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Abstract
The paper proposes a spatio-temporal process that improves the assessment of

events in space and time, considering a contagion model (branching process) within

a regression-like framework to take covariates into account. The proposed approach

develops the forward likelihood for prediction method for estimating the ETAS

model, including covariates in the model specification of the epidemic component.

A simulation study is carried out for analysing the misspecification model effect

under several scenarios. Also an application to the Italian seismic catalogue is

reported, together with the reference to the developed R package.

Keywords Space-time point processes � ETAS model � R package

for seismic data � Covariates

1 Introduction

Contagious phenomena are well described in space and time by self-exciting point

processes, such that the conditional intensity function is obtained as the sum of the

long-term variation component (the so-called endemic) and the short-term variation

one (the epidemic part). This kind of models have been widely used in the literature:

infectious disease (Paul et al. 2008; Paul and Held 2011; Meyer et al. 2012, 2017),

crime (Mohler et al. 2011), quakes (Ogata 1998; Adelfio and Chiodi 2009; Adelfio

and Ogata 2010; Adelfio and Chiodi 2015a; Zhuang et al. 2002). To model

earthquake activity in space and time accounting both for the endemic (background

activity) and epidemic (aftershocks) effect, the Epidemic-Type Aftershock

Sequences (ETAS) model (Ogata 1988, 1998) is widely used, describing events

starting from their space-time coordinates (and magnitude as mark) and
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incorporating seismological laws in a mechanistic approach, as a natural approach

in the context of earthquake data.

In this paper, we aim at providing an improved framework for further

computational and theoretical development of the study and the description of

epidemic phenomena. In particular, extending the model formulation proposed by

Meyer et al. (2012) in the context of infectious disease transmission, we suggest the

use of a specific branching-type model for earthquake description (the ETAS model)

in a regression-oriented version modelling, accounting also for external covariates,

expected to explain some of the overall variability of the studied phenomenon and

lead to a decrease in the unpredictable variability. We apply the Forward Likelihood

for prediction (FLP) method (Chiodi and Adelfio 2011) for estimating the ETAS

model components, also introducing a covariate vector for the epidemic part, crucial

for a more realistic description of the observed activity. Indeed from previous

studies (e.g., Adelfio and Chiodi 2015b) on the basis of the diagnostic results, the

need of a more flexible model for the triggered component of the ETAS model

revealed, noticing that even if the background seismicity is well described by the

FLP estimated intensity, at least if compared with existing methods, something is

still missing in the description of the space-time triggered part. In our opinion,

considering external information (such as geological information related to faults

distribution) for the description of spatio-temporal earthquakes could be a promising

direction of study for this field of research.

Previous studies tried to incorporate the external information in the self-exciting

model: Meyer et al. (2012) proposes a model for the epidemic forecast with a linear

predictor, where background function is composed of a function of population

density and of a vector of covariates; Schoenberg (2016) proposed an application to

southern California earthquake forecasting using weather data as an additive

component; Reinhart and Greenhouse (2018) incorporate piecewise constant

covariates only for the background component of the model.

In the survival analysis, an example of such two-component temporal point

process regression modelling for independent individuals is the additive-multi-

plicative model (Lin and Ying 1995; Sasieni 1996), such that the conditional

intensity consist of additive endemic (the risk of infection from external sources,

independent of the past) and epidemic components (individual-to-individual

transmission of the disease and thus depends on the internal history of the process).

In these models, the endemic risk can be expressed as a function of external

covariates, introduced as a multiplicative function (Höhle 2009; Martinussen and

Scheike 2002).

In this paper, using the terminology of the survival analysis, we propose a more

general additive-multiplicative model for the conditional intensity function of a

space-time self-exciting point process with covariates which may vary also

continuously in space, incorporating their effect in the triggering effect, using the

FLP approach as in Chiodi and Adelfio (2017b) for the estimation of the background

intensity. The methodology here proposed can be extended in any context, different

from the original seismic one, e.g., the credit risk one, where there is a contagious

effect of the previous history in space and time, together with specific covariates,
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such as macroeconomic characteristics of the considered countries, as in Adelfio

et al. (2018).

This paper is organized as follows. In Sect. 2 the theoretical background is

defined, recalling some basic theory of space-time point processes and the ETAS

model. In Sect. 3, the proposed extension of the ETAS model with the inclusion of

covariates is provided. A simulation study with several scenarios is carried out to

assess the performance of the proposed method (see Sect. 4). Finally, we present a

seismic application, where external variables with respect to the usual event’s

coordinates may provide information for the description of the seismic activity of

the defined area. Section 6 is devoted to conclusive remarks.

2 Point processes and ETAS model

A spatial-temporal point process is a random collection of points, whose realisations

consists of a finite or a countably infinite set of points in a space-time domain. We

consider a spatio-temporal point process with no multiple points as a random

countable subset X of Rd�1 � R, where a point ðs; tÞ 2 X corresponds to an event at

s 2 Rd�1 occurring at time t 2 R. We observe n events fðsi; tiÞgni¼1 of distinct points

of X occurring in n distinct times ftigni¼1 within a bounded spatio-temporal region

W � T � Rd�1 � R, with volume jW j[ 0, and with length jT j[ 0 where n� 0 is

not fixed in advance (for more details see Diggle 2013).

A spatial-temporal point process is uniquely characterized by its associated

conditional intensity function (CIF), khðt; sjHtÞ, (Daley and Vere-Jones 2003) i.e.,

the instantaneous rate or hazard for events at time t and location s given all the

observations up to time t, conditioning on the random past history of the process.

Let N(B) denote the number of events of the process falling in a bounded region

B � W � T . A completely stationary spatio-temporal point process has a constant

intensity k, defined as k ¼ E½NðBÞ�, i.e., k is the mean number of points per unit

volume and unit time (Illian et al. 2008).

To model events that are clustered together, self-exciting point processes are

often used. These models are used mainly to describe earthquakes characteristics,

assuming that the occurrence of an event increases the probability of occurrence of

other events in time and space. The Hawkes model (Hawkes and Adamopoulos

1973) and the ETAS model (Ogata 1988) are examples of self-exciting point

processes.

The self-exciting process can be interpreted as a generalized Poisson cluster

process associating to centres, of rate k, a branching process of descendants. This

kind of models are used to model reproduction phenomena and have been recently

considered for the description of different applicative fields: biology (Caron-

Lormier et al. 2006), demography (Johnson and Taylor 2008), epidemiology

(Becker 1977; Balderama et al. 2012). According to a branching structure, the

conditional intensity function of the self-exciting model is defined as the sum of a

term describing the large-time scale variation (spontaneous activity or background,

generally assumed homogeneous in time but not in space) and one relative to the
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small-time scale variation due to the interaction with the events in the past (induced

or triggered activity):

khðt; sjHtÞ ¼ lf ðsÞ þ
X

tj\t

m/ðt � tj; s� sjÞ ð1Þ

with Ht the past history of the process, h ¼ ð/; lÞ0, the vector of parameters of the

induced intensity (/) together with the parameter of the background general

intensity (l), f ðsÞ the spatial density and m/ð�Þ the spatial-temporal triggered

density.

The triggering component of the model essentially provides a description of the

intensity at a space-time location ðt; sÞ induced by each previous event, as a function

of the spatial distances s� sj and temporal lags t � tj, 8j. In a clustered process, m/
is a decreasing function of s� sj and t � tj.

Simultaneously estimating the different components of the intensity function

(large-time scale and small-time scale) in (1) is a main issue. If the large-time scale

component lf ðsÞ is known, the parameters / can be usually estimated by the

Maximum Likelihood method. In applications, the large-time scale component

lf ðsÞ is usually estimated through nonparametric techniques, like kernel estimators.

As introduced above, a branching process for earthquake description, widely

used in seismological context, is the Epidemic Type Aftershocks-Sequences

(ETAS) model (Ogata 1988, 1998). The ETAS conditional intensity function can be

written, starting from model (1), as follows:

khðt; sjHtÞ ¼ lf ðsÞ þ
X

tj\t

j0 exp ðaðmj � m0ÞÞ
ðt � tj þ cÞp ðs� sjÞ2 þ d

n o�q

ð2Þ

The aftershock/induced component is the product of the density of aftershocks in

time, i.e., the Omori law, representing the occurrence rate of aftershocks at time t,
following the earthquake of time tj and magnitude mj, and the density of aftershocks

in space. In particular, mj is the magnitude of the j-th event and m0 the threshold

magnitude, that is, the lower bound for which earthquakes with higher values of

magnitude are surely recorded in the catalogue, j0 is a normalizing constant,

c and p are characteristic parameters of the seismic activity of the given region; p is

useful for characterizing the pattern of seismicity, indicating the decay rate of

aftershocks in time; d and q are two parameters related to the spatial influence of the

mainshock. a is related to the expected number of offsprings generated by a single

event, which is proportional to j0 expfaðmj � m0Þg.
For providing a simultaneous estimation of the background intensity and the

triggered intensity components of an Epidemic-type model, in a previous paper, we

developed the FLP approach (Adelfio and Chiodi 2015a). It is a nonparametric

estimation procedure based on the subsequent increments of the log-likelihood

obtained adding an observation one at a time, to account for the information of the

observations until tk on the next one. This approach allows the estimation of

smoothing constants to get a reliable kernel estimate of the background intensity.

The simultaneous estimation of the two parametric components of a branching-type
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model alternating the standard parametric likelihood method with the FLP approach

is here denoted by ETAS-FLP. Given the lack of specific open-source tools, the

package etasFLP (Chiodi and Adelfio 2017a, b) provides tools to implement this

mixed approach for a wide class of ETAS models for the description of seismic

events, developed in a R environment.

In the provided methodology, the kernel background estimation is improved by

weighting observations according to weights qi, given by the ratio between the

background and total intensity, for each observed event occurred at time ti in

location si, according to the following relationship:

q̂i ¼
l̂f̂ ðsiÞ

k
ĥ
ðti; sijHtÞ

ð3Þ

The quantity in Eq. (3) also gives an estimate of the probability that the i-th event Ei

has been generated by the background component of the process.

3 The ETAS model with covariates

In this paper, we propose an additive-multiplicative model for the conditional

intensity function of a space-time point process defined in ½0; T � �W � R3; T [ 0,

in the classical ETAS model framework.

In the ETAS model defined in (2), the expected number of offsprings generated

by a single event is related to the magnitude of generating events, i.e.,

j0 expfaðmj � m0Þg. In this paper, we make it possible to include other covariates,

besides the magnitude, related to every single event. Starting from the definition

provided in Eq. (1), we propose to modify its additive formulation (sum of the

‘‘endemic’’ and ‘‘epidemic’’ parts), considering the offspring component in a novel

regression view, that is, accounting for a vector of covariates. For interpretation

convenience, in our proposal, we model covariates of the ETAS model as in a GLM

framework, such that gj is a classical linear predictor given by gj ¼ b0zj, where zj is

the vector of covariates observed for the j-th event and b is a vector of unknown

parameters. This choice makes the methodology simple and easily extensible for

any general linear predictor g.
As proposed by Meyer et al. (2012) in a context of infection occurrences, we

incorporate the space-time phenomenological laws of the triggering part of ETAS

model with the effects of covariates.

This triggering function is factorized into separate effects of marks, time, and

relative location:

k~hðt; sjHtÞ ¼ lf ðsÞ þ
X

tj\t

j0 expðgjÞ
ðt � tj þ cÞp ðs� sjÞ2 þ d

n o�q

ð4Þ

where ðtj; sjÞ is the time and location of individual occurrence j, gj ¼ b0Zj is a linear

predictor, with Zj the external known covariate vector, including the magnitude

(usually coinciding with the first covariate), acting in a multiplicative fashion on the
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base risk and ~h ¼ ðl;j0; c; p; d; q; bÞ0, with b a k-components vector, to be

estimated.

More in details, in the usual ETAS model, k ¼ 1, Zj1 ¼ mj � m0; and b1 ¼ a. In
this model formulation, for an easier correspondence with the ETAS parametriza-

tion, in the b vector an intercept term is not included, because of the presence of the

parameter j0 in the model.

In the seismic context, this extension would provide a more general formalism

for the earthquake occurrence in space and time. Indeed, the main idea is that the

effect on the future activity depends not only on the closeness of the previous

events, but also on other characteristics of the main event, like magnitude, as usual,

and also quadratic components like ðmj � m0Þ2, or the geometric distance from the

generating faults, or other geological sources.

The extended version of the package etasFLP v. 2.0 for generalized offspring

component is going to appear into the CRAN (Chiodi and Adelfio 2020). Indeed, the

introduction of a general linear predictor did not introduce serious computational or

theoretical difficulties, since b has been estimated with the parametric component in

the etasFLP algorithm using the semi-parametric FLP approach.

4 Simulation study

The accuracy of the ETAS-FLP model with covariates can be evaluated under

various conditions using simulations. In particular, we aim to assess the

misspecification model effect, that is the properties of estimators of an ETAS

model when the estimated linear predictor gj is different from the real one.

Specifically, we consider the case where an ETAS model is simulated in the

presence of some covariate (as in Eq. 4) and then for each simulation the model is

estimated by the proposed approach as though the covariates were completely

ignored and compared with the estimation under the correct model. The issue is

whether the parameters of the ETAS model can be accurately estimated though the

model is misspecified.

Indeed, inferential theoretical results for the proposed model are quite difficult to

perform, since properties of the sampling distribution of the estimated quantities in

the ETAS model are not known, but asymptotic general results are known (Ogata

1978; Rathbun 1996). Furthermore, in observed seismic catalogues, the presence of

the nonparametric estimation of the background seismicity represents a further

complication for the study of the parametric component properties.

In this section, we provide results of a simulation study for describing the

properties of the estimators of the ETAS model parameters. However, this study

holds under some assumptions, and a reasonable set of true values of the

parameters. For example, the choice of the values of the parameters l; j0; c; p; d; q
for the model with intensity in (4) could be an issue, since their influence is not

separable from the one of g; specifically the choice of l; j0 influences the ratio

between the background events (i.e., Poisson-like) and the triggered ones (i.e the

clustered events).
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Concerning the background intensity, in our simulations we assume a constant

intensity, proportional to l, such that in our parametrization, the expected number of

events in a given region is EðNÞ ¼ lDt, avoiding the influence of the estimation of

the spatial background intensity. For the choice of l; j0; c; p; d; q, we use values

close to those estimated for the Italian catalogue of the seismic events of magnitude

greater than 2.5 (used in Sect. 5), assuming a constant background intensity,

although this hypothesis may be unrealistic for the given area. However, different

values of j0 are used to assess the effect of different weights of the aftershock

component.

In the linear predictor g we consider two covariates: the first covariate is always

the magnitude, while the second covariate is an artificial variable generated in two

different ways:

(a) a geometrical choice, in which the covariate associated to each event is the

distance of the event from the main diagonal of the space region, as it were a

seismic fault;

(b) a random choice, in which the covariate is the square of a standard normal

random number.

In all considered scenarios, magnitudes are obtained generating random numbers

from a Gutenberg-Richter distribution with a parameter b ¼ 1:0789, which is the

estimated value for the used Italian catalogue. Moreover, a rectangular space region

approximately equivalent to the rectangle embedding Italy is considered.

Therefore, we developed the following algorithm to simulate one catalogue from

an ETAS process with conditional intensity function as in (4), which strictly

depends on the branching nature of the generating process:

1. Input the true parameters values: l; j0; c; p; d; q, the parameters b1 and b2
related to covariates, and some other control parameters, that are the boundaries

of the space-time region and the parameter b of the Gutenberg-Richter

distribution;

2. generate a random number n0 from a Poisson distribution with parameter

EðNÞ ¼ lDt;
3. generate n0 triples of space-time uniform coordinates in the spatial-temporal

region together with n0 random magnitudes and n0 covariates, according to

method (a) or (b);

4. for each point Pj generate a random number nj from a Poisson distribution with

parameter proportional to exp gj;
5. generate nj triples of space-time coordinates of aftershocks in the spatial-

temporal region together with nj random magnitudes and nj covariates,

according to methods (a) or (b), reported above;

6. add the nj new points to the set of events. Proceed with step (2) until all the

events inside the region are involved in the simulation process as possible

generators of further events.
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Details of the method to generate random sequences from a branching process are in

Zhuang and Touat (2015).

For simulating the triggered component, we consider 36 different scenarios:

• two different values of j0: 0.003, 0.006;
• three different values of p: 1.05, 1.10, 1.15;
• three different values of q: 1.2, 1.3, 1.4;
• two different methods to generate the second covariate, that is (a) and

(b) mentioned above.

Moreover, for the r-th simulated sample(r ¼ 1; . . .;N, with N the number of the

simulated samples for each scenario, fixed to 100 in this paper), two different ETAS

models are fitted: the first one (Model1) is a misspecified model considering the

magnitude as the only covariate, and the second one (Model2) is the right model,

including both the magnitude and the further covariate, really used.

Let Iir be the indicator variable assigned to each simulated event, that is 1 if the i-
th event of the r-th simulated sample belongs to the Poisson generated set, 0 if it

belongs to the aftershocks set. For the r-th sample, the following quantities are

computed: the estimates of the parameters h under Model1, ĥrð1Þ, and under

Model2, ĥrð2Þ; the length of the simulated sample nr, the number of events

generated according to the Poisson background process nr0 and the number of

aftershock events nr1, such that nr0 þ nr1 ¼ nr.
Therefore, for the r-th sample and for the model M (M ¼ 1; 2), we compute the

area under the ROC curve, denoted by AUCrðMÞ, as a measure of the properness of

q̂irðMÞ to classify induced and background events (Iir ¼ 0; 1).

Furthermore, for each event of the r-th sample and for each model M ¼ 1; 2, the
intensities kir according to the true values of the parameters are computed, and

compared with the intensities k̂irðMÞ estimated under the model M for M ¼ 1; 2,

computing the following mean absolute difference:

DrðMÞðkÞ ¼
Pnr

i¼1 jk̂irðMÞ � kirj
nr

Eventually, for each scenario we get N ¼ 100 simulations, summarized in Tables 1,

2, 3 and 4. In particular, in these tables we report the following quantities:

• average of the simulated background events, nr0,
• average of the simulated induced events, nr1,
• relative ratios between the averages values of the two models of DrðMÞðkÞ, that is:

RRDðkÞ ¼
PN

r¼1 Drð1ÞðkÞ �
PN

r¼1 Drð2ÞðkÞPN
r¼1 Drð2ÞðkÞ

• relative ratios between the averages values of the AUCrðMÞ:
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RRAUC ¼
PN

r¼1 AUCrð2Þ �
PN

r¼1 AUCrð1ÞPN
r¼1 AUCrð1Þ

• relative ratios between the simulated mean square errors of the two models for

each parameter estimate /̂, where / is any of the parameter l; j0; c; p; d; q; b1

RR/̂ ¼
PN

r¼1ð/̂rð1Þ � /Þ2 �
PN

r¼1ð/̂rð2Þ � /Þ2
PN

r¼1ð/̂rð2Þ � /Þ2

For more details, the tables reporting the simulated mean square errors (MSE) of the

parameter estimates, estimated under the wrong model (Model1) and the right

model (Model2) are reported in section ‘‘Appendix’’ (see Tables 8, 9, 10, 11, 12,

13, 14, 15).

The simulations results using a geometrical covariate, as described in the point

(a) above, for j0 ¼ 0:003, are reported in Table 1. The corresponding results using a

simulated covariate, as described in the point (b) above, are reported in Table 2.

The tables reporting the same comparisons for a greater value of j0 are reported
in Table 3, using the geometric covariate, and in Table 4, for the case including a

simulated covariate.

It could be noticed that all the AUC values used for the RRAUC values (see

Tables 1, 2, 3 and 4) are however in the range 0.8881–0.9999.

The results reported in the Tables 1 and 2 show that, in general, the estimation of

the parameters can still be performed in the absence of data on covariates, since it

does not greatly affect the conditional intensity of the process, confirming results

reported in Schoenberg (2016) for different formulations of self-exciting models

including covariates. Conversely, the misspecification has a peculiar effect on the

parameter j0 behaviour, comparing to the other parameters of the model. In

particular, for a lower value of j0 ¼ 0:003, the averages of the MSE estimating the

Model1 are generally lower than the corresponding ones estimating the Model2
(see the negative sign of the RR reported in the Table 1). This effect is less evident

if we use a random covariate in the simulation procedure (see the Table 2).

Moreover, as described above, similar simulations are carried out accounting for a

higher value of j0 ¼ 0:006, that is with a greater influence of the aftershock

component (Tables 3 and 4).

Here we observe that the j0 estimation provides higher MSE when the wrong

model Model1 is estimated than estimating the true model Model2. We also note

that this effect, though of minor size, seems to be opposite for the parameter l. In
particular, the smaller the true value j0 is (that is, the more Poissonian the

generating process is), the more variable its estimator is (see the Tables 8, 9, 10, 11,

12, 13, 14, 15 in the Appendix). In general, the misspecification model effect on the

estimation of j0 can be explained as the consequence of the different number of

simulated events (n0) and induced events (n1), depending on the true value of j0.
Indeed, for j0 ¼ 0:003 the simulated catalogues are mostly composed by
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background events, and therefore the estimation of the j0 parameter appears to be

more unstable. Otherwise, increasing j0 the simulated catalogues have more

aftershock events, providing more information for the triggered component

estimation and more evidence in favour of Model2.
Actually, this last result can be also affected by our assumption related to the use

of a constant background density in space and therefore, could require deeper

analyses.

5 Application to the Italian earthquakes and comments

In this section, we report some of the results of the proposed ETAS-FLP approach

with covariates, starting from the Italian catalogue of the space-time Italian

seismicity, from May 5th, 2012 to May 7th, 2016, with 2.5 as the threshold

magnitude (i.e. the lower bound for which earthquakes with higher values of

magnitude are surely recorded in the catalogue). The catalogue reports 2226 events

with the usual hypocentral coordinates (longitude, latitude, depth, time) together

with the events magnitude, and also some additional information, such as: the

hypocentral uncertainty, the distance from the nearest station (for shallow

earthquakes, this distance should be sufficiently small), a measure of the quality

of the location (named rms), the number of stations that recorded the event (this

number is heavily influenced by the magnitude of the event and strongly influences

the accuracy of the location) and the distance from the nearest fault (i.e., the

identified earthquakes sources in that area).

The ETAS-FLP estimating results of Model1, as in Eq. (2), accounting both for

the epicentral coordinates (longitude, latitude and time) and the magnitude of the

inducing event, are not completely satisfying, suggesting, as usual, some lack of

fitting mostly due to the triggered component (see Table 5). However, adding also

the available covariates (Model2, reported in Fig. 1), that is considering the model

in Eq. (4) with covariates, starting from the complete model, including all the

available covariates, the best selected one includes, together with the magnitude m,

also the depth z, the number of stations nst, the distance from the nearest station dst

and the distance from the nearest fault d, such that we have a model with k ¼ 5

covariates and a total of 11 parameters. In particular, the last four covariates have

both a negative effect on the space-time reproducing activity (see Table 6).

Table 5 Estimates, and standard errors within brackets, of the parameters of models Model1. In Eq. (2)

a corresponds to b1 of the linear predictor in Eq. (4)

l j0 a c p d q

h 0.67 0.02 0.74 0.01 1.11 1.91 1.95

std.err (0.0226) (0.0058) (0.0926) (0.0027) (0.0157) (0.2604) (0.0776)
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Looking at Tables 5 and 6, as already observed from our simulation study, the

estimation of the parameters l; c; p; d; and q is not strongly affected by the

introduction of the covariates; conversely, the estimation of j0 is more sensitive to

the choice of the model, since it is strictly related to the linear predictor value, that

affects in turn the triggered component. Indeed, coherently with results observed in

Table 6 Estimates, and standard errors within brackets, of the parameters of models Model2

l j0 c p d q

~h 0.71 0.07 0.02 1.15 1.94 2.00

std.err. (0.0227) (0.0212) (0.0034) (0.0169) (0.2724) (0.0848)

expðgjÞ 1:16mj � 0:04zj � 0:01nstj � 0:01dstj � 1:83dj

std.err. ð0:0854Þ ð0:0058Þ ð0:0028Þ ð0:0018Þ ð0:2986Þ
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Fig. 1 Output of the estimated ETAS-FLP model with covariates: estimated total intensity together with
the observed points (old in blue and recent in red) and available line-faults
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Sect. 4, the relative standard error of ĵ0 (w.r.t. its estimated value) is much higher

than the relative standard errors of the other estimators.

For the temporal domain diagnostics of the fitted model, the marginal time

process is obtained by integrating the estimated intensity function with respect to

the observed space region (see Adelfio and Chiodi 2015b). As in Adelfio and Chiodi

(2015b), let ftig be data of a temporal point process identified by the conditional

intensity function kðtÞ. Therefore, the residual temporal process can be obtained

moving each point ðtiÞ 8 i on the real half-line to the point:

si ¼ KðtiÞ ¼
Z ti

0

kðtÞdt ð5Þ

(Meyer 1971; Cox and Isham 1980; Ogata 1988). The process fsig in (5) is a

homogeneous Poisson process with unit intensity. Then, a plot of si versus i can
inform about bad fitting in time. In particular, this plot, together with a plot of the

estimated time intensities, informs on the time at which departures from model

assumptions are more evident.

Now, let N be a spatial process S, with s ¼ fs1; . . .; sng the vector of its observed

locations in a bounded regionW of the plane R2. For a spatial point process, a useful

definition of residuals has been introduced by Baddeley et al. (2005), based on the

innovation process, extended by the Georgii–Nguyen–Zessin identity:

E
hXn

i¼1

bðui; sÞ
i
¼ E

Z

W

bðu; sÞkðu; sÞdu ð6Þ

where bðu; sÞ is a non-negative integrable function. For an exploratory data analysis,
Pearson residuals are obtained considering in (6) the integrand function defined by:

b̂ðu; xÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂ðu; xÞ

q
(Baddeley et al. 2005).

In this paper, as described in Adelfio and Chiodi (2015b), due to their

interpretative simplicity, the above defined Pearson spatial residuals are computed

in a space-time region Q, which extends over the whole time interval and on a

rectangular space area. These tools have been also implemented in the version 2.0 of

the package etasFLP. This area is determined by an equally spaced grid of q
intervals for each dimension, such that the observed space area is divided in q� q
rectangular cells. According to this approach, the classical comparison between

observed and theoretical frequencies is considered and a v2-measure, based on the

computed Pearson residuals, can be easily computed.

As further investigation, we also perform a spatio-temporal diagnostics based on

the second-order statistics coming from weighted measures (Adelfio and Schoen-

berg 2009; Adelfio et al. 2020). The used method assesses goodness-of-fit of spatio-

temporal models by using weighted second-order statistics, computed after

weighting the contribution of each observed point by the inverse of the conditional

intensity function that identifies the process. Weighted second-order statistics

directly apply to data without assuming homogeneity nor transforming the data into

residuals, eliminating thus the variability due to transforming procedures, such as a

random thinning procedure (Baddeley et al. 2006). In particular, in this paper we
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use the weighted K-function, obtained by weighting the process by the inverse of the
conditional intensity function of the estimated model. Indeed, if departures from a

such a behaviour were observed, then the data would be supposed to come from a

model identified by a conditional intensity function different from the one used in

the weighting procedure.

For other relevant diagnostics methods for self-exciting point process models see

also Schoenberg (2003), Ogata and Tanemura (2003), Bray et al. (2014).

In our application, diagnostic results suggest a more satisfying fitting for

Model2 than Model1, as shown in the Figs. 2 (see the better time residuals using

Model2), 3 and 4, and summarized in Table 7. This result is more evident from the

total intensity diagnostic plots than the background ones, suggesting that the real fit

improvement is due to the introduction of covariates in the induced component of

the model, since the observed data are characterised by the presence of big

sequences, affecting the estimation procedure.

Therefore, the omission of influential external variables may be relevant on the

characterisation of the conditional rate of seismicity, mostly when the analysed area

is characterised by severe seismicity, with characteristics of evident dependence

both in space and time, like Italy.

Moreover, Fig. 5 reports the difference between the observed values of the global

weighted spatio-temporal K-function and the expected ones, weighting by the MLE

intensity under Model1 and Model2, respectively. As a v2-type statistic, we

evaluate this distance computed over a fixed grid that covers the region of interest,

and obtain v2 ¼ 120:58 (under the Model1), v2 ¼ 11:35 (under the Model2). It is
evident that this difference is significantly larger in the first case corresponding to
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Fig. 2 Temporal residuals for Model1 (on the left); Temporal residuals for Model2 (on the right)

123

Including covariates in a space-time point process with… 963



36
38

40
42

44
46

longitude

la
tit
ud

e

−3

−2

−1

0

1

2

3

6 8 10 12 14 16 18 6 8 10 12 14 16 18
36

38
40

42
44

46

longitude

la
tit
ud

e

−3

−2

−1

0

1

2

3

Fig. 3 Spatial residuals for the total intensity Model1 (on the left); Spatial residuals for the total
intensity Model2 (on the right)
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Fig. 4 Spatial residuals for the background intensity Model1 (on the left); Spatial residuals for the
background intensity Model2 (on the right)

Table 7 AIC and v2-statistic
(20� 20 grid), for the two

estimated models

Model1 Model2

AIC 43249.19 42706.16

v2 498.25 353.44
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the model without covariates, providing further evidence about the necessity of a

more complex model for the description of the observed data.

6 Conclusive remarks

In this paper, we have proposed a novel contagion risk measurement model, aimed

at improving earthquake risk measurement taking both space and time dependence

into account, by means of the ETAS space-time point process, estimated by the

ETAS-FLP approach.

The simulation study confirms the importance of well specifying the model,

properly accounting for further variables, mostly in case of catalogues with several

sequences and many events and, in particular, for parameters describing the size of

the clustered component. Indeed, the misspecification effect is more evident for the

estimation of the parameters j0, and slightly for l, that characterize, respectively,
the induced and the background components of the conditional intensity function of

the ETAS model. When the catalogue is compounded by several sequences, then the

estimation of j0 is more sensitive to the misspecification of the model. Comments

invert in case of a lower number of induced events. However, we have to stress that

in our simulation study we assume just a constant background, and therefore the real

model misspecification effect on l should require deeper reflections.

The importance of the proposed method is also confirmed by the reported

application, related to the Italian area. Indeed, Italy is characterized by a strong

clustered seismicity (Adelfio and Chiodi 2009; Giunta et al. 2009), for which further

information related to the spatial-temporal characterization can be relevant for a

better description of the seismic activity. Indeed, in the seismic context, the

proposed approach would provide a more general formalism for the earthquake
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Fig. 5 Difference between the global weighted spatio-temporal K-function and the expected ones,
weighting by the MLE intensity of the Model1 (left) and of the Model2 (right), respectively.
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occurrence in space and time, since the main idea is that the effect on the future

activity does not depend only on the closeness of the previous events, but also on

specific characteristics of the main event, like magnitude, as usual, and also further

information, such as geological features.

The reported results, though partial and provisional, confirm our intuition

reported in previous studies (e.g., Adelfio and Chiodi 2015b). Indeed, the need of a

more flexible model for the space-time triggered component of the ETAS model is

often revealed, although the background seismicity is well described by the FLP

estimated intensity. In our opinion, considering external information (such as

geological information related to faults distribution) for the description of spatio-

temporal earthquakes is an innovative and promising perspective of study, even

relevant in different fields of research.

Future research developments include evaluating the robustness of the results

with respect to different spatial regions (that is to extend the proposed study also to

areas with different characteristics) and to the inclusion of other specific covariates,

to study the dependence of observed intensity in space and time from other external

factors (e.g., GPS information, external marks, etc).
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Table 8 Simulated MSE of parameters estimates on the 100 simulated catalogues under the wrong

Model1 and the parameters true values l ¼ 0:079;j0 ¼ 0:003; c ¼ 0:013; d ¼ 0:5;b1 ¼ 0:39, using a

geometrical covariate

p q l̂ ĵ0 ĉ p̂ d̂ q̂ b̂1

1.05 1.2 0.000032 0.000009 0.000636 0.0053 0.5272 0.0272 0.1181

1.10 1.2 0.000026 0.000056 0.000314 0.0095 0.3260 0.0192 0.1088

1.15 1.2 0.000031 0.000024 0.000178 0.0095 0.3424 0.0227 0.1369

1.05 1.3 0.000036 0.000007 0.000467 0.0081 0.3378 0.0352 0.1649

1.10 1.3 0.000024 0.000027 0.000240 0.0079 0.3097 0.0444 0.1974

1.15 1.3 0.000038 0.000017 0.000308 0.0102 0.3401 0.0408 0.1715

1.05 1.4 0.000022 0.010518 0.000231 0.0075 0.9461 0.2379 0.3331

1.10 1.4 0.000029 0.000970 0.000589 0.0132 0.7156 0.1781 0.1280

1.15 1.4 0.000028 0.000754 0.000616 0.0283 0.6075 0.1887 0.2127

Table 9 Simulated MSE of parameters estimates on the 100 simulated catalogues under the true Model2
and the parameters true values l ¼ 0:079; j0 ¼ 0:003; c ¼ 0:013; d ¼ 0:5;b1 ¼ 0:39; b2 ¼ �0:03, using
a geometrical covariate

p q l̂ ĵ0 ĉ p̂ d̂ q̂ b̂1 b̂2

1.05 1.2 0.000033 0.000112 0.000807 0.0058 0.5994 0.0276 0.1095 0.0001

1.10 1.2 0.000025 0.000070 0.000348 0.0103 0.2849 0.0174 0.1072 0.0001

1.15 1.2 0.000031 0.000384 0.000190 0.0095 0.4308 0.0261 0.1262 0.0001

1.05 1.3 0.000035 0.008829 0.000483 0.0080 0.7350 0.0576 0.1879 0.0001

1.10 1.3 0.000022 0.000110 0.000245 0.0071 0.2337 0.0370 0.1715 0.0001

1.15 1.3 0.000037 0.000119 0.000283 0.0086 0.2665 0.0327 0.1794 0.0001

1.05 1.4 0.000024 0.000614 0.000259 0.0079 0.4684 0.1285 0.2846 0.0001

1.10 1.4 0.000029 0.043971 0.000800 0.0132 1.1492 0.1847 0.1193 0.0001

1.15 1.4 0.000028 0.004354 0.000525 0.0219 0.5686 0.1733 0.2024 0.0001

Table 10 Simulated MSE of parameters estimates on the 100 simulated catalogues under the wrong

Model1 and the parameters true values l ¼ 0:079;j0 ¼ 0:003; c ¼ 0:013; d ¼ 0:5;b1 ¼ 0:39, using a

simulated covariate

p q l̂ ĵ0 ĉ p̂ d̂ q̂ b̂1

1.05 1.2 0.000036 0.000005 0.000065 0.0016 0.0492 0.0052 0.0524

1.10 1.2 0.000044 0.000004 0.000064 0.0025 0.0708 0.0039 0.0545

1.15 1.2 0.000047 0.000004 0.000041 0.0030 0.0934 0.0043 0.0507

1.05 1.3 0.000039 0.000008 0.000214 0.0024 0.1843 0.0290 0.0665

1.10 1.3 0.000030 0.000006 0.000081 0.0037 0.1039 0.0143 0.0559

1.15 1.3 0.000036 0.000004 0.000065 0.0035 0.0686 0.0101 0.0452

1.05 1.4 0.000036 0.000005 0.000122 0.0028 0.1637 0.0211 0.0544

1.10 1.4 0.000030 0.000010 0.000271 0.0070 0.1374 0.0315 0.0909

1.15 1.4 0.000031 0.000008 0.000079 0.0043 0.1081 0.0185 0.0630
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Table 11 Simulated MSE of parameters estimates on the 100 simulated catalogues under the true

Model2 and the parameters true values

l ¼ 0:079;j0 ¼ 0:003; c ¼ 0:013; d ¼ 0:5;b1 ¼ 0:39;b2 ¼ �0:4, using a simulated covariate

p q l̂ ĵ0 ĉ p̂ d̂ q̂ b̂1 b̂2

1.05 1.2 0.000035 0.000004 0.000065 0.0014 0.0441 0.0046 0.0513 0.0191

1.10 1.2 0.000044 0.000004 0.000066 0.0027 0.0615 0.0036 0.0489 0.0194

1.15 1.2 0.000046 0.000004 0.000042 0.0030 0.0928 0.0043 0.0504 0.0224

1.05 1.3 0.000039 0.000014 0.000207 0.0023 0.1708 0.0260 0.0633 0.0274

1.10 1.3 0.000031 0.000006 0.000084 0.0036 0.0984 0.0134 0.0543 0.0315

1.15 1.3 0.000036 0.000003 0.000066 0.0033 0.0663 0.0097 0.0470 0.0194

1.05 1.4 0.000036 0.000004 0.000125 0.0029 0.1662 0.0216 0.0557 0.0332

1.10 1.4 0.000030 0.000015 0.000264 0.0069 0.1350 0.0296 0.0936 0.0276

1.15 1.4 0.000031 0.000017 0.000082 0.0042 0.1049 0.0184 0.0602 0.0236

Table 12 Simulated MSE of parameters estimates on the 100 simulated catalogues under the wrong

Model1 and the other parameters true values l ¼ 0:079;j0 ¼ 0:006; c ¼ 0:013; d ¼ 0:5;b1 ¼ 0:39,
using a geometrical covariate

p q l̂ ĵ0 ĉ p̂ d̂ q̂ b̂1

1.05 1.2 0.000058 0.000020 0.000029 0.0007 0.0370 0.0022 0.0236

1.10 1.2 0.000048 0.000021 0.000016 0.0009 0.0293 0.0018 0.0267

1.15 1.2 0.000036 0.000022 0.000015 0.0013 0.0270 0.0019 0.0281

1.05 1.3 0.000027 0.000022 0.000078 0.0014 0.0499 0.0062 0.0361

1.10 1.3 0.000031 0.000021 0.000082 0.0021 0.0513 0.0048 0.0596

1.15 1.3 0.000038 0.000021 0.000048 0.0028 0.0423 0.0047 0.0438

1.05 1.4 0.000035 0.000023 0.000091 0.0022 0.0965 0.0185 0.0606

1.10 1.4 0.000031 0.000023 0.000098 0.0026 0.0873 0.0174 0.0758

1.15 1.4 0.000030 0.000020 0.000067 0.0027 0.0831 0.0209 0.0903

Table 13 Simulated MSE of parameters estimates on the 100 simulated catalogues under the true

Model2 and the other parameters true values

l ¼ 0:079;j0 ¼ 0:006; c ¼ 0:013; d ¼ 0:5;b1 ¼ 0:39;b2 ¼ �0:03, using a geometrical covariate

p q l̂ ĵ0 ĉ p̂ d̂ q̂ b̂1 b̂2

1.05 1.2 0.000049 0.000012 0.000033 0.0007 0.0362 0.0023 0.0182 0.0000

1.10 1.2 0.000031 0.000013 0.000016 0.0007 0.0291 0.0019 0.0199 0.0000

1.15 1.2 0.000033 0.000014 0.000016 0.0010 0.0276 0.0019 0.0250 0.0000

1.05 1.3 0.000030 0.000013 0.000076 0.0013 0.0476 0.0060 0.0269 0.0000

1.10 1.3 0.000035 0.000012 0.000101 0.0023 0.0495 0.0049 0.0450 0.0000

1.15 1.3 0.000033 0.000014 0.000048 0.0025 0.0425 0.0046 0.0388 0.0000

1.05 1.4 0.000035 0.000017 0.000101 0.0020 0.0972 0.0179 0.0413 0.0000

1.10 1.4 0.000031 0.000020 0.000113 0.0026 0.1051 0.0186 0.0722 0.0000

1.15 1.4 0.000030 0.000020 0.000069 0.0027 0.0770 0.0192 0.0727 0.0000
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Meyer S, Held L, Höhle M (2017) Spatio-temporal analysis of epidemic phenomena using the R package

surveillance. J Stat Softw 77(11):605

Mohler GO, Short MB, Brantingham PJ, Schoenberg FP, Tita GE (2011) Self-exciting point process

modeling of crime. J Am Stat Assoc 106(493):100–108

Ogata Y (1978) The asymptotic behaviour of maximum likelihood estimators for stationary point

processes. Ann Inst Stat Math 30(2):243–261

Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes.

J Am Stat Assoc 83(401):9–27

Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math

50(2):379–402

Ogata Y, Tanemura M (2003) Modelling heterogeneous space-time occurrences of earthquakes and its

residual analysis. Appl Stat 52(4):499–509

Paul M, Held L (2011) Predictive assessment of a non-linear random effects model for multivariate time

series of infectious disease counts. Stat Med 30(10):1118–1136

123

970 G. Adelfio, M. Chiodi



Paul M, Held L, Toschke A (2008) Multivariate modelling of infectious disease surveillance data. Stat

Med 27(29):6250–6267

Rathbun S (1996) Asymptotic properties of the maximum likelihood estimator for spatio-temporal point

processes. J Stat Plan Inference 51(1):55–74

Reinhart A, Greenhouse J (2018) Self-exciting point processes with spatial covariates: modelling the

dynamics of crime. J R Stat Soc Ser C (Appl Stat) 67(5):1305–1329

Sasieni PD (1996) Proportional excess hazards. Biometrika 83:127–141

Schoenberg FP (2003) Multi-dimensional residual analysis of point process models for earthquake

occurrences. J Am Stat Assoc 98(464):789–795

Schoenberg FP (2016) A note on the consistent estimation of spatial-temporal point process parameters.

Stat Sin 26:861–879

Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences.

J Am Stat Assoc 97(458):369–379

Zhuang J, Touat S (2015) Stochastic simulation of earthquake catalogs. Community online resource for

statistical seismicity analysis (CORSSA) Version: 1.0

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Giada Adelfio1,2 • Marcello Chiodi1,2

1 Dipartimento di Scienze Economiche, Aziendali e Statistiche, Università degli Studi di
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