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The role of network connectivity 
on epileptiform activity
G. Giacopelli1,2, D. Tegolo1,2 & M. Migliore2*

A number of potentially important mechanisms have been identified as key players to generate 
epileptiform activity, such as genetic mutations, activity-dependent alteration of synaptic functions, 
and functional network reorganization at the macroscopic level. Here we study how network 
connectivity at cellular level can affect the onset of epileptiform activity, using computational 
model networks with different wiring properties. The model suggests that networks connected as 
in real brain circuits are more resistant to generate seizure-like activity. The results suggest new 
experimentally testable predictions on the cellular network connectivity in epileptic individuals, and 
highlight the importance of using the appropriate network connectivity to investigate epileptiform 
activity with computational models.

Epilepsy is a relatively common and widespread brain disease affecting people of all  ages1. According to the World 
Health Organization, this disease affects nearly 50 million  people2. For this reason, there are extensive experi-
mental and theoretical efforts attempting to figure out the mechanisms underlying the onset and propagation of 
the plethora of abnormal (and transient) brain electrical activity caused by this disease. A better understanding 
of the involved mechanisms can facilitate the development of therapeutic solutions. A number of potentially 
important mechanisms have been identified as key players, such as genetic  variations3 often associated with ion 
channels  mutations4, alterations of synaptic  function5, and network  connectivity6,7. However, current technical 
problems make the study of their specific contribution very difficult to investigate experimentally. From this point 
of view, computational  models8,9 can be a very convenient approach to identify the relative role and importance 
in generating seizures and, more generally, epileptiform activity.

Here we study, in more details, the role of network connectivity at cellular level, by exploiting a new math-
ematical  framework10,11 that can create networks with connectivity properties similar to those observed in real 
brain networks, we studied how network connectivity can affect the onset of epileptiform activity. The model 
suggests that networks connected as in real brain circuits are more resistant to generate seizure-like activity. The 
results suggest new experimentally testable predictions and highlight the importance of using the appropriate 
network connectivity to investigate epileptiform activity with computational models.

Results
In Fig. 1A we report a typical normal EEG  recording12, and in Fig. 1B a trace exhibiting epileptiform activity 
from a public  database13, together with the corresponding Welch  spectrograms14. The epileptic trace shows the 
characteristic high-amplitude population spikes and a significant increase in the spectral density in the low 
frequency range (compare right plots of Fig. 1A,B). A typical model trace, obtained from the latest Epileptor 
 version15, and the corresponding spectral density is shown in Fig. 1C. In the example traces shown in Fig. 1, 
the mean amplitude of the voltage was 6.9, 29.9, and 30.8 µV for the normal, epileptic, and Epileptor trace, 
respectively. The spectral analysis of the EEG signals, combined with other  features16, has a key role in seizure 
 detection17 and in building stable and accurate seizure detecting  algorithms18. Another immediate and obvious 
measure of epileptic activity is the mean signal amplitude. However, it may be less reliable that spectral analysis 
because it can be affected by a number of artifacts, such as detectors’ sensitivity, external noise, experimental 
conditions, etc. Since our simulations are not affected by these problems, in the rest of the paper we will define 
a trace as exhibiting an epileptiform activity when the average membrane potential is above 18.4 µV, half-way 
between the values calculated from the normal and epileptic experimental traces.

In order to investigate the role of network connectivity in the onset of epileptiform activity, we considered 
two aspects: (1) the type of connectivity (exponential or convolutive), (2) the spatial arrangement of the indi-
vidual neurons in a volume, shaped as a column (like in the cortex) or as a slice (like in the in vitro hippocampal 
preparation). The rationale for this choice was that we were interested in studying the response of networks 
connected using a convolutive model, and compare the results obtained with networks implemented using the 
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widely used ER  model19 in which neurons are connected with a fixed connection probability. We think that 
this is an important point. A convolutive model, introduced  in10, is based on the observation that the degree 
distributions of real brain networks do not follow neither an ER nor a power law model, but a mix of  both20. 
Based on rigorous mathematical considerations, a convolutive model is constructed by first subdividing the 
network volume in blocks and then creating the connections inside the blocks with a power law scheme (short 
range connections) and the connections between blocks with an ER scheme (long range connections). It can be 
mathematically proved that such a procedure generates a network matching the experimentally observed degree 
 distributions10,11. It can thus provide a better insight into the network mechanisms responsible for the onset of 
epileptiform activity in the real brain.

In Fig. 2A we plot the degree and connection length distributions of the networks implemented by uniformly 
distributing the 550 Epileptors in a rectangular volume, connected in three different ways: (1) following an ER 
model, ignoring the distance among neurons (Fig. 2A, red traces), and with a fixed connection probability of 
p = 0.026, corresponding to the average connection probability of a C. elegans brain, (2) following an ER model 
but with a connection probability depending on the distance between neurons as p(d) = Ae−Bd (as  in21), where 
d is the distance between two nodes, A = 0.2, and B = 0.004 (Fig. 2A blue traces), and (3) using a convolutive 
model (Fig. 2, green traces) fitting a C. elegans degree  distributions22, with two blocks and parameters, δ = 1.5, 
Ek = 1 and η = 3 (see “Methods”). The degree distributions using the ER models (Fig. 2A red and blue traces) 
were very similar to each other, even if their connection length distributions were very different (compare red 
and blue lines in the right panel of Fig. 2A). This suggests that modifying the connection probability by includ-
ing information on the distance between neurons does not significantly change the degree distributions. The 
qualitative difference, between the ER models and the convolutive model, in the connectivity among neurons, 
can be better appreciated using a graphical representation as in Fig. 2B, where we plot a circular graph repre-
senting the connectivity of different networks. The graphs were constructed by using clockwise-placed bins 
representing increasing total degrees (calculated as the sum of in- and out-degree); neurons were then assigned 
to each bin according to their total degree, and bins were connected with a line that was progressively thicker and 
less transparent as a function of the average number of connections between any two given groups. Following 
this scheme, thin faint lines represent poorly connected groups, thick black lines highlight strongly connected 
groups. Note the overall relatively light and uniform connectivity in ER-type networks (Fig. 2B, left and middle 
plots), in striking contrast with the overall bolder connectivity of the convolutive model network, preferentially 
connecting groups of higher degrees. 

Figure 1.  Comparison of experimental and model traces. (A) typical EEG trace under control conditions (left, 
 from12), and the corresponding Welch spectrum (Right); (B) typical EEG trace during epileptiform activity 
 (from13); (C) time course of the variable corresponding to the membrane voltage during a simulation of an 
 Epileptor15 with parameters: a = 1, b = 3, c = 1, d = 5, Iext1 = 3.1, m = 0, a2 = 6, τ2 = 10, Iext2 = 0.4, γ = 0.01 and a white 
noise of amplitude 0.25. The adimensional model has been converted in a dimensional one using the time scale 
constant 0.0167 s and the voltage scale constant 25 µV.
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The differences were more evident for networks of neurons distributed in a volume shaped as a slice, i.e. a 
rectangular volume of 400 × 300 × 10 μm, with an average connection probability (p = 0.0438) consistent with 
that observed in a hippocampal  slice23, as shown in Fig. 3. Note that these networks have a higher neuron density 
and connection probability, with respect to those implemented in a rectangular box. Compared to the ER model 
(Fig. 3A, red), the ER-dist model (Fig. 3A, blue) now exhibited a different connectivity, a direct consequence 
of the very different connection length distribution (Fig. 3A, right). Both models, created with parameters 
A = 0.7 and B = 0.025, were rather different from the results obtained with the convolutive model (Fig. 3A, green) 
obtained by fitting (p > 0.05) the experimentally observed degree distributions (Fig. 3A, black) of a hippocampal 
slice. The connection length distribution reflected the very different shape and size of the volume in this case (note 
the different scale for the distance axis in Figs. 2A and 3A), with a proportion of longer connections for the con-
volutive model more similar to the ER model built without distance-dependent connectivity. The circular graph 
representation in Fig. 3B, reinforces the contrast between the rather uniform connectivity of neurons belonging 
to an ER network and the clear predominance of connections between hub neurons for the convolutive model. 
These results highlight the large overall structural differences between networks with a realistic connectivity 
and those based on a fixed connection probability, independently from the network shape and size. Although 
ER networks have been shown to be able to reproduce selected experimentally observed firing patterns under 
physiological conditions, provided that different neuron populations have different connection  probabilities24, 
it has also been shown that they are more likely to synchronize, with respect to power-law  networks25. Further-
more, from a more general point of view, ER networks respond to an input in a way that is significantly different 
from that obtained from a convolutive  network20. Taken together, these results, as we will see in the following 
paragraphs, suggest that a network connected as in a real brain can be significantly more resistant to generate 
an epileptiform activity, with respect to networks with a fixed connection probability. Considering that seizures 
can significantly change the functional brain  connectivity6, it can be argued that seizures, when they begin to 
occur more and more often in a normal brain during the progression of the disease, may change the network’s 
connectivity to make it more similar to a random network.

Networks with realistic connectivity are less prone to generate epileptiform activity. To test 
the response of our networks to an external input, we carried out a series of 16  s simulations during which 
we activated, on top of the background activity, an external current, spatially modulated as described in the 
Simulations section, with Imax = 5 nA and the time course shown in Fig. 4A. In Fig. 4B,C we plot the response 
of the networks, in terms of average membrane potential over all neurons, under different conditions of spatial 
distributions and connectivity rules. All networks received the same input. Before the stimulus onset, the activ-

Figure 2.  Neurons distributed in a thick rectangular volume. (A) In-degree distribution (left), out-degree 
distribution (middle) and connection length distribution (right) for networks of Epileptors connected as an ER 
model (red), ER with distance (blue) and using a convolutive model (green) fitted to experimental C. elegans 
data (black, connection length was not available). (B) Circular graph representation of connectivity for the ER 
model (left), the ER-dist model (middle) and Convolutive model (right). See the main text for an explanation of 
how they were constructed. The lines thickness and transparency are proportional to the number of connections 
between any two given groups.
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ity in all cases appeared to have a normal behavior, with occasional and short-lived spikes of higher intensity, 
more noticeable for the ER models in thin volume. As the external input increased, all ER model networks (with 
or without distance dependent connectivity) started to have an epileptic behavior, with an average value in the 
5–15 s time window of 46.6, 34.6, 47.3 and 37.1 µV, for the ER and ER-dist in thick volume and for the ER and 
ER-dist in thin volume, respectively. Networks connected as in real brain networks (Conv. Model in Fig. 4B,C), 
had an average value of 9.9 and 7 µV, for thick and thin volumes, respectively, very close to the value obtained 
from normal traces. These results suggest that the structural connectivity of real brain networks is more resistant 
to enter into an epileptic state.

Realistic connectivity robustly protects from the consequences of strong inputs. In addition to 
the input strength, the amount of inhibition generated by network activity is a well-known modulatory mecha-
nism for epileptiform activity. Thus, we explored this aspect by carrying out a series of simulations in which 
we progressively increased the parameter n, regulating the inhibitory interaction among neurons. Simulations 
were performed for three values for Imax and a discrete set of n values (0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 
1.5, 2.0). For each combination, we simulated five network instances. In Fig. 5, we show the mean amplitude 
during the stimulation for each model. As expected, increasing the inhibition will eventually reduce the average 
amplitude of the signal. However, large values of n should not be considered physiological because, under these 
conditions, the network will strongly inhibit also physiological signals. If we focus on the lower range of n values 
(e.g. below 0.5) it can be observed that simulations using the convolutive model have a mean amplitude lower 
than exponential models at all currents (Fig. 5, top panels). It should also be noted that, for high input currents, 
ER distance models have lower mean amplitudes than ER models, pointing out the importance of spatial infor-
mation in building networks models. The same overall trend can be observed in the bottom panels of Fig. 5, for 
a thin volume model. In this case, it should be noted that the higher neuron density and connection probability, 
with respect to the rectangular box, results in a higher number of (both excitatory and inhibitory) hubs that pre-
vents the onset of an epileptiform activity even for small inhibitory strength. These results suggest that a realistic 
connectivity, implemented though a convolutive model, robustly protects from the onset of epileptiform activity 
during a wide range of strong external inputs.

Spike-wave complexes. Epileptiform activity includes spike-wave  complexes26, which are identified as 
EEG portions with variable amplitude at around 3  Hz  frequency27. A typical spike-wave complex period is 
shown in Fig. 6A. With our Epileptor networks, we found that they can be modeled by assuming a dynamic 

Figure 3.  Neurons distributed in a thin rectangular volume. (A) In-degree distribution (left), out-degree 
distribution (middle) and connection length distribution (right) for networks of Epileptors connected as an 
ER model (red), ER with distance (blue), and using a convolutive model (green), connected as observed in 
an experimental hippocampal slice  (black23), implemented with four blocks and two sub-blocks containing 
1% and 99% of the neurons, respectively, and with parameters δ = 0.25, Ek = 0.1 and η = 3. (B) Circular graph 
representation of connectivity for the ER model (left), the ER-dist model (middle) and Convolutive model 
(right). See the main text for an explanation of how they were constructed. The lines thickness and transparency 
are proportional to the number of connections between any two given groups.
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modulation of the inhibitory strength, supporting the  idea28 that they can emerge from a mutual inhibition–
rebound interaction. This corresponds to the physiological plausible assumption that the inhibitory interaction 
among neurons follows network activity (in terms of average membrane potential), generating a dynamic level 
of inhibitory response. We implemented this effect by modulating the value of n, the variable responsible for the 
inhibitory interaction among Epileptors, as:

(1)τ dn
dt = ρ(θ − θ0)(n0 − n)n

(2)τ dθ
dt = ρθ

(

X(t)
ν

− θ

)

Figure 4.  Networks with realistic connectivity are less prone to generate epileptiform activity. (A) Maximum 
input current, in the center of the network, as a function of time; (B) simulation of epileptiform activity in 
networks of Epileptors distributed in a thick rectangular volume and connected in different ways, with low 
inhibitory interaction (n = 0.1). (C) Same as in (B) but with neurons distributed into a thin rectangular volume.
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where τ = 0.0167 s, ν = 20 µV, n0 = 2, ρ = 0.05, ρθ = 0.15 and θ0 = {− 0.9; − 1} for the thick or the thin volume, respec-
tively. These equations result in a logistic behavior for n (for θ constant) with a plateau value of n0. The variable 
θ slowly converges to the value X/ν and modulates, through the (θ − θ0) term, the inhibitory action of n. 

For these simulations, the input stimulus time course is shown in Fig. 6B, and the time course of the average 
membrane potential, representative of the behavior observed for the different models in a thick volume network, 
is reported in Fig. 6C (left plot). To better characterize spike waves activity using a quantitative measure, we 
evaluated the integral 

∫ 13

9
X2
lowdt for all the 25 simulations carried out using different random number seeds, 

with Xlow calculated as the average membrane potential filtered through a 333 ms (i.e. 3 Hz) moving average 
window. The values were then plotted as a function of their mean amplitude (Fig. 6C, right plot). The grand 
average value of the integral, calculated from all the 75 simulations (25 for each model) that were carried out, 
was used as a threshold to define a spike wave period as an epileptic activity. This value is indicated by a dotted 
line in the right panel of Fig. 6C.

Spike-wave complexes were clearly evident in the ER models (Fig. 6C, left), following a period of a seizure-like 
pattern. The average values during the entire stimulation period (3–17 s), were 32.2 and 20.9 µV. Spike-wave com-
plexes were also present for the convolutive model (Fig. 6C, green trace) but they were of much smaller amplitude, 
and the overall average activity during the stimulation period was within the range for a normal activity (9.4 µV).

The time course of n and θ–θ0 (Fig. 6C, middle plot), can give some hints on the complex system dynamics 
responsible for the emergence of spike waves. It reveals that the interaction between these two components (see 
Eqs. (1) and (2)), and their relatively slow dynamics, have a key role in initiating a spike waves period. During 
the high-frequency oscillations, the θ–θ0 increases, until it eventually begins to significantly affect the sigmoidal 
n dynamics (through Eq. 2). It is at this point that spike-wave activity begins. While for the more homogeneous 
ER networks this interaction can more easily promote large scale oscillations, the more structured convolutive 
network was more resilient to activate this activity. This latter aspect explains why in networks of neurons dis-
tributed in a thin volume (Fig. 6D), where the overall connectivity is stronger and more compact, spike-wave 
complexes fall below threshold also for the ER-dist model (Fig. 6D, green traces). Taken together, these results 
suggest that structural network connectivity can have an important role in the emergence of spike-wave com-
plexes of pathological amplitudes.

Discussion
The results presented in this paper point to a paramount role for network connectivity in modulating the onset 
of epileptiform activity during strong localized inputs, which can arise during a variety of physiological brain 
states or cognitive  activities29. The relevance of these findings can be discussed in the context of both modeling 
and experiments.

From the modeling point of view, it should be stressed that large-scale neuronal network models, aiming at 
studying the onset and propagation of epileptic activity, so far have been almost exclusively implemented using 

Figure 5.  Realistic connectivity robustly protects from the consequences of strong inputs. Average membrane 
potential of the different models calculated, as a function of the inhibition, over the 10 s duration of an external 
input of different maximum strengths, Imax. For any given value of Imax and n, symbols represent the average 
membrane potential obtained from five network instances. Lines represent their average value.
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all-to-all or fixed connection probabilities. However, these connectivity rules do not represent the real connec-
tivity experimentally observed in brain networks. We have previously  shown20 how this difference can generate 
significant variations in the response of a network to a given input. Here, using a recently published mathematical 
framework, able to create convolutive model networks reproducing experimental  findings10,11, we have shown 
that networks connected in the same way as real systems are less prone to generate epileptiform activity. Further-
more, the model’s suggestion that spike-wave complexes can be generated by a dynamic inhibitory interaction, 
also points to a possible improvement on how to reproduce this specific experimental feature in a model. These 
results thus suggest that network models should be built using physiologically plausible connectivity rules, rather 
than fixed connection probabilities. This will make it easier to interpret experimental findings in terms of model 
parameters and it will allow making more precise and successful, experimentally testable, predictions.

Figure 6.  Dynamic inhibition can underlie spike-wave complexes. (A) Experimental EEG recording showing 
a period of spike-wave complexes  (from26), indicated by the red outline; (B) maximum input current, in the 
center of the network, as a function of time; (C) Typical average membrane potential, Xf, for neurons distributed 
in a thick volume (left), time course of the variables n and θ, associated with the slow inhibitory interaction 
(middle), the integral 

∫ 13

9
X
2
low

dt as a function of the mean amplitude, for all the 25 simulations carried out for 
each model using different random number seeds (right); red, blue, and green closed circles indicate the average 
value for each model; the dotted line indicates the grand average of the integral, calculated from all simulations. 
(D) Same as in (C) but for neurons distributed in a thin volume.
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From the experimental point of view, our results suggest that epileptiform activity can arise from an epilep-
togenic process during which a network (or a significant part of it) is progressively transformed from normal 
to epileptic through an ictogenetic mechanism that modifies the connectivity distribution functions (i.e. in/
out-degrees and connection length) from a convolutive to an exponential scheme. This process is equivalent 
to selectively lose hub neurons, which makes the network less robust and more likely to generate epileptiform 
activity in the presence of strong inputs. There are a number of experimental findings indirectly supporting this 
result (reviewed  in1), which may be the consequence of pathogenetic mechanisms altering synaptic plasticity 
and axonal sprouting. Even if pathological situations, including epilepsy, can activate important compensatory 
mechanisms of network reorganization involving the upregulation or neural stem cell  activity30, the process of 
hubs formation and integration into a network is considerably long, and requires a protracted period of consoli-
dation starting at the prenatal stage and extending into late  adolescence31. Losing hubs during adulthood may 
thus have rather dramatic and long-lasting  consequences32.

Finally, the model suggests two specific experimentally testable predictions. The first one is that epileptic 
tissue should have a distinctly different cellular connectivity, with respect to normal tissue: there should be less 
hub neurons in the epileptic tissue. The second one is that spike-wave complexes can be modulated by a dynamic 
inhibition much higher than during normal activity. The role of inhibition in controlling epileptic activity is 
well known, and its generalized increase is the classic strategy followed by antiepileptic  drugs33. However, this 
action has a wide range of negative collateral  effects34. The model suggests that better results could be obtained 
by selectively increasing inhibition only when and where needed, i.e. in highly active regions. Under this condi-
tion, synapses are presumably activated at a higher rate. Pharmacological applications, acting above a threshold 
activation level on the biochemical processes underlying short-term facilitation of inhibitory synapses, could 
increase the amount of signal summation only during high-frequency synaptic activation in localized regions, 
generating less collateral effects in the rest of the brain. From this point of view, there are already experimental 
indications that specific proteins or compounds can regulate synaptic transmission, such as synapsins, which 
can regulate GABA  release35, and antiepileptic drugs can alter short-term  plasticity36. An extremely promising 
line of action is to selectively control the activity of specific neuronal populations, and it has been shown that the 
use of optogenetic and designer receptor technologies for this  purpose37 can have a strong impact on reducing 
or avoiding seizures onset.

Methods
Single neuron model. The first step in building a network is to decide on the type of individual neurons 
composing it. We decided to start from the Epileptor (from now on EP)38, which has been demonstrated to be 
able to reproduce epileptiform activity at the macroscale level, and it has been successfully used to simulate the 
possible scenarios after surgery in patients with drug-resistant  seizures15. The original model uses six differential 
equations to represent the activity of a population of Hindmarsh–Rose (HR)  neurons39, under a mean-field 
approximation (defined as the average of the membrane potential associated to neurons)40. In order to more 
easily implement different connectivity rules, we modified this model by using independent equations for the 
excitatory and inhibitory neurons, and by adding units to the original adimensional implementation. The mem-
brane potential of an excitatory neuron, xEi, was thus defined as:

Analogously, the equations for an inhibitory neuron j were defined as:

where x is the membrane potential (in µV) of neuron x, y and z are the fast–slow variables of the original EP 
model, NE and NI are the number of excitatory and inhibitory neurons, respectively, the parameters a = 1, b = 3, 
c = 1, d = 5, s = 4, r = 0.003, x0 = − 1.6 and K = 150 define the fast–slow interaction, and n is the inhibitory strength. 
The matrices AEE, AEI and AIE are the adjacency matrices for each type of connection (Excitatory–Excitatory, 
Excitatory–Inhibitory and Inhibitory–Excitatory; Inhibitory–Inhibitory connections were ignored, as  in38). The 
variables τ = 0.0167 s, ν = 20 µV and σ = 1 µV/nA allowed us to introduce units to the model. The function ω(t) 
is a noise variable and I(t,m) is the time- and space-dependent external current.

(3)
τ dxE i

dt = νyE i − a xE i
3

ν2
+ b xE i

2

ν
− νzE i + K

∑NE
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−nK
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k=1
AE I
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ν2
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(
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ν
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Theoretical background for network connectivity. Neurons’ connectivity can be encapsulated in the 
concept of spatial  graphs11. A spatial graph G is an abstract entity composed by a set of vertices V (in our case, 
the neuron somas), a set of edges E ⊆ V × V (in our case, the synaptic connections), and a set of positions (in our 
case, the spatial coordinates of the somas). Each vertex is associated with in-degrees (the number of incoming 
connections) and out-degrees (the number of the outgoing connections). The set of degrees is described by the 
probability density function of their distribution. Finally, a connection length distribution can also be associated 
to a network with spatially distributed nodes.

Neuronal networks are very often connected following either a trivial all-to-all rule or according to fixed 
probabilistic rules based on two main graph-theoretical models: power law or exponential. Power law models 
have a heavy tail behavior in the degree  distributions41, whereas exponential models (42; since now ER) use a fixed 
connection probability rule that generates an exponential decay of the degree distributions around a central value. 
Real brain networks are not connected all-to-all, but exhibit a mix of exponential and power law connectivity 
models: an exponential behavior for low degrees, and a power law behavior for high degrees.

We have recently mathematically demonstrated how an appropriate convolution of these models can quan-
titatively reproduce the degree distributions observed in a real brain  network10,11. The key idea of the algorithm 
behind the theory is to split a network in blocks, and use a heavy tail connectivity inside the blocks and an 
exponential connectivity between blocks. In detail, assuming that ΩA and ΩB are two spatial regions with NA and 
NB neurons, respectively, within each region a power law tail connectivity is created using a growing network 
 algorithm43 with a cost function defined as

where δ and η are parameters of the model, dhj is the square of the Euclidean distance between nodes h and j, λj 
is a graph theoretical measure of centrality, rj is a uniform random number in [0, 1], SN = 200 µm2 and SF = 1 µm2. 
If fI

k and fO
k are the limit distributions of this process, assuming an ER connectivity between blocks, and defining 

the graph C as the union between A and B, it can be mathematically  proved10,11 that

where P(DI
C = k) is the in-degree distribution of graph C, Bp

N(k) is the binomial distribution and * is the convolu-
tion operator defined between two discrete distributions hk and gk as

The out-degree distribution is described in the same way. A web application allowing to create an arbitrary 
network with the desired distributions is available in the live papers section of the Human Brain Project (HBP) 
(https:// human brain proje ct. github. io/ hbp- bsp- live- papers/ index. html), and the python code with model and 
simulation files can be downloaded from ModelDB (https:// sense lab. med. yale. edu/ model db/, acc.n. 266910).

Simulations. For all simulations, we used networks of 550 neurons (500 excitatory and 50 inhibitory) con-
nected using four different topologies: an exponential connectivity rule, with or without a distance-dependent 
connection (ER and ER-dist models), or a convolutive model reproducing the in- and out-degree distributions 
experimentally observed in a C. elegans  brain22 or in a mouse hippocampus  slice23. For simulations where the 
connection length distribution was also considered, neurons were randomly distributed in a 3D volume shaped 
either as a rectangular 500 × 500 × 2000 μm volume (for C. elegans connectivity), or as a 400 × 300 × 10 μm slice 
(for hippocampal connectivity). All simulations were implemented using  Matlab44, and model files will be avail-
able on ModelDB (acc. n.266910). Following a custom practice for this type of electroencephalographic (EEG) 
experimental recordings, simulation traces were filtered with high-pass (1 Hz) and a low-pass (40 Hz) Butter-
worth  filters14. This allowed a better comparison between modeling and experimental results.

To activate the networks, inputs were implemented as external currents with a peak value located at the center 
of the model, and modulated according to the spatial soma locations as:

where {mx, my, mz} are the i-th soma coordinates, Imax = {1.5 nA, 2.5 nA, 5 nA}, IGND = 1 nA, S(t) is the time-
dependent component of the current, with values between 0 and 1, σxyz = 600 µm, and ζi a random normal vector 
with amplitude 0.1 nA.

It demonstrates that this type of model is able to reproduce epileptiform activity and spectral properties in 
good qualitative agreement with experiments. In order to have a quantitative measure of an epileptiform activity, 
we used the average network activity, calculated from the average potential of the  neurons10 as:
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+ ζi
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