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Abstract

Despite their scarce resistance to humid or wet conditions, natural fiber reinforced composites 

(NFRCs) seem to be able to partially recover their performances under discontinuous exposition to 

marine environment. To investigate this peculiarity, flax fiber reinforced composite was at first 

subjected to salt-fog spray condition at 35 °C for 15 and 30 days, respectively, and then stored in 

50% R.H. and 22°C) between 0 and 21 days. The performances evolution was 

evaluated through flexural tests, water uptake and contact angle measurements. Moreover, the 

morphology of fractured mechanical samples was examined by using 3D optical microscope and

scanning electron microscope (SEM).

Flax fiber reinforced composite experienced phenomena of both reversible and irreversible 

degradation during the wet phase thus evidencing a relevant mechanical recovery thanks to the drying. 

Quite interestingly, the laminate showed an almost complete recovery of the flexural strength, 

meaning that this property is more strictly related to mainly reversible aging phenomena whereas the 

greater stiffness loss is more probably due to irreversible ones.

Keywords: A. Polymer-matrix composites (PMCs); B. Environmental degradation; D. Mechanical 

testing; Moisture desorption
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1 Introduction

It is widely known that an increasing attention was paid in the last decades to Natural Fiber Reinforced 

Composites (NFRCs) due to their good features such as recyclability, eco-compatibility, health 

advantages, lightweight, good processability, large availability and cost-effectiveness. Among natural 

or plant fibers, flax is widely used as reinforcement for composite materials thanks to its large 

availability and high specific mechanical properties, comparable to those of glass fibers [1]. 

Nevertheless, due to some design constraints, the use of natural fibers is mainly limited in several 

engineering fields to non-structural or semi-structural applications. One of the major drawbacks 

consists in their lower and highly variable mechanical properties in comparison to their synthetic 

counterparts (i.e., glass, Kevlar and carbon fibers). Another aspect hindering further implementation 

of NFRCs is their scarce aging resistance when subjected to humid environmental conditions [2 4]. 

This can be ascribed to the hydrophilic behavior of natural fibers that, due to their polysaccharide 

components (i.e., mainly pectin, cellulose and hemicellulose) having strongly polarized hydroxyl 

groups, tend to absorb large amounts of moisture [5]. Hence, natural fibers easily soften and swell 

with absorbed water molecules, which could negatively affect the mechanical performances of 

NFRCs [6]. Furthermore, this leads to poor adhesion with several hydrophobic polymeric matrices, 

thus further decreasing the mechanical response of NFRC materials [7].

In order to cope with these issues, several authors showed that the hybridization of natural fibers with

synthetic ones represents a valid tool [8 15]. Another approach aimed to improve the moisture 

resistance of NFRC components, thus extending their service life in humid environmental conditions,

can be represented by chemical or physical treatments of natural fibers [16 21].

A wide literature is available on the evaluation and prediction of the behavior of natural fibers and 

their composites after a continuous exposition to humid or wet environments or after wet/dry aging 

cycles. Nevertheless, relatively few studies have been focused on the understanding of how these 

aged materials can recover their performances after a dry phase.
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Ventura et al. [22] showed the effects of a wet/dry cycling on flax nonwoven fabrics to stabilize the 

cellulosic fibers against humidity changes thus achieving greater stability against the water 

absorption. The impact of wet/dry cycles (i.e., 3.5 days at 90% HR and 3.5 days at 40% HR, both at 

55 °C) on the longitudinal tensile properties of a unidirectional flax/epoxy composite was investigated 

by Cadu et al. [23]. This material showed moderate decreases in the mechanical performance (i.e.,

about -10% of the moduli and about -14% of the ultimate tensile stress) after 1 year of exposure and 

52 cycles of aging. In another paper of the authors [24], they evaluated the effect of the same aging 

conditions on the composite transverse mechanical properties, showing noticeable decrements in both 

transverse tensile strength (i.e., about -20% after the first week of ageing) and modulus (i.e., about -

18% already after the first week to reach about -45% after 1 year). These results were mainly ascribed 

to the plasticization of the epoxy matrix.

Hence, the academia focused its attention in last years on the assessment of performances

modification and damage development of flax fiber reinforced composites when subjected to cycling 

hydrothermal or wet/dry aging, indicating that the topic is acquiring relevant interest in natural fiber 

composite durability design. Nevertheless, at the best of our knowledge, no paper assessed the 

behavior of flax fiber reinforced composites under alternated salt-fog exposition and dry phases, 

showing how this kind of materials can recover their performances due to the latter phase.

In this context, the present paper is addressed to investigate the modification of the mechanical 

performances and related fracture mechanisms of flax fiber reinforced composites under salt-fog/dry

conditions. In particular, woven flax fabric reinforced epoxy composite was at first subjected to salt-

fog spray condition at 35 °C for 15 and 30 days, respectively. Afterwards, a dry stage (i.e., 50% R.H. 

and 22°C) for a time varying between 0 and 21 days was carried out. Quasi-static flexural tests, water 

uptake and water contact angle measurements were performed on both unaged and aged samples. 

Moreover, the surface morphology of fractured surfaces after flexural testing was examined by using 

3D optical microscope and scanning electron microscope (SEM).
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2 Experimental

2.1 Materials and Methods

Flax fiber reinforced polymer square panels (30 cm x 30 cm x 0.335 cm) were manufactured via

vacuum assisted resin infusion process by using a two-stage vacuum pump model VE 235 D by 

Eurovacuum, The Netherlands. In particular, each panel was cured at 25 °C for 24 h and post-cured 

at 50 °C for 15 h.

A DEGBA epoxy resin (SX8 EVO by Mates Italiana s.r.l., Italy) mixed with its own amine-based 

hardener (100:30 by weight) and five flax balanced twill weave woven fabrics having nominal areal 

weight of 318 g/m2 (Lineo, France) were used as matrix and reinforcement of the composites, 

respectively.

2.2 Salt-fog/dry aging phases

The goal of this paper is the assessment of the effect of the dry phase on the capability of NFRCs to 

recover their mechanical performances after aging in wet environmental conditions such as marine 

one.  

To this aim, composite panels were subjected to salt-fog spray condition (i.e., 5 wt.% NaCl solution) 

at a constant temperature of 35 °C, by using a climatic chamber model SC/KWT 450 (Weiss, 

Germany), in accordance with ASTM B 117 standard . At the end of this

phase, five specimens for each investigated condition were cut to their nominal dimensions (i.e., 

depending on the specific test) by using a diamond blade saw. Afterwards, the aged specimens were 

stored in (i.e., 50% relative humidity and 22 °C temperature) before carrying out the 

mechanical tests

For sake of clearness, specimens will be named , where x and y indicate the time 

intervals -fog spray conditions phases, 
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respectively. For instance, W15D1 indicates specimens exposed to salt-fog environment for 15 days 

and then dryed for 1 day. Similarly, W0D0 indicates unaged specimens (i.e., reference). 

2.3 Water uptake

In order to evaluate the water uptake trend at increasing the exposure time to salt-fog according to 

mm 

the salt-fog chamber within the range 1

analytical balance (model AX 224 by Sartorius, Germany) with precision 0.1 mg. The water uptake 

(WU, in percentage) of NFRCs was calculated according to the following equation:

Eq. 1

Where W0 and Wti are the weight of the dry unaged and aged at ti exposure time in salt fog chamber, 

respectively.

Further analysis of water absorption and desorption characteristics of flax fiber reinforced composites

was performed by measuring the diffusion coefficient D. In particular, this parameter was determined 

as the slope of the water uptake versus the square root of the time curve, according to the following 

equation:

Eq. 2

where is the water uptake at saturation, h is the thickness of the specimen (expressed in mm), 

is the slope of the curve in the time range (t2-t1), expressed in s, considering that in the initial 

stage of the process the absorption/desorption phenomenon is linear. 

At the end of the wet phase, the mass of W15 and W30 samples (i.e., exposed to salt-fog condition 

for 15 and 30 days, respectively) was monitored even during the dry phase to evaluate the mass 

recovery capability of NFRCs when subjected to drying at controlled conditions.
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2.4 Morphological analysis

The fractured surfaces of flexural specimens were analyzed by 3D optical microscope (model 

KH8700 3D digital microscope by Hirox, Japan) and Scanning Electron Microscope (SEM - model 

XL30 ESEM by Philips microscope, The Netherlands) operating at 10 kV. Prior to SEM analysis, 

each sample was sputter-coated with a thin layer of gold to avoid electrostatic charging under the 

electron beam and rubbed upon a 25 mm diameter aluminum disc.

2.5 Density and void content measurements

During the water uptake test, density measurements were carried out on W15 and W30 batches. The 

experimental density of the composites ce) was determined through a helium pycnometer (model 

Pycnomatic ATC by Thermo Electron Corporation, US) and the same analytical balance used for the 

water uptake monitoring. For each sample, 10 measures were carried out and average values were 

recorded. All the measured standard deviations were lower than 0.01 g/cm3.

On the other hand, the theoretical density of the composites ( ) was calculated, applying the mixture 

rule, by using the following equation:

Eq. 3

Where, W and indicate the weight fraction and density, respectively, whereas the subscript i is 

referred to the composite constituents (i.e., fiber and matrix). By comparing the experimental and 

theoretical density values, the volume fraction of voids ( ) can be determined, according to ASTM 

D2734 standard, by using the following equation:

Eq. 4
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2.6 Wettability measurements

The static water contact angle (WCA) of the composite laminates was measured using an Attension 

Theta Tensiometer instrument (Attension, Biolin Scientific, Sweden), by applying the sessile drop 

technique. In detail, a droplet (i.e., ) of distilled water was placed on the sample surface and a 

micro-CCD camera recorded the droplet profile and determined the contact angle measurements with 

the aid of a suitable PC Attension software (OneAttension V. 2.3). All the measurements were 

performed open to air at room temperature (i.e., 25 °C). For each sample, ten water contact angle 

measurements, homogenously distributed on the surface, were carried out and average values were 

recorded. For wetted samples, the surface has been dried with a dry cloth before to perform contact 

angle measurements.

2.7 Quasi-static mechanical tests

Quasi-static three-point bending tests were performed in accordance with ASTM D790 standard. Five 

specimens (13 mm x 64 mm) for each investigated condition were tested by using a U.T.M. model 

Z005 (Zwick-Roell, Germany), equipped with 5 kN load cell. The support span and crosshead speed 

were set equal to 54 mm and 1.4 mm/min, respectively.

3 Results and discussion

3.1 Water absorption/desorption

Figure 1 shows the weight variation, due to absorption and desorption in wet and dry phases, at 

increasing aging time (expressed in hours) for all composite batches. 

A progressive water uptake by increasing the exposition time can be observed during the wet phase 

(i.e., salt-fog exposition). For short salt-fog exposition times (i.e., W15 batch), the water uptake curve 

reaching a weight gain above 5% already after 7 aging days (i.e., 

168 hours). Afterwards, a gradual deflection of the weight gain trend takes place at longer times. In 

For each sample, For each sample, 
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particular, composites (i.e., W30 batch) reached a maximum water uptake of 10

salt-fog exposition time (i.e., 720 hours). Hence, the wet phase is characterized by a bimodal trend 

with a knee at about 150 h. This behavior is attributable to various mechanisms that contribute to the 

increase in water absorption of flax fiber reinforced composites. Preliminary, the hydrophilic nature 

of the composite constituents plays a relevant role on the water adsorption on its surface supporting 

the water uptake triggering. The water molecules can interact with the unreacted hydrophilic and 

polar groups of the epoxy resin such as hydroxyl or amine, thus favoring the formation of preferential 

paths for the water diffusion [25,26]. At the same time, the marked hydrophilic nature of flax fibers 

plays an important role in activating and kinetically stimulating the water sorption phenomena in wet 

or moisture environments [6]. The absorption of water during aging is mainly supported by three 

main steps [27,28]: at first, defects on the matrix surface are generated with subsequent water 

diffusion along these micro gaps and pores. Subsequently, the water diffusion is exalted by capillary 

diffusion at the fiber/matrix interface. Finally, the absorption of water inside the composite stimulates 

a local detachment of the fiber-matrix interface [5] and the formation of micro-cracks in the matrix 

itself due to aging phenomena, such as fiber swelling or matrix softening [28]. Furthermore, water 

molecules can be absorbed by flax fibers leading to the break of the secondary bonds among cellulose 

macromolecules, thus damaging the fiber and creating new volumes available for further water 

permeation [29] . 

These processes, having slow kinetics (i.e., longer activation times), can be responsible for the weight 

gain in the second water adsorption step (characterized by a lower slope). This is in agreement with 

the curve trend, which shows a saturation only after about 30 days of salt-fog exposition. This 

behavior could be ascribed to the aging phenomena that favored an irreversible damage which evolves

with time and water uptake, thus leading to a deviation from the Fickian behavior [30]. 

The curve trend in the dry phase differs depending on the composite batch. W15Dx and W30Dx 

batches indicate composite laminates exposed to salt-fog for 15 and 30 days, respectively, and then 

drying time). In particular, W15Dx shows a relevant 
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decrease of weight gain that progressively stabilize, at longer drying time, to a water uptake equal to

1.85%. At the same time, W30Dx (characterized by a WU about 30% higher than W15Dx at the end 

of the wet phase) exhibits a significant weight loss already during the early hours of the dry phase. A 

reduction of about 4.5 % of the water uptake takes place in the first 24 hours (showing a weight loss 

from 10.53% to 6.01%). Finally, a plateau can be observed at longer drying time (i.e., WU ~ 2.63%). 

This behavior indicates that a large part of the water absorbed during the wet phase can be easily 

released during the dry phase. However, a local degradation of the composite that can be defined as 

permanent, can be considered taking into account the residual weight gain shown even after long 

drying times.

In order to have further insights on the ability of water molecules to penetrate inside the composites, 

the diffusion coefficient D was determined during sorption and desorption process through Eq. 2 by

evaluating the slope of the water uptake versus the square root of time plot, calculated based on 

(Figure 2).

The initial slope of the curve (red dotted line in Figure 2) was used to determine the diffusion 

coefficient. The absorption of water during the salt spray fog exposition (Figure 2a) is characterized 

by a D value equal to 7.73*10-7 mm2/s. It is almost two orders of magnitude lower than desorption 

process occurred during the drying. In fact, the diffusion coefficient values during the desorption 

phenomenon were equal to 4.22*10-5 mm2/s and to 5.01*10-5 mm2/s for W15Dx and W30Dx batches, 

respectively. These different values indicate that the weight gain of the composite laminate is the 

kinetic limiting factor in the proposed aging cycle. During the dry phase, samples showed a fast 

weight loss only in the early drying days. In more detail, this behavior is much faster for the sample 

exposed to salt-fog for longer time (i.e., W30Dx). The faster dehydration phase can be ascribed to the 

microstructural modification in the composite laminate due to the formation of microcracks or 

interfacial debonding that facilitates a rapid evaporation of the absorbed water and, as a consequence,

accelerates the reversible processes. As already stated, the diffusion coefficient of W30Dx batch is 

slightly higher than that of W15Dx, suggesting that, due to the longer exposition time to salt-fog, the 

released during the dry phase. However, a local degradation of the composite that can be defined as released during the dry phase. However, a local degradation of the composite that can be defined as 
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specimen has suffered slightly greater physical damages (e.g., internal cracks) which acted as 

preferential paths for water diffusion.

Nevertheless, the desorption trend of the batches is quite similar, indicating that both are characterized 

by compatible and kinetically fast desorption processes. This experimental evidence indicates that 

most of the phenomena favoring the water absorption during the wet phase are reversible and

characterized by higher desorption kinetics than absorption one. However, this does not mean that 

the reversibility of the absorption/desorption phenomenon also corresponds to the reversibility of the 

degradation phenomena resulting from the exposition to hostile environmental conditions such as 

marine one. Further mechanisms not contemplated in this analysis must be taken into account, for 

which the discussion of the mechanical characterization can provide further information.

Furthermore, the evaluation of the composites density and their relative void content for each 

evaluated condition can be a suitable approach to evaluate better the material degradation induced by 

water uptake during salt-fog exposition. 

By analyzing the evolution of the apparent density of the composite laminates (see Figure 3), it can 

be noticed that an increase in experimental density occurs at increasing the exposition time to salt-

fog, due to the progressive water adsorption. In particular, the W15D0 specimen (exposed to salt-fog 

condition for 15 days) showed an increase in density of about 1.7%, in comparison to the unaged 

specimen (W0D0). However, the increase in composite density becomes approximately 2% higher 

than that of the unaged one, after 30 days in the climatic chamber (i.e. W30D0 specimen). This 

indicates that further water adsorption phenomena in the hydrophilic or porous regions of the 

composite have taken place. Moreover, kinetically secondary adsorption phenomena may have 

caused a further increase in the density of the laminate. It is interesting to note that, similarly to the 

apparent density, the void content in the laminate has a progressive increase during the wet phase. 

The unaged W0D0 composite exhibited a void content equal to 10.6%. This value increases up to 

11.6% and 12.2% after 15 and 30 days of salt-fog exposition, respectively (i.e., W15D0 and W30D0). 

Furthermore, the void content significantly increases after the dry phase. The maximum void content, 
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equal to 13.6%, was estimated for W30D21 batch (i.e., exposed to salt-fog for 30 days and then dried 

for 21 days). This means that the evaporation of the absorbed water leaves cavities in the composite 

bulk thus causing the increase of void content and the reduction of apparent density of composites. 

This behavior can be justified by considering the activation of irreversible degradative phenomena 

on the composite constituents and/or their interface. 

3.2 Wettability measurements

In order to evaluate how the interaction between the laminate surface with the water molecules 

evolves during the wet and dry aging phases, water contact angle (WCA) measurements were carried 

out during the different steps of the aging process. In particular, Figure 4 shows the WCA values for 

unaged sample as well as for W15 and W30 batches both in wet and dry conditions (W15D0-W30D0 

and W15D21-W30D21, respectively). The red dotted line indicates a WCA equal to 90°, identified 

as the threshold value between hydrophilic and hydrophobic behaviors of the surface. In particular, 

by comparing the WCA values for all the investigated batches, it is possible to observe that:

W0D0: The unaged composite laminate exhibits a hydrophobic behavior, evidenced by an 

average WCA values of about 104.6°. By taking into account the hydrophilic nature of the 

flax fiber, this result indicates that the surface properties of the composite are influenced 

significantly by the hydrophobic nature of the epoxy matrix. Indeed, the thermosetting resin 

embed the lignocellulosic reinforcement thus preventing its direct interaction with the water 

molecules. Therefore, the water absorption phenomenon is superficially hindered;

W15D0: Due to the exposition to salt-fog environment for 15 days, a slight reduction in the 

water contact angle was observed (i.e., from 104.6° to 91.9°). Two competing mechanisms

occurred: i) the salt-fog aging test implies a further post-cure of the laminate due to the applied 

thermal conditions (i.e. 35 °C) [31]. The increase of the resin conversion due to post-curing, 

reduces the water diffusion, thus leading to an increase of water contact (i.e., hydrophobicity). 

At the same time, a gradual swelling of the fiber and subsequent damaging of the resin induces 

surface with the water molecules surface with the water molecules 
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the formation of local defects and cracks on the laminate surface [8]. Therefore, preferential 

pathways for the water passage are generated, thus exalting the water uptake of the samples. 

This contributes to improve the hydrophilic behavior of the natural fiber composite as well as 

to increase the water absorption capability of the composite surface (i.e., hydrophilicity) [32].

The shielding effect supplied by the resin to the water permeation is progressively 

compromised. The matrix has a not dominant role on the amount of water absorbed in 

comparison to the natural reinforcement. In fact, the high hydrophilic nature of flax fibers 

plays a key role in the absorption of water in the composite laminate. The higher the fiber 

content, the higher the amount of water absorbed [33]. Despite the occurrence of these two 

competing mechanisms, the observed contact angle values evidence a clear hydrophilic 

behavior of the composite surface, thus indicating that the damaging phenomenon has a 

predominant role in comparison to the post-curing one. In this regard, an important role can 

also be attributed to sodium chloride in the salt-fog environment. The saline solution that will 

be absorbed on the surface involves the deposition in the cavities of the composite surface of 

NaCl salt grains, which have a marked hydrophilic behavior. Consequently, a self-feeding 

mechanism for the absorption and diffusion of water is triggered, which further increases the 

water sensitivity of the composite;

W30D0: The exposition for longer time in the salt-fog chamber leads to the triggering and 

growth of a relevant amount of cracks and defects [33,34], which involves a great 

modification of the surface wettability. Hence, the WCA average value found for these 

specimens is approximately 11° lower than that of the W15D0 ones (i.e., 80.8° versus 91.9°, 

respectively);

W15D21/W30D21: The drying cycle favors a recovery of the hydrophobic properties, already

highlighted by unaged specimens. However, both softening and degradation phenomena 

experienced during the wet phase by both constituents (i.e., epoxy resin and flax fiber) and 

their interface, have led to an irreversible modification of the composite wettability. As a 

to the natural reinforcement. In fact, the high hydrophilic nature of flax fibers to the natural reinforcement. In fact, the high hydrophilic nature of flax fibers 
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consequence, both laminates show slightly higher affinity with water in comparison to W0D0 

one (i.e., unaged). Indeed, after 21 days of drying the contact angles average values becomes 

respectively equal to 99.4° and 90.9° for W15 and W30 batches, with reductions of 5.2° and 

13.7° in comparison to the unaged sample. This behavior could be attributed to the presence 

of cracks, voids and surface defects, which remain on the surface even after the water 

evaporation occurred during the dry phase. This results in a direct exposure of flax fibers, 

which increases surface hydrophilicity.

It is worth noting that samples aged under salt-fog for 30 days (i.e., W30D0 and W30D21) showed 

the higher error bar, indicating a larger dispersion of data. This behavior can be related to the higher 

surface damaging induced by a longer duration of the wet phase. As already stated, the exposition to 

salt-fog can trigger surface defects and voids that locally expose flax fibers, thus increasing the 

hydrophilicity of the composite laminate. The high heterogeneity on surface energy in the sample has 

consequently caused a large standard deviation of WCA values in W30D0 and W30D21 batches. 

3.3 Scheme of the hydration/dehydration induced degradation mechanisms

Several phenomena contribute simultaneously to stimulate the formation of defects or cavities which 

imply an increment in the void content of the composite laminate. A simplified scheme of the 

degradation mechanisms is shown in Figure 5. The water molecules permeate inside the composite 

structure by diffusion mechanism. The hydrophilic areas (Figure 5a, point a1) of the thermosetting 

matrix can be considered as local preferential pathways for the water diffusion (Figure 5b, point b1) 

[25]. Moreover, some authors ascribed the quite high moisture adsorption of the bisphenol A 

diglycidyl ether epoxy resin (i.e., DGEBA) to their high crosslink density and, as a consequence, to 

the limited chain mobility, which make these systems less compact (i.e., having high free volume)

[35 37].This favors the triggering of voids or cavities within the matrix. Furthermore, micro-defects 

(in Figure 5a, point a2) or cracks (Figure 5a, point a3) intrinsically generated in the matrix during the 

manufacturing process or due to capillarity water diffusion at the fiber/matrix interface exalt the 

(i.e., W30D0 and W30D2(i.e., W30D0 and W30D2
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diffusion rate (in Figure 5b, point b2). Similarly, debonding and delamination phenomena can take 

place at the fiber-matrix interface [5]. Natural fiber swelling (in Figure 5c, point c1) leads to an 

increase of internal stresses at the fiber-matrix interface that is partially reduced by matrix cracks or 

molecules relaxation (in Figure 5c, point c2) [38]. These stresses favor interfacial debonding and 

delamination already during the absorption stage leading to a further increase of the water uptake. 

Furthermore, flax fiber reinforced composites experienced a noticeable desorption of water (i.e., in 

the range 6-8%) during the dry phase (see Figure 1). This implies a relevant shrinkage of flax fibers, 

which leads to local detachments of the polymer matrix from the fiber (in Figure 5d, point d1). In 

addition, local dissolution of soluble constituents (e.g. hydrocarbons, waxes and lignin) of flax in 

water solution improved the amount of defects on the surface of the natural fiber [15]. The shrinkage 

process in the fiber is more relevant than in the matrix [39], thus enhancing the composite damaging 

induced by water. The generated interfacial stress, due to this mismatch between fiber and matrix

shrinkage, is released by the nucleation and growth of other micro cracks in both matrix and fibers as 

well as at the fiber-matrix interface (Figure 5d, point d2) [6]. The so created large debonded area 

noticeably worsens the interfacial mechanical properties of laminates in addition to exalt the water 

vapor mass diffusion during its evaporation in the dry phase. This finding is in complete agreement 

with the experimental result concerning the higher desorption rate than adsorption one. 

3.4 Quasi-static mechanical tests

With the aim of defining a reference to assess the mechanical performances recovery of flax 

composites during the dry phase, the evolution of flexural stress-strain curves at varying the 

exposition time to salt-fog (i.e., wet phase) was preliminarily shown in Figure 6. As reported in the 

literature [40], the water absorption involves a progressive softening of natural fiber reinforced 

composites, which implies a reduction in the maximum strength and stiffness as well as an increase 

in the deformation at break. This behavior can be attributed to a synergistic and concomitant action 

of various degradative phenomena, which contribute to the worsening of the composite performances. 
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As clearly evidenced in Figure 6, the absorbed moisture has an extensive effect on the mechanical 

response of flax fiber reinforced composites leading to relevant modifications in the stress-strain 

curve. It is worth noting that, by evaluating Figure 6, W15D0 and W30D0 composites showed 

substantial reductions in both flexural strength (i.e., equal of -28.7% and -31.5%) and flexural 

modulus (i.e., equal to -60.1% and 63.6%) in comparison to the unaged ones (i.e. W0D0),

respectively. At the same time, a noticeable increase of the strain at break was also observed. The 

strength and stiffness reductions can be mainly related to the degradation phenomena triggered by the 

noticeable water sorption (see Figure 1) experienced by flax fiber reinforced composites during the 

salt-fog exposition. Indeed, the absorption of large amount of water causes matrix micro-cracking 

due to the swelling of flax fibers [23], which implies a decrease in the threshold strength for the crack 

activation and propagation in the composite [40]. Similarly, the relevant increase in the strain at break 

can be associated with a softening and plasticization effect of the wet composite sample [29]. It is 

also important to underline that, by observing the stress-strain curves, a transition from predominantly 

linear mode with catastrophic fracture to non-linear mode with progressive fracture can be identified 

at increasing the salt-fog exposition time. This suggests, considering the high deformation values 

reached by the investigated composites during the bending tests, the occurrence of high interlaminar 

damages which generate shear and delamination fractures between the laminae, thus leading to a 

ductile failure mode [41]. However, there are controversial opinions in the literature about the role of 

fiber-matrix adhesion worsening in the reduction of composites performances. Nevertheless, there is 

a common address that the interfacial fiber-matrix resistance surely influences the mechanical 

behavior of the laminate at different times of aging [42].

These considerations are confirmed by analyzing the flexural fracture methods of the specimens as 

the immersion time in the salt spray chamber increases (Figure 7). The unaged sample (W0D0) shows 

a sharp and sudden fracture which starts in the external laminae that suffer the maximum tensile 

stress. Then, it rapidly propagates longitudinally towards the center of the specimen. In the sample 

exposed to salt-fog for 15 days (i.e., W15D0), secondary fracture mechanisms, attributable to the 
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he absorption of large amount of water causehe absorption of large amount of water cause

implies a decrease in the threshold strength for the crack implies a decrease in the threshold strength for the crack 

. Similarly, the r. Similarly, the relevant increase in elevant increase in 

can be associated with a softening and plasticization effect of the wet composite samplecan be associated with a softening and plasticization effect of the wet composite sample

observing observing the stressthe stress

fracture to fracture to nonnon-linear

fog exposition fog exposition timetime

by the investigby the investigated composites ated composites 

generategenerate shear and delamination fractures between the laminashear and delamination fractures between the lamina



increased ductility of the material and the reduction of interlaminar strength, are identifiable by 

observing the fracture surface. Hence, a partial propagation of the fracture crack transversely to the 

applied load direction occurs, ascribed to delamination and interlaminar shear fractures. On the other 

hand, for the specimen subjected to a 30-day wet phase, the composite plasticization, induced by the 

significant water absorption, did not allow to detect a clear fracture surface also at great deflection

values (as confirmed by evaluating the stress-strain curve in Figure 6).

It is worth underlining that not all the aging mechanisms induce an irreversible damage in the 

composite laminate. As clearly shown in Figure 1, the dry phase carried out under controlled 

conditions (i.e., 50% U.R. and 22°C) involves a progressive desorption of the water previously 

absorbed by the samples during the salt-fog exposition (i.e., wet phase of the aging cycle). After the 

wet phase, a progressive recovery of the mechanical performances is expected by considering that 

the degradation mechanisms may be reversible or irreversible. The discrimination and quantification 

of the performance reversibility during the dry phase is a relevant information for a reliable durability 

design of this class of composite laminates.

Figure 8 shows the stress-strain curves at increasing drying time of samples exposed to salt-fog for 

(a) 15 days and (b) 30 days. As already stated, after 15 days under salt-fog environmental conditions 

W15D0 composites showed clear decreases in terms of both flexural strength and stiffness as well as 

a noticeable increment in the deformation at break. Figure 9 highlights that W30D0 sample did not 

show an evident flexural fracture in the span centerline. However, the specimen suffered a relevant 

deflection without leading to the triggering of critical failure cracks in the fiber and matrix thanks to 

the significant elastoplastic behavior offered by the wet aged constituents. The following dry phase

allows to progressive recover its mechanical performances (Figure 8a): i.e., a partial enhancement of 

the maximum flexural strength in addition to a decrease of the strain at failure. Furthermore, it is 

important to underline that the initial slope of the curve (i.e., evaluated at low strain values) related

to the flexural modulus of the laminate, undergoes a progressive increase. This means that degradative 

phenomena such plasticization and softening due to the wet phase can be considered as partially 

mechanisms induce an irreversible damage mechanisms induce an irreversible damage 
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reversible. In particular, the laminate experienced after the dry phase an almost complete recovery of 

the maximum flexural strength: i.e., W15D21 sample shows an average value of the maximum 

strength equal to 72.6 MPa, i.e., 2.6% lower than unaged one (i.e., W0D0). Furthermore, the strain at 

failure of the W15D21 sample is equal to 10.5%, significantly higher (+73%) than that shown by 

W0D0 sample. As shown in Figure 8b, similar considerations can be drawn by observing the effect 

of the dry phase on the mechanical behavior of the specimens exposed to salt-fog for 30 days (i.e., 

W30Dx).

Lateral and bottom views of the flexural fracture surface of W30D1 and W30D21 samples (Figure 9) 

confirms these findings. The failure starts for tensile fracture of the external bottom laminae (see 

bottom views in Figure 9). Afterward, it progressively propagates toward the centre of the sample, 

causing somewhere debonding and pull-out of the upper texture fabrics as well as interlaminar shear 

fracture (identifiable by the horizontally oriented red arrows lateral view images in Figure 9). 

This suggests that the degradation phenomena triggered by the water absorption during the wet phase 

have a coupled reversible and irreversible contribution that can affect the mechanical properties of 

the resulting composites in different ways. Quite interestingly, the laminate still preserves a high

ductility at the end of the dry phase, indicating that its stiffness is just partially compromised. 

Conversely, the stress limit can be considered largely recovered. Consequently, the strength reduction 

experienced during the wet phase can be ascribed to mainly reversible aging phenomena whereas the 

stiffness loss is more probably correlated to both reversible and irreversible degradative phenomena.

The water absorbed in the epoxy resin is identifiable as free or bound water [43]. The former is 

referred to the water molecules able to flow and diffuse through the voids and/or pores in the matrix. 

Vice versa, the latter concerns the water molecules bonded to polar groups of the polymeric network

[44]. 

Furthermore, due to the hydrophilic behavior of natural fibers, flax fibers swell significantly higher 

than the surrounding epoxy matrix. Hence, a radial stress could be generated at the fiber-matrix 

interface, thus creating interfacial micro-cracks in the matrix as well as leading to local fiber/matrix 
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debonding [28]. All these factors can contribute to the strength reduction of the composite laminate 

experienced during the wet phase of the aging cycle.

Vice versa, the reduction in the composite stiffness could be ascribed to a synergistic action of 

softening phenomena involving both matrix and fibers. Indeed, dry flax fiber consists of quite rigid 

cellulose fibrils with the cellulose molecules stably bonded within these fibrils. However, water can 

diffuse by capillarity through cellulose network and penetrate in the fibrils. Hence, the water 

molecules can interact with the flax fiber in correspondence of the hydroxyl terminated groups of the 

cellulose molecules, thus forming hydrogen bonds [45]. As a consequence, this interaction leads to 

the reduction of the bonding forces that make the flax structure rigid. The water therefore acts as a 

plasticizer allowing the cellulose molecules to move and increasing the flexibility of the fiber [46].

Figure 10 confirms the capability of the flax fiber reinforced composite to noticeably recover its

mechanical properties reduction experienced during the wet phase (i.e., salt-fog exposition), thanks 

to the following dry phase. As already discussed, this means that both reversible and irreversible 

aging phenomena play an important role in the worsening of the mechanical response during the wet 

phase. Quite interestingly, the laminate showed an almost complete recovery of the flexural strength 

at the end of the dry phase. In particular, Figure 10a shows that composites exposed to salt-fog for 15 

days (i.e., W15Dx) and 30 days (i.e., W30Dx) were able, at the end of the dry phase (i.e., 21 days), 

to recover more than 99% and 97.5% of their initial flexural strength values, respectively. On the 

other hand, the 78% and the 69.4% of the flexural modulus was recovered by the same composites 

after 21 days of drying.

These findings clearly evidence that the flexural load carrying capacity of flax fiber reinforced 

composites is more strictly related to mainly reversible degradative phenomena whereas the stiffness 

loss is more probably correlated to irreversible ones. 

In order to deeper understand the evolution of the mechanical response of the composites after wet 

(i.e., salt fog exposition) and dry phases, SEM images of some flexural fractured specimen were 

collected, and the micrographs taken at a magnification level of 200x are reported in Figure 11.
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From a morphological point of view, the W0D0 sample is characterized by flax fibers properly 

embedded in the epoxy resin. The matrix penetrates in the interstices among fibers allowing a 

continuous connection with the reinforcement. This leads to a proper stress distribution at the 

fiber/matrix interface, thus also avoiding the presence of interfacial cavities or macroscopic defects

in the matrix. Nevertheless, W30D0 laminate exhibits a quite irregular morphology. The flax fiber 

bundle is unraveled with evidence of local defects or interfacial debonding. The absorbed water 

weakens the physical and chemical interfacial bonds, thus provoking debonding phenomena [32]. 

This implies that preferential pathways for water diffusion were constituted at the fiber/matrix 

interface, thus favoring a premature degradation of the flax fiber reinforced composite laminate. 

These heterogeneities represent a relevant structural discontinuity which are also present at the end 

of the dry phase. Hence, the reduced fiber-matrix interfacial adhesion causes an ineffective stress 

transfer among the constituents thus strongly influencing the stiffness as well as increasing the 

ductility and toughness of the composite laminate [47,48]. Moreover, the presence of defects or cracks 

in the polymeric matrix favors a reduction in the critical stress at failure of the composite. 

In order to get further insights concerning the performance variation of the laminate, a topological 

map (i.e., reversibility map), able to discriminate reversible and irreversible aging zones, was created. 

Figure 12 represents the reversibility map referred to the flexural modulus experimental data (see for 

reference Figure 10b). The solid blue line is related to the aging curve of the composite at increasing 

the exposition time in the salt-fog environment. The region below this line represents a state of over-

aging which resulted in a decrease in performance greater than the experimentally estimated one. On 

the other hand, the solid black line discriminates the reversible and irreversible aging zones. This

curve can be obtained by joining the points at equilibrium at the end of each dry phase with the unaged 

one. It is important to underline that for flax fiber reinforced composites most of the aging phenomena 

are reversible (see the area with green arrows shown in Figure 12). The region highlighted in red 

represents the area related to the irreversible aging. This region becomes the more relevant the longer 

the exposition time to the salt-fog chamber.
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This graph can be used in the design to estimate the performance decay and the recovery conditions 

due to a wet-dry aging cycle. For example, by considering the time duration of the wet phase equal 

to 23 days, a reduction in the laminate performance of about 65% can be expected (point 1 in the 

Figure 12). However, by following reversibility curves during the dry phase (i.e., dotted red arrow in 

Figure 12), a partial performance recovery can be predicted with a final residual decay at long drying 

times lower than 30% (i.e., point 2 in Figure 12). This indicates that a recovery of this properties

equal to about 35% can be expected at the end of the dry phase.

These findings mean that degradation phenomena which take place during the humid aging phase do 

not necessarily imply a permanent deterioration in the laminate performance. A relationship between 

reversible and irreversible degradation processes on the durability issues of the investigated 

composite laminates can be identified. In particular, the irreversible contribution is all the more 

relevant the longer the aging time is imposed. Future studies, aimed to better discriminate the 

phenomena related to the triggering and propagation of irreversible degradation mechanisms, will 

further enhance the achieved results.
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Conclusion

The main goal of the present paper is to investigate the ability of flax fiber reinforced composites in 

the recovery of their mechanical performances under partially similar marine environment. To this 

aim, composites manufactured through vacuum infusion were aged under salt-fog at 35 °C for 15 and 

30 days, respectively. After the initial wet phase, the aged materials were

(i.e., 50% R.H. and 22°C) for an interval time varying between 1 and 21 days. The performances 

evolution was evaluated by performing quasi-static mechanical tests, water uptake and water contact 

angle measurements on both unaged and aged samples. Moreover, the surface morphology of 

fractured surfaces after flexural testing was examined by using 3D optical microscope and scanning 

electron microscope (SEM).

It was found that flax fiber reinforced composites experience phenomena of both reversible and 

irreversible degradation during the wet phase thus evidencing a relevant mechanical recovery at the 

end of the dry phase. In particular, the mechanical characterization revealed that the laminates

exposed to salt-fog for 30 days are able to recover more than 99% and about the 78% of their initial 

flexural strength and modulus values after 21 days of drying, respectively.

These results were summarized in a topological reversibility map of the mechanical behavior able to 

visually quantify both reversible and irreversible degradative contribute in the NFRC performances. 

These findings clearly evidenced that the flexural load carrying capacity of the investigated 

composites is more closely related to mainly reversible aging phenomena whereas the stiffness loss 

to irreversible ones.
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Figure captions

Figure 1. Water uptake evolution at increasing time during wet (solid line) and dry (dotted line) 

phases for batch A (blue line) and batch B (red line)

Figure 2. Water (a) absorption and desorption of (b) W15 and (c) W30 batches

Figure 3. Density and void content values of unaged and aged composites 

Figure 4. Water contact angle (WCA) of unaged and aged composites 

Figure 5. Schematization of wet-dry degradation mechanisms (modified from [44])
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Figure 6. Stress-strain curves for unaged (i.e., W0D0) and aged (i.e., W15D0 and W30D0) 

composites

Figure 7. Optical 3D images of flexural fractures (lateral and bottom views) for W0D0, W15D0 

and W30D0 composites

Figure 8. Stress-strain curves at increasing drying time for samples aged for a) 15 days (i.e., 

W15Dx) and b) 30 days (i.e., W30Dx). As reference unaged sample was added.

Figure 9. Optical 3D images of flexural fractures (lateral and bottom views) for W30D0, W30D1 

and W30D21 composites

Figure 10. Percentage variations of (a) flexural strength and (b) modulus of composites at 

varying time 

Figure 11. SEM images of flax bundles in a) W0D0 and b) W30D21 composites 

Figure 12. Topological map for the reversibility of flexural modulus 
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