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F I G U R E 9 Maps of horizontal and vertical displacement of the quasi-incompressible Cook membrane test, for the hybrid equilibrium
element with quadratic stress field (HEE2), cubic stress field (HEE3), quartic stress field (HEE4) and for the nine-node displacement-based
element (Q9), with meshes of 8 × 12 elements

4.2.1 Slow axial pulse load

The numerical simulation of elastic-dynamic analysis of the cantilever beam subjected to the uniform axial load pn is
applied by the time continuous loading law f1(t) represented in Figure 11, with the greater value of pulse load application
time: ΔT1 = 8 s, with constant time increment Δt = ΔT1∕160 = 5 ⋅ 10−2 s and with tmax = 50 s.

The results of the dynamic analysis obtained with the coarse meshes of the dynamic HEE formulation and with the
standard DB one, are compared in Figure 12A in terms of horizontal and vertical displacements and in terms of normal
stress 𝜎x, at point B represented in Figure 12B. The four different solutions (HHE2, HEE3, HEE4, and Q9) are practically
coincident in terms of horizontal displacement ux at point B, whereas some small differences can be observed in terms of
the vertical component uy, especially in the HEE2 formulation. This error is probably due to the asymmetry of the HEE
meshes. Conversely, the HEE formulation computes the exact value of the normal stress 𝜎x at point B, which is imposed
as a boundary condition, and the DB formulation produces non null stress values after the pulse load, when the right end
is unloaded and null normal stress is expected. The differences between the HEE and DB formulations are very small and
vanish completely with the fine meshes, so that it can be stated that the two formulations converge to the exact elastic
dynamic solution.

4.2.2 Fast axial pulse load

The differences between the two formulations are more pronounced for the faster pulse load, which is defined by the
continuous loading law pnf1(t)withΔT = 0.08 s, with constant time incrementΔt = ΔT2∕160 = 5 ⋅ 10−4 s and with tmax =
0.50 s. The relevant numerical results, obtained with coarse and fine meshes, with the quadratic, cubic, and quartic HEE
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F I G U R E 10 Maps of principal stresses and maximum tangential stress of quasi-incompressible Cook membrane test, for the hybrid
equilibrium element with quadratic stress field (HEE2), cubic stress field (HEE3), quartic stress field (HEE4) and for the nine-node
displacement-based element (Q9), with meshes of 8 × 12 elements

formulations and with the DB one are compared in Figure 13 in terms of horizontal and vertical displacement components
at point A in the time domain.

The numerical solutions are also compared in Figure 14A–D in terms of evolution of stress components at point B in
the time domain. The stress components 𝜎x and 𝜏xy are imposed as a boundary condition in the HEE formulations and
coincide to the exact solutions for both coarse meshes and fine meshes. The DB solution provides some small errors in
terms of stress which become negligible with the fine mesh. Finally, the evolution in the time domain of normal stress 𝜎y,
which is not imposed as a boundary condition in HEE formulation, is plotted in Figure 14B for the coarse mesh, with some
differences between the different solutions, and in Figure 14D for the fine mesh, showing perfectly coincident results
and convergence of the two formulations to the exact solution. In this sense, the proposed dynamic equilibrium-based
formulation can also be considered as a dual approach for the error estimation and for the convergence analysis of the
classic DB approach.
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F I G U R E 11 The cantilever beam dynamic test with the three load setting: the axial uniform pressure pn, the quadratic tangential
pressure pt, and the vertical body force by. The loads are applied as dynamic pulse by the continuous loading law f1(t) and the discontinuous
loading law f2(t)

T A B L E 2 Details of the discretizations employed in the dynamic analysis of the cantilever beam, with the hybrid
equilibrium element and with the DB nine-nodes element

HEE2 HEE3 HEE4 Q9

Mesh No. nodes Mesh No. nodes Mesh No. nodes Mesh No. nodes

2 × 20 426 2 × 20 568 2 × 20 710 2 × 20 205

10 × 100 9330 10 × 100 12,440 10 × 100 15,550 16 × 160 10,593

(A) (B)

F I G U R E 12 Dynamic response of a cantilever beam subjected to a slow pulse axial load pnf1(t) (ΔT = 8 s), for the quadratic, cubic, and
quartic HEEs and for the nine-node DB element, with coarse 2 × 10 meshes, in terms of (A) horizontal and vertical displacement at point B;
(B) normal stress 𝜎x at point B

The maps of horizontal displacement ux and the maps of normal stress 𝜎x, at time t = 16.0 s, computed with the HEE
formulation and the DB approach with coarse and fine meshes are plotted respectively in Figures 15 and 16. There it
can be observed that displacement and stress computed with the coarse meshes do not coincide with each other and
the equilibrium-based solutions do not show a symmetric response, due to the asymmetry of the HEE meshes. More-
over, some displacement discontinuity between coincident nodes is noticeable in the solution with quadratic stress fields
(HEE2) but vanishes altogether with higher stress fields (HEE3 and HEE4). The numerical results for the fine meshes
respect the symmetry condition of the axial load and are all perfectly coincident in terms of both displacement and stress,
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F I G U R E 13 Dynamic response of a cantilever beam subjected to the fast axial pulse load pnf1(t) (ΔT = 0.08 s), in terms of vertical and
horizontal displacement at point A, for the quadratic, cubic, and quartic HEE and for the nine-node DB element

(A) (B)

(C) (D)

F I G U R E 14 Dynamic response of a cantilever beam subjected to the fast pulse axial load pnf1(t) (ΔT = 0.08 s), at point B in terms of
(A) normal stress 𝜎x with coarse mesh; (B) normal stress 𝜎y and tangential stress 𝜏xy with coarse mesh; (C) normal stress 𝜎x with fine mesh;
(D) normal stress 𝜎y and tangential stress 𝜏xy with fine mesh
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F I G U R E 15 Map of horizontal displacement ux at time t = 0.16 s for the cantilever beam subjected to the fast pulse axial load pnf1(t)
(ΔT = 0.08 s), computed with the quadratic, cubic, and quartic HEE and with the nine-node DB element

F I G U R E 16 Map of normal stress 𝜎x at time t = 0.16 s for the cantilever beam subjected to the fast pulse axial load pnf1(t)
(ΔT = 0.08 s), computed with the quadratic, cubic, and quartic HEE and with the nine-node DB element

confirming the convergence of the proposed formulation and the DB approach to the exact solution. The maps of stress
and displacement of the fine mesh solutions are plotted for the quadratic HEE formulation (HEE2), whereas only maxi-
mum and minimum values are reported for the other solutions, both for this numerical simulation and for the following
ones.

4.2.3 Slow tangential pulse load

Good performances of the hybrid dynamic equilibrium formulation are also found in the numerical simulation of the
cantilever beam subjected to a slow and continuous pulse tangential load ptf1(t), with the greater value of pulse load
application time: ΔT1 = 8 s, with constant time increment Δt = ΔT1∕160 = 5 ⋅ 10−2 s and with tmax = 50 s. The results
computed with coarse meshes are plotted in the two graphs in Figure 17 in terms of vertical displacement uy at point A and
in terms of horizontal displacement ux at points A and B, showing negligible differences between the equilibrium-based
solutions and the displacement-based one. The numerical results are also plotted in the two graphs in Figure 18 in terms
of tangential stress 𝜏xy at corner A, where the exact solution is null in the whole time domain, and at point B where the
quadratic tangential load imposes the stress value 𝜏xy = 1.5.
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F I G U R E 17 Dynamic response of a cantilever beam subjected to a slow tangential pulse load ptf1(t) (ΔT = 8 s), in terms of vertical
displacement uy at point A, and in terms of horizontal displacement ux at points A and B, for the quadratic, cubic, and quartic HEEs and for
the nine-node DB element, with coarse 2 × 20 meshes

F I G U R E 18 Dynamic response of a cantilever beam subjected to a slow tangential pulse load ptf1(t) (ΔT = 8 s), in terms of tangential
stress 𝜏xy at points A and B, for the quadratic, cubic, and quartic HEEs and for the nine-node DB element, with the coarse 2 × 10 meshes

The numerical results for a cantilever subjected to a slow pulse tangential load confirms the good results of the pro-
posed formulation, showing some slightly incorrect values of displacement ux at point B computed with the quadratic
equilibrium formulation (HEE2). The cubic and quartic stress field equilibrium formulations produce exact values. By
contrast, the equilibrium-based approach produces exact values of stresses at the free end, where tangential stress is
applied as a boundary condition, and the DB solution computes incorrect values of the tangential stress for all time steps.
The distribution of the three stress components at the right end at time step t = 4 s, computed with the coarse meshes of
quadratic, cubic, and quartic equilibrium elements and with nine-node DB elements, are plotted in Figure 19. This graph
clearly shows the limits of the classical DB models in stress response: linear tangential stress instead of quadratic trend;
nonzero normal stress 𝜎x at the free end; and nonzero normal stress 𝜎y at the two corners. The differences between the
three equilibrium formulation are due to the high order of the exact solution, which is defined by a cubic function for
the normal stress component 𝜎y. So the quadratic formulation can reproduce only an approximate solution, whereas the
cubic formulation and the quartic one can reproduce the exact solution. The numerical results are accompanied by maps
of the vertical displacement and maps of the tangential stress at time step t = 16 s plotted respectively in Figures 20 and
21, which were computed with the four considered formulations using coarse and fine meshes.

4.2.4 Fast tangential pulse load

Similarly to the case of axial force, the differences between the equilibrium-based and displacement-based formulations
are more pronounced for the faster tangential pulse load, which is defined by the pulse tangential load ptf1(t) , with
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F I G U R E 19 Distribution of the stress components at the right end of the cantilever beam at the step t = 4 s, for the quadratic, cubic,
and quartic HEEs and for the nine-node DB element, with coarse 2 × 10 meshes

F I G U R E 20 Map of vertical displacement uy at time t = 16 s for a cantilever beam subjected to the slow tangential pulse load ptf1(t)
(ΔT = 8 s), computed with the quadratic, cubic, and quartic HEEs and with the nine-node DB element

the value of pulse load application time ΔT2 = 0.08 s, with constant time increment Δt = ΔT2∕160 = 5 ⋅ 10−4 s and with
tmax = 0.5 s. The numerical results computed with the coarse meshes are compared in the first graph in Figure 22 in terms
of vertical and horizontal displacement components ux and uy at point A in the whole time domain, showing signifi-
cant differences between the four formulations with coarse meshes, especially for the quadratic equilibrium-based one
(HEE2). This differences completely disappear with fine meshes, as shown in the second graph in Figure 22, confirming
the convergence of the proposed formulation to the exact solution.

The numerical results computed with coarse meshes are compared in the first graph in Figure 23 in terms of normal
stress 𝜎x in the whole time domain at point C, where such component cannot be imposed as a boundary condition.
In the same graph the stress components 𝜎y and 𝜏xy computed at point C with the Q9 DB approach are plotted. These
stresses should be null, being components of the traction at the free boundary, whereas they are exactly computed by
the equilibrium formulation. The same stress components are plotted in the second graph in Figure 23 for fine meshes,
showing the convergence of the four formulations to the same solution, although some residual error can be observed in
the stress components 𝜎y and 𝜏xy computed with the DB nine-node element.
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F I G U R E 21 Map of tangential stress 𝜏xy at time t = 16 s for the cantilever beam subjected to slow tangential pulse load ptf1(t)
(ΔT = 8 s), computed with the quadratic, cubic, and quartic HEE and with the nine-node DB element

F I G U R E 22 Dynamic response of a cantilever beam subjected to the fast tangential pulse load ptf1(t) (ΔT2 = 0.08 s) in terms of vertical
and horizontal displacements ux and uy at point A, for the quadratic, cubic, and quartic HEEs and for the nine-node DB element

F I G U R E 23 Dynamic response of a cantilever beam subjected to the fast tangential pulse load ptf1(t) (ΔT = 0.08 s), in terms of stress
components at point C for the quadratic, with the coarse and fine meshes
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F I G U R E 24 Dynamic response of a cantilever beam subjected to the fast tangential pulse load ptf1(t) (ΔT = 0.08 s), in terms of stress
components at point D, with the coarse and fine meshes

F I G U R E 25 Map of vertical displacement uy at time t = 0.16 s for a cantilever beam subjected to the fast tangential pulse load ptf1(t)
(ΔT = 0.08 s), computed with the quadratic, cubic, and quartic HEEs and with the nine-node DB element

The trend of tangential stress 𝜏xy in the whole time domain at the internal point D, therefore not assumed as boundary
condition, is plotted in the graph in Figure 24 for the coarse meshes and for the fine meshes.

The maps of vertical displacement uy and the maps of tangential stress 𝜏xy, at time t = 0.16 s, computed with the HEE
formulations and the DB one, with coarse and fine meshes, are plotted respectively in Figures 25 and 26. There it can be
observed that some displacement discontinuity between coincident nodes is noticeable in the solution with coarse mesh
and quadratic stress field (HEE2) but totally vanishes with the higher stress fields (HEE3 and HEE4) and also with fine
meshes.

In order to analyze the numerical error introduced by the Newmark time integration, the numerical simulation of the
cantilever beam subjected to the fast tangential pulse load is also performed with a greater time step value dt = ΔT2∕16 =
5 ⋅ 10−3 s and with the same time domain with tmax = 0.5 s. The differences in the numerical solutions due to the greater
time step are negligible with the fine meshes both for the HEE formulation and for the DB one. The greater time step
does not produces any significant error neither with the coarse meshes and with comparable effects between the HEE
formulation and the DB one. For the coarse meshes, the results of the numerical simulations performed with the two
different values of the time step are compared in Figure 27A in terms of tangential stress at point D, and are compared
in Figure 27B in terms of vertical displacement at the point A. Figure 27A,B shows that increasing the time step with
the Newmark time integration method seems to produce similar effects in the HEE formulation and in the displacement
based one, that is a delay in the response with an increase of the period.
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F I G U R E 26 Map of tangential stress 𝜏xy at time t = 0.16 s for a cantilever beam subjected to the fast tangential pulse load ptf1(t)
(ΔT = 0.08 s)

(A) (B)

F I G U R E 27 Dynamic response of a cantilever beam subjected to the fast tangential pulse load ptf1(t) (ΔT = 0.08 s). The numerical
results obtained with two different time steps (dt = 0.05 s and dt = 0.005 s) are compared in terms of (A) tangential stress 𝜏xy at point D; (B)
vertical displacement at point A

4.2.5 Slow and discontinuous tangential pulse load

The proposed hybrid equilibrium formulation and the classic DB one are also compared for the elastic-dynamic analysis
of the beam cantilever subjected to the time discontinuous load, that is the tangential load pt with the time discontinuous
load function f2(t), with the value of pulse load time ΔT = ΔT1∕2 = 4.0 s and with tmax = 20s. The load discontinuity is
applied in a single load step and two values of the constant time increment are considered: the standard value dt = 0.05 s
and the very small value (compared with load application time ΔT) dt = 0.001 s, with a stronger discontinuity in the load
time law.

The numerical results computed with the coarse meshes are plotted in the Figure 28A,B in terms of horizontal and
vertical displacement ux and uy at point A. The results are also compared with the solution of the continuous tangential
load, from which the responses diverge after the load discontinuity, and are compared with the solutions of the quadratic
equilibrium formulation performed with the small time increment dt = 0.001 s, showing almost identical results. The
numerical solutions of the discontinuous tangential load performed with the standard time increment dt = 0.05 s are
plotted the Figure 29A in terms of tangential stress 𝜏xy at the boundary point B, showing an exact response at the load dis-
continuity for the HEE formulations and the approximate solution of the DB one. The tangential stress 𝜏xy at the internal
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(A) (B)

F I G U R E 28 Dynamic response of a cantilever beam subjected to a discontinuous pulse tangential load ptf2(t) (ΔT = 4 s) and time
increment dt = 0.05 s, in terms of (A) horizontal displacements ux at point A; (B) vertical displacements uy at point A. The results are
compared with the continuous pulse load solution and to the quadratic HEE solution with the smaller time increment dt = 0.001 s

(A) (B)

F I G U R E 29 Dynamic response of a cantilever beam subjected to a discontinuous pulse tangential load ptf2(t) (ΔT = 4 s), in terms of
(A) tangential stress 𝜏xy at point B; (B) tangential stress 𝜏xy at point D

point D are plotted in Figure 29B, showing very similar results, and with the equilibrium solutions almost coincident to
the converged one, obtained by the DB formulation with fine mesh (Q9 element).

4.2.6 Slow tangential pulse load for quasi-incompressible material

Finally, the last numerical simulation of a cantilever beam subjected to a dynamic pulse uniform body force by = 0.1
with a slow loading law (ΔT1 = 8 s) was performed under a plane strain quasi-incompressible condition with Poisson
ratio 𝜈 = 0.4999, for which the DB formulation suffers the volumetric locking numerical problem. The numerical results
computed with coarse meshes are compared in the graph in Figure 30A in terms of normal stress 𝜎x at point C, where
such component cannot be imposed as a boundary condition, and the results are compared with the converged solution
obtained by the fine mesh. The numerical results are plotted in the graph in Figure 30B in terms of tangential stress 𝜏xy
and normal stress 𝜎x at the internal point D, and the results are compared with the converged solution obtained by the fine
mesh. The normal stress 𝜎x at point D in the exact solution is null in the whole time domain, and this result is confirmed
by the HEE formulation. The two graphs also show the well-known problems of the DB formulation in evaluation of the
normal stress components in quasi-incompressible elastic-dynamic problems.

The numerical results computed with coarse meshes are compared in terms of vertical displacement uy and
horizontal displacement ux at point A in Figure 31A,B. In the same figure the results are compared with
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(A) (B)

F I G U R E 30 Dynamic response of a cantilever beam subjected to the pulse vertical body force load by with ΔT = 8 s, in terms of (A)
normal stress 𝜎x at point C; (B) normal stress 𝜎x and tangential stress 𝜏xy at point D

(A) (B)

F I G U R E 31 Dynamic response of a quasi-incompressible cantilever beam subjected to a uniform vertical body force load by with
ΔT1 = 8 s in terms of (A) vertical displacement at point A; (B) horizontal displacement at point A. The results are compared with the Q9 DB
numerical solution computed with the fine mesh

F I G U R E 32 Map of normal stress 𝜎x at time t = 16 s for a quasi-incompressible cantilever beam subjected to a pulse vertical body force
load by with ΔT1 = 8 s, with coarse mesh and the zoom at the constrained end with fine meshes
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F I G U R E 33 Map of normal stress 𝜎y at time t = 16 s for a quasi-incompressible cantilever beam subjected to a pulse vertical body force
load by with ΔT1 = 8 s, with coarse mesh and the zoom at the constrained end with fine meshes

F I G U R E 34 Map of tangential stress 𝜎xy at time t = 16 s for a quasi-incompressible cantilever beam subjected to a pulse vertical body
force load by with ΔT1 = 8 s, with coarse mesh and the zoom at the constrained end with fine meshes

the numerical solution computed with the fine mesh of the Q9 DB formulation, and showing an excellent
matching with the three solution obtained with the coarse mesh of the HEE formulation. The better perfor-
mances of the proposed formulation with respect the classic DB one are clear in the maps of stresses reported
in Figures 32–34, where the inconsistent stress distribution of the Q9 DB results are shown for the coarse
meshes. The zoom of the constrained end of the fine-mesh solutions are plotted and clearly show the incon-
sistent stress gradients inside each element. Conversely, the HEE solutions are not affected by any volumetric
locking.
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5 CONCLUSIONS

The present article develops the two-dimensional hybrid equilibrium element formulation, with quadratic, cubic, and
quartic stress fields, for accurate static and dynamic analyses of both compressible solids and quasi-incompressible ones.
The formulation is developed in the variational framework of the minimum complementary energy principle for static
analysis and in the variational framework of the Toupin principle, which is the complementary form of the Hamilton
principle, for dynamic analysis.

The proposed formulation is defined by independent stress fields for each finite element. The interelement and free
boundary equilibrium conditions are applied using a classic hybrid formulation, and an independent displacement field
is defined for each element side. The solution provides stress fields which are co-diffusive between adjacent elements
and in equilibrium with traction at the free boundary sides. In the static formulation the stress fields verify the domain
equilibrium equations. The dynamic formulation is developed under the hypothesis of null initial condition and is based
on the impulse field (time integral of stress) and the dynamic equilibrium equation provides the pointwise velocity as
the integral of the inertial term. Both the static formulation and the dynamic one are defined with high-order stress field
and provide very accurate solutions in terms of stress. The analysis of a Cook membrane static problem and the analysis
of a cantilever beam subjected to a pulse dynamic load were performed with several meshes for both compressible and
quasi-incompressible elastic material.

The great accuracy of the stress-based proposed formulation is even more evident for static and dynamic analysis
of quasi-incompressible materials, for which the classic displacement based formulation comes up against the volu-
metric locking. Moreover, the static and dynamic HEE formulations represent powerful numerical tools for analysis
of elastic solids and also for dual analysis, as well as error estimation of the solutions performed with the classic
displacement-based finite element formulations. The drawback of the proposed formulation is the possible presence of
spurious kinematic modes, but they are well known and can be controlled or restrained by means of some different
approaches.

The main future development of the proposed formulation could be modeling of the interelement fracture and frag-
mentation phenomena under dynamic load condition, through the approach proposed by the author in Reference 10,
where an extrinsic (initially rigid) cohesive interface is embedded at any element side without any remeshing and without
additional degrees of freedom. The extrinsic interface can activate once the stress based damaging condition is attained
at the element side and the initially rigid behavior of the embedded interfaces does not affect the dynamic response of the
pristine material. Conversely, the classic intrinsic interface with initial elastic behavior introduces additional compliance
in the overall elastic behavior of a solid with relevant wave propagation issues.

Finally, the extension to nonzero initial conditions represents a basic requirement for analysis of a general
elastic-dynamic problem and the static and dynamic analyses of pure incompressible elastic problem represent an
interesting topic for further development of the HEE formulation.
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APPENDIX A. HIGH- ORDER STATIC COEFFICIENT MATRICES

The two-dimensional stress components are defined as functions of the Cartesian coordinates in Equations (2)–(4) for
the quadratic formulation and are represented in Equation (5) in the Voigt notation. The coefficient matrix Se(x) and the
vector ae of the generalized stress variables are defined as follows:

Se(x) =
⎡⎢⎢⎢⎣
1 y y2 0 0 0 0 0 −x −x2∕2 0 −2xy
0 0 0 1 x x2 0 −y 0 −y2∕2 −2xy 0
0 0 0 0 0 0 1 x y xy x2 y2

⎤⎥⎥⎥⎦ , (A1)

ae =
[

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

]T
, (A2)

for the quadratic formulation (ns = 2, na = 12),

Se(x) =
⎡⎢⎢⎢⎣
1 y y2 y3 0 0 0 0 0 0 −x −x2∕2 0 −2xy −x3∕3 −x2y 0 −3xy2

0 0 0 0 1 x x2 x3 0 −y 0 −y2∕2 −2xy 0 −xy2 −y3∕3 −3x2y 0
0 0 0 0 0 0 0 0 1 x y xy x2 y2 x2y xy2 x3 y3

⎤⎥⎥⎥⎦ , (A3)

ae =
[

a1 a2 a3 ... a16 a17 a18,

]T
(A4)

for the cubic formulation (ns = 3, na = 18), and

Se(x) =
⎡⎢⎢⎢⎣
1 y y2 y3 y4 0 0 0 0 0 0 0 −x −x2∕2 0 −2xy −x3∕3
0 0 0 0 0 1 x x2 x3 x4 0 −y 0 −y2∕2 −2xy 0 −xy2

0 0 0 0 0 0 0 0 0 0 1 x y xy x2 y2 x2y

−x2y 0 −3xy2 −x4∕4 −2∕3x3y −3∕2x2y2 0 −4y3x
−y3∕3 −3x2y 0 −3∕2x2y2 −2∕3y3x −y4∕4 −4x3y 0

xy2 x3 y3 x3y x2y2 xy3 x4 y4

⎤⎥⎥⎥⎦ , (A5)
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ae =
[

a1 a2 a3 ... a23 a24 a25,

]T
(A6)

for the quartic formulation (ns = 4, na = 25).

APPENDIX B. HIGH- ORDER DYNAMIC COEFFICIENT MATRICES

The two-dimensional impulse components of the elastic-dynamic problem are defined as functions of the Carte-
sian coordinates in Equation (30) for the quadratic formulation in the Voigt notation. For the quadratic formulation
(ns = 2, na = 18), the coefficient matrices S(2)

e (x) is defined in Equation (30), the matrix of divergence of impulse T(2)
e (x)

is defined in Equation (33) and the vector of generalized variable is a(2)
e = [a1a2a3 ... a16a17a18]. For the cubic formulation

(ns = 3, na = 30) the vector of generalized variable and the coefficient matrices can be written in the following compact
notation: a(3)

e =
[
a(2)

e a(2−3)
e

]
, S(3)

e =
[
S(2)

e S(2−3)
e

]
and T(3)

e =
[
T(2)

e T(2−3)
e

]
with

a(2−3)
e =

[
a13 ... a28 a29 a30

]T
, (B1)

S(2−3)
e =

⎡⎢⎢⎢⎣
x3 0 0 x2y 0 0 x.y2 0 0 y3 0 0
0 x3 0 0 x2y 0 0 x.y2 0 0 y3 0
0 0 x3 0 0 x2y 0 0 xy2 0 0 y3

⎤⎥⎥⎥⎦ , (B2)

T(2−3)
e =

[
3x2 0 0 2xy 0 x2 y2 0 2xy 0 0 3y2

0 0 3x2 0 x2 2xy 0 2xy y2 0 3y2 0

]
. (B3)

For the quartic formulation (ns = 4, na = 45) the vector of generalized variable and the coefficient matrices can be
written in the following compact notation: a(4)

e =
[
a(3)

e a(3−4)
e

]
, S(4)

e =
[
S(3)

e S(3−4)
e

]
, and T(4)

e =
[
T(3)

e T(3−4)
e

]
with

a(3−4)
e =

[
a31 ... a43 a44 a45

]T
, (B4)

S(3−4)
e =

⎡⎢⎢⎢⎣
x4 0 0 x3y 0 0 x2y2 0 0 xy3 0 0 y4 0 0
0 x4 0 0 x3y 0 0 x2y2 0 0 xy3 0 0 y4 0
0 0 x4 0 0 x3y 0 0 x2y2 0 0 xy3 0 0 y4

⎤⎥⎥⎥⎦ , (B5)

T(3−4)
e =

[
4x3 0 0 3x2y 0 x3 2xy2 0 2yx2 y3 0 3xy2 0 0 4y3

0 0 4x3 0 x3 3x2y 0 2x2y 2y2x 0 3y2x y3 0 4y3 0

]
. (B6)


