverted gray bands 
generally correspond to dark G bands; indeed, comparing pub-
lished karyotypes for L. fuscicollis and S. my stax (Dantas & Barros, 
1997; Nagamachi et al., 1997, 1999) and Leontopithecus (Gerbault-
Serreau et al., 2004; Nagamachi et al., 1999) with our inverted 
DAPI banding, we showed that they correspond. The chromosomes 
with the LINE-1 probe signals were identified using inverted DAPI. 
Homologies with human chromosomes were taken into account 
by extrapolating painting data for Saguinus oedipus (Neusser et al., 
2001) and Leontopithecus chrysomelas (Gerbault-Serreau et al., 2004) 
which have been shown to have the same karyotype as the analyzed 
species.

After FISH, the metaphases were analyzed under a Zeiss Axio2 
epifluorescence microscope coupled with a Zeiss digital camera.

3  |  RESULTS AND DISCUSSION

All species studied here have the same diploid number of 2n = 46, with 
almost the same sets of chromosomes: two small metacentric pairs (4–
5); 13 pairs of submetacentric chromosomes (1–3 and 6–15); three small 
variable pairs (16–18) that are either acrocentric or bi-armed, and which 
also show heteromorphism; four pairs (19–22) that are subtelocentric in 
all three species but they show differences in their p arm size, which is 
short in S. mystax and L. fuscicollis, but longer in L. rosalia. The X chromo-
some in all three species has the standard submetacentric morphology 
and the G banding of the eutherian X; the Y chromosome is acrocentric 
in S. mystax and very large in L. rosalia, whereas it is metacentric/sub-
metacentric and very poorly defined in L. fuscicollis (Figure 1).

The post-FISH C banding pattern we obtained was in agreement 
with previously published ones obtained through classical methods 
(Dantas & Barros, 1997; Nagamachi et al., 1997): positive C bands 
are at centromeres on both bi-armed and acrocentric chromosomes 
in S. mystax and, additionally, they were found at the telomeric areas 
of p arms on submetacentric autosomes 2, 3, 6, 8–15 in L. fuscicollis 
and Leontopithecus. Furthermore, in the former species, subtelocen-
tric pairs 16–22 have very small p arms enriched in heterochromatin 
while Leontopithecus chromosome pairs 16–22 have a bigger p arm 
with distal parts enriched of C bands (Figure 4) in agreement with 
the previous C pattern study (Nagamachi et al., 1997).

In general, many mammalian species have deposits of this LINE-1 
element in euchromatic regions in G-positive bands, for example on 
some autosomes and on the X chromosome, where they are usually 
abundant along the chromosomal length (Acosta et al., 2008; Parish 

TA B L E  1  Species of the family Cebidae (subfamily Callitrichinae) and fibroblast cell lines used in this study

Latin name/common name Code Sample/cell line acknowledgement

Saguinus mystax/Moustached Tamarin SMY Melody Roelker-Parker (Leidos, NCI, USA); June Bellizzi and Richard Hahn (Catoctin 
Zoo, MD, USA)Leontocebus fuscicollis/Saddleback Tamarin LFU

Leontopithecus rosalia/Golden Lion Tamarin LRO Stephen O’Brien (Laboratory of Genomic Diversity, National Cancer Institute, 
Frederick MD, USA)
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et al., 2002; Waters et al., 2004), while in other species, it occurs 
in heterochromatic regions, especially in the centromeric regions 
(Waters et al., 2004). In our work, we found both of these patterns 
since, in addition to massive centromeric blocks, hybridization sig-
nals were observed at non-centromeric region (Figures 1 and 2); the 
results obtained are summarized in ideograms (Figure 3).

3.1  |  LINE-1 distribution at centromeres

Although the absence of LINE-1 signals in centromeres is often re-
ported, for example, in rodent species (Acosta et al., 2008; Dobigny 
et al., 2004; Vieira-da-Silva et al., 2016) or other taxa, including xe-
narthrans, afrotherians and ungulates (de Sotero-Caio et al., 2017; 
Dobigny et al., 2006; Waters et al., 2004), we have shown a massive 
accumulation of LINE-1 elements in CMA3 GC-rich bands in the cen-
tromeres of the three tamarin species on both bi-armed and acro-
centric chromosomes co-localizing with heterochromatin (Figures 1 
and 4), in agreement with what was previously shown in many other 
mammals, such as bats, some rodents, and other Saguinus species 
(de Sotero-Caio et al., 2017; Paço et al., 2019; Serfaty et al., 2017). 
Indeed, LINE-1 has been previously mapped at centromeres on 
other Saguinus species such as S. midas (Linnaeus, 1758) and S. bi-
colour (Spix, 1823) (Serfaty et al., 2017). These signals’ location is in 
contrast to results describing a preference for the accumulation of 
this element in AT-rich G band regions in other mammals (Korenberg 
& Rykowski, 1988). The finding of the centromeric enrichment of 
LINEs in all the analyzed species indicates that this accumulation 
may have occurred early in the radiation of the group, in the com-
mon ancestor of all tamarins or in all Platyrrhini; LINEs are linked to 
the inter-chromosome rearrangements characterizing the group and 
contributing to the current features of the tamarin karyotype, which 
is considered to be conservative.

Furthermore, we show the C positive bands on the 16–22 ho-
mologues in L. fuscicollis and Leontopithecu rosalia clearly overlap-
ping with LINE-1 amplified signals (Figures 1b,c, 3, and 4); however, 
the comparison of the LINE-1 localization patterns on these ho-
mologues among species reveals a different distribution of repet-
itive sequences respectively on the q and p arms in L.  fuscicollis 
and L. rosalia, presumably due to the occurrence of amplifications 
and inversions that could have dislocated both the repetitive se-
quences from a q arm position to a p arm position, where both 
sequences show a double band in Leontopithecus (Figures  3 and 
4). This evidence explains the different morphology of these p 
arms among tamarin species in agreement with the different DAPI 
inverted banding pattern and the previously C, G banding and 

F I G U R E  1  (a–c) Haploid species karyotypes; from the center 
to the sides chromosomes with inverted DAPI (black and white); 
CMA3/DAPI staining (yellow/blue); inverted CMA3/DAPI staining 
(C bands post-FISH); LINE probe signals (green). Red asterisks 
indicate LINE-1-enriched areas

(c)

(a)

(b)
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rDNA probe mapping of these species (Gerbault-Serreau et al., 
2004; Nagamachi et al., 1997); indeed, rDNA loci map on the 
chromosomes 19–22 in the q arms in Saguinus while on p arms in 
Leontopithecus.

3.2  |  LINE-1 in non-centromeric position

We also found non-centromeric LINE-1 signals along chromosomal 
arms (Figures 1–3), in agreement with what was previously observed 
in other groups (de Sotero-Caio et al., 2017; Kapitonov et al., 1998; 
Paço et al., 2015; Rebuzzini et al., 2009; Serfaty et al., 2017).

LINE mapping on the X chromosome of tamarins confirms the 
evidence of abundant LINE distribution along the X from other eu-
therian orders (Acosta et al., 2008; Waters et al., 2004). Further, 
we also observed some fainter signals at non-centromeric positions 
in euchromatic regions either in DAPI-positive bands or in CMA3-
positive regions (Figure  1). The localization of LINE-1 in CMA3-
positive areas is in accordance with other studies, suggesting that 
young and active elements do not preferentially insert themselves 
in specific AT-rich genomic regions (Ovchinnikov et al., 2001; 
Waters et al., 2004). These LINE-1 signals found along chromo-
somes at non-centromeric regions, through a comparison with the 

human chromosomal homologies reported for S.  oedipus (Neusser 
et al., 2001) and L. chrysomelas (Gerbault-Serreau et al., 2004), led 
us to hypothesize that these repetitive elements may be located 
in breakpoint regions at the junction of human syntenic blocks; 
these elements may be linked to ancestral fusion events, correlated 
to the rise of the tamarin lineage, and in agreement with previous 
evidence about the link between LINE-1 location and evolutionary 
rearrangements (Bulazel et al., 2007; Paço et al., 2015). For exam-
ple, we found bright centromeric signals as well as non-centromeric 
signals on chromosomes 1 and 2, in all tamarin species here analyzed 
(Figures  1a–c and 3); those chromosomes correspond to human 
chromosome associations 13/9/22 and 20/17/13 (Gerbault-Serreau 
et al., 2004; Neusser et al., 2001), which are synapomorphic for all 
tamarins (De Oliveira et al., 2012; Dumas & Mazzoleni, 2017); the 
LINE-1 localization pattern appears to correspond to junction areas 
of human syntenic blocks (Figure  3), supporting the previous hy-
pothesis (Bulazel et al., 2007; Paço et al., 2015).

An additional LINE-1 probe signal is present on chromosome 
pair 4 in a DAPI-positive region with no C bands on the distal p 
arm of S.  mystax (Figures  1a, 3, and 4). This evidence is in agree-
ment with LINE-1 signals found on the homologues of chromosome 
4 in S. midas and S. bicolour (Serfaty et al., 2017), and presumably 
representing a synapomorphic feature. Chromosome 4 of Saguinus 

F I G U R E  2  (a–c) In situ hybridization of LINE-1 probe onto mitotic metaphases of tamarins. The LINE-1 probe localization pattern (green); 
below are the same metaphase spreads with DAPI stain (blue)
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F I G U R E  4  Haploid C/DAPI inverted karyotypes of Leontocebus fuscicollis, Saguinus mystax, and Leontopithecus rosalia. From left to right: C 
and DAPI inverted chromosomes for each pair; dark regions correspond to constitutive heterochromatin blocks/DAPI bands, respectively

F I G U R E  3  The three species ideograms with the haploid set of chromosomes showing the localization of LINE-1: (numbers and 
bars indicate human syntenies at the left of chromosomes); note LINE on chromosome pairs 16–22 (in the box), on chromosome 4 in 
Saguinus mystax, on pair 14 in Leontopithecus (in light blue box), and on chromosomes 3, 6 in Leontocebus
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corresponds with the human ancestral primate association 3/21 
(Gerbault-Serreau et al., 2004; Neusser et al., 2001) that among tam-
arins has been shown to be prone to inversions. Thus, the evidence 
of LINE-1 on the distal p arm of S. mystax chromosome 4 could be 
linked to the inversion affecting this ancestral primate association, 
dislocating a fragment of the LINE-1 centromeric original sequences 
to the terminal position (Figure 3).

Another case in which the signal is not present at the centromere 
occurs on chromosome 14 in Leontopithecus; two other faint non-
centromeric signals are along arms, one bright signal is at the distal p 
arm and the second is interstitial on the q arm (Figures 1c and 3); this 
pattern could be explained as the result of a previously hypothesized 
apomorphic inversion which characterized L.  rosalia (Nagamachi 
et al., 1997) and that we confirm at the molecular level.

Some other small differences are presumably species-specific 
apomorphic features supporting the hypothesis that LINE-1 distribu-
tion across chromosomes could also have a species-specific pattern 
(Vieira-da-Silva et al., 2016; Waters et al., 2004); such as for example, 
LINE signals on chromosome 3 and 6 in Leontocebus (Figures 1b and 3).

4  |  CONCLUSIONS

Tamarins show centromeric and pericentromeric regions enriched 
with LINE-1 sequences when compared to other mammals; this 
evidence let us to hypothesized they contributed to the karyotype 
evolution of tamarins. Our data analysis in a phylogenetic frame-
work suggests that LINE-1 is closely linked to rearrangements; some 
LINEs represents a synapomorphisms in tamarins while other LINE 
signals are apomorphisms.
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