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Abstract

We illustrate the notions of compound and iterated conditionals introduced, in re-

cent papers, as suitable conditional random quantities, in the framework of coher-

ence. We motivate our definitions by examining some concrete examples. Our log-

ical operations among conditional events satisfy the basic probabilistic properties

valid for unconditional events. We show that some, intuitively acceptable, com-

pound sentences on conditionals can be analyzed in a rigorous way in terms of

suitable iterated conditionals. We discuss the Import-Export principle, which is

not valid in our approach, by also examining the inference from a material condi-

tional to the associated conditional event. Then, we illustrate the characterization,

in terms of iterated conditionals, of some well known p-valid and non p-valid infer-

ence rules.

Keywords: Coherence, Conditional events, Conditional random quantities, Con-

junction, Disjunction, Iterated conditional, Inference rules, p-validity, p-entail-

ment, Import-Export principle.

1. Introduction

Let us imagine an experiment where you flip a coin twice; then, let us consider the

conjunction

“the outcome of the 1st flip is head and the outcome of the 2nd flip is head”.

By defining the events A = “the outcome of the 1st flip is head” and B = “the outcome of

the 2nd flip is head”, we denote by A∧B, or simply by AB, the previous conjunction,
which is true when both A and B are true, and false when A or B is false. If you

judge P (AB) = p, then in a bet on AB you agree to pay, for instance, p by receiving
1, or 0, according to whether AB turns out to be true, or false, respectively.

What is the “logical value” of AB when the outcome of the first coin is head

and the second coin stands up? We cannot answer because the event B is neither

true nor false.

Moreover, what happens of the bet? Cases like this are not considered when

assessing P (AB) (they are assumed to be impossible, or to have zero probability).
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Usually, the bet is called off and you receive back the paid amount p. Actually, by
introducing the eventsH =the outcome of the 1st flip is head or tail and K =the outcome

of the 2nd flip is head or tail, we realize that when evaluating P (AB), in fact we are

evaluating P (AB|HK), under the implicit assumption that P (HK) = 1. Indeed, by
observing that P (AB|HK) = 0, it follows that

P (AB) = P (AB|HK)P (HK) + P (AB|HK)P (HK) = P (AB|HK)P (HK) ,

and when P (HK) = 1 it holds that P (AB) = P (AB|HK). On the contrary, when

P (HK) < 1, one has P (AB) < P (AB|HK), in which case the paid amount P (AB)
is less than the amount (that should be paid) P (AB|HK). Moreover,asΩ =HK ∨
HK∨HK∨HK =HK∨HK, the eventHK is the disjunction of three logical cases,

that is HK = HK ∨HK ∨HK, and such cases could be judged to be not similar.

In particular, HK appears different from the other two cases. What should be a

general approach to this kind of more complex situations? We observe that, in

order to manage these cases, the two sentences

the outcome of the 1st flip is head,

the outcome of the 2nd flip is head

should be written, respectively, as the conditional sentences

the outcome of the 1st flip is head, given that it is head or tail,

the outcome of the 2nd flip is head, given that it is head or tail;

that is, the events A, B should be replaced by the conditional events A|H , B|K.
Moreover, the conjunction AB should be written as a suitable conjoined condi-

tional (A|H)∧ (B|K). Based on the theories of de Finetti (1936, 1980) and Ramsey

(1990), we look at the conditional ifH then A as the conditional event A|H , hence

in our approach it is satisfied the Equation (Edgington 1995), or Conditional Proba-

bility Hypothesis (see, e.g., Sanfilippo, Pfeifer, Over et al. 2018; Sanfilippo, Gilio,

Over et al. 2020; Cruz 2020; Over and Cruz 2021), which establishes that the prob-

ability of a conditional coincides with the probability of the associated conditional

event: P (if H then A) = P (A|H). Then, the conditional events A|H and B|K are

associated with the following two conditionals:

1) if the outcome of the 1st flip is head or tail, then it is head,
2) if the outcome of the 2nd flip is head or tail, then it is head.

Moreover, by defining valid the flip when ”the coin does not stand, or similar

things”, that is when ”the outcome of the flip is head or tail”, the conjunction

(A|H)∧ (B|K) can be interpreted as the conjoined conditional

(if the outcome of the 1st flip is head or tail, then it is head) and (if the outcome of the

2nd flip is head or tail, then it is head.

What are the possible values of this conjoined conditional (A|H) ∧ (B|K)? The

same analysis can be done for the disjunction (A|H)∨ (B|K).
The problem of suitably defining logical operations among conditional events

has been largely discussed by many authors (see, e.g., Baratgin, Politzer, Over et

al. 2018; Benferhat, Dubois and Prade 1997; Coletti, Scozzafava and Vantaggi



On Compound and Iterated Conditionals 243

2013, 2015; Douven, Elqayam, Singmann et al. 2019; Flaminio, Godo and Hosni

2020; Goodman, Nguyen andWalker 1991; Kaufmann 2009; Mura 2011; McGee

1989; Nguyen and Walker 1994). In a pioneering paper, written in 1935, de

Finetti (1936) proposed a three-valued logic for conditional events, also studied

by Lukasiewicz. Moreover, several authors have given many contributions to re-

search on three-valued logics and compounds of conditionals (see, e.g.,Edgington

1995; McGee 1989; Milne 1997). Coherence-based probability logic has been re-

cently discussed in Pfeifer 2021.

Usually, conjunction and disjunction of conditionals have been defined as

suitable conditionals (see, e.g., Adams 1975; Calabrese 1987, 2017; Ciucci and

Dubois 2012, 2013; Goodman, Nguyen and Walker 1991). However, in this

way many classical probabilistic properties are lost. In particular, differently from

the case of unconditional events, the lower and upper probability bounds for the

conjunction of two conditional events are no more the Fréchet-Hoeffding bounds.

This aspect has been studied in Sanfilippo 2018.

A more general approach where the result of conjunction or disjunction is no

longer a three-valued object has been given inKaufmann 2009;McGee 1989. In re-

cent years, a related theory (Gilio and Sanfilippo 2013a, 2013b, 2014, 2017, 2019,

2020), with some applications (Gilio, Over, Pfeifer et al. 2017; Gilio, Pfeifer and

Sanfilippo 2020; Sanfilippo, Gilio, Over et al. 2020; Sanfilippo, Pfeifer and Gilio

2017; Sanfilippo, Pfeifer, Over et al. 2018), has been developed in the setting of

coherence, where conditioning events with zero probability are properly managed.

In these papers the notions of compound and iterated conditionals are defined as

suitable conditional random quantities with a finite number of possible values in the

interval [0,1]. Within our approach the basic properties, valid for unconditional

events, are preserved. In particular:

- the inequality AB ≤ min{A,B} becomes (A|H)∧ (B|K) ≤ min{A|H,B|K} (the
inequality A∨B ≥max{A,B} becomes (A|H)∨ (B|K) ≥max{A|H,B|K});

- the Fréchet-Hoeffding lower and upper prevision bounds for the conjunction

of conditional events still hold (Gilio and Sanfilippo 2021a);

- De Morgan’s Laws are satisfied (Gilio and Sanfilippo 2019);

- the inclusion-exclusion formula for the disjunction of conditional events

is valid (Gilio and Sanfilippo 2020); for instance, the formula P (E1 ∨
E2) = P (E1) + P (E2)− P (E1E2) becomes P[(E1|H1)∨ (E2|H2)] = P (E1|H1) +
P (E2|H2)−P[(E1|H1)∧ (E2|H2)] (Gilio and Sanfilippo 2014);

- we can introduce the set of (conditional) constituents, with properties analo-

gous to the case of unconditional events (Gilio and Sanfilippo 2020);

- by exploiting conjunction we obtain a characterization of the probabilistic en-

tailment of Adams (Adams 1975) for conditionals (Gilio and Sanfilippo

2019); moreover, by exploiting iterated conditionals, the p-entailment of

E3|H3 from a p-consistent family {E1|H1,E2|H2} is characterized by the

property that the iterated conditional (E3|H3)|((E1|H1)∧(E2|H2)) is constant
and coincides with 1 (Gilio, Pfeifer and Sanfilippo 2020).

In our theory of compound and iterated conditionals, as inAdams 1975, Kauf-

mann 2009 and differently from McGee 1989, the Import-Export principle is not

valid. As a consequence, as shown in Gilio and Sanfilippo 2014 (see also Sanfil-
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ippo, Gilio, Over et al. 2020; Sanfilippo, Pfeifer, Over et al. 2018), we avoid Lewis’

triviality results (Lewis 1976). Probabilistic modus ponens has been generalized

to conditional events (Sanfilippo, Pfeifer and Gilio 2017); moreover, one-premise

and two-premise centering inferences has been studied in Gilio, Over, Pfeifer et al.

2017; Sanfilippo, Pfeifer, Over et al. 2018. In Sanfilippo, Gilio, Over et al. 2020

some intuitive probabilistic assessments discussed in Douven andDietz 2011 have

been explained, by making some implicit background information explicit.

The paper is organized as follows: In Section 2. we recall some basic notions

and results on coherence, conditional events, and conditional random quantities.

Moreover, we recall the definitions of p-consistency and p-entailment in the setting

of coherence. Then we illustrate the notions of conjoined, disjoined and iterated

conditional. In Section 3. we recall some well known probabilistic properties valid

for unconditional events. Then, we show that these properties continue to hold

when replacing events by conditional events. In Section 4. we show that some com-

pound sentences on conditionals, which seem intuitively acceptable, can be ana-

lyzed in a rigorous way in terms of iterated conditionals. Moreover, we discuss the

Import-Export principle, by also examining the iterated conditional (A|H)|(H∨A).
Then we illustrate, in terms of suitable iterated conditionals, several well known,

p-valid and non p-valid, inference rules. In Section 5. we give some conclusions.

2. Preliminary Notions and Results

In our approach events represent uncertain facts described by (non ambiguous)

logical propositions. An event A is a two-valued logical entity which is either true,

or false. The indicator of an event A is a two-valued numerical quantity which is

1, or 0, according to whether A is true, or false, respectively. We use the same

symbol to refer to an event and its indicator. We denote by Ω the sure event and

by ∅ the impossible one (notice that, when necessary, the symbol ∅ will denote
the empty set). Given two events A and B, we denote by A ∧ B, or simply by

AB, the intersection, or conjunction, of A and B, as defined in propositional logic;
likewise, we denote by A∨ B the union, or disjunction, of A and B. We denote

by A the negation of A. Of course, the truth values for conjunctions, disjunctions
and negations are defined as usual. Given any events A and B, we simply write

A ⊆ B to denote that A logically implies B, that is AB = ∅, which means that A and

B cannot both be true.

2.1 Conditional Events, Coherence, and Conditional Random Quantities

Given two events E,H , with H , ∅, the conditional event E|H is defined as a

three-valued logical entity which is true, or false, or void, according to whether EH
is true, or EH is true, orH is true, respectively. In the betting framework, to assess

P (E|H) = x amounts to say that, for every real number s, you are willing to pay an
amount sx and to receive s, or 0, or sx, according to whether EH is true, or EH
is true, or H is true (bet called off), respectively. Then for the random gain G =
sH(E − x), the possible values are s(1− x), or −sx, or 0, according to whether EH
is true, or EH is true, orH is true, respectively. More generally speaking, consider

a real-valued function P : K → R, where K is an arbitrary (possibly not finite)

family of conditional events. Let F = {E1|H1, . . . ,En|Hn} be a family of conditional
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events, where Ei |Hi ∈ K, i = 1, . . . ,n, and let P = (p1, . . . ,pn) be the vector of values
pi = P (Ei |Hi), where i = 1, . . . ,n. We denote by Hn the disjunction H1 ∨ · · · ∨Hn.

With the pair (F ,P ) we associate the random gain G =
∑n

i=1 siHi(Ei − pi), where
s1, . . . , sn are n arbitrary real numbers. G represents the net gain of n transactions.

Let GHn
denote the set of possible values of G restricted to Hn, that is, the values

of G when at least one conditioning event is true.

Definition 1

The function P defined on K is coherent if and only if, for every integer n, for
every finite subfamily F = {E1|H1, . . . ,En|Hn} of K and for every real numbers

s1, . . . , sn, it holds that: minGHn
≤ 0 ≤maxGHn

.

Intuitively, Definition 1 means in betting terms that a probability assessment is

coherent if and only if, in any finite combination of n bets, it cannot happen that

the values in GHn
are all positive, or all negative (no Dutch Book).

We denote by X a random quantity, that is an uncertain real quantity, which

has a well determined but unknown value. We assume that X has a finite set of

possible values. Given any event H , ∅, agreeing to the betting metaphor, if you

assess that the prevision of “X conditional on H” (or short: “X given H”), P(X |H),
is equal to µ, this means that for any given real number s you are willing to pay

an amount µs and to receive sX, or µs, according to whether H is true, or false

(bet called off), respectively. In particular, when X is (the indicator of) an event A,
then P(X |H) = P (A|H). Definition 1 can be generalized to the case of prevision

assessments on a family of conditional random quantities (see, e.g., Gilio and

Sanfilippo 2020). Given a conditional event A|H with P (A|H) = x, the indicator
of A|H , denoted by the same symbol, is

A|H = AH + xH = AH + x(1−H) =


1, if AH is true,

0, if AH is true,

x, if H is true.

(1)

The third value of the random quantityA|H (subjectively) depends on the assessed

probability P (A|H) = x. When H ⊆ A (i.e., AH = H), it holds that P (A|H) = 1;
then, for the indicator A|H it holds that

A|H = AH + xH =H +H = 1, (when H ⊆ A). (2)

Likewise, if AH = ∅, it holds that P (A|H) = 0; then

A|H = 0+0H = 0, (when AH = ∅).

Given a random quantityX and an eventH , ∅, with P (X |H) = µ, in our approach,
likewise formula (1), the conditional random quantity X |H is defined as

X |H = XH +µH.

(For a discussion on this extended notion of a conditional random quantity see,

e.g., Gilio and Sanfilippo 2014; Sanfilippo, Gilio, Over et al. 2020.)
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Remark 1

Given a conditional random quantity X |H and a prevision assessment

P(X |H) = µ, if conditionally onH being true X is constant, say X = c, then by
coherence µ = c.

The result below establishes some conditions underwhich two conditional random

quantities X |H and Y |K coincide (Gilio and Sanfilippo 2014, Theorem 4).

Theorem 1

Given any eventsH , ∅ and K , ∅, and any random quantities X and Y ,
let Π be the set of the coherent prevision assessments P(X |H) = µ and

P(Y |K) = ν.
(i) Assume that, for every (µ,ν) ∈ Π, the values of X |H and Y |K

always coincide when H ∨ K is true; then µ = ν for every

(µ,ν) ∈Π.

(ii) For every (µ,ν) ∈ Π, the values of X |H and Y |K always coincide

when H ∨K is true if and only if X |H = Y |K.

2.2 Probabilistic Consistency and Entailment

We recall below the notion of logical implication of Goodman and Nguyen 1988

for conditional events (see also Gilio and Sanfilippo 2013d).

Definition 2

Given two conditional events A|H and B|K we define that A|H logically im-

plies B|K (denoted by A|H ⊆ B|K) if and only if AH logically implies BK and

BK logically implies AH ; i.e., AH ⊆ BK and BK ⊆ AH .

A generalization of the Goodman and Nguyen logical implication to conditional

random quantities has been given in Pelessoni and Vicig 2014.

The notions of p-consistency and p-entailment of Adams 1975 were formu-

lated for conditional events in the setting of coherence in Gilio and Sanfilippo

2013d (see also Biazzo, Gilio, Lukasiewicz et al. 2005; Gilio 2002; Gilio and San-

filippo 2013c).

Definition 3

Let Fn = {Ei |Hi , i = 1, . . . ,n} be a family of n conditional events. Then,

Fn is p-consistent if and only if the probability assessment (p1,p2, . . . ,pn) =
(1,1, . . . ,1) on Fn is coherent.

Definition 4

A p-consistent family Fn = {Ei |Hi , i = 1, . . . ,n} p-entails a conditional event

E|H (denoted by Fn ⇒p E|H ) if and only if for any coherent probability as-

sessment (p1, . . . ,pn, z) on Fn ∪ {E|H} it holds that: if p1 = · · · = pn = 1, then
z = 1.
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Of course, when Fn p-entails E|H , there may be coherent assessments (p1, . . . ,pn, z)
with z , 1, but in such cases pi , 1 for at least one index i. We say that the

inference from a p-consistent family Fn to E|H is p-valid if and only if Fn p-entails
E|H .

We also recall the characterization of the p-entailment for two conditional

events (Gilio and Sanfilippo 2013d, Theorem 7):

Theorem 2

Given two conditional events A|H , B|K , with AH , ∅. It holds that
A|H ⇒p B|K ⇐⇒ A|H ⊆ B|K, or K ⊆ B⇐⇒Π ⊆ {(x,y) ∈ [0,1]2 : x ≤ y},

whereΠ is the set of coherent assessments (x,y) on {A|H,B|K}.

2.3 Conjunction, Disjunction, and Iterated Conditioning

Given two conditional events A|H and B|K, the associated constituents, denoted

C1, . . . ,C8,C0 in Table 1, are the conjunctions of the logical disjunction in the for-

mula below.

Ω = (AH ∨AH ∨H)∧ (BK ∨BK ∨K) = AHBK ∨AHBK ∨ · · · ∨HK.

Ch A|H B|K max{A|H +B|K − 1,0} (A|H)∧ (B|K) min{A|H,B|K}
C1 AHBK 1 1 1 1 1

C2 AHBK 1 0 0 0 0

C3 AHK 1 y y y y
C4 AHBK 0 1 0 0 0

C5 AHBK 0 0 0 0 0

C6 AHK 0 y 0 0 0
C7 HBK x 1 x x x
C8 HBK x 0 0 0 0
C0 HK x y max{x+ y − 1,0} z min{x,y}
Table 1: Possible values of max{A|H +B|K − 1,0}, (A|H)∧ (B|K), and min{A|H,B|K}, associated

with the constituents C1, . . . ,C8,C0, where x = P (A|H), y = P (B|K), and z = P[(A|H)∧ (B|K)].

We recall now the notion of conjoined conditionals which was introduced

in the framework of conditional random quantities (Gilio and Sanfilippo 2013b;

Gilio and Sanfilippo 2013a; Gilio and Sanfilippo 2014; Gilio and Sanfilippo

2019). Given a coherent probability assessment (x,y) on {A|H,B|K}, we consider
the random quantity AHBK + xHBK + yKAH and we set P[(AHBK + xHBK +
yKAH)|(H ∨K)] = z. Then we define the conjunction (A|H)∧ (B|K) as follows:

Definition 5

Given a coherent prevision assessment P (A|H) = x, P (B|K) = y, and

P[(AHBK+xHBK+yKAH)|(H∨K)] = z, the conjunction (A|H)∧(B|K)
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is the conditional random quantity defined as

(A|H)∧ (B|K) = (AHBK + xHBK + yKAH)|(H ∨K) =

=


1, if AHBK is true,

0, if AH ∨BK is true,

x, if HBK is true,

y, if AHK is true,

z, if HK is true.

(3)

Of course, P[(A|H) ∧ (B|K)] = z. Notice that, once the (coherent) assessment

(x,y,z) is given, the conjunction (A|H)∧ (B|K) is (subjectively) determined. We

recall that, in betting terms, z represents the amount you agree to pay, with the

proviso that you will receive the quantity

(A|H)∧ (B|K) = AHBK + xHBK + yKAH + zHK, (4)

which assumes one of the following values:

• 1, if both conditional events are true;

• 0, if at least one of the conditional events is false;
• the probability of the conditional event that is void, if one conditional

event is void and the other one is true;

• z (the amount that you paid), if both conditional events are void.

We observe that (A|H)∧ (A|H) = A|H and (A|H)∧ (B|K) = (B|K)∧ (A|H). More-

over, if H = K, then

(A|H)∧ (B|H) = AB|H. (5)

Indeed, in this case HBK = AHK = ∅, so that by Definition 5 it holds that

z = P(ABH |H) = P (AB|H) and (A|H) ∧ (B|H) = ABH |H = AB|H . The result

below shows that Fréchet-Hoeffding bounds still hold for the conjunction of two

conditional events (Gilio and Sanfilippo 2014, Theorem 7).

Theorem 3

Given any coherent assessment (x,y) on {A|H,B|K}, with A,H,B,K log-

ically independent, and with H , ∅,K , ∅, the extension z = P[(A|H)∧
(B|K)] is coherent if and only if the following Fréchet-Hoeffding bounds
are satisfied:

max{x+ y − 1,0} = z′ ≤ z ≤ z′′ = min{x,y} . (6)

Remark 2

Notice that, from (3) and (6), it holds that (see Table 1)

max{A|H +B|K − 1,0} ≤ (A|H)∧ (B|K) ≤min{A|H,B|K}. (7)

Then, whenAH = ∅, it holds thatA|H = 0 and (A|H)∧(B|K) = 0∧(B|K) = 0.
Moreover, whenK ⊆ B, it holds thatB|K = 1 and (A|H)∧(B|K) = (A|H)∧1 =
A|H .
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We recall now the notion of disjoined conditional. Given a coherent

probability assessment (x,y) on {A|H,B|K} we consider the random quantity

(AH∨BK)+xHBK+yKAH and we set P[((AH∨BK)+xHBK+yKAH)|(H∨K)] =
w. Then we define the disjunction (A|H)∨ (B|K) as follows:

Definition 6

Given a coherent prevision assessment P (A|H) = x, P (B|K) = y, and

P[((AH ∨BK)+xHBK +yKAH)|(H ∨K)] = w, the disjunction (A|H)∨
(B|K) is the conditional random quantity defined as

(A|H)∨ (B|K) = ((AH ∨BK) + xHBK + yKAH)|(H ∨K) =

=



1, if AH ∨BK is true,

0, if AHBK is true,

x, if HBK is true,

y, if AHK is true,

w, if HK is true.

(8)

Remark 3

Given any coherent assessment (x,y) on {A|H,B|K}, with A,H,B,K logically

independent, and with H , ∅,K , ∅, the extension w = P[(A|H)∨ (B|K)] is
coherent if and only if (Gilio and Sanfilippo 2014, Section 6)

max{x,y} = w′ ≤ w ≤ w′′ = min{1,x+ y} . (9)

Notice that, from (8) and (9), it holds that

max{A|H,B|K} ≤ (A|H)∨ (B|K) ≤min{1,A|H +B|K}. (10)

Then, when AH = ∅, it holds that A|H = 0 and (A|H)∨ (B|K) = 0∨ (B|K) =
B|K . Moreover, when K ⊆ B, it holds that B|K = 1 and (A|H) ∨ (B|K) =
(A|H)∨ 1 = 1.

We recall that, as defined in (1), the indicator of a conditional event A|H , with

P (A|H) = x, is

A|H = A∧H + xH.

Likewise, we define the notion of an iterated conditional based on the same

structure, i.e. �|© = �∧©+P(�|©)©, where � denotes B|K and © denotes A|H , and

where we set P(�|©) = µ. In the framework of subjective probability µ = P(�|©)
is the amount that you agree to pay, by knowing that you will receive the random

quantity �∧©+µ©. The negation A|H of A|H is defined as 1−A|H = A|H . Then,

the iterated conditional (B|K)|(A|H) is defined (see, e.g., Gilio and Sanfilippo

2013b; Gilio and Sanfilippo 2013a; Gilio and Sanfilippo 2014) as follows:

Definition 7

Given any pair of conditional eventsA|H and B|K , withAH , ∅, let (x,y,z) be
a coherent assessment on {A|H,B|K, (A|H)∧ (B|K)}. The iterated conditional
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(B|K)|(A|H) is defined as

(B|K)|(A|H) = (B|K)∧ (A|H) +µA|H =

1, if AHBK is true,

0, if AHBK is true,

y, if AHK is true,

x+µ(1− x), if HBK is true,

µ(1− x), if HBK is true,

z+µ(1− x), if HK is true,

µ, if AH is true,

(11)

where µ = P[(B|K)|(A|H)] = P[(B|K)∧ (A|H) +µA|H].

Notice that we assume AH , ∅ to avoid trivial cases of iterated conditionals. By

the linearity of prevision, it holds that

µ = P((B|K)|(A|H)) = P((B|K)∧ (A|H) +µA|H) =
= P((B|K)∧ (A|H)) +P(µA|H) =
= P((B|K)∧ (A|H)) +µP (A|H) = z+µ(1− x) ,

from which it follows that (Gilio and Sanfilippo 2013a)

z = P((B|K)∧ (A|H)) = µx = P((B|K)|(A|H))P (A|H), (12)

and µ = P((B|K)|(A|H)) = P((B|K)∧(A|H))
P (A|H) = z

x ∈ [0,1], when x > 0. We observe that,

when x = 0, one has

(B|K)|(A|H) =


1, if AHBK is true,

0, if AHBK is true,

y, if AHK is true,

µ, if AH ∨H is true.

Then, in order that the prevision assessment µ on (B|K)|(A|H) be coherent, µ
must belong to the convex hull of the values 0, y,1; that is, (also when x = 0) it
must be that µ ∈ [0,1]. Therefore in all cases (B|K)|(A|H) ∈ [0,1].

The notions of conjunction C1···n = (E1|H1) ∧ · · · ∧ (En|Hn) and disjunction

D1···n = (E1|H1)∨· · ·∨(En|Hn) of n conditional events have been defined as (Gilio

and Sanfilippo 2019, see also Gilio and Sanfilippo 2020)

C1···n =


1, if

∧n
i=1EiHi , is true

0, if
∨n

i=1EiHi , is true,
xS , if

∧
i∈SH i

∧
i<S EiHi is true,

(13)

and

D1···n =


1, if

∨n
i=1EiHi , is true

0, if
∧n

i=1EiHi , is true,
yS , if

∧
i∈SH i

∧
i<S EiHi is true,

(14)
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where, for each non-empty subset S of {1, . . . ,n}, xS is the prevision of
∧

i∈S (Ei |Hi)
and yS is the prevision of

∨
i∈S (Ei |Hi). Notice that C1···n and D1···n are condi-

tional random quantities, with conditioning event
∨n

i=1Hi and with a finite set

of possible values in [0,1].

3. A Survey of Basic Properties, from Unconditional to Condi-

tional Events

In this section we recall some well known logical and probabilistic properties for

the case of unconditional events. Then, we illustrate analogous properties for the

case of conditional events.

3.1 Some Basic Properties of Unconditional Events

We recall below some basic properties which concern unconditional events. The

indicator of an event E is a random quantity, denoted by the same symbol, which

is 1, or 0, according to whether E is true, or false, respectively.

1. Given two events A and B, denoting by the same symbols their indicators,

it holds that

A ≤ B⇐⇒ A ⊆ B ⇐⇒ AB = A, A∨B = B .

2. Under the hypothesis ∅ , A ⊆ B, one has P (B|A) = 1 and B|A = AB +
P (B|A)A = A+A = 1.

3. Logical and probabilistic relations between disjunction and conjunction:

A∨B = A+B−AB, P (A∨B) = P (A) + P (B)− P (AB) .
4. De Morgan’s laws

AB = A∨B, A∨B = AB.

5. Inclusion-exclusion principle

E1 ∨ · · · ∨En =
n∑
i=1

Ei −
∑
i<j

EiEj + · · ·+ (−1)n+1E1 · · ·En.

6. Fréchet-Hoeffding bounds

max{
n∑
i=1

P (Ei)−n+1,0} ≤ P (E1 · · ·En) ≤min{P (E1), . . . , P (En)}.

7. Probability consistency. A family F = {E1, . . . ,En} of n events is p-

consistent if the assessment P (Ei) = 1, i = 1, . . . ,n, is coherent. We observe

that

P (Ei) = 1, i = 1, . . . ,n ⇐⇒ P (E1 · · ·En) = 1 .

Indeed, defining P (Ei) = xi , i = 1, . . . ,n, and P (E1 · · ·En) = z, by the Fréchet-
Hoeffding bounds it holds that

max{x1 + · · ·+ xn −n+1,0} ≤ z ≤min{x1, . . . ,xn} ,
from which it follows that xi = 1, i = 1, . . . ,n, if and only if z = 1. Then,

p-consistency amounts to the coherence of the assessment P (E1 · · ·En) = 1.
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8. Probabilistic entailment. Given a p-consistent family F = {E1, . . . ,En} and
a further event En+1, the family F p-entails the event En+1 if and only if

P (Ei) = 1, i = 1, . . . ,n, implies that P (En+1) = 1. The p-entailment of En+1
from F is equivalent to each one of the following properties

(i) E1 · · ·En ⊆ En+1, that is E1 · · ·EnEn+1 = E1 · · ·En

(ii) the (indicator of the) conditional event En+1|E1 · · ·En is constant and

coincides with 1.

We first observe that, given two events A and B, it holds that

A p-entails B ⇐⇒ A ⊆ B, that is A ≤ B.

Indeed, if A ⊆ B, then P (A) = 1 implies P (B) = 1. Conversely, by assuming

that A p-entails B, if it were A * B, i.e. AB , ∅, then given any assessment

P (AB) = p , P (AB) = 1− p , with p < 1 ,

it would follow P (A) = 1, P (AB) = 0, and P (B) = P (AB) + P (AB) = p < 1,
which contradicts the hypothesis. Then, the p-entailment of the event En+1
from the event E1 · · ·En amounts to E1 · · ·En ⊆ En+1, that is E1 · · ·En ≤ En+1.

Then, it can be verified that

F = {E1, . . . ,En} p-entails En+1 ⇐⇒ E1 · · ·En p-entails En+1 .

Indeed, as P (E1 · · ·En) = 1 is equivalent to P (Ei) = 1, i = 1, . . . ,n, if F p-

entails En+1, then P (E1 · · ·En) = 1 implies P (En+1) = 1, that is E1 · · ·En
p-entails En+1. Conversely, as P (Ei) = 1, i = 1, . . . ,n, is equivalent to

P (E1 · · ·En) = 1, if E1 · · ·En p-entails En+1, then P (Ei) = 1, i = 1, . . . ,n, im-

plies P (En+1) = 1, that is F p-entails En+1. Therefore

F p-entails En+1 ⇐⇒ E1 · · ·En p-entails En+1 ⇐⇒ E1 · · ·En ≤ En+1 ,

that is, the p-entailment of En+1 from F is equivalent to the property (i).

Concerning the property (ii), if F p-entails En+1, then E1 · · ·En ⊆ En+1 and

hence, from (2), En+1|E1 · · ·En is constant and coincides with 1.

Conversely, if En+1|E1 · · ·En coincides with 1, then P (En+1|E1 · · ·En) = 1 and
E1 · · ·EnEn+1 = ∅, that is E1 · · ·En ⊆ En+1, from which it follows that E1 · · ·En
p-entails En+1 and hence F p-entails En+1. Therefore, the p-entailment of

En+1 from F is equivalent to the property (ii).

3.2 Basic Properties of Conditional Events

In this section we show that the basic properties considered in Section 3.1 con-

tinue to hold when replacing events by conditional events. Here we denote by

h∗ the property h in the previous section.

1.∗ Given two conditional events A|H and B|K, it holds that
A|H ≤ B|K ⇐⇒ A|H ⊆ B|K, or AH = ∅, or K ⊆ B, (15)

and

A|H ≤ B|K ⇐⇒ (A|H)∧ (B|K) = A|H , (A|H)∨ (B|K) = B|K. (16)

Indeed, concerning (15), if AH = ∅, or K ⊆ B, then A|H = 0, or B|K = 1,
and trivially it holds that A|H ≤ B|K. If A|H ⊆ B|K, then by coherence
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P (A|H) ≤ P (B|K) and hence A|H ≤ B|K. Conversely, if A|H ≤ B|K, then
P (A|H) ≤ P (B|K), and the inequality may be satisfied, in three different

ways, because: AH = ∅ (in which case A|H = 0 ≤ B|K), or K ⊆ B (in

which case B|K = 1 ≥ A|H), or A|H ⊆ B|K. For more details, see Gilio and

Sanfilippo 2013d, Theorem 6. Moreover, concerning (16), if A|H ≤ B|K,
then by (15), we have three cases: (a) AH = ∅; (b) K ⊆ B; (c) A|H ⊆ B|K.
Case (a). It holds that A|H = 0 and by Remarks 2 and 3 it follows that

(A|H)∧ (B|K) = 0∧ (B|K) = 0 = A|H, (A|H)∨ (B|K) = 0∨ (B|K) = B|K.

Case (b). It holds that B|K = 1 and by Remarks 2 and 3 it follows that

(A|H)∧ (B|K) = (A|H)∧ 1 = A|H, (A|H)∨ (B|K) = (A|H)∨ 1 = 1 = B|K.

Case (c). If A|H ⊆ B|K, that is AH ⊆ BK and BK ⊆ AH , it holds

that AHBK = AHK = HBK = ∅ and the constituents are C1 =
AHBK,C2 = AHBK,C3 = AHBK,C4 = AHK,C5 = HBK,C0 = HK.
By defining P (A|H) = x, P (B|K) = y, z = P[(A|H) ∧ (B|K)], and

w = P[(A|H)∨ (B|K)], the possible values of A|H , B|K, (A|H)∧ (B|K)
and (A|H)∨ (B|K) are illustrated in Table 2.

From Table 2, we observe that (A|H) ∧ (B|K) = A|H when H ∨ K
is true. Then, by Theorem 1 it follows that z = x; therefore (A|H)∧
(B|K) = A|H in all cases (see also Gilio and Sanfilippo 2013a, Section

3). Likewise, we observe that (A|H)∨(B|K) = B|K when H∨K is true.

Then, by Theorem 1 it follows that w = y; therefore (A|H)∨ (B|K) =
B|K in all cases.

Ch A|H B|K (A|H)∧ (B|K) (A|H)∨ (B|K)
C1 AHBK 1 1 1 1

C2 AHBK 0 1 0 1

C3 AHBK 0 0 0 0

C4 AHK 0 y 0 y
C5 HBK x 1 x 1
C0 HK x y z w

Table 2: Possible values of A|H , B|K , (A|H)∧ (B|K) and (A|H)∨ (B|K), when A|H ⊆ B|K .

2.∗ We show the analogous of property 2 in terms of iterated conditionals.

Under the hypothesis 0 , A|H ≤ B|K, that is K ⊆ B, or AH , ∅ and A|H ⊆
B|K, it can be verified that P[(B|K)|(A|H)] = 1 and (B|K)|(A|H) = 1. Indeed,
defining P[(B|K)|(A|H)] = µ, from (16) it holds that (B|K)∧ (A|H) = A|H ;

then

(B|K)|(A|H) = A|H +µA|H =


1, if AH is true,

µ, if AH is true,

x+µ(1− x), if H is true.

By linearity of prevision it holds that

µ = x+µ(1− x);
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then (B|K)|(A|H) ∈ {1,µ} and, by coherence, µ = 1. For a discussion of this

result in the context of connexive logic see Pfeifer and Sanfilippo 2021.

3.∗ Relation between disjunction and conjunction of conditional events (Gilio

and Sanfilippo 2014, Section 6)

P[(A|H)∨ (B|K)] = P (A|H) + P (B|K)−P[(A|H)∧ (B|K)] ,

and

(A|H)∨ (B|K) = A|H +B|K − (A|H)∧ (B|K).

4.∗ De Morgan’s laws for conjunction and disjunction of conditional events

(Gilio and Sanfilippo 2019, Theorem 5).

(A|H)∧ (B|K) = (A|H)∨ (B|K) , (A|H)∨ (B|K) = (A|H)∧ (B|K) ,

where

(A|H)∧ (B|K) = 1− (A|H)∧ (B|K),

and

(A|H)∨ (B|K) = 1− (A|H)∨ (B|K).

5.∗ Inclusion-exclusion principle for conditional events.

Given n conditional events E1|H1, . . . ,En|Hn, by recalling (13) and (14), it

holds that (Gilio and Sanfilippo 2020)

D1···n =
n∑
i=1

Ci −
∑

1≤i1<i2≤n
Ci1i2 + · · ·+ (−1)n+1C1···n,

where Ci1···ik = (Ei1 |Hi1 )∧ · · · ∧ (Eik |Hik ), {i1, . . . , ik} ⊆ {1, . . . ,n}.
6.∗ Fréchet-Hoeffding bounds for the conjunction of conditional events. Given

a family of n conditional events F = {E1|H1, . . . ,En|Hn}, let P = (x1, . . . ,xn)
be a coherent probability assessment on F , with xi = P (Ei |Hi), i =
1, . . . ,n. We set P(C1···n) = z. Then, under logical independence of

E1, . . . ,En,H1, . . . ,Hn, z is a coherent extension of (x1, ,xn) if and only if

max{x1 + · · ·+ xn −n+1,0} ≤ z ≤ min{x1, . . . ,xn} , (17)

that is the Fréchet-Hoeffding bounds continue to hold for our notion of

conjunction of conditional events. The necessity of (17) has been proved

in Gilio and Sanfilippo 2019, while the sufficiency has been proved in Gilio

and Sanfilippo 2021a.

7.∗ Probabilistic consistency of a family of conditional events. A family of

n conditional events F = {E1|H1, . . . ,En|Hn} is defined p-consistent if the

assessment P (E1|H1) = · · · = P (En|Hn) = 1 is coherent. It holds that (see

Gilio and Sanfilippo 2019, proof of Theorem 17)

P (E1|H1) = · · · = P (En|Hn) = 1⇐⇒ P[(E1|H1)∧ · · · ∧ (En|Hn)] = 1.

Then,

F is p-consistent⇐⇒ P[(E1|H1)∧ · · · ∧ (En|Hn)] = 1 is coherent.

8.∗ Probabilistic entailment from a family of conditional events. Given a p-

consistent family of n conditional events F = {E1|H1, . . . ,En|Hn} and a fur-

ther conditional event En+1|Hn+1, we say that F p-entails En+1|Hn+1 if and



On Compound and Iterated Conditionals 255

only if P (Ei |Hi) = 1, i = 1, . . . ,n, implies P (En+1|Hn+1) = 1. It can be verified
(Gilio and Sanfilippo 2019, Theorem 18) that the following three properties

are equivalent:

(a) F p-entails En+1|Hn+1;

(b) (E1|H1)∧ · · · ∧ (En|Hn) ≤ En+1|Hn+1;

(c) (E1|H1)∧ · · · ∧ (En|Hn)∧En+1|Hn+1 = (E1|H1)∧ · · · ∧ (En|Hn).

In particular, when n = 1, a p-consistent conditional event E1|H1 p-entails

E2|H2 if and only if (E1|H1) ≤ (E2|H2), that is (as shown by property 2∗; see
also Gilio, Pfeifer and Sanfilippo 2020, Theorem 4)

E1|H1 p-entails E2|H2 ⇐⇒ (E2|H2)|(E1|H1) = 1 , (18)

where E1H1 , ∅. In Gilio and Sanfilippo 2019, Definition 14, the notion

of iterated conditional (En+1|Hn+1)|((E1|H1)∧ · · ·∧ (En|Hn)), with (E1|H1)∧
· · · ∧ (En|Hn) , 0, has been defined as the following random quantity

(E1|H1)∧ · · · ∧ (En+1|Hn+1) +µ(1− (E1|H1)∧ · · · ∧ (En|Hn)),

where µ = P[(En+1|Hn+1)|((E1|H1)∧ · · · ∧ (En|Hn))]. In particular,

(E3|H3)|((E1|H1)∧ (E2|H2)) = (E1|H1)∧ (E2|H2)∧ (E3|H3)+

+µ(1− (E1|H1)∧ (E2|H2)) ,

where µ = P[(E3|H3)|((E1|H1)∧ (E2|H2))] and

(E1|H1)∧(E2|H2)∧(E3|H3)=



1, if E1H1E2H2E3H3 is true,
0, if E1H1 ∨E2H2 ∨E3H3 is true,
x1, if H1E2H2E3H3 is true,
x2, if E1H1H2E3H3 is true,
x3, if E1H1E2H2H3 is true,
x12, if H1H2E3H3 is true,
x13, if H1E2H2H3 is true,
x23, if E1H1H2H3 is true,
x123, if H1H2H3 is true,

(19)

where xi = P (Ei |Hi), i = 1,2,3, xij = xji = P[(Ei |Hi)∧ (Ej |Hj )], i , j, and
x123 = P[(E1|H1)∧(E2|H2)∧(E3|H3)]. In Gilio, Pfeifer and Sanfilippo 2020,
given a p-consistent family F = {E1|H1,E2|H2} and a further event E3|H3, it

has been proved that the p-entailment of E3|H3 from F is equivalent to the

property that the iterated conditional (E3|H3)|((E1|H1)∧(E2|H2)) is constant
and equal to 1, that is

{E1|H1,E2|H2} p-entails E3|H3 ⇐⇒
(E3|H3)|((E1|H1)∧ (E2|H2)) = 1 ,

(20)

where {E1|H1,E2|H2} is p-consistent. For the extension of (20) to the gen-

eral case see Gilio and Sanfilippo 2021b.

4. On Iterated Conditionals

In this section we deepen some aspects and applications of iterated conditionals.

In the next subsection we show that some complex sentences on conditionals,
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which seem intuitively acceptable, can be analyzed in a rigorous way in terms of

iterated conditionals.

4.1 Complex Sentences and Iterated Conditionals

Given an indicative conditional “if H then A”, simply denoted C, let us consider
the following intuitively valid assertions:

(a) the probability of C is (not the probability of its truth, but) the probability

of its truth, given that it is true or false;

(b) the probability of C, given that A and H are true, is 1;

(c) the probability of C, given that A is false and H is true, is 0;

(d) the probability of C, given that H is false, is P (A|H);
(e) the probability of C, given that H is true, is P (A|H);
(f) the probability of C, given that “if H then A”, is 1;
(g) the probability of C , given that “if H then A”, is 0;
(h) is it the case that the probability of C, given that AH , is equal to 0?

We show below that the previous assertions have a clear meaning in the

context of iterated conditionals.

(a) We consider the compound conditional “if C is true or false, then C is true”,
which can be directly represented by the conditional event AH |(AH∨AH) =
AH |H = A|H , so that the probability of C is P (AH |(AH ∨AH)) = P (A|H).
Then, the probability of C is the probability of its truth, given that it is true

or false.

(b) We consider the compound conditional “if AH then C” and we represent

it by the iterated conditional (A|H)|AH . We observe that AH ⊆ A|H and

hence (A|H)∧AH = AH . Then,

(A|H)|(AH) = (A|H)∧AH +µAH = AH +µAH,

which is equal to 1, or µ, according to whether AH is true, or false, re-

spectively. By coherence µ = 1 and hence (A|H)|(AH) = 1. The same result

follows by exploiting the representation A|H = AH+xH , where x = P (A|H).
We observe that H |AH = 0; then

(A|H)|AH = (AH + xH)|AH = AH |AH = 1,

and hence P[(A|H)|AH] = P (AH |AH) = 1. Thus, the conditional ”if AH
then C” is the iterated conditional (A|H)|AH , which coincides with the

constant AH |AH = 1 and has probability 1.

(c) We consider the compound conditional “if AH then C” and represent it by

the iterated conditional (A|H)|AH . We set P (A|H) = x and we observe that
AH |AH =H |AH = 0; then

(A|H)|AH = (AH + xH)|AH = AH |AH + xH |AH = 0,

and hence P[(A|H)|AH] = 0. Thus, the conditional “if AH then C” is the

iterated conditional (A|H)|AH , which coincides with the constant 0 and

has probability 0.
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(d) We consider the compound conditional ”if H then C” and represent it by

the iterated conditional (A|H)|H . We set P (A|H) = x and we observe that

AH |H = 0 and H |H = 1; then

(A|H)|H = (AH + xH)|H = xH |H = x,

and hence P[(A|H)|H] = x = P (A|H). Thus, the conditional “if H then C”
is the iterated conditional (A|H)|H , which coincides with the constant x
and has probability x = P (A|H).

(e) We consider the compound conditional ”if H then C” and represent it by

the iterated conditional (A|H)|H . Then, defining P (A|H) = x and by observ-
ing that H |H = 0, it holds that

(A|H)|H = (AH + xH)|H = A|H,

and hence P[(A|H)|H] = P (A|H). Thus, the conditional “if H then C” is the
iterated conditional (A|H)|H , which coincides with A|H and its probability

is P (A|H). We observe that the conditional “if H then C” is equivalent to

the conditional “if C is true or false, then C”.
(f) We consider the compound conditional “if C then C” and we represent it by

the iterated conditional (A|H)|(A|H). We set P[(A|H)|(A|H)] = µ, P (A|H) =
x and we recall that (A|H)∧ (A|H) = A|H . Then

(A|H)|(A|H) = (A|H)∧ (A|H) +µA|H = A|H +µA|H =
1, if AH is true.

µ, if AH is true,

x+µ(1− x), if H is true.

We observe that

µ = P[A|H +µ(1−A|H)] = P (A|H) +µ(1− P (A|H)) = x+µ(1− x).
Then, (A|H)|(A|H) ∈ {1,µ} and by coherence it must be µ = 1. Thus, the

compound conditional “if C then C is the iterated conditional (A|H)|(A|H),
which is the constant 1 and has probability 1.

(g) We consider the compound conditional “if (if H then A), then C”
and we represent it by the iterated conditional (A|H)|(A|H). We set

P[(A|H)|(A|H)] = µ, P (A|H) = x and we observe that (A|H) ∧ (A|H) = 0

and A|H = 1−A|H = A|H . Then

(A|H)|(A|H) = (A|H)∧ (A|H) +µA|H = µA|H =


µ, if AH is true.

0, if AH is true,

µx, if H is true,

so that µ = P[(A|H)|(A|H)] = µP (A|H) = µx. If x < 1, then µ = 0. If x = 1,
then (A|H)|(A|H) ∈ {0,µ} and by coherence it must be µ = 0. Thus, the

compound conditional “if (if H then A), then C” is the iterated conditional

(A|H)|(A|H), which is the constant 0 and has probability 0. Likewise, it

holds that (A|H)|(A|H) = 0.
(h) We consider the compound conditional “if AH then C” and represent it

by the iterated conditional (A|H)|AH . Then, defining P (A|H) = x and
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P[(A|H)|AH] = µ, by observing that AH |AH = 0, we obtain

(A|H)|AH = (AH + xH)|AH = xH |AH = xH |(A∨H), (21)

and hence µ = P[(A|H)|AH] = P (A|H)P [H |(A∨H)] = xP [H |(A∨H)], which
in general is not 0.

Notice that in Edgington 2020, page 51, it is observed that in Bradley’s

theory (Bradley 2012) the probability of “C, given AH” is 0, instead of

P (A|H)P (H |(A∨H). This is clearly not correct; indeed, to assume AH true

amounts to assuming A ∨H true, that is AH ∨H true. Then, based on

(22), in the betting framework, the conditional prevision µ = P(C|AH) =
P[xH |(AH ∨H)] is the amount that should be paid in a conditional bet in

order to receive 0 (when AH is true), or x (when H is true), with probability

P [AH |(AH ∨H)], or probability P [H |(AH ∨H)], respectively (with the bet

called off when AH is true). Hence, the amount µ to be paid is (not 0, but)

µ = 0 · P [AH |(AH ∨H)] + xP [H |(AH ∨H)] = xP [H |(AH ∨H)]. (22)

4.2 Import-Export Principle

Given three events A,H,K, with HK , ∅, if the Import-Export principle

(McGee 1989) were satisfied, then it would be (A|H)|K = A|HK. In our

approach, in general, the Import-Export principle does not hold (Gilio

and Sanfilippo 2014), that is (A|H)|K , A|HK; moreover (A|H)|K , (A|K)|H .

The Import-Export principle holds when H ⊆ K, or K ⊆ H , in which

case (A|H)|K = (A|K)|H = A|HK. We also observe that A|(H |K) , A|HK
(Sanfilippo, Gilio, Over et al. 2020, Remark 7). We illustrate by an example

the non validity of the Import-Export principle. Let us consider the iterated

conditional (A|H)|(H∨A), where (H∨A) is the material conditional associated

to “if H then A”. If the Import-Export principle were valid it would be

(A|H)|(H ∨A) = (A|(H ∧ (H ∨A)) = A|AH = 1.

On the contrary, defining P (A|H) = x and P[(A|H)|(H ∨A)] = µ, as A|H ⊆
(H ∨A) it holds that (A|H)∧ (H ∨A) = A|H ; then by Definition 7 we have

(A|H)|(H ∨A) = (A|H)∧ (H ∨A) +µAH = A|H +µAH =
1, if AH is true.

µ, if AH is true,

x, if H is true.

(23)

By coherence, µ ∈ [x,1] and hence the iterated conditional (A|H)|(H∨A) does
not coincide with the constant A|AH = 1, thus the Import-Export principle

does not hold. Moreover, when P (H ∨A) > 0 from (12) it follows that

P[(A|H)|(H ∨A)] = P (A|H)

P (H ∨A)
.

We observe that the iterated conditional (A|H)|(H ∨ A) is associated with

the inference from the disjunction H ∨A to the conditional event A|H (see

Section 4.4). A probabilistic analysis of constructive and non-constructive
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inferences from the disjunction A∨B to the conditional event B|A has been

given in Gilio and Over 2012.

More in general, given two conditional events A|H and B|K, with

A|H ⊆ B|K, defining P (A|H) = x, P (B|K) = y and P[(A|H)|(B|K)] = µ, it holds
that

(A|H)|(B|K) = (A|H)∧ (B|K) +µB|K = A|H +µB|K.

Then, by (12), µy = x and when y > 0 it follows that µ = x
y , i.e.,

P[(A|H)|(B|K)] =
P (A|H)
P (B|K)

, (if A|H ⊆ B|K and P (B|K) > 0).

4.3 Some p-valid Inference Rules

In Gilio, Pfeifer and Sanfilippo 2020, Theorem 8, it is shown that

the p-entailment of a conditional event E3|H3 from a p-consistent family

{E1|H1,E2|H2} is equivalent to the condition (E3|H3)|((E1|H1)∧ (E2|H2)) = 1,
i.e., to the condition that the set of possible values of (E3|H3)|((E1|H1) ∧
(E2|H2)) is the singleton {1}. In Table 3 we illustrate some p-valid inference

rules and the associated iterated conditionals which are equal to 1.

Inference rule {E1|H1,E2|H2} ⇒p E3|H3 (E3|H3)|((E1|H1)∧ (E2|H2)) = 1
And {B|A,C|A} ⇒p BC|A (BC|A)|(BC|A) = 1
Cut {C|AB,B|A} ⇒p C|A (C|A)|(BC|A) = 1
CM {C|A,B|A} ⇒p C|AB (C|AB)|(BC|A) = 1
Or {C|A,C|B} ⇒p C|(A∨B) (C|(A∨B))|((C|A)∧ (C|B)) = 1
Modus Ponens {C|A,A} ⇒p C C|AC = 1
Modus Tollens {C|A,C} ⇒p A A|((C|A)∧C) = 1
Bayes {E|AH,H |A} ⇒p H |EA (H |EA)|(EH |A) = 1

Table 3: Some p-valid inference rules and their associated iterated conditionals.

4.4 Some Non-p-valid Inference Rules

In this section we consider some non-p-valid inference rules, by showing that

the associated iterated conditionals are not equal to 1.

Contraposition. Contraposition is not p-valid, that is the premise {C|A} does
not p-entail the conclusion A|C. Thus, from (18), (A|C)|(C|A) , 1. Indeed,

by setting, P (C|A) = x, P (A|C) = y, P[(C|A)∧ (A|C)] = z, P[(A|C)|(C|A)] = µ, it
holds that

(A|C)|(C|A) = (A|C)∧ (C|A) +µ(1−C|A) =


y, if AC is true,

µ, if AC is true,

z, if AC is true,

x+µ(1− x), if AC is true,

which does not coincide with 1. For instance, by recalling that max{x +
y − 1,0} ≤ z ≤ min{x,y}, when x = 1 it holds that z = y. Then the iterated

conditional becomes

(A|C)|(C|A) =


y, if C is true,

µ, if AC is true,

1, if AC is true,
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with µ being coherent, for every µ ∈ [y,1].
Strengthening the Antecedent. Strengthening of the antecedent is not p-valid,

that is the premise {C|A} does not p-entail the conclusion C|AB. Thus,

from (18), (C|AB)|(C|A) , 1. Indeed, by setting P (C|A) = x, P (C|AB) = y,
P[(C|AB)∧ (C|A)] = z, P[(C|AB)|(C|A)] = µ, it holds that

(C|AB)|(C|A) = (C|AB)∧ (C|A) +µ(1−C|A) =

=



1, if ABC is true,

µ, if ABC is true,

y, if ABC is true,

µ, if ABC is true,

z+µ(1− x), if ABC is true,

z+µ(1− x), if ABC is true,

z+µ(1− x), if AB is true.

By linearity of prevision it holds that

µ = P[(C|AB)|(C|A)] = P[(C|AB)∧ (C|A) +µ(1−C|A)] = z+µ(1− x).
Then,

(C|AB)|(C|A) =


1, if ABC is true,

y, if ABC is true,

µ, if A∨C is true,

with µ being coherent, for every µ ∈ [y,1].
From Disjunction to Conditional. Based on (18), the inference of a conditional

C|A from the associated material conditional A∨C is not p-valid because, as

shown in (23), the iterated conditional (C|A)|(A∨C) does not coincide with

1.

Transitivity. Transitivity is not p-valid, that is the set of conditionals {C|B,B|A}
does not p-entail the conclusion C|A. Thus, from (20), (C|A)|((C|B)∧ (B|A))
does not coincide with 1. Indeed, defining P (B|A) = x, P (BC|A) = y, P[(C|B)∧
(B|A)∧ (C|A)] = w, P[(C|B)∧ (B|A)] = z, we have

(C|B)∧ (B|A)∧ (C|A)=(C|B)∧ (BC|A) =



1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

y, if ABC is true,

0, if ABC is true,

w, if AB is true,

(24)

and

(C|B)∧ (B|A) = =



1, if ABC is true,

0, if ABC is true,

0, if ABC is true,

0, if ABC is true,

x, if ABC is true,

0, if ABC is true,

z, if AB is true.

(25)
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Then, by setting µ = P[(C|A)|((C|B)∧ (B|A))], it holds that
(C|A)|((C|B)∧ (B|A)) = (C|B)∧ (B|A)∧ (C|A) +µ(1− (C|B)∧ (B|A)) =

=



1, if ABC is true,

µ, if ABC is true,

µ, if ABC is true,

µ, if ABC is true,

y +µ(1− x), if ABC is true,

µ, if ABC is true,

w+µ(1− z), if AB is true.

=


1, if ABC is true,

y +µ(1− x), if ABC is true,

µ, if B∨C is true

because, by linearity of prevision, µ = w+µ(1− z). As we can see the iterated

conditional (C|A)|((C|B)∧ (B|A)) does not coincide with 1. Indeed, when ABC
is true, the iterated conditional assumes the value y + µ(1− x) which is equal

to 0 when (x,y) = (1,0); then

(C|A)|((C|B)∧ (B|A)) =


1, if ABC is true,

0, if ABC is true,

µ, if B∨C is true,

with µ being coherent, for every µ ∈ [0,1].
On Combining Evidence (Boole). We illustrate an example introduced in Boole

1857. In Hailperin 1996 it is shown that given a coherent assessment (x,y)
on {C|A,C|B}, the extension P (C|AB) = ξ is coherent for every ξ ∈ [0,1].
Thus, the inference of C|AB from the p-consistent family {C|A,C|B} is not

p-valid (see also Gilio and Sanfilippo 2019). We verify below that the

associated iterated conditional (C|AB)|((C|A)∧(C|B)) does not coincide with 1.

We set P (C|A) = x, P (C|B) = y, P((C|A)∧ (C|B)) = z. We obtain

(C|A)∧ (C|B) =



1, if ABC is true,

0, if (A∨B)C is true,

x, if ABC is true,

y, if ABC is true,

z, if AB is true.

(26)

Moreover, by defining P[(C|A)∧ (C|AB)] = u, P[(C|B)∧ (C|AB)] = v and

P[(C|A)∧ (C|B)∧ (C|AB)] = t, we obtain

(C|A)∧ (C|B)∧ (C|AB) =



1, if ABC is true,

0, if (A∨B)C is true,

u, if ABC is true,

v, if ABC is true,

t, if AB is true.
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Then, by setting µ = P[(C|AB)|((C|A)∧ (C|B))], it holds that

(C|AB)|((C|A)∧ (C|B)) = (C|A)∧ (C|B)∧ (C|AB) +µ(1− (C|A)∧ (C|B)) =

=



1, if ABC is true,

µ, if (A∨B)C is true,

u +µ(1− x), if ABC is true,

v +µ(1− y), if ABC is true,

t +µ(1− z), if AB is true.

By linearity of prevision µ = t +µ(1− z); then

(C|AB)|((C|A)∧ (C|B)) =


1, if ABC is true,

u +µ(1− x), if ABC is true,

v +µ(1− y), if ABC is true,

µ, if AC ∨BC ∨AB is true,

which does not coincide with 1. We observe that, if we replace the

conclusion C|AB by C|(A∨B), we obtain the well-known p-valid Or rule.

We recall that the Affirmation of the Consequent and the Denial of the An-

tecedent are other non p-valid inference rules; thus, the associated iterated

conditionals are not equal to 1 (Gilio, Pfeifer and Sanfilippo 2020). In

Table 4 we list the previous non-p-valid inference rules and their associated

iterated conditionals which do not coincide with 1. We denote by C(F ) the
conjunction of the conditional events in the set of premises F .

Inference rule F ;p E|H (E|H)|C(F )) , 1
Contraposition C|A;p A|C (A|C)|(C|A) , 1
Strengthening the antecedent C|A;p C|AB (C|AB)|(C|A) , 1
From disjunction to conditional A∨C ;p C|A (C|A)|(A∨C) , 1
Transitivity {C|B,B|A};p C|A (C|A)|((C|B)∧ (B|A)) , 1
Combining evidence {C|A,C|B};p C|AB (C|AB)|((C|A)∧ (C|B)) , 1
Affirmation of the Consequent {C|A,C};p A (A)|((C|A)∧C) , 1
Denial of the antecedent {C|A,A};p C (C)|((C|A)∧A) , 1

Table 4: Some non p-valid inference rules and their associated iterated conditionals.

5. Conclusions

In this paper we have illustrated the notions of conjoined, disjoined and

iterated conditionals introduced in recent papers, in the setting of coherence.

These objects are defined as suitable conditional random quantities, with a

finite set of possible values in the interval [0,1]. We have motivated our

definitions by examining the experiment of flipping a coin twice. We have

shown that the well known probabilistic properties valid for unconditional

events continue to hold when replacing events by conditional events. We

have examined several, intuitively acceptable, compound sentences on con-

ditionals, by providing for them a formal interpretation in terms of iterated

conditionals. We have discussed the Import-Export principle, which is not

valid in our approach, by examining in particular the iterated conditional

(A|H)|(H ∨A). Finally, we have illustrated, in terms of suitable iterated con-

ditionals, several well known, p-valid and non p-valid, inference rules. With
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each inference rule, denoting by E|H the conclusion and by F the set of

premises, we have associated the iterated conditional (E|H)|C(F ) where C(F )
is the conjunction of the conditional events in F . In Table 3 we recalled

some well known p-valid inference rules, characterized by the property that

(E|H)|C(F ) = 1. Finally, we have examined some non p-valid inference rules,

listed in Table 4, by verifying that for each of them the associated iterated

conditional does not coincide with the constant 1.1
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