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A B S T R A C T   

Predictive models based on radiomics and machine-learning (ML) need large and annotated datasets for training, 
often difficult to collect. We designed an operative pipeline for model training to exploit data already available to 
the scientific community. The aim of this work was to explore the capability of radiomic features in predicting 
tumor histology and stage in patients with non-small cell lung cancer (NSCLC). 

We analyzed the radiotherapy planning thoracic CT scans of a proprietary sample of 47 subjects (L-RT) and 
integrated this dataset with a publicly available set of 130 patients from the MAASTRO NSCLC collection 
(Lung1). We implemented intra- and inter-sample cross-validation strategies (CV) for evaluating the ML pre
dictive model performances with not so large datasets. 

We carried out two classification tasks: histology classification (3 classes) and overall stage classification (two 
classes: stage I and II). In the first task, the best performance was obtained by a Random Forest classifier, once the 
analysis has been restricted to stage I and II tumors of the Lung1 and L-RT merged dataset (AUC = 0.72 ± 0.11). 
For the overall stage classification, the best results were obtained when training on Lung1 and testing of L-RT 
dataset (AUC = 0.72 ± 0.04 for Random Forest and AUC = 0.84 ± 0.03 for linear-kernel Support Vector 
Machine). 

According to the classification task to be accomplished and to the heterogeneity of the available dataset(s), 
different CV strategies have to be explored and compared to make a robust assessment of the potential of a 
predictive model based on radiomics and ML.   

Introduction 

Radiomics is an emerging field of research in the context of medical 
image analysis [1,2]. It is based on the extraction and analysis of 
quantitative imaging features from medical images to exploit them in 
clinical decision support. The primary hypothesis is that radiological 
images are much more than just anatomical representations [3]. Modern 
diagnostic techniques generate a huge amount of information in the 
form of numerical data that escape mere visual observation and that the 
human mind cannot process. In daily clinical practice, medical images 
are in general only visually assessed by medical experts, not fully 
exploiting their quantitative potential. In this way, a lot of possibly 

meaningful information, which is not appreciable by the human eye, is 
lost. Radiomics aims to use this information to help clinicians in 
different tasks, such as making diagnosis, predicting prognosis and 
therapeutic response [3]. Descriptive quantities extracted from images 
are defined as radiomic features. 

Machine learning (ML) and deep learning (DL) algorithms are 
currently successfully applied in many different fields, due to their 
capability to make predictions [4]. Usually, these techniques need large 
data samples for appropriate model training. Therefore, they are 
particularly suited to deal with the so-called big data, which indicate a 
massive volume of data that is too large or complex to be effectively 
analyzed using traditional software. 
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Since the beginning of the digital era, the amount of data produced 
has considerably increased, even in the field of medicine [5]. At the 
same time, the interest in the application of ML and DL approaches in 
medical data analysis has grown enormously [6–9]. A specific difficulty 
that is encountered in developing ML and DL analysis tools for medical 
applications is that the training processes often require large amounts of 
annotated data. Manual data annotation is a time-consuming task that 
prevents the creation of sufficiently large samples in most cases. In 
addition to the annotation problem, it is not easy to collect large ho
mogenous datasets in the field of medical imaging. In particular, the 
intrinsic heterogeneity of retrospective data accumulated in daily clin
ical practice creates a trade-off between the quality and the size of the 
datasets [3]. In most radiomic works, the dataset sizes range from a few 
dozens to a few hundreds of patients [10]. Despite the relatively small 
sizes of these datasets, the quantitative features data extracted from 
images are generally analyzed with machine learning or deep learning 
techniques. 

In this study we propose a strategy to develop ML models to predict 
the tumor histology and stage by using radiomic features extracted from 
thoracic CT scans of patients with Non-Small Cell Lung Cancer (NSCLC). 
Lung cancer is the leading cause of cancer-related mortality worldwide 
with a median age at diagnosis of 70 years [11], and 85% of cases are 
represented by NSCLC [12]. Historically, surgical resection with cura
tive intent is considered the cornerstone of treatment for early-stage 
NSCLC which, while accounting for only 25–30% of lung cancer, theo
retically, offers the highest possibility of modifying the outcome of 
NSCLC [13,14]. For early-stage NSCLC, the Tumor-Node-Metastasis 
(TNM) stage is traditionally considered the most important post
operative prognostic factor [15,16]. However, the broad spectrum of 
survival times that exist even after complete resection of stage NSCLC 
demonstrates the mandatory need for personalized medicine [17]. The 
improvement in survival estimation has mostly been achieved as a result 
of advances in biological and genomic technologies that have allowed 
for the implementation of biological or genetic signatures associated 
with survival [18,19]. However, the inability to obtain complete infor
mation on heterogeneous tumors remains a limitation of these invasive 
methods [20,21]. Similarly, patients with clinically suspected NSCLC, 
especially elderly ones [22], may have medical comorbidities that in
crease biopsy risks, making them more likely to receive stereotactic 
body radiation therapy (SBRT) without a biopsy [21]. 

By using radiomics and advanced analysis systems, it is possible to 
extract many quantitative descriptors from routinely acquired CT 
studies. Radiomics allows the non-invasive identification of predictive 
signature of tumor heterogeneity [23–25], which, in clinical practice, 
can be used for tumor detection, subtype classification and therapeutic 
response assessment. This approach could be important for patients 
treated with radiotherapy to stratify patients at risk of relapsing disease 
[26]. In particular, this is important for the patients with early-stage 
NSCLC treated with SBRT of whom 13–23% develop distant metasta
ses and 4–14% experience relapse after treatment [27–32]. Therefore, 
patients with the highest risk of relapse post-SBRT could be candidates 
to receive additional or escalated treatment to prevent it. Radiomics 
could potentially identify these high-risk patients. 

The target of this work is the development of a radiomics and ML- 
based method for classifying histology and stage on patients with 
NSCLC that have undergone SBRT treatments at the A.R.N.A.S. Civico 
Hospital of Palermo. These patients treated with radiation therapy have 
lesions classified as belonging to early (I and II) TNM stages. 

One of the key points of this study regards the possibility of carrying 
out a robust assessment of ML model performance when dealing with 
small samples. We emphasized the importance of adopting cross- 
validation (CV) strategies to this purpose. More specifically, we imple
mented from scratch a nested CV strategy which is considered as the 
most rigorous method for training, optimizing and evaluating ML 
models [7]. 

Although the potential impact of radiomics and ML-based decision 

support systems on lung cancer characterization and personalized 
treatments is very high, the development and validation of predictive 
models is challenged by the difficulty of collecting large, annotated 
samples for model training. We investigated in this study the feasibility 
of using publicly accessible larger datasets to train decision-making 
systems and to transfer the knowledge gained to less populated pri
vate data samples. 

This paper is organized as follows: the two data samples used in this 
analysis are first described and their composition in terms of tumor 
histology and stage are compared; the analysis workflow, both regarding 
the radiomic feature extraction, their selection and the implementation 
of a number of ML algorithms, is thus presented, paying special attention 
to the need to set up CV strategies when dealing with data samples of 
limited size, and nested CV loops for hyperparameter optimization; the 
results are thus reported for the most widely used ML algorithms. 

Materials and methods 

Datasets 

Private data collection: L-RT dataset 
A dataset of thoracic CT scans and radiotherapy structures has been 

collected at the A.R.N.A.S. Civico University Hospital of Palermo. It will 
be referred to in this study as the L-RT dataset. It consists of 47 patients 
with non-small cell lung cancer (NSCLC). Informed consent was ob
tained from all participants included in the present study. All procedures 
were performed in agreement with the 1964 Helsinki declaration. For 
each subject, the thoracic CT scan acquired for radiotherapy planning 
and the segmentation of the Gross Tumor Volume (GTV) region of in
terest, drawn by radiation oncologists, have been considered in this 
study. 

All the patients in this dataset underwent staging with bronchoscopy 
and lung and upper abdomen CT (2.5 mm slice thickness), without 
intravenous contrast. Diagnostic information, such as the tumor histol
ogy and the tumor stage or overall stage (OS) is also available (see 
Table 1). The histology labels of the L-RT dataset correspond to 
adenocarcinoma, large cell carcinoma and squamous cell carcinoma, 
whereas their stages are limited to the I and II stage according to the 
most recent TNM classification at the time of analysis [33]. 

The characteristics of the enrolled patients are summarized in the 
Supplementary Materials. Regarding the dose prescription, using a risk- 
adapted strategy [34], different dose schedules were used based on 
tumor location: 60–70 Gray (Gy) in 8–10 fractions for peripheral lesions, 
50–60 Gy in 10 fractions for central and ultra-central lesions. The size 
and location of the tumor also had an impact in the fraction selection 
process [35,36], leading to the choice of schedules with BED10 < 100 Gy 
in those patients with more complex characteristics [37,38]. The study 
population consisted of 36 males and 11 females, with a median age of 
73 years (range, 44–91 years). All patients completed SBRT without 
interruption. The most used fractionation schedule was 7.5 Gy × 8 

Table 1 
Number of instances per histology and per overall stage of the Lung1 and the L- 
RT datasets.  

Histology Lung1 L-RT 

Adenocarcinoma 16 20 
Large Cell Carcinoma 60 4 
Squamous Cell Carcinoma 54 10 
Not Available – 13 
Total number of subjects 130 47 

Overall Stage Lung1 L-RT 

I 27 42 
II 13 5 
IIIa 37 – 
IIIb 53 – 
Total number of stage I-II/IIIa-IIIb tumors 40/90 47/0  
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fractions (BED10 105 Gy) [39] administered in 22 patients and 6 Gy ×
10 fractions (BED10 96 Gy) administered in 14 patients. A total dose 
with BED10> = 100 Gy was delivered in 24 treatments. The overall 
median time on treatment was 15 days (range 10–24 days). SBRT was 
administered on consecutive days in 33 patients and on alternate days in 
14 patients. 

Public data collection: TCIA lung 1 dataset 
A subsample of 130 subjects has been selected from the public data 

collection Lung1 [24,40] of patients with NSCLC, which contains data of 
422 subjects and it is available via The Cancer Imaging Archive (TCIA) 
(https://www.cancerimagingarchive.net/). The Lung1 dataset is 
composed of PET and CT images, and the radiotherapy structures for 
each subject. A spiral CT (3 mm slice thickness), with and without 
intravenous contrast, performed covering the complete thoracic region, 
is reported for each subject. The subset of the 130 subjects of the Lung1 
sample considered in this work has been selected considering only the 
patients whose GTVs were fully contained in the lung area and with 
overall size in the same range of those available in the private L-RT 
collection. Thus, only subjects of Lung1 for which the GTV segmentation 
was carried out with a similar segmentation criterion, as judged by a 
radiation oncologist, to the subjects of the L-RT dataset were included in 
the selection. An example of images available in the chosen subset of 
Lung1 is shown in Fig. 1. 

This subset of the Lung1 dataset will be referred to in this paper as 
Lung1 for short. The complete list of subjects used in this study is re
ported in the Supplementary Materials. Analogously to the L-RT dataset, 
it contains diagnostic information such as the tumor histology (adeno
carcinoma, large cell carcinoma and squamous cell carcinoma) and the 
tumor overall stage (I, II, IIIa and IIIb), as shown in Table 1. 

As shown in Table 1, the L-RT dataset does not contain instances of 
tumors with overall stage IIIa and IIIb, which are the two more advanced 
stages, that are, instead, the largest classes represented in the Lung1 
dataset. 

Regarding the histology, for 13 subjects of the L-RT dataset this in
formation is not available, and these subjects were not considered for the 
histology classification analyses but only in the overall stage classifica
tion task. Furthermore, it can be noticed that the most represented 
histology in the L-RT dataset (adenocarcinoma) is the least frequent one 
in the Lung1 dataset. 

The radiomic workflow 

A typical radiomic workflow, based on radiomic feature extraction 
and machine learning classification has been followed in this study. As 
schematized in Fig. 2, it is composed of several analysis steps, starting 
from the medical image acquisition, to end with the prediction of either 
the tumor histology or its stage from imaging descriptive features. Each 
step of this analysis workflow is detailed in the paragraphs below. 

Segmentation 
For each subject of both the L-RT and the Lung1 datasets, the seg

mentation of the Gross Tumor Volume (GTV) region of interest (ROI), 
drawn within the treatment planning by a radiotherapist, was available. 
Thus, these tumor masks were considered for the computation of 
radiomic features. 

Feature extraction 
Descriptive quantities extracted from images are defined as radiomic 

features. They are in general composed by size- and shape-based fea
tures, descriptors of the image intensity histogram and descriptors of the 
relationships between image pixels (or voxels). Radiomic features can be 
extracted from different kinds of medical images, such as computed 
tomography (CT), positron emission tomography (PET) or magnetic 
resonance imaging (MRI) [41]. In our analysis, radiomic features were 
extracted from original CT images without any specific preprocessing, 
using the PyRadiomics [42] plugin of 3D Slicer [43,44], which is a 
software package for viewing and post-processing medical images. It 
allows the computation of radiomic features on CT scans within the 
chosen regions of interest (i.e. the GTV in our analysis). The same pro
cedure was used for both datasets: 107 radiomic features were extracted. 
A brief description and a complete list of these features is provided in the 
Supplementary Materials. 

Feature selection and Machine-learning algorithms 
We build a feature processing and analysis pipeline that is intended 

to define the set of features to be handled by the machine learning al
gorithms. We create an analysis pipeline [45] by combining different 
analysis modules: each step takes as input the output of the previous 
step. The pipeline is composed of: 1) a preprocessing step (i.e. feature 
scaling), 2) a dimensionality reduction step, 3) a machine learning al
gorithm. The hyperparameter space of the pipeline is composed by the 
product of all the possible choices for each step. The point of the 

Fig. 1. Top: Sample images of the Lung1 dataset. From left to right the stage I, II, IIIa and IIIb of squamous cell carcinomas. Bottom: Sample images of the Lung-RT 
dataset. From left to right the stage I and II. The lung tumor position is indicated by the crossing lines. 
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hyperparameter space in which the pipeline obtains the best perfor
mances, according to a given metric, has to be found. In other words, we 
have to tune the pipeline finding the best set of hyperparameters. Let us 
define the ‘best estimator’ as the pipeline tuned with the best set of 
hyperparameters. A pipeline for each chosen classifier was built. 

The features scaling step refers to the operation of transforming the 
range of each single feature. It is an important step in the machine 
learning workflow. In fact, many machine learning algorithms, gener
ally, do not perform well when the input features are in very different 
ranges. Using unscaled data, the performances of several algorithms can 
be degraded and the convergence may be slowed down or prevented 
[46]. 

Moreover, in many machine learning applications one has to deal 
with a large number of features for each instance in our dataset. Working 
in high-dimensional space may introduce some issues: the training is 
slower and there is a higher risk of overfitting. The latter occurs when a 
model performs very well on training data but does not generalize well 
on test data. A symptom of overfitting is that the performances on the 
test set are much lower than those on the training set. Generally, over
fitting is due to the fact that the model is too complex given the un
derlying data, i.e. the model has too many parameters to learn from the 
data. The dimensionality reduction step allows to prevent overfitting by 
reducing the number of features considered [47]. The dimensionality 
reduction algorithms used in this study are: Principal Component 
Analysis (PCA) and Mutual Information (MI). Regarding the PCA, we 
tuned the number of principal components to retain by using the 
hyperparameter optimization strategy illustrated in section 1.2.4. The 
only hyperparameter to set is the variance explained by the principal 
components. The optimization algorithm chooses the percentage of 
explained variance which leads to the best performance among the three 
values of 0.85, 0.90, 0.95. Concerning the MI, we selected the 10% of the 
features with the highest MI value. Additional details are reported in the 
Supplementary Materials. 

The classifiers considered in our study are among the most widely 
used ones: AdaBoost, Nearest Neighbors, SVM (with linear and radial- 
basis-function kernel) and Random Forest. A technical description on 
how each of them works can be found in textbooks [48] and in the scikit- 
learn documentation [49]. We report a brief description of the Random 
Forest classifier used in our analysis. The Random Forest classifier is a 
bootstrap aggregating ensemble model composed by decision tree 
classifiers. 

In this work we consider the optimization of several hyper
parameters, among which the most important are: the number of trees in 
the forest, the maximum depth of the tree, the criterion that measures 
the quality of each split of data, the minimum number of samples 
necessary to split an internal node and the minimum number of samples 
needed to be a leaf node. 

The machine learning analysis was implemented using the Python 
package scikit-learn (v.0.23.2). 

Hyperparameter optimization within nested Cross-Validation 
The nested Cross-Validation (nested CV) is a procedure in which CV 

is used simultaneously for hyperparameter optimization and for per
formance assessment. It is composed of an inner CV loop nested in an 
outer CV loop. The inner CV loop performs hyperparameter tuning, 
while the outer CV loop evaluates the performances [50]. In our appli
cations, we set the number of folds of both the outer and the inner CV 
loop equal to 5. The mean and the standard deviation of the 5 scores 
obtained by each best estimator on its own test set are calculated. 

In this study, the exploration of the hyperparameter space is carried 
out with a Grid Search Cross-Validation (GSCV), which implements an 
exhaustive search over the space of hyperparameters given as input. The 
metric used is the area under the ROC curve (AUC). A description of the 
complete hyperparameter space considered for each algorithm is pro
vided in the Supplementary Materials. 

Strategies for integrating public and private datasets 

We used in this study a private dataset of thoracic CT scans used for 
radiotherapy planning (L-RT) and a publicly accessible MAASTRO 
NSCLC dataset (Lung1), as detailed in Sec. 1.1. As the smaller private 
data sample may hardly be fully representative of the underlying pop
ulation and thus suitable to train a robust decisional system, we propose 
the integration of the private sample with the publicly available one. A 
series of conditions should be verified to combine the two different 
datasets. Moreover, dealing with small datasets, which are generally 
characterized by more features per subject than subjects in the dataset, 
poses several challenges during the ML model training, e.g. those related 
to the optimization of the hyperparameters and to the risk of model 
overfitting. We implemented and compared three different CV strategies 
for training and testing the ML-based predictive models: 1) k-fold CV 
within each of the two datasets (within-sample train and test, WS-TT); 2) 
k-fold CV within the merged dataset (merged-sample train and test, MS- 
TT); 3) training a predictive model on one sample and testing it on the 
other one (cross-sample train and test, CS-TT), specifically expecting 
better performance when training a predictive model on the publicly 
available larger Lung1 dataset and then testing it on the smaller pro
prietary L-RT dataset. 

Evaluation of similarity between the datasets and merging 
The hypothesis of merging the Lung1 dataset and L-RT dataset was 

explored. To verify if the two datasets can be merged, the Mann Whitney 
U test is performed. It is a non-parametric version of the Student t-test 
that can be used to investigate whether two independent samples were 
selected from populations having the same distribution or not. In fact, 
we wanted to verify if the hyperparameter search is more stable, and the 
performances improve by increasing the amount of data. For the Mann- 
Whitney U test the Python package SciPy (v.1.5.2) is used. We choose the 
two-sided Mann-Whitney U test. 

As discussed, the two datasets have some differences regarding the 
overall stages. Therefore, the Mann-Whitney U test was applied by 
selecting those subjects of the Lung1 dataset (40 subjects) that have the 
same overall stage (I and II) of the subjects of the L-RT dataset. For each 
feature, the Mann-Whitney U test is performed. The dataset obtained by 
merging the two datasets will be referred to as TOTAL-L, and the within 
sample CV evaluation scheme on this merged sample will be referred to 
as MS-TT. Because of the dataset merging and the consequent increase in 
the amount of data available, we expect the hyperparameter optimiza
tion procedure to be more stable and the performance to improve. 

Cross validation between public and private datasets 
Another interesting aspect that can be investigated on the Lung1 and 

the L-RT datasets concerns how well a pipeline trained on one of the two 
datasets performs on the other one, which is referred in this paper as 
cross-sample train and test (CS-TT). This situation simulates a real 
application in which an algorithm trained, for instance, on available 
public data, is used to make predictions on the data collected in a 
particular clinical structure. 

Fig. 2. Main steps characterizing the radiomic and ML approach, from the image acquisition to the prediction of either tumor stage or histology.  
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The optimization of the hyperparameters is performed on the 
training set using a Grid Search Cross-Validation (GSCV) with k = 5 and 
the AUC metric. Then, the optimal pipeline found was tested on the 
other dataset. This process was repeated 10 times in GSCV, by randomly 
assigning the example to either the train or the test sets. The mean and 
the standard deviation of the scores obtained were calculated. 

Intra-dataset and between-dataset cross validation to predict tumor 
histology and stage 

The histology and overall classification tasks are addressed by 
considering an intra-dataset (both WS-TT and MS-TT) and a between- 
dataset (CS-TT) cross validation strategy. However, the overall stage 
classification is performed by considering only stage I and II, which are 
the only ones reported in the L-RT dataset. 

Regarding the intra-dataset CV strategy for the classification tasks, 
the nested CV approach for the optimization and evaluation of the 
pipelines, described in 1.2.4, is applied by considering Lung1, L-RT and 
TOTAL-L. Moreover, only for the histology classification task, the same 
analysis is performed on a subset of TOTAL-L obtained by considering 
only the patterns that have overall stage I and II and known histology 
(74 out of 164 subjects). The CS-TT CV strategy is applied by testing on 
L-RT the pipelines trained on the Lung1 dataset and vice versa, as 
described in 1.3.2. The results are reported and discussed in section 2. 

Results 

The results obtained in intra-dataset (both WS-TT and MS-TT) and 
inter-dataset (CS-TT) cross validation are reported in this section. The 
results are obtained by considering the nested CV optimization and 
evaluation strategy for the analysis pipelines composed by the dimen
sionality reduction and the classification algorithms. 

As described, the Mann-Whitney U test is performed to investigate 
whether the dataset L-RT and Lung1 can be merged. The results sug
gested that, for 74 over 107 features (applying the Bonferroni correc
tion), the two samples could be considered as drawn from populations 
with the same distribution. Given this, the two datasets are merged to 
form the TOTAL-L dataset. 

Histology classification 

In Table 2, the results obtained in the histology classification task are 
reported. In particular, the mean value of the AUC and the relative 
standard deviation obtained with the Random Forest classifier is pre
sented. From these results we can notice that the Random Forest clas
sifier outperforms the chance level (CL) only in the MS-TT case, i.e., if 
we consider the intra-dataset CV on the Total-L dataset (164 subjects, 
107 features) and on the subset of Total-L dataset (74 subjects, 107 
features) obtained by considering only the patterns that have overall 
stage I and II. 

In Fig. 3 and in Table A (Supplementary Materials) a comparison 
between the results obtained by all the classifiers considered for the 
histology classification task by using the intra-dataset cross validation 
strategy is shown. From the Table A (Supplementary Materials) we can 
notice that the performances reported in the second and third column 
are compatible with a random classifier, in fact the AUC is consistent 
with 0.5 within the error. Moreover, by comparing these two columns, 
we can state that there is no performance improvement even merging 
the two datasets, despite the number of instances has increased. 

The results in the first column in Table A are obtained by considering 
74 out of 164 subjects of Total-L, discarding those with overall stage IIIa 
and IIIb. Comparing these results with those in the second and third 
column, we can notice that the performances obtained in the case where 
stage IIIa and IIIb are omitted are equal to those obtained with the whole 
sample within the error. 

However, the results of the Welch’s unequal variances t-test, per
formed on the scores obtained within the nested CV, indicate that for the 
Random Forest classifier the null hypothesis of equal averages can be 
rejected with p = 0.04. Therefore, for the Random Forest classifier we 
can state that the results obtained in the case where stage IIIa and IIIb 
are omitted are slightly better. Moreover, in this latter case, the per
formances of the Random Forest classifier (AUC = 0.72 ± 0.11) are 
significantly better than a random classifier. 

The improvement of performances, despite the lower number of in
stances considered by omitting the stage IIIa and IIIb subjects, is most 
likely due to the greater homogeneity of the sample, where only stage I 
and stage II tumors of the three histology categories are represented. 

Another important aspect to consider is the presence of overfitting. 
In fact, despite the use of dimensionality reduction algorithms to prevent 
it, the results obtained are still affected by overfitting as can be seen in 
Fig. 4. In fact, the heatmaps reported in Fig. 4 highlight that the per
formances obtained, in this case with the Random Forest classifier, in the 
training phase are considerably higher than the ones obtained in the test 
phase. Moreover, it can be seen in the heatmap that the region charac
terized by the highest performances in the test phase is totally included 
in the range of hyperparameter chosen and reported in the supple
mentary materials. 

Identification of the most relevant features 
We extracted a rank of the most important features by the Random 

Forest classifier considering the histology classification task on TOTAL-L 
with only the patients with stage I and II, the results are shown in Fig. 5. 
The importance of a feature is measured by the reduction of the Gini 
index (or entropy) brought by that feature. The higher the reduction, the 
more important the feature (Fig. 6). 

We associated a score from 107 to 1 to each feature based on its 
importance: the most important feature has the maximum score. As the 
final score we consider the sum of the scores obtained for each Random 
Forest trained and optimized via nested CV. This approach was only 
implemented in the case in which dimensionality reduction by PCA is 
not chosen in the optimization strategy. The results shown that in this 
case the most important features are (as named in PyRadiomics): 
SmallAreaLowGrayLevelEmphasis, ShortRunHighGrayLevelEmphasis, 
SmallAreaEmphasis, MeshVolume, SizeZoneNonUniformityNormalized. 

Overall stage classification 

The results obtained in the overall stage classification task for the 
Random Forest classifier and the SVM linear are shown in Table 3 and 
Table 4, respectively. In these assessments we considered only instances 
with overall stage I and II. We can notice that the Random Forest clas
sifier outperforms the chance level (CL) only if we consider the CS-TT CV 
strategy. The SVM linear classifier is above the CL only if the pipeline is 
trained on Lung1 and tested on L-RT or the MS-TT case, where the intra- 
dataset CV strategy is applied by considering the TOTAL-L dataset. 

In Fig. 5 and in Table B (Supplementary Materials) a comparison 

Table 2 
The mean value of the AUC and the relative standard deviation obtained in 
Histology classification (3 classes). On the diagonal the performance obtained in 
the intra-dataset CV (both WS-TT and MS-TT) are reported, whereas the out-of- 
diagonal performance reported in the first 2 rows and columns of the matrix are 
referred to the CS-TT strategy. C.L. indicates chance level performances.  

Random Forest TEST SET 

Histology classification L- 
RT 

Lung1 Total-L Total-L (only OS 
I and II) 

TRAIN 
SET 

L-RT C.L. C.L. // // 
Lung1 C.L. C.L. // // 
Total-L // // 0.60 ±

0.07 
// 

Total-L (only OS 
I and II) 

// // // 0.72 ± 0.11  
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between the results obtained by all the classifiers considered for the 
overall stage classification task by using the CS-TT cross validation 
strategy is shown. 

From the Table B (Supplementary Materials), we can notice that the 
performances obtained are equivalent within the uncertainties for all the 
classifiers except for the KNeighbors and the SVM linear. Considering 
the other classifiers, the results of the Welch’s unequal variances t-test, 
performed on the scores obtained by using the 10 best estimators found, 
indicate that for the AdaBoost and the SVM-RBF, the null hypothesis of 
equal averages can be rejected (p = 0.04 for the AdaBoost, p = 0.01 for 
the SVM-RBF). Therefore, for all the classifiers except for the Random 
Forest and the SVM, we can state that the results obtained when training 
on Lung1 and testing on L-RT are better than those obtained when 
training on L-RT and testing on Lung1. This difference may be attrib
utable to the different proportions between the two classes in Lung1 and 
L-RT. In fact, as already stated, the composition of Lung1 and L-RT 
regarding the overall stage, is that Lung1 is composed of 27 subjects 
with stage I out of 40, while L-RT is composed of 42 subjects with stage I 
out of 47. Therefore, algorithms trained on L-RT have only 5 instances 
from which to learn the features of subjects with overall stage II. By 
contrast, in Lung1 both the classes are well represented. 

Discussion 

The workflow that goes from the radiomic features extraction to the 
development of predictive models based on machine learning tech
niques was analyzed in this study in the specific case of dealing with 
small data samples. We focused on the possibility to predict the tumor 
stage and the tumor histology by considering the radiomic features 
extracted from the thoracic CT scans of patients with non-small cell lung 
cancer. This task is addressed by considering the public Lung1 and the 
proprietary L-RT datasets. 

The results obtained regarding the histology classification of NSCLC, 
performed by considering all labeled tumor stages, are at the chance 
level. Nevertheless, taking into consideration only the subjects with 
overall stages I and II, an improvement of performances is observed. In 
particular, the best performances are reached by the Random Forest 
classifiers (AUC = 0.72 ± 0.11). Thus, if we restrict our analysis to stage 
I and stage II tumors, and thus reduce the heterogeneity of cases within 
the sample, radiomic features extracted from thoracic CT can predict the 
three different types of histology of NSCLC with a discrete performance. 

The results achieved in the overall stage classification of NSCLC, by 
using Lung1 as training set and L-RT as test-set, are considerably above 
the random guess. In particular, the best performances are obtained by 
considering the linear-kernel SVM classifiers (AUC = 0.84 ± 0.03). Thus, 

Fig. 3. The mean value of the AUC and the relative standard deviation obtained in Histology classification (3 classes) of Lung1 dataset (130 subjects, 107 features), of 
Total-L dataset (164 subjects, 107 features) and of the subset of Total-L dataset (74 subjects, 107 features) are shown. The results are obtained with a nested CV. 

Fig. 4. Heatmaps showing the performances obtained on the training phase (on the left) and on the test phase (on the right) for the random Forest Classifier. In 
particular, the changes in performances obtained by varying the number of estimators and the max depth of each estimator are reported. 
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regarding the stage prediction, and training the models on the Lung1 
dataset and testing on the L-RT dataset, it is possible to predict the 
overall stage of NSCLC with good performance. 

These promising results imply that the approach developed in this 

work could provide support for tumor analysis in terms of stage iden
tification and histology classification for NSCLC cases. 

In literature there are many examples of the application of radiomics 
in lung cancer study. In the work by Aerts et al. [24], the stability of 

Fig. 5. Barplot showing the most important features selected by the Random Forest classifier considering the histology classification task on TOTAL-L with only 
patients with stage I and II. 

Fig. 6. The mean value of the AUC and the relative standard deviation obtained in Overall stage classification (2 classes) training on Lung1 (40 subjects, 107 
features) testing on L-RT (47 subjects, 107 features) and vice versa are shown. The results are obtained by averaging the scores obtained on L-RT by the 10 best 
estimators found with a 5-fold GSCV on Lung1. 

Table 3 
The mean value of the AUC and the relative standard deviation obtained in 
Overall stage classification (2 classes) for the Random Forest classifier. On the 
diagonal the performance obtained in the intra-dataset CV (both WS-TT and MS- 
TT) are reported, whereas the out-of-diagonal performance reported in the first 2 
rows and columns of the matrix are referred to the CS-TT strategy. C.L. indicates 
chance level performances.  

Random Forest TEST SET 

OS classification (only I and II) L-RT Lung1 Total-L 

TRAIN SET L-RT C.L. 0.68 ± 0.06 // 
Lung1 0.72 ± 0.04 C.L. // 
Total-L // // C.L.  

Table 4 
The mean value of the AUC and the relative standard deviation obtained in 
Overall stage classification (2 classes) for the SVM linear classifier. On the di
agonal the performance obtained in the intra-dataset CV (both WS-TT and MS- 
TT) are reported, whereas the out-of-diagonal performance reported in the 
first 2 rows and columns of the matrix are referred to the CS-TT strategy. “C.L.” 
indicates chance level performances.  

SVM linear TEST SET 

OS classification (only I and II) L-RT Lung1 Total-L 

TRAIN SET L-RT C.L. C.L. // 
Lung1 0.84 ± 0.03 C.L. // 
Total-L // // 0.78 ± 0.13  
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radiomic features extracted from CT images, and their prognostic power 
are investigated by considering different datasets of lung and head-neck 
cancer. They selected the single best performing radiomic feature from 
each group of features in order to remove redundancy within the 
radiomic information. In this way they create a more stable prognostic 
radiomic signature. In the study by Patil et al. [51], a dataset composed 
of 317 non-small cell lung cancer subjects is considered. The authors 
investigated the predictive power of features extracted from thoracic CT 
in a histology classification task. The sensitivity, specificity and accuracy 
obtained in determining the histology using radiomic features are 87%, 
89% and 88%, respectively. Despite a direct comparison with our results 
is not feasible due to the different sample size and composition, the 
results reported by Patil et al. [51] highlight how radiomic features have 
high predictive power in tumor histology classification, suggesting the 
possibility to allow diagnosis without tissue biopsy in high-risk patients 
or in which histological characterization is not possible, due to the pa
tient’s comorbidities. In these cases, in our center, positive metabolic 
imaging was considered a substitute for the diagnosis of malignancy, 
according to the literature [52]. Histology also could be considered in 
the GTV delineation and in the choice of treatment to customize the 
radiation dose for stereotactic ablative body radiotherapy [53]. For 
example, higher prescription doses could be considered for squamous 
cell carcinomas, within normal tissue tolerances, where a lower BED 
translates to a worse outcome [54,55]. We also suppose that radiomics 
could help differentiate between post-radiotherapy benign changes and 
residual tumor tissues [56] or predict which patients are more prone to 
develop treatment-related adverse events [57]. Finally, radiomics could 
be a powerful tool in providing other biological and genomics tumor 
characterization, translating in a most accurate treatment [58]. 

Despite the encouraging results that we obtained, the ML-based de
cision system we have developed is not yet ready to be applied in clinical 
workflows. Before application-specific ML algorithms can be success
fully translated into clinics, a number of challenges must indeed be 
overcome, including the harmonization of different data samples [7,59], 
the reliability and reproducibility of the results [7,10,60] the inter
pretability of the models and the results [59,61], and the compliance 
with current regulations [62]. 

Apart from the regulatory issues, we addressed in this study the main 
challenges listed above that become even more severe when dealing 
with small datasets, where we typically have more features per subject 
than subjects in the dataset. 

Multisite data harmonization 

Harmonizing multi-site data is important because the quality of 
radiomic features, their association with data and therefore the perfor
mance of models created using these features are related to image 
properties and quality, which can be different according to the acqui
sition site. Images collected in clinical routine work reveal a wide 
variation of acquisition parameters. Regarding CT imaging, different 
reconstruction algorithms and parameters are used in clinical practice. 
This great variability affects the values of the image, and consequently 
the values of the radiomic features. In this way, it might happen that, 
comparing features extracted from images acquired using different 
acquisition protocols, their differences could be due to different image 
properties rather than to different biological properties of tissues [1]. 
Another critical issue in the radiomic process is the segmentation step. 
Features are extracted from segmented volumes and, since many tumors 
show unclear borders, the segmentation task can be very challenging 
and have a strong impact on final predictions [1]. 

In this study, we did not implement pre-processing algorithms to 
harmonize raw CT images prior to feature extraction, as we evaluated 
that the acquisition characteristics of the CT images were quite similar 
between the two data sets (slice thickness of 2.5–3 mm and tube voltage 
of 120–140 kVp) for both data samples. To investigate whether the two 
independent samples of extracted radiomic features were selected from 

populations having the same distribution, we implemented the Mann 
Whitney U test, whose Bonferroni-corrected results demonstrated that 
for most features the null hypothesis was true. 

Reliability and reproducibility of the results 

Interesting review papers reported on the repeatability and repro
ducibility of the results of medical data analyses [10,60], with particular 
reference to radiomic features [10]. In the latter work, the authors 
analyzed 41 studies (35 human studies and 6 phantom studies) focusing 
on the assessment of the repeatability and reproducibility of radiomic 
features. Studies with different types of cancer (NSCLC, lung cancer, 
oropharyngeal cancer, esophageal cancer, rectal cancer, breast cancer, 
cervical cancer, and various solid tumors) and different imaging mo
dalities (CT, Cone Beam CT, positron emission tomography, and mag
netic resonance) were considered. In this review the authors considered 
different factors that could influence the repeatability and reproduc
ibility of radiomic features, for example: the image acquisition settings, 
the image reconstruction algorithm, the digital image preprocessing and 
the software used to extract radiomic features. The authors found that 
the First Order Statistic Features are more reproducible than the Size- 
and Shape-based Features and the Higher Order Statistics features. 

Especially when data samples are limited in size and a large amount 
of features are analyzed with ML algorithms, beside the problem of 
model overfitting, there is the problem of the stability of the results. The 
problem of model overfitting, which can easily occur with small and 
high-dimensional datasets, limits the generalization capability of a ML 
model, whereas the performance instability prevents the identification 
of a unique set of optimized hyperparameters for ML algorithms. Both 
issues lead to a low reliability and reproducibility of ML results. 

In this study, the hyperparameter optimization of the pipelines, 
performed through an exhaustive search, turned out to be unstable. 
Therefore, we could not find a single best optimization of the algorithms 
and the results were not very stable. To overcome this issue, the per
formances were evaluated through a nested CV scheme, which allows to 
obtain unbiased assessments, and thus reliable and reproducible results 
within their uncertainty. 

In the work of Patil et al. [51], in which the histology of NSCLC 
starting from radiomic features is studied, the authors did not implement 
a nested CV strategy but they used a simple CV that could be subject to 
biases. In fact, the hyperparameter optimization implemented by a non- 
nested CV scheme involves the use of the same data in optimizing the 
model hyperparameters and in evaluating the model performance; this 
situation could produce over-optimistic results [7]. 

In general, if the available dataset is not sufficiently large, it is not 
recommended to divide it into a training and test set. In fact, if the test 
set is too small, we may have to deal with large statistical fluctuations in 
the estimation of the test performances. As a result, it can be difficult to 
compare different algorithms on a given task. In this situation, it is 
convenient to evaluate the performances through a cross validation 
strategy that allows us to consider all the instances of the dataset. These 
procedures generally increase the computational cost, as they are based 
on many repetitions of the training and testing phases. 

Interpretability and explainability of results 

It is widely recognized that ML-based algorithms in order to be re
ceivable by the clinical community and usefully implemented in clinical 
workflows should provide human intelligible results and rely on 
explainable methodology [59,61]. Complex models generally provide 
better performance at the expenses of their interpretability. In the field 
of lung cancer diagnosis, for instance, a recent work by Astraki et al. 
[63] proposed the implementation of Random Forest classifier to 
distinguish benign from malignant nodules. The descriptive features 
they computed on both nodules and background parenchymal tissue 
were extracted by a convolutional neural network. This approach, which 
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showed very high discrimination performance (AUC > 90%), does not 
allow a direct identification of which image features are responsible for 
the classification results. In the work of Patil et al. [51], which is closer 
to ours in terms of objectives, the authors implemented an SVM classifier 
to classify the histology of NSCLC from radiomic features. In this case, 
the use of a conceptually easy to explain ML algorithm, such as the SVM, 
allowed authors to rank the features by importance and discover the 
most discriminative ones. 

In our work, we emphasized that one advantage of using a Random 
Forest classifier is that it allows the identification of the most important 
features that contributed to the classification. This characteristic is a 
peculiarity of some traditional ML classifiers, including those based on 
linear models (e.g. linear-kernel Support Vector Machines, Linear 
Regression, Linear Discriminant Analysis) and decision trees (e.g. 
Random Forest). The possibility to rank the features and to identify 
those more relevant for a given classification task automatically allows 
an interpretation of the results achieved, which is crucial for clinicians to 
trust ML-based decisional systems. 

Conclusions 

In conclusion, radiomics and ML approaches are becoming wide
spread within the Medical Physics community. However, the availability 
of small, annotated data samples may limit the impact of this rapidly 
growing field of research. We demonstrated in this study that small data 
cohorts can be integrated with public data samples to achieve more 
reliable performance in radiomics and ML studies. Particular attention 
must be paid to evaluating the compatibility between the two cohorts 
before merging them, and to carry out an unbiased evaluation of the 
classification performance by means of a cross-validation strategy. 
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