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Abstract: Hemp (Cannabis sativa L.) is a multipurpose plant attracting increasing interest as a source
for the production of natural fibers, paper, bio-building material and food. In this research we studied
the agronomical performance of Cannabis sativa cv. Eletta Campana irrigated with saline water.
Under those conditions, we tested the effect of protein hydrolysate (PH) biostimulant application in
overcoming and/or balancing deleterious salinity effects. The results of the diverse treatments were
also investigated at the physiological level, focusing on photosynthesis by means of a chlorophyll
a fluorescence technique, which give an insight into the plant primary photochemical reactions.
Four salinity levels of the irrigation solution (fresh water–EC0, and NaCl solutions at EC 2.0, 4.0
or 6.0 dS m−1, EC2, EC4 and EC6, respectively) were combined with 2 biostimulant treatments
(untreated (control) or treated with a commercial legume-derived protein hydrolysate (LDPH)). The
increasing salinity affected plant photochemistry resulting in lower plant growth and seed production,
while the LDPH biostimulant showed a protective effect, which improved crop performance both in
control and in salinity conditions. The LDPH treatment improved seeds yield (+38.6% on average of
all treated plants respect to untreated plants), as well as residual biomass, relevant in fiber production.

Keywords: hemp; salt stress; biostimulants; seeds yield; chlorophyll fluorescence

1. Introduction

Hemp (Cannabis sativa L.) is a very ancient crop: it was the first plant known to be do-
mestically cultivated as proved by remnants of hemp cloth found in ancient Mesopotamia
archeological sites dating back to 8000 BC. Since then, hemp has been widely grown world-
wide supplying fiber, paper, and food. In Italy, it was cultivated until 1970 when it was
abandoned due to several causes: the scarce optimization of crop management, the exces-
sive physical labor for several processing phases, the introduction of new synthetic fibers,
but above all the enactment of laws about drugs, which created a great misunderstanding,
confusing the industrial hemp varieties with the drug ones. However, at the end of the
1990s, the European Community re-introduced hemp cultivation, as industrial crop and
finally, in December 2016, also Italy allowed hemp cultivation destined for fiber, industrial,
or food production.

Hemp is a multi-functional crop, and this characteristic has increased the recent
come back of interest in the hemp cultivation [1]. In addition to historical uses of hemp,
recently this crop has found several use-destinations: bio-building sector [2–4], food pack-
aging sector [5], car industries [6], and bioenergy production (biogas [7]; ethanol [8,9];
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biomass combustion [8,10]). In addition to the use of fiber or shives, also hemp seeds have
a large utilization both in food preparations [11,12], feed [13,14], and cosmetic applica-
tion [15,16]. Finally, there are several secondary metabolites of hemp, such as cannabinoids,
flavonoids and terpenoids, which can be used in pharmaceutical preparations [17], or as
bio-pesticides [18].

Moreover, hemp has also a great agronomical value: it is a typical break crop with
beneficial effects in the interrupting of any monoculture, both cereals and legumes; it also
leaves good residual fertility to the soil; it has a deep root system that on the one hand
improves the soil structure [19] and the other one, increase its adaptability to water stress.
Cheng et al. [20] define hemp suitable for the improvement of saline lands, but with
a notable difference in salt tolerance among the varieties. Plant salinity exposure, is one
of the most critical environmental issues, accounting altogether for almost 70% loss of the
potential crop yield. According to FAO data [21], about 400 million of hectares agricultural
lands in the world are distressed by salinity. Soil salinity can have a natural [22,23] or
anthropogenic origin. The latter mostly affects irrigated lands, where the use of saline
water or the excessive pumping of groundwater can increase the concentration of salts in
the soil. Moreover, climate changes may contribute to a further increase of soil salinity [24].

The saline stress can occur through (i) osmotic stress, caused by the decrease of soil
water potential and subsequent reduced water absorption by roots [25]; (ii) nutritional
stress, due to modification in nutrient uptake; (iii) toxic stress, mainly linked to salt
concentration [26,27]; (iv) oxidative stress [28].

The influence of salinity on crops be contingent on several factors such as type of
salt, its concentration, plant species or cultivars, which can have different tolerance to
salt stress [29,30]. Nevertheless, a delay in crop growth and a decline in yield, especially
in glycophytes species, commonly occurs in crops exposed to salinity [31–35], as salinity
affects plant physiology through both osmotic and ionic stress [36,37].

However, in some cases salinity can also improve nutritional quality, as observed in
several vegetables [38,39].

The effect of salinity stress on hemp can be perceived in various plant development
steps triggering alterations in plant morphology, anatomy, and physiology [28].

Since photosynthesis is the primary factor driving plant productivity, many stud-
ies documented the deleterious plant responses to excess salinity on the photosynthetic
metabolism in numerous crops [40], thus reducing the crop agronomical performance.

An effective tool for studying the photosynthetic metabolism is the measurement of
chlorophyll a (Chl a) fluorescence: this method is based on quick non-destructive measure-
ments which can be conveniently used in vivo, as in the field [41,42].

Photosynthesis involves the conversion of light energy into chemical energy, requiring
the cooperation of two functional units or photosystems (PSII and PSI) located on the
thylakoid membranes of the chloroplasts. Following absorption by the photosynthetic
pigments forming the light harvesting complexes or antennae of the photosystems, light
energy is transferred to PSII and PSI reaction centers, where it activates the photochem-
ical reactions. However, part of the energy flowing along the antennae is lost as heat
(thermal dissipation) or re-emitted as light (fluorescence), before it reaches the reaction cen-
ter [31,43]. Since the three processes (photochemistry, thermal dissipation and fluorescence)
are competing with each other, a variation in one process will result in a modification in
the other two. Therefore, although the re-emission as Chl a fluorescence only accounts for
a small proportion (3–5%) of the absorbed light, it provides detailed information about
the status and functionality of the photosynthetic apparatus [44]. This information gives
an insight into the plant physiological response to different environmental stress factors
and can be used to predict crop yield or as a guideline to select plants for the breeding
programs [41,43,45,46].

When a leaf is kept in the dark for a sufficiently long time, the photosynthetic appara-
tus turns to its dark-adapted state (DAS) with the reaction centers in the “open” state, ready
to receive excitation energy from the antennae pigments and the quinone pool of primary
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electron acceptors (QA) completely oxidized [41]. Upon illumination with a saturating
flash of light, reaction centers are “closed” by the sudden energy flow from the antennae
and a fast increase in fluorescence emission from the Chl a molecules occurs, from a min-
imum (F0) to a maximum (Fm) fluorescence intensity, following a polyphasic induction
kinetic referred to as OJIP [47,48]. From the measurement of F0 and Fm, other fluorescence
parameters can be calculated, such as Fv/Fm (related to the maximum quantum yield of
PSII in DAS) and Fv/F0 (proportional to the activity of the water splitting complex) [49].

Upon continuous illumination, the photosynthetic metabolism reaches a stationary
level known as the light adapted state (LAS) with Chl a fluorescence emission at a low steady
state level, referred to as Fs. In this light adapted state, illumination with a saturating flash of
light induces a peak of fluorescence emission known as F’m. Fluorescence measurements in
the LAS allow for the calculation of the ΦPSII parameter (the effective quantum yield of PSII
photochemistry), which is related to the “working” efficiency of CO2 assimilation [41,50].

In salt stressed plants, CO2 availability for photosynthesis is reduced due to stomatal
closure [51], thus reducing the photochemical electron sink. Besides, PSII activity is also
decreased by saline stress due to deleterious ionic effects on the Oxygen Evolving Complex
(OEC), while PSI activity is impaired by the dissociation of plastocyanin/cytochrome
c553 [52]. Consequently, the whole chain of electron transport is significantly repressed
by salinity [31] and this alters the fluorescence parameters, which can therefore be used to
monitor the physiological status of the plant.

Recently, biostimulants application in the agriculture sector has drawn rising inter-
est for their ability to improve plant fitness and increase tolerance to biotic and abiotic
stresses [53]. Several studies have highlighted the benefits on plant growth and metabolism
of biostimulants derived from animal or plant [54], even under environmental stresses,
in particular salinity [55]. In this respect, protein hydrolysates (PHs) have gained increas-
ing popularity because of their ability to enhance crop performance, while they have
also proved effective in alleviating the deleterious effects of salinity, as well as drought,
heavy metals [30,56], and nitrogen deficiency [57–59]. Protein hydrolysates are products
containing amino acids and peptides (poly- and oligo-peptides), carbohydrates, and small
quantities of micronutrients; they are usually obtained by chemical and/or enzymatic
hydrolysis of animal or vegetal materials, such as leather by-products, blood meal, fish
by-products, chicken feathers, and casein, and legume seeds, alfalfa hay, corn wet-milling,
and vegetable by-products [56].

On this basis, we investigated the agronomical performance of Cannabis sativa cv.
“Eletta Campana” irrigated with saline water and we tested the application of a PH bios-
timulant as an approach to overcome/balance salinity impact. The effect of treatments was
also investigated at the physiological level, focusing on photosynthesis by means of a Chl a
fluorescence analysis.

2. Materials and Methods
2.1. Experimental Setting and Design

The study was conducted in pots with 0.50 m diameter at the “Gussone Park”, De-
partment of Agricultural Sciences in Portici (Naples, Italy; 70 m a.s.l.). The pots were in
open field, filled with sandy soil (91.0% sand, 4.5% silt, and 4.5% clay), pH of 6.6, organic
matter 2.6%, a total N of 1.1 g kg−1, 127.2 mg kg−1 of P2O5, and 471.8 mg kg−1 of K2O.

The experimental design consisted of a factorial combination of 4 salinity levels of the
irrigation solution (non-saline water –EC0, and NaCl solutions at EC 2.0, 4.0 or 6.0 dS m−1,
EC2, EC4 and EC6, respectively) combined with 2 biostimulant treatments (untreated
-Control or treated with Trainer®, a commercial legume-derived protein hydrolysate
-LDPH, made by Italpollina S.p.A., Rivoli Veronese, Italy). The treatments were replicated
3 times and distributed in a randomized complete block design, yielding 24 experimental
units (4S × 2B × 3 replicates).
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2.2. Crop Management, Saline Irrigation and Biostimulant Application

The crop tested was a food hemp, cultivar “Eletta Campana”, suitable for seeds
production. The sowing was made on May 10th at 80 plants per square meter. Only
nitrogen was added at the dose of 80 kg ha−1, as ammonium nitrate (26% N), according to
ordinary practice.

During the cultivation cycle, pots were irrigated 19 times, restoring completely the
water lost by evapotranspiration, calculated by the Hargreaves formula. For all treatments,
the first three irrigations were made with tap water; the irrigations with saline solutions
started from the first week of July, at the vegetative phase. The amounts of NaCl needed to
prepare the saline solutions were according to the formula:

salt ‰ (g salt liter−1) = 0.64 × EC

where EC is the predefined electrical conductivity of the irrigation solution.
The EC of the watering solutions were checked with a conductimeter prior to each

irrigation time.
Starting on June 25th, the plants of the LDPH treatments were sprayed with biostim-

ulant four times, at bi-weekly interval, at dose of 3 mL per liter, based on manufacturers
recommendations. The legume-derived PH biostimulant produced via enzymatic hy-
drolysis comprises mainly amino acids and soluble peptides [57]. Rouphael et al. [60]
reported the detailed aminogram, the phenolics, flavonoids, and elemental composition of
the product.

The harvests were done when the plants were dry but before the seeds fell, from
September 27 to October 14.

2.3. Soil Electrical Conductivity Measurements

In each pot five samplings of soil were made at 0–20 cm depth, to monitor electrical
conductivity, that was evaluated via a conductimeter Basic 30 CRISON, using 1:5 method.
The electrical conductivity was expressed as dS m−1.

2.4. Yield Measurements

At each harvest time, and in each pot, the inflorescences were cut and separated
by the residual biomass (male and female stems, and leaves), then both parts of plants
were weighed and oven-dried at 70 ◦C. The following parameters were determined: seeds
production, expressed as kg m−2, 1000 seeds weight (g), number of seeds per plant,
production of residual biomass, average fresh weight of female stems, plants height, and
harvest index, calculated as the ratio between seeds dry weight and biomass dry weight.

2.5. Chlorophyll Fluorescence Measurements

Chlorophyll a fluorescence measurements were performed in the second decade of
September 2019, when plants were in the pre-flowering/early-flowering phase.

Fluorescence measurements were recorded in the field on intact leaves, randomly
sampled among the top 3 fully expanded young leaves of each plant, using a PAR-FluorPen
FP 110/D portable fluorimeter (Photon Systems Instruments, Drásov, Czech Republic)
equipped with detachable leaf-clips. Ten replicate measurements for each experimental
treatment were taken between 09:00–10:00 (Central European Summer Time) for the morn-
ing measurements and between 13:30–14:30 for the mid-day measurements. Every single
measurement in the DAS or in the LAS was made on a different leaf. For the fluorescence
readings in the DAS, the leaves were previously dark adapted for 30 min using the fluorime-
ter leaf clips. Following dark adaptation, Chl a fluorescence was induced by the internal
LED blue light (455 nm), producing a saturating light pulse of 2400 µmol photons m−2 s−1

and the fast rise of chlorophyll fluorescence was recorded using the fluorimeter OJIP proto-
col. Chlorophyll fluorescence measurements in the LAS were taken with the QY protocol
of the Fluorpen.
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Absolute values of chlorophyll a fluorescence intensity (Fo and Fm in the DAS or
F’m and Fs in the LAS) are given in arbitrary units (a.u.), while Fv/Fm, Fv/F0 and ΦPSII
are dimensionless ratios, calculated as follows by the FluorPen software ver. 1.1 (Photon
Systems Instruments, Drásov, Czech Republic) [42]:

Fv/Fm = (Fm − F0)/Fm

Fv/F0 = (Fm − F0)/F0

ΦPSII = (F’m − Fs)/F’m

Fluorescence data acquired with the FluorPen software were further analyzed using
MS Excel 365.

2.6. Statistics

Agronomic and physiological data set were subjected to statistical analysis using
the SPSS software package (SPSS version 22, Chicago, IL, USA), through GLM (General
Linear Model). The source of variance effect was appraised by applying two-way ANOVA
and three-way ANOVA for agronomic and physiological data, respectively. Multiple
comparison of means was performed by using the Duncan Test.

3. Results
3.1. Climate Characteristics of Experimental Site

The climate characteristics of experimental site during the crop growing period
is reported in Figure 1. A typical trend of Mediterranean area was observed, with the
maximum temperatures over 35 ◦C from the end of June to the end of August. In the
same period, also the minimum temperatures were not under 20 ◦C. The total rainfall
was 114.5 mm, of which about 70% was concentrated in the third decade of September
and the first of October.
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Figure 1. Maximum and minimum air temperature trends, and rainfall during the growing period
of hemp.

3.2. Electrical Conductivity of Soil

Through the crop cycle the electrical conductivity of soil increased when the saline
stress level increased: the saline treatments were significantly different between them and
from EC0, starting from the end of July and until the end of August. Then this value
decreased already in the sampling of the end of September and more again after the last
harvest. On the average of the cycle, the all treatments were significantly different (Table 1).
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Table 1. Pattern of soil electrical conductivity (dS m−1) through the hemp cycle in relation to saline
water treatments (EC0 = non-saline water; EC2 = water at 2.0 dS m−1; EC4 = water at 4.0 dS m−1;
EC6 = water at 6.0 dS m−1).

Treatments
Electrical Conductivity (dS m−1)

June July August September October

EC0 0.166 ± 0.007 0.195 ± 0.013 0.251 ± 0.013 0.152 ± 0.007 0.161 ± 0.009

EC2 0.178 ± 0.015 0.428 ± 0.087 1.019 ± 0.094 0.392 ± 0.057 0.252 ± 0.027

EC4 0.158 ± 0.012 0.786 ± 0.093 1.769 ± 0.147 0.552 ± 0.078 0.247 ± 0.014

EC6 0.162 ± 0.008 0.998 ± 0.106 2.212 ± 0.118 0.705 ± 0.072 0.228 ± 0.011

3.3. Seeds Production and Its Parameters

The effect of interaction between the saline water stress and biostimulant application
on the seeds production was found and it was reported in Figure 2. The seeds production
always decreased at the increase of water salinity, but for treated plants, it linearly decreased
at a rate of −0.0074 per each dS m−1 of water salinity, instead in control plants (untreated)
the line that best fit the yield decrease was exponential. The plants sprayed by LDPH
always reached higher values than the untreated control plants, with an average increase
of 38.6% over control production. Interestingly, the EC2 plants treated with biostimulant
had a seeds production similar to the EC0 control plant. Similarly, the yield recorded in
EC4 treatment sprayed with biostimulant was not significantly different compared to EC2
control plants. However, under severe salt stress conditions (EC6) there were no differences
between biostimulant and untreated treatments.
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Figure 2. Seeds production of hemp as affected by saline water irrigation (EC0 = non-saline water;
EC2 = water at 2.0 dS m−1; EC4 = water at 4.0 dS m−1; EC6 = water at 6.0 dS m−1) and bios-
timulant application (treated with a commercial legume-derived protein hydrolysate (LDPH) and
non-treated (control)).

For hemp yield parameters (number of seeds per plant, seeds average weight, and
percentage of seeds weight on inflorescence weight) the main effects of water salinity and
biostimulant application were observed; the data have been reported in Table 2. The seeds
average weight and the seeds number were negatively affected by increasing saline stress
from fresh water to water at 6 dS m−1. Interestingly, both parameters were boosted by
biostimulant application, that elicited 25.3% and 15.4% increase, for number of seeds per
plant and average seeds weight, respectively (Table 2). Instead, the percentage by weight
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of seeds on inflorescences reached the highest value in EC6 plants, without differences
between the other treatments.

Table 2. Hemp yield parameters (number of seeds per plant, seeds average weight, and percentage
of seeds weight on inflorescence weight) at harvest in relation to water salinity (EC0 = non-saline
water; EC2 = water at 2.0 dS m−1; EC4 = water at 4.0 dS m−1; EC6 = water at 6.0 dS m−1) and
biostimulant application (treated with a commercial legume-derived protein hydrolysate (LDPH)
and non-treated (control)).

Treatments Seeds

% on Inflorescence n◦ plant−1 g 1000−1

Water Salinity (S)
EC0 20.6 b 478.7 a 21.7 a
EC2 18.5 b 425.3 b 18.1 b
EC4 21.5 b 288.7 c 17.0 b
EC6 24.1 a 152.0 d 13.1 c

Biostimulant (B)
Control 22.1 315.7 b 16.2 b
LPDH 20.2 395.8 a 18.7 a

Significance
Salinity * ** **

Biostimulant NS * **
S × B NS NS NS

Data within a column followed by different letters are significantly different according to Duncan’s test (p ≤ 0.05).
NS, non-significant; *, significant at p ≤ 0.05; **, significant at p ≤ 0.01.

3.4. Residual Biomass and Its Parameters

The results regarding the residual biomass (male and female stems, and leaves), plants
height, average weight of female plants and harvest index are reported in Table 3. Again,
only the main effects of the two experimental factors were observed. All parameters
decreased when the saline stress increased, but with different trends: the most stressed
treatment showed always the lowest value, except for plants height, when it was no
statistically different from the other saline treatments. The legume derived-PH application
significantly also boosted residual biomass, average weight of female stems, and plants
height, 33.3%, 32.2% and 13.6%, respectively.

Table 3. Characteristics of hemp plants (residual biomass, plants height, average weight of female
plants and harvest index) at harvest in relation to water salinity (EC0 = no-saline water; EC2 = water
at 2.0 dS m−1; EC4 = water at 4.0 dS m−1; EC6 = water at 6.0 dS m−1) and biostimulant application
(treated with a commercial legume-derived protein hydrolysate (LDPH) and no-treated (control)).

Treatments Residual Biomass Average Weight Height HI

kg m−2 g Female Plant−1 Cm

Water Salinity
EC0 0.10 a 20.7 a 89.1 a 0.26 a
EC2 0.08 b 15.1 b 74.4 b 0.25 a
EC4 0.07 b 13.2 b 77.0 b 0.21 b
EC6 0.04 c 7.3 c 69.3 b 0.18 c

Biostimulant
Control 0.06 b 12.1 b 72.5 b 0.22
LPDH 0.08 a 16.0 a 82.4 a 0.23

Significance
Salinity ** ** ** *

Biostimulant * * ** NS
S × B NS NS NS NS

Data within a column followed by different letters are significantly different according to Duncan’s test (p ≤ 0.05).
NS, non-significant; *, significant at p ≤ 0.05; **, significant at p ≤ 0.01.
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3.5. Chlorophyll Fluorescence Measurements

The experimental protocol was based on the measurement of the Chl a fluorescence
parameter at two times during the day. This procedure allowed us to detect the effect of
PH biostimulant application both in EC0 and in salt stressed crops, as well as to record the
amplitude of the daily fluctuations of photochemical metabolism. After the sampled leaves
were dark adapted for 30 min using the fluorimeter leaf clips, we measured the F0 and
Fm values of chlorophyll fluorescence in the DAS, from which the derived ratios (Fv/Fm;
Fm/F0; Fv/F0) were calculated.

F0 is the chlorophyll fluorescence emission associated with energy losses in the light
harvesting complexes of PSII [43]. In EC0 plants, when no PH treatments were applied,
the lowest F0 was recorded, with no significant daily fluctuation (Figure 3). Conversely,
the biostimulant treatments induced a significant AM/PM fluctuation of F0 in EC0 plants,
resulting from the higher F0 emission at the 02:00 p.m. The increasing salinity induced
a corresponding increase in F0, which reached the maximum of 11,295 a.u. (55% higher
than EC0 plants) at the 02:00 p.m., in plants at the highest (EC6) salinity level and without
biostimulant application. Within each salinity level, at the 09:00 hrs the F0 was lower in
PH-treated plants, also if it was not always statistically significant. A similar trend was
also observed in the 02:00 p.m. measurements for the saline treatments, but a statistically
significant difference was only recorded in the EC4 salinity level. The maximum difference
between plants treated and non-treated with biostimulant was recorded at the medium
salinity level (EC4), where the morning F0 values were 19% lower in PH treated plants
(9035 a.u.) than in the untreated ones (11140 a.u.).
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Figure 3. F0 (minimum fluorescence) of hemp leaves in the dark-adapted state (DAS) as affected
by saline water irrigation (EC0 = non-saline water; EC2 = water at 2.0 dS m−1; EC4 = water at
4.0 dS m−1; EC6 = water at 6.0 dS m−1) and biostimulant application (treated with a commercial
legume-derived protein hydrolysate = PH and non-treated = C) recorded at 9:00 a.m. and at 2:00 p.m.
Bars are means ± s.e. (n = 10). Bars with different letters are significantly different according to the
Duncan’s test with p ≤ 0.05.

Fm is the maximum level of fluorescence from the dark-adapted leaves, measured
when all PSII reaction centers are “closed” with a saturating flash of light.

Significant daily fluctuations in Fm were recorded both in EC0 and in salt treated plants
(Figure 4). In all irrigation treatments, the PH treatment effectively reduced the amplitude
of the daily fluctuation of Fm by maintaining a higher Fm at the 02:00 p.m. compared with
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plants from control plots. In respect to the plants subjected to the biostimulant treatment
and irrigated with saline water at 2 and 4 dS m−1, the Fm value recorded at 2:00 p.m. was
significantly higher than the value at 9:00 a.m.; instead, the trend is inverted for EC6 plants.
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Figure 4. Fm (maximum fluorescence) of hemp leaves in the DAS as affected by saline water irrigation
(EC0 = non-saline water; EC2 = water at 2.0 dS m−1; EC4 = water at 4.0 dS m−1; EC6 = water at 6.0 dS
m−1) and biostimulant application (treated with a commercial legume-derived protein hydrolysate =
PH and non-treated = C) recorded at 9:00 a.m. and at 2:00 p.m. Bars are means ± s.e. (n = 10). Bars
with different letters are significantly different according to the Duncan’s test with p ≤ 0.05.

At the 9:00 a.m. and at the highest salinity level, no significant difference between PH
treated plants and untreated control were detected.

From the dark-adapted F0 and Fm values, the Fv/Fm and Fv/F0 ratios were calculated,
as indicators of the DAS efficiency of photochemical activities in PSII.

When analyzing the fluorescence ratios, we found that some significant dissimilarities
between treatments were not revealed by the Duncan’s post-hoc test. Therefore, we carried
on a further series of pairwise comparisons using the Student’s t-test, in order to compare
AM and PM values (within each treatment) or PH-treated and PH-untreated plants (at the
same time and within each salinity level).

EC0 plants with or without PH treatment had an Fv/Fm of 0.82 at 09:00 a.m., corre-
sponding to the optimum value for healthy, non-stressed plants [61] (Figure 5; Table S1).

The Fv/Fm decreased during the morning and at 02:00 p.m. it was significantly lower
than at 09:00 a.m., thus evidencing the daily fluctuation in the maximum quantum yield of
PSII photochemistry. At 02:00 p.m. significant differences emerged between PH-treated
(Fv/Fm = 0.79) and untreated (Fv/Fm = 0.75) plants. Overall, the increasing salinity
resulted in lower Fv/Fm values, while the PH-treated plants at 02:00 p.m. had consis-
tently higher Fv/Fm compared with untreated plants thus confirming that PH treatment
helped reducing the daily fluctuation in Fv/Fm by reducing the mid-day depression in the
maximum quantum yield of PSII.

The Fv/F0 value is proportional to the activity of the water-splitting and oxygen
evolving complex of the PSII [43]. This parameter followed a very similar pattern of
variation as the Fv/Fm described above, evidencing the effect of salinity and PH application
on plant photochemistry on a wider sensitivity scale (Figure 6).
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Figure 5. Fv/Fm of hemp leaves in the DAS as affected by saline water irrigation (EC0 = non-saline
water; EC2 = water at 2.0 dS m−1; EC4 = water at 4.0 dS m−1; EC6 = water at 6.0 dS m−1) and
biostimulant application (treated with a commercial legume-derived protein hydrolysate = PH
and non-treated = C) recorded at 9:00 a.m. and at 2:00 p.m. Bars are means ± s.e. (n = 10). The
significance of the interactions between experimental factors (T time of measurement, S salinity
level, B biostimulant application) according to Duncan’s test is reported (* p ≤ 0.05, ** p ≤ 0.01, ns
non-significant); pairwise comparisons with the Student’s t-test are reported in Table S1.
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Figure 6. Fv/F0 of hemp leaves in the DAS as affected by saline water irrigation (EC0 = non-saline
water; EC2 = water at 2.0 dS m−1; EC4 = water at 4.0 dS m−1; EC6 = water at 6.0 dS m−1) and
biostimulant application (treated with a commercial legume-derived protein hydrolysate = PH
and non-treated = C) recorded at 9:00 a.m. and at 2:00 p.m. Bars are means ± s.e. (n = 10). The
significance of the interactions between experimental factors (T time of measurement, S salinity
level, B biostimulant application) according to Duncan’s test is reported (* p ≤ 0.05, ** p ≤ 0.01, ns
non-significant); pairwise comparisons with the Student’s t-test are reported in Table S1.
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At the same time as the DAS measurements, the Chl a fluorescence was measured on
a separate set of light-adapted leaf samples, allowing us to evaluate the effective quantum
yield efficiency of PSII (ΦPSII) in the LAS.

In the morning (09:00 a.m.), no significant differences in ΦPSII were recorded between
PH-treated and non-treated plants in the case of EC0, EC2 and EC6 salinity levels. At the
02:00 p.m. measurement, however, in all cases PH-treated plants had a significantly higher
ΦPSII compared to untreated plants (Figure 7).
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Figure 7. ΦPSII (effective quantum yield efficiency of PSII) of hemp leaves in the DAS as affected
by saline water irrigation (EC0 = non-saline water; EC2 = water at 2.0 dS m−1; EC4 = water at
4.0 dS m−1; EC6 = water at 6.0 dS m−1) and biostimulant application (treated with a commercial
legume-derived protein hydrolysate = PH and non-treated = C) recorded at 9:00 a.m. and at 2:00 p.m.
Bars are means ± s.e. (n = 10). The significance of the interactions between experimental factors
(T time of measurement, S salinity level, B biostimulant application) according to Duncan’s test is
reported (* p ≤ 0.05, ** p ≤ 0.01, ns non-significant); pairwise comparisons with the Student’s t-test
are reported in Table S1. The lines show the fluctuation between the 9:00 a.m. and 2.00 p.m. of ΦPSII
(values on the right axis) per each salinity level.

The increasing salinity progressively reduced the effective quantum efficiency of
photochemistry (ΦPSII) in hemp (Figure 7) in all of the experimental treatments. In the
morning, plants exposed to the highest salinity level in the absence of PH treatment had
a 37% lower ΦPSII compared with the corresponding EC0 treatment.

With the only exception of the highest salinity treatment, the ΦPSII was significantly
higher in the morning than in the afternoon, resulting in daily fluctuations of photochemical
efficiency as evidenced in Figure 7.

PH treated plants were able to maintain a higher ΦPSII in the central part of the day
compared with plants which were not treated with the biostimulant and this reduced the
amplitude of the daily fluctuation of the effective photochemical efficiency.

4. Discussion

Soil and water salinity is an imperative factor limiting the crop performance. A great
quota of agricultural land yearly becomes unfertile due to salts accumulation [62,63]. The
main effect of salinity on most agricultural crops is growth and yield reduction [64], and in
the most serious cases the death of plants. Each crop shows a different sensibility/tolerance
to salt stress, varying with the varieties within the specie and with the pheno-phase.
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Cheng et al. [20] consider textile hemp plants as a salt tolerance species but a notable
variation can be observed among genotypes and at diverse plant growth and develop-
ment steps, affecting alterations in plant morphology, anatomy and physiology. For
example, Hu et al. [65] remarked a considerable antagonist influence of saline stress on
seed germination in diverse hemp cultivars.

In our test we observed a decline of seeds yield at increasing of salt stress, with about
50% average losses of EC4 respect plants irrigated with non-saline water. Nevertheless, not
all plants responded equally to saline irrigation; in fact, plants treated with legume-derived
hydrolysate proteins had a linear decrease in seed yield, instead the non-treated plants had
an exponential decrease. The LDPH seems to mitigate the detrimental effects of salinity
on crop productivity, indeed it boost seed production, in fact at low and moderate saline
stress (EC2 and EC4) the plants treated with biostimulants reached a level of production
almost double of corresponding non treated plants. Our outcomes tie well with previous
studies on lettuce [66] and maize [67], both grown under saline conditions and treated
with a protein hydrolysate-based biostimulant. The lower seeds production was due
both to number of seeds per plant and their average weight, both lower under increasing
stress conditions. Again, the foliar application of biostimulant enhanced both parameters:
25.3% and 15.4% increase, for the number of seeds per plant and average seeds weight,
respectively. Previous researches have demonstrated that PH has a direct effect on the
stimulation of carbon and nitrogen metabolism in plants [56], with improvements also
in the N-Use and N-Uptake efficiency in several crops, among which baby spinach and
lamb’s lettuce [57]. This beneficial effect can be associated with modification of root
density and length, as well as with the higher number of lateral roots [56], so increasing
the root absorption surface and favoring the intake of nutrients and water.

Obviously, the decline in yield is the result of depressed plant growth, as highlighted
by lower residual biomass and plant height especially under high saline conditions. Anal-
ogous findings were stated by Hu et al. [68], which revealed that dry matter and height
of two hemp genotypes (fiber and seed type) gradually decreased when increasing NaCl
or Na2CO3 concentrations were imposed in the seedlings’ growth phase. Here too, the
application of LD protein hydrolysate positively affected these parameters.

As pointed out above, the decline in growth and yield in salt stressed crops could
be ascribed to reduced water uptake resulting from osmotic stress [25,69] as well as to
interference with different aspects of the plant physiology among which pigment synthesis
and photosynthetic metabolism [70]. Photosynthesis is linked to plant biomass as about
10–40% of the energy goes into biomass accumulation under favorable conditions [40].
Therefore, all stress factors affecting the efficiency of photosynthesis lead to reduced plant
biomass and growth [71].

A number of studies have shown that biostimulants may sustain plant productivity
by increasing photosynthetic efficiency [72] although, as pointed out by Xu and Mou [73],
previously published reports on the effect of PHs application on photochemical efficiency
are not consistent. Some authors reported that PHs had no effect on the Chl a fluorescence
parameter [73,74]; while in other cases PHs treatment was found to increase photochemical
efficiency in stressed plants only, but they had no effects without stress [75,76]. Contrast-
ingly, others appraised that PHs improved photochemical efficiency either with or without
salt stress [66].

On the other hand, many studies reported the physiological daily fluctuations of
the Chl a fluorescence parameter, e.g., Fv/Fm [77], ΦPSII and NPQ [78], Fv/Fm, ΦPSII
and NPQ [79].

In this study, we show that one critical factor to be considered is the time of day when
the fluorescence measurements are recorded.

For instance, in the case of the EC0 treatment no effects of PH application on Fv/Fm
or on ΦPSII were recorded at 09:00 a.m., while a substantially different picture emerged
at the 02:00 p.m. measurement, when the plants treated with PH had significantly higher
quantum yield efficiency compared to the control plants (Figures 5 and 7). In such a cir-
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cumstance, the wrong conclusions about the effectiveness of PH treatments would have
been drawn if only one daily measurement had been acquired.

It is also possible that in a number of other published studies this evidence might
have been hidden by the timing of the fluorescence measurements which were limited
to only one measure during the day, possibly over an exceedingly long-time interval.
We recommend that the timing of the measurements should be properly planned when
acquiring the experimental data.

In this research salinity was shown to reduce crop productivity by directly affecting
the primary photosynthetic processes in Cannabis leaves, while the application of a PH
biostimulant had a protective effect against the deleterious effects of salt stress. Increasing
salinity significantly affected the Chl a fluorescence parameter, consequently reducing the
quantum yields of photochemistry. This was recorded in terms of a decrease of the Fv/Fm
and ΦPSII ratio, which measure the maximum and the effective quantum use efficiency of
PSII in DAS and LAS, respectively. Such alterations in the Chl a fluorescence parameters
are in agreement with previous studies on different crops [80–83] and were also reported
for plants exposed to a range of abiotic stresses such as high light, drought, high/low
temperatures, nutrient limitation or pollution [31].

While the ΦPSII measures the effective efficiency of PSII (i.e., the proportion of ab-
sorbed energy which is actually used in photochemistry) in light adapted leaves, the
dark-adapted fluorescence parameters presented above (Fo, Fm, Fv/Fm and Fv/F0) pro-
vide information about the physiological processes which have altered the efficiency.

The minimum fluorescence (F0) was found to increase with the increasing salinity
treatments and this is in accordance with preceding reports [84]. The increase of F0 is known
as a strong indicator of photo-inhibition resulting from an impairment of the energy transfer
from the PSII antennae to the Reaction Centers, which is in turn caused by the dissociation of
antennae from the PSII core and/or by increased number of inactive reaction centers [49,85].

The Fv/Fm ratio is widely used as a stress indicator. It represents the maximum
quantum yield of PSII in dark-adapted leaves and it indicates the probability that a trapped
photon will end up in the reaction center and start a photochemical event [86]. Salt stress
was already reported to impair the plant photosynthetic efficiency thus resulting in
decreased Fv/Fm [32,87,88], as we confirm in our study observing a significant reduction
in this parameter caused by the increasing salinity levels.

This lower photochemical efficiency could result from enhanced thermal energy
dissipation, indicating that salinity induces the occurrence of photo-protection [89].

The effect of salinity on the photosynthetic efficiency was confirmed by the Fv/F0
ratio, which is a more sensitive index than Fv/Fm to minor changes in Fv and/or F0 [90,91]
and it is related to the fraction of functional PSII reaction centers [92]. The reduction in
Fv/F0 was in accordance with previous studies [88] and confirmed the deleterious effect of
salinity on the photosynthetic apparatus.

Overall, the increasing salinity disrupted the functioning of the photochemical ap-
paratus, resulting in higher F0 as well as decreased Fv/Fm and Fv/F0. However, the
application of PH as a biostimulant effectively counteracted the effects of salinity, resulting
in the maintenance of higher Fv/Fm, Fv/F0 and ΦPSII at all salinity levels and it appeared
to be crucial in delaying photo-inhibition thus increasing the photosynthetic productivity
of hemp crops. Comparable outcomes were described by Rouphael et al. [30] on lettuce.

From a physiological point of view, the negative effects of salinity on the photosyn-
thetic metabolisms are ascribed to the increased uptake of sodium (Na+) and chloride
(Cl−), causing nutritional imbalance and reduced K/Na ratio in the shoot tissues [30,93,94].
This is accompanied by oxidative stress due to the generation of reactive oxygen species
(ROS) especially in the chloroplast compartment, which in turn cause oxidative damage
to cell membranes and alteration in the thylakoid membrane protein profile. The above-
mentioned events ultimately lead to decreased energy transfer from light harvesting
antennae to PSII reaction centers [87,94–96], thus affecting photochemistry as recorded by
the Chl a fluorescence data reported above.



Agronomy 2021, 11, 342 14 of 18

When salinity does not exceed the physiological range tolerated by each species,
variety or landrace, plants are able to control the concentration of ROS within their tissues
by means of an array of enzymatic and non-enzymatic antioxidant systems [97] which
protect the metabolic functions. However, the plant antioxidant defense systems can be
boosted by the application of PH biostimulants [30,93,97], thus effectively improving the
physiological protection of the photosynthetic apparatus [67]. This appears to be the case
in our research, where the chlorophyll fluorescence indices as well as the overall crop
performance benefited from the protective effect of the PH biostimulant application.

Moreover, we suggest that the observed protective effect on the photosynthetic
metabolism originates from the auxin-like activity of the “Trainer” PH, reported in previ-
ously published research [98,99]. Indeed, the application of exogenous auxin is known to
increase the activities of antioxidant enzymes and to result in higher stomatal conductance,
higher internal CO2 concentration and higher net photosynthetic rate [100]. This supports
our experimental results, explaining the positive effect of the PH treatment on photochem-
istry even in the absence of salinity and confirming that hemp crops may benefit from the
application of PHs even when salinity is not an issue.

The application of PH biostimulant appeared to be crucial in maintaining a higher
photochemical efficiency in treated plants, as well as in reducing the range of the daily
fluctuation in effective quantum yield. As suggested by Rouphael et al. [30], these factors
guaranteed a better functioning of the photosynthetic metabolism thus improving plant
productivity.

On the other hand, we found a direct relationship between plant photochemistry and
plant productivity, confirming that the Chl a fluorescence parameter can be used to forecast
the crop performance in the field.

5. Conclusions

The irrigation with saline water, already at 2.0 dS m−1, negatively affected hemp seeds
production (−27.5% on average). Additionally, the fluorescence parameters showed a direct
proportionality between the saline level and the damage to photosynthetic system. The two
most stressed treatments (EC4 and EC6) caused a persistent depression of photochemical
parameters, which were not restored during the night.

The LD-protein hydrolysate has protected the photosynthetic system, improving
hemp productivity. In fact, the LDPH application boosted seeds yield (+38.6% over control
plants), as well as residual biomass (+24.6%). So, interestingly, the residual biomass can be
destined to other uses for increasing the farmer’s income.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-439
5/11/2/342/s1, Table S1: Resulting p-values of the Student’s t-test pairwise comparisons between
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Abbreviations

EC electrical conductivity
PH protein hydrolysate
LDPH legume-derived protein hydrolysate
Chl a chlorophyll a
DAS dark-adapted state
LAS light adapted state
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