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ABSTRACT

Quercetin haze has been observed over the last few years in some aged Sangiovese wines. This problem could be due
to an excess of the quercetin in the wine. Leaf removal increases the exposition of clusters to sunlight, which may
enhance flavonol synthesis in the grapes. In this study, we evaluated the dynamics related to extractable flavonols in
grapes grown in three usually defoliated Vitis vinifera (L.) cv. Sangiovese vineyards, whose wines showed quercetin
precipitates. The particular structure of the vineyards in which the leaf removal experiments were carried out allowed
the influence of vineyard, biotype and rootstock on grape flavonol contents at mid-maturation and technological
maturity to be evaluated. The leaves were removed at pre-flowering (early) and at veraison (late). Leaf removal
increased the content of extractable glycosidic flavonols in grapes at the two tested ripening stages. In addition,
vineyard, biotype and rootstock affected the content of glycosidic flavonols and the interaction between the studied
variables was significant. Even though leaf removal induced an increase in extractable quercetin glycosides which can
increase the risk of quercetin haze in wine, an examination of the scientific literature on this topic showed that this risk
does not depend on the absolute content of these compounds alone.
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INTRODUCTION

Quercetin is a phenolic compound which belongs
to the class of flavonols whose glycosides are
located in the skins of white and red grapes
(Cheynier and Rigaud, 1986; Makris et al,
2006, Mattivi et al., 2006; Castillo-Mufioz et al.,
2007). In terms of glycosilated derivatives, white
grapes contain small amounts of kaempferol and
myricetin (Mattivi et al., 2006), while red grapes
contain kaempferol, isorhamentin, myricentin,
laricitrin and syringetin (Mattivi et al., 2006;
Castillo-Muioz et al., 2007). On the whole,
quercetin is the quantitatively most important
flavonol in grape skins; nevertheless, in some red
varieties, the content of myricetin—3—glucoside
can exceed that of quercetin glucoside (Mattivi
et al.,2006; Castillo-Muiioz et al., 2007; Squadrito
etal.,2007). Glycosylated derivatives of quercetin
have even been found in grapevine leaves (Jeong
et al., 2006; Di Stefano and Maggiorotto, 1995)
and stems (Souquet ef al,, 2000; Di Stefano
and Maggiorotto, 1995). Quercetin glycosides
are present in flower buds and flowers, but they
do not seem to be synthesised during the green
phase (Cortell and Kennedy, 2006, Downey et
al., 2004). Real flavonol synthesis begins shortly
before veraison and can continue until the end of
maturation (Castellarin et al., 2007; Downey et
al., 2004; Keller and Hrazdina, 1998). The genes
involved in the synthesis of flavonols have been
found to be expressed only in grapes exposed
to sunlight (Azuma et al., 2012). In areas where
the temperature reaches and exceeds 30 °C for
long periods of time, the glycosilated flavonol
content of grape usually decreases after reaching
a maximum value (Keller and Hrazdina, 1998). It
has not been determined whether this decrease is
due to flavonol biosynthesis being blocked or to
the fact that the degradation reactions exceeded
the synthesis reactions. Spayd et al. (2002)
did not observe any influence of temperature
on the synthesis of flavonols. Under normal
climatic and cultivation conditions however, the
synthesis of glycosidic flavonols occurs during
grape maturation (Spayd et al., 2002), except
in the case of glucuronides (Castillo-Mufoz
et al., 2007). The influence of temperature on the
flavonol profile is still to be confirmed (Ferrandino
and Lovisolo, 2013). Flavonol synthesis is
conditioned by the level of exposure of clusters
to direct sunlight: it occurs in limited extent in
shaded bunches (Price et al., 1995; Haselgrove
et al., 2000; Downey et al., 2004; Cortell and
Kennedy, 2006); meanwhile, it is promoted in
bunches directly exposed to sunlight (Downey
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et al., 2004). Flavonol content is also conditioned
by grape cultivar (Castillo-Mufoz et al., 2007).
Flavonols and their derivatives are considered
important for their biomedical and antioxidant
properties. In wine, they can contribute to colour
intensity and stability through the formation of
copigmentation complexes with flavylium, or
with chinonoidal forms of anthocyanins (Boulton,
2001). In the latter case, the subtraction of the
flavylium ion from the anthocyanin equilibria
by flavonol leads to a decrease in the colorless
carbinol fraction and an increase in anthocyanin
stability. Despite these positive properties, Somers
and Ziemelis (1985) and Ziemelis and Pickering
(1969) reported a deposit of quercetin in white and
red wines respectively. In recent years, a quercetin
precipitate has been more frequently observed in
bottled wines made from Sangiovese (Gambuti
et al., 2020; Lanati et al., 2014) and other grapes
in both hemispheres (Marchi et al., 2019).
In some aged Sangiovese wines, a quercetin haze
can appear after bottling and increase over time.
The precipitation of quercetin has been observed
to end when it reaches a content lower than 3
mg/L in solution (Gambuti et al., 2020). Under
an optic microscope, this precipitate appears as
fine needle-shaped crystals (Gambuti et al., 2020;
supplementary Figure 1) which do not settle easily.
The solubility of quercetin in hydroalcoholic
solution and in wine, along with the formation of
quercetin deposits, has been extensively studied
by Gambuti et al. (2020). They found that this
solubility depends on several variables, including
the content of quercetin and its glycosides in wine,
as well as wine composition in terms of other
substances; they also revealed that Sangiovese
grapes and wines can be rich in quercetin and
its glycosides. It seems that quercetin haze can
be prevented by microxygenation and wine
maturation in barrels (Gambuti ef al., 2020; Lanati
et al., 2014; Castellari et al., 2001; Castellari
et al., 2000), but an examination of the scientific
literature on this topic has shown that it would
require further research. In previous work we
found quercetin deposits in wines from Sangiovese
grapes grown in vineyards where leaf removal is
applied in the province of Siena in Tuscany. Since
leaf removal increases the exposition of clusters
to solar radiation, the aim of the present study was
to determine the effect of this viticultural practice
on flavonol synthesis in berries, which could be
related to quercetin haze in wine. The particular
structure of the vineyard in which the experiment
was carried out also allowed us to evaluate the
influence of vineyard, biotype and rootstock on the
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synthesis of quercetin derivatives at mid ripening
and technological maturation.

MATERIALS AND METHODS
1. Standards, reagents and solvents

Quercetin, myricetin and p-glucosidase were
purchased from Sigma-Aldrich (Milan, Italy).
L(+)-tartaric acid, citric acid, sodium hydroxide,
sodium chloride, ortho-phosphoric acid, ethyl
acetate, methanol, ethanol 96 %, were purchased
from Merck (Milan, Italy).

2. Leaf removal

The effect of leaf removal on flavonol biosynthesis
was tested on Sangiovese grapevines in three
different vineyards (V1, V2 and V3) located in
the Siena province (Southern Tuscany, Italy)
in 2016. V1, V2 and V3 contained 5000, 6000
and 6500 plants per hectare respectively. Row
orientation was north-east/south-west in VI,
east/west in V2 and north-west/south-east in V3.
The following biotypes were cultivated: CH20 and
Tebano 19 both on 420A rootstock in V1, Massale
selection on 110R and 420A in V2 and Massale
selection on 1103P, 420A and 101-14 in V3. The
soil composition of the three vineyards is reported
in Supplementary Table 1. V1 was fertilised
with auto-produced compost, organic granulate
fertiliser (Green Sprint and Choncimer) and field
bean green manure; V2 was fertilised with auto-
produced compost, organic granulate fertilizer and
vetch/oat green manure; and V3 was fertilised with
organic granulates only. Irrigation was not carried
out on any of the vineyards and all the grapevines
were trained on a spurred cordon. Early leaf
removal was carried out during the pre-flowering
phase in mid May (early) and at veraison (late) on
1 August Sampling was carried out at mid-ripening
(9-12 September ) and at technological maturity
(29 September to 3 October). Leaf removal was
carried out on 8-10 shoots per plant, and 3-5
leaves were removed from the sprout insertion up
to the height of the second bunch in order to fully
expose the bunches. The grapevines from which
leaves were not removed were the control.

3. Flavonol extraction from grape berries

Samples of 200 berries with their pedicels
were randomly collected. Each sample of
200 berrieswas placed in a plastic bag. The samples
were then transported in a cooler to the laboratory
where they were processed for HPLC analysis.
The sample preparation for the determination
of extractable glycosidic flavonols was similar
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to the one reported by Ribéreau-Gayon et al.
(2012) for the determination of phenolic maturity.
In brief: 200 berries were homogenized in a blender
and the homogenate was centrifuged at 4000 rpm.
Then 10 mL of the resulting juice, added with
0.5 g NaCl, were extracted twice with 20 mL
of ethyl acetate. After solvent evaporation by
rotavapor (35 °C), the precipitate was dissolved
in 2 mL of solution composed of H,PO, 10 M in
40:60 v:v methanol:H,0, filtered using a 0.45/mm
membrane filter and analysed by HPLC.

4. HPLC conditions

HPLC-DAD model Series 200 (Perkin Elmer,
Waltham, Massachusetts) was wused with
the following solvents: H.PO, 10° M in water
(Solvent A), and methanol LiChrosolv (Solvent B)
for which the linear gradient was 0 min 0 %, 5 min
5 %, 10 min 10 %, 25 min 30 %, 40 min 60 %,
50 min 100 %, 60 min 100 %, 65 min 5 %. Flow
was 0.8 mL/min and A was 360 nm. Injection
volume was 20 pL and column temperature was
40 °C.

The column was a LiChrospher® 100 RP-18
(5 pm) - LiChroCart® 250-4, Merck (Milan, Italy)
and the guard column was a LiChrospher® 100
RP-18 (5 um) - LiChroCart® 4-4, Merck (Milan,
Italy)

5. Identification of flavonols

Quercetin glucoside (QGs) and myricetin glucoside
(MyGs) were identified from the disappearance
of a single HPLC peak due the formation of
the corresponding aglycon after 1 h incubation
at 35 °C with B-glucosidase (Vrhovsek et al.,
2004). Quercetin and myricetin were identified by
comparing their chromatographic retention time
and UV spectra with those of authentic standards.
Myricetin-3-glucuronide  (MyGr), quercetin-
3-glucuronide (QGr), kaempferol glucuronide
(KGr) and kaempferol-3-glucoside (Kgs) were
tentatively identified from their UV spectra and the
sequence of HPLC elution reported by Castillo-
Muiioz et al. (2007). An HPLC chromatogram
of Sangiovese grape flavonols obtained with the
method described in sections 3 and 4 is reported
in Supplementary Figure 2. All the analyses
were performed in duplicate and the data were
expressed as mg of quercetin equivalent per kg of
grape berries.

6. Statistical treatment of data

The obtained data were subjected to a five-way
analysis of variance (ANOVA). Where possible,
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the interaction between factors was included
in the model (i.e., Vineyard:Sampling time,
Biotype:Sampling time, Rootstock:Sampling
time, Vineyard:Leaf removal, Biotype:Leaf
removal, Rootstock:Leaf removal, Sampling
time:Leaf removal, Vineyard:Sampling time:Leaf
removal, Biotype:Sampling time:Leaf removal,
Rootstock:Sampling time:Leaf removal).
In the case of a null hypothesis rejection (F test
p-value < 0.05), the levels of the main factors and
interactions (where available) were compared
using the Tukey’s HSD post hoc test with an o value
of 0.05. The software used was R 3.6.2 (The R
Foundation for Statistical Computing, Wien). The
R package agricolae (De Mendiburu, 2020) was
used to perform the post hoc test. The interaction
post hoc results are given in the Supplementary
Material section.

RESULTS AND DISCUSSION
1. Extractable flavonols

The contents of extractable flavonols, expressed as
mg of quercetin equivalent per kg of grape berries
(Tables 1 and 2), may seem low (they fluctuate
around 30 mg per kg) for Sangiovese grapes,
which are usually considered to be rich in these
compounds (Gambuti et al., 2020); however, the
content of the flavonols expressed as individual
glycosides fluctuating around 40 mg per kg
and the fact that only a part of grape flavonols
(the extractables) were determined with the method
described in Materials and methods, confirm the
richness in flavonols of Sangiovese grapes.

Few data about the contents of glycosidic flavonols
in grapes are available in the scientific literature.
In Sauvignon blanc, Thompson Seedless and
Chardonnay extracts, Meyer et al. (1997) found
4.8 to 10.4 mg/L of rutin equivalents. Similar
amounts were found by Spanos & Wrolstad
(1992) and Frankel et al. (1998). More recently
Mattivi et al. (2006), reported the flavonol profile
of a vast number of white and red grape varieties.
In the latter group, a Sangiovese sample showed
a flavonol content of 24.56 mg/kg (probably
expressed as aglycons). In terms of flavonols,
Sangiovese can thus be considered a medium-rich
variety. Higher contents in flavonols (from 129 to
346 umol/kg) were found by Castillo-Muiioz et al.
(2007) in three Iberian and four French cultivars.
The differences in flavonol concentrations can be
attributedto different variables, such as cultivar,
environment, viticoltural practices and analytical
procedures. For Sangiovese, the differences
can widely vary as a result of its sensitivity to
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environmental and viticoltural conditions, which
affect grape skin thickness (Gambuti et al., 2020).
It is possible to determine the total concentration
of flavonols by extracting them from grape skins
using organic solvents (Castillo-Mufoz et al.,
2007; Mattivi et al., 2006). In this study, glycosidic
flavonols were extracted from grape homogenates
(extractable flavonols), which had been processed
for the determination of phenolic maturity
(Ribéreau-Gayon et al., 2012). This simple method
avoids extracting flavonol from grape skins using
large volumes of solvents and allows a large
number of fresh grape samples to be processed,
avoiding grape freezing and complicated manual
operations. However, it would be necessary to carry
out a study on the extractable and total flavonols
based on the level of maturity of different grape
varieties. In the present study, the flavonols were
concentrated via ethyl acetate extraction from the
grape juice obtained from centrifugation of the
grape homogenate. The absence of ethanol meant
that it was not necessary to de-alcoholise the
juice before extraction. The analysis of variance
results (Table 2) show that all the main factors
studied and all the available interactions between
variables (Supplementary Material) influenced
the total flavonol concentrations in the grapes.
In Table 2 it can be seen that early leaf removal
induced an increase in total flavonol concentration
compared to leaf removal applyed at veraison.
This result suggests that the intensity of the solar
radiation that the grapes receive before veraison
also influenced glucosydic flavonol biosynthesis.
The control (not defoliated) contained less of these
molecules. The absolute values for the differences
between leaf removal samples and the control
were higher than those for the differences between
the two sampling times; this is probably due to
the two opposite contributions of the flavonol
glucuronides and glucosides whose content
decreases and increases respectively during
maturation. A greater synthesis of flavonols seems
to have occured in biotype CH20, vineyards V1
and V2, and rootstock 110R.

2. Glucuronide Flavonols (MyGr, QGr, KGr)

For all three glucuronide flavonols (FGr),
the analysis of wvariance showed significant
differences induced by all the variables studied
(Table 2). Furthermore, the results reported in
Tables 1 and 2 show that the content of FGr as
quecetin equivalents decreased from mid-ripening
to technological maturity, probably because
oxidation reactions start near veraison and their
synthesis, which begins just before veraison, ends

OENO One 2021,4, 71-81
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with this event (Castellarin et al., 2007; Pilati
et al., 2007). This trend is in agreement with
Castillo-Muiioz et al. (2007). The highest values
for FGr were found in the early leaf removal trials
(bunches more exposed before veraison) and the
lowest in the control trial (less exposed) (Tables
1 and 2). These data clearly show that the lower
the exposure of the bunches to sunlight (no leaf
removal), the lower the synthesis of FGr, as was
also observed by Downey et al. (2004). Among
vineyards and biotypes, the differences between
MyGr and QGr contents were statistically
supported (Table 2): for vineyards, the highest
value was found in V2 (rows east/west) and the
lowest in V3 (rows north-east/south-west); for
biotypes, the highest value was found for Tebano
19 and the lowest for CH20; and for rootstocks,
110R showed the highest content in MyGr and
QGr. As can be seen in Table 2, the differences
in KGr concentration between vineyards, biotypes
and rootstocks follows a trend different to those
found for MyGr and QGr.

3. Glucoside Flavonols (MyGs, QGs, KGs)

The analysis of variance showed that the influence
of all the studied variables on the contents of
glucoside flavonols (FGs) was significant, with
the exception of the vineyard for kaempferol
glucoside (KGs) (Table 2). Furthermore, the
interactions between pairs of variables (except
for KGs biotype:sampling time) were found to be
different (Supplementary Material). In contrast to
FGr, the content of all glucoside flavonols (i.e.,
MyGs, Qgs and KGs) as quercetin equivalents
increased from mid-ripening to technological
maturity, as can be seen in Table 2 (Sampling
time). This result suggests that FGs synthesis -
which starts at veraison (Castellarin ez al., 2007)
- continued during the ripening process and may
have overcome possible degradation reactions.
FGs synthesis was greater in early and veraison
leaf removal than in the control, as can be expected
given the known effect of reducing the exposure
of bunches to sunlight on flavonol synthesis (as
in the control) (Downey et al., 2004). However,
the fact that FGs content was higher in early leaf
removal than leaf removal at veraison (Tables 1
and 2) indicates that the intensity of solar radiation
received by grapes before veraison may also
influence FGs biosynthesis (see above).

In contrast to the observations for FGr, of
the biotypes, CH20 exhibited the highest
concentration of FGs, while Tebano 19 showed the
lowest. This could be due to CH20 being earlier
than Tebano 19 (more time for degradation of FGr

78 © 2021 International Viticulture and Enology Society - IVES

and synthesis of FGs). The analysis of the absolute
values for the differences in QGs concentration
reveals that leaf removal, sampling time and
biotype had more influence on the accumulation
of this compound than vineyard and rootstock.
This effect may be due to the high exposure of the
three study vineyards to sunlight. The variability
of the grape skin thickness depending on the
Sangiovese biotype may also play a role, as there
may be a relationship between the accumulation
of glycosylated flavonols and skin parameters;
however, further studies would be necessary to
explore this hypothesis.

4. Glycoside quercetin content of grapes and
quercetin precipitation in wines

Unlike in grapes, flavonols are present in wines in
the form of aglycon. In white wines, the content of
flavonol has been found to be from 0.5 to 1.5 mg/L
(Hertog et al., 1993), 0.4 to 2.5 mg/L (Simonetti
et al., 1997), and either absent or in traces (Soleas
et al., 1997). In 47 Spanish sparkling wines,
total flavonol content was found to vary between
0.1 and 1.2 mg L' (Satué-Gracia et al., 1999).

In red wines, glycosidic flavonol content widely
varies; for example, from 4.17 to 93.08 mg/L
(Makris et al., 2006), 4.6 to 41.6 mg/L McDonald
et al. (1998), and 5.3 to 54.2 mg/L (Gardner et al.,
1999). Meanwhile, in Italian red wines, Gambuti
et al. (2020) found 2.02 to 33.9 mg/L of glycosidic
quercetin and 0.01 to 8.6 mg/L of quercetin.
According to the following authors, the quercetin
content of wines were generally found to be low:
5 mg/L (Ghiselli et al., 1998), 0.5 to 9.9 mg/L
(Gardner et al., 1999), 0.3 to 0.7 mg/L (Buiarelli
et al., 2018). In Sangiovese wines, Gambuti et
al. (2020) found 3.1 to 33.9 mg/L of glycosidic
quercetin and 0.4 to 8.6 mg/L of quercetin, while
McDonald et al. (1998) found 1.2 to 21.8 mg/L
of glycosidic quercetin and 0.1 to 15.8 mg/L of
quercetin.

Quercetin, which is the main component of
the flavonol deposit found in Sangiovese wine,
is formed by hydrolysis of its glycosylates,
starting from fermentation and during wine
storage (Gambuti et al., 2020). The varietal,
environmental and technological variables
influencing the glycosidic quercetin and quercetin
content of wines have been reviewed by Gambuti
et al. (2020) and Lanati et al. (2014). To our
knowledge, the only available information on
the influence of winemaking techniques on the
quercetin content of wine has been documented by
Gambuti ef al. (2020), Lanati et al (2014),
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Castellari et al. (2001) and Castellari et al.
(2000). The highly wvariable quantities of
quercetin and glycosidic quercetin  found
in Sangiovese wines indicates that the
quercetin precipitation depends on the level
of ripeness of the grape and on a considerable
number of other variables - some of which
(e.g., agricultural practices, rootstock, vineyard
and biotype) have been studied here.

Assuming that total or extractable glycoside
flavonol content of grapes has an influence on
flavonol precipitation, the results of the present
study can be considered to contribute to improving
knowledge on the subject. They are in agreement
with those obtained in previous experiments on
the flavonol content of grapes exposed to different
intensities of sunlight (Price ef al., 1995; Downey
et al., 2004).

The leaf removal effect reported in this paper,
increased both the exposure of the Sangiovese
bunches to light and the glycosidic flavonol
concentration; this therefore, indicates that
defoliated grapes may produce wines more prone
to the formation of quercetin deposits. However,
exposure to sunlight is probably not the only factor
to have an ultimate affect on quercetin deposits
in wine. In fact, as shown by the data in studies
by McDonald ef al. (1998) and Castillo-Muiioz
et al. (2007), no haze due to the insolubilisation
of quercetin was observed in wines from hot
and sunny areas with high flavonol content. In
addition, the influence of grape maturity, vineyard,
biotype and rootstock on the content of extractable
flavonols, as shown by the results of the present
study, make it difficult to establish general rules
for limiting the content of glycosidic quercetin
and quercetin in grapes and wines.

The glycosidic quercetin and quercetin contents
of Italian wines from different varieties that were
found by Gambuti ez al. (2020) show that also grape
variety affect the synthesis of glycosidic flavonols.
Sangiovese wines were the richest in flavonols
among those produced using autochthonous
and international varieties cultivated in Italy
(Gambuti et al., 2020) and Cabernet-Sauvignon,
Merlot and Syrah were also found to be rich in
flavonols in other studies (McDonald et al., 1998;
Castillo-Muiioz et al., 2007). However, wines
rich in flavonols other than Sangiovese, such as
those reported by the latter authors were not found
to contain quercetin deposits; other factors must
therefore be at play that need to be identified and
studied.

OENO One 2021, 4, 71-81

CONCLUSIONS

The results obtained in our field experiment
confirmed those of other studies on the influence
of the exposure of grape bunches to direct sunlight
on the synthesis of flavonols. In fact, the highest
content of glycosidic flavonols was observed in
grape from defoliated vines, and the lowest in
those not defoliated. Leaf removal at veraison
also led to a lower increase in flavonol synthesis
than defoliation at pre-flowering. It was also
observed that QGr content was lower than QGs at
harvest. This is probably due to the start of QGs
biosynthesis at veraison and to QGr degradation
during ripening as a result of oxidation reactions.
The results of this study can be considered as a
first contribution to understanding the effects of
certain variables on QGs synthesis in grapes.
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