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Abstract 13 

Invasive seaweeds threaten biodiversity and socio-economics values of worldwide marine 14 

ecosystems. Understanding to what extent invasive seaweeds can modify local biodiversity is one 15 

of the main priorities in conservation ecology. We compared the molluscan assemblage of the 16 

invasive Asparagopsis taxiformis with that of the native Ericaria brachycarpa and explore if 17 

variation in the molluscan assemblage diversity was related to the substrate attributes (biomass, and 18 

thallus, canopy, and interstitial volumes) of the algae. Results showed that A. taxiformis harboured 19 

lower diversity and trophic structure of the molluscan assemblage compared to E. brachycarpa. 20 

Biomass was the variable that better explained the variation of abundance and number of species as 21 

well as the multivariate structure of the molluscan assemblage. Overall, our results suggest that a 22 

complete habitat shift from native to invasive species can potentially trigger bottom-up effects in 23 

rocky shores habitats, reducing the biodiversity and the services provided by the invaded habitat.  24 

 25 

Jo
urn

al 
Pre-

pro
of



Keywords: molluscs diversity; trophic guilds; Cystoseira sensu lato; Ericaria brachycarpa; 26 

Asparagopsis taxiformis; Mediterranean Sea 27 

 28 

1. Introduction 29 

Invasive seaweeds are one of the major threats to biodiversity and human livelihoods of 30 

worldwide marine ecosystems (Williams and Smith, 2007; Maggi et al., 2015). The causes of 31 

seaweeds introductions have been mainly attributed to anthropogenic activities related to global 32 

marine trade (introduction through ballast waters and hull fouling, but also other activities such as 33 

aquariology, aquaculture, fishing gear, the building of artificial channels connecting different 34 

environments), that in the last century have exponentially increased the introduction of invasive 35 

species (Bax et al., 2003; Williams and Smith, 2007). At the same time, the increase of seawater 36 

temperatures, caused by global warming, may enhance the ability of invasive species to overcome 37 

environmental and geographical barriers facilitating their spread, while simultaneously eroding the 38 

resistance of native communities (Occhipinti-Ambrogi and Galil, 2010). 39 

At the population level, the ecological impact of an invasive species can be perceived as 40 

“harmful” or “useful” depending on the stakeholder or on the effects that an invasive species can 41 

have on a particular ecosystem service (Simberloff et al., 2013). Different studies have highlighted 42 

that invasive seaweeds can modify the biodiversity, energy and nutrient flows along the food chain, 43 

compromising the functioning pattern of the ecosystems (Boudouresque et al., 2005; Streftaris and 44 

Zenetos, 2006; Geburzi and McCarthy, 2018). However, studies on the effects of the same invasive 45 

species on native habitats have highlighted contrasting results. For example, Veiga et al. (2018) 46 

found that the invasive Sargassum muticum (Yendo) Fensholt hosted a low diverse faunal 47 

assemblage compared to the native Sargassum flavifolium Kützing. These results were in contrast 48 

with previous studies which suggested only a weak impact of the introduction of S. muticum upon 49 

native faunal diversity (Wernberg et al., 2004; Buschbaum et al., 2006; Gestoso et al., 2010; 50 

Engelen et al., 2013; Bedini et al., 2014; Veiga et al., 2014; Rubal et al., 2018). This suggests that 51 
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the effects of the same invasive seaweeds could change depending on the invaded habitat or the 52 

location investigated.  53 

The Mediterranean basin is among the world’s most vulnerable areas to the introduction of 54 

seaweeds, which pose a growing threat to biodiversity, modifying ecosystem functioning (Ribera 55 

Siguan, 2002; Streftaris et al., 2005; Streftaris and Zenetos, 2006; Piazzi and Balata, 2009; 56 

Giangrande et al., 2020). Among invasive seaweeds, Asparagopsis taxiformis (Delile) Trevisan de 57 

Saint-Léon has been recognized among the 100 worst invasive seaweed in the Mediterranean Sea 58 

(Streftaris and Zenetos, 2006). First claims of its presence in this area date back 1798-1801 at 59 

Alexandria (Egypt) as a consequence of shipping activities and the opening of the Suez Canal 60 

(Delile, 1813). Along the Italian coasts, it was first reported on May 2000 at the western shore of 61 

Sicily, near the city of Trapani (Barone et al., 2003). Although the presence of A. taxiformis has 62 

been related to negative effects on native community, for example by replacing habitats previously 63 

occupied by species of Cystoseira C. Agardh (Barone et al., 2003), to our knowledge only one 64 

study has evaluated its effects on biodiversity, by comparing the mobile macrofauna inhabiting this 65 

species to the dominant native species Halopteris scoparia (Linnaeus) Sauvageau (Navarro-66 

Barranco et al., 2018). The results of this study show that A. taxiformis hosted a lower diverse 67 

epifaunal assemblage in comparison to that associated with the native seaweed (Navarro-Barranco 68 

et al., 2018). Understanding the effects of invasive seaweeds on the epifaunal assemblage 69 

associated with recipient habitats can allow to understand the possible consequence of changing 70 

habitats and predict potential bottom-up effects on rocky shores. 71 

Along the Italian coasts, gametophytes of A. taxiformis can colonize coastal areas dominated by 72 

important habitat-forming seaweeds of the genus Cystoseira. Recently this genus was divided into 73 

three genera Cystoseira, Carpodesmia (transferred to the genus Ericaria according to Molinari 74 

Nova and Gury, 2020), and Treptacantha (Orellana et al., 2019). In this paper, we decided to refer 75 

to as Cystoseira sensu lato to include all the three genera. Cystoseira species sensu lato are essential 76 

ecosystem engineers, significantly enhancing the habitat surface, complexity, and productivity of 77 
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coastal communities from the infralittoral zone down to the upper circalittoral zone (Giaccone et al., 78 

1994; Bulleri et al., 2002; Falace and Bressan, 2006; Ballesteros et al., 2009; Mancuso et al., 2021). 79 

By providing habitat, Cystoseira species sensu lato increase the biodiversity of their associated 80 

assemblages, creating well-structured food webs (Schiel and Foster, 2006; Cheminée et al., 2013; 81 

Mineur et al., 2015; Mancuso et al., 2021). They are also considered useful indicators of ecosystem 82 

quality according to the Water Framework Directive (2000/60) (European Commission, 2000).  83 

Decline or loss of Cystoseira populations sensu lato has been reported from many rocky coasts 84 

particularly close to urban areas due to combined effects of anthropogenic impacts and climate-85 

change (Benedetti-Cecchi et al., 2001; Thibaut et al., 2005; Arevalo et al., 2007; Mangialajo et al., 86 

2008; Strain et al., 2014; Mineur et al., 2015; Mancuso et al., 2018; Blanfuné et al., 2019). In this 87 

context, the introduction of invasive seaweeds may add further stress on these vulnerable habitats 88 

facilitating their shift towards less diverse and less structured assemblages (Navarro-Barranco et al., 89 

2018). Thus, facilitating the decrease in essential ecosystem services (Mineur et al., 2015; Buonomo 90 

et al., 2018) and the economic value of coastal areas (De La Fuente et al., 2019).  91 

Macroalgal complexity together with the seasonal variation of the alga and presence of chemical 92 

defences can critically shape the diversity of their associated assemblage (Chemello and Milazzo, 93 

2002; Jormalainen and Honkanen, 2008; Pitacco et al., 2014; Veiga et al., 2014; Chiarore et al., 94 

2019). Algae with high structural complexity expressed as a combination of substrate attributes 95 

(such as degree of branching, thallus width and height, and wet weight), can support well-structured 96 

molluscs communities (Hacker and Steneck, 1990; Chemello and Milazzo, 2002; Bitlis, 2019). 97 

Macroalgal complexity is one of the main drivers that can explain the variation in the fauna 98 

associated with native and invasive seaweeds (Veiga et al., 2014, 2018; Dijkstra et al., 2017). 99 

Comparisons between invasive and native seaweeds revealed that, when the invasive species have 100 

lower structural complexity than native species, the invasive species alga show a low abundance, 101 

richness and structure of epifaunal assemblage compared to native one (Navarro-Barranco et al., 102 

2018; Veiga et al., 2018). Conversely, when native macroalgae are less complex, the abundance and 103 
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diversity of epifauna is higher in the invasive seaweeds (Veiga et al., 2014; Dijkstra et al., 2017). 104 

These results suggest that the effects of invasive seaweeds would also change according to the 105 

morphological differences between invasive and native seaweeds. However, other studies have 106 

shown that native and invasive seaweeds with similar morphologies can host either similar (Suárez-107 

Jiménez et al., 2017) or different epifauna diversity (Navarro-Barranco et al., 2019). These 108 

contrasting results suggest that apart from seaweeds morphology, other factors can be involved in 109 

such ecological process.  110 

Among the different taxa inhabiting macroalgae, molluscs represent one of the main groups, 111 

usually characterized by high numbers of species and trophic guilds (Milazzo et al., 2000; Chemello 112 

and Milazzo, 2002; Urra et al., 2013; Pitacco et al., 2014; Lolas et al., 2018; Piazzi et al., 2018; 113 

Bitlis, 2019; Chiarore et al., 2019; Poursanidis et al., 2019; Mancuso et al., 2021). Molluscs 114 

associated with seaweeds have an important role in aquatic ecosystems as consumers as well as 115 

prey and are considered an important food source for higher trophic levels (Martin et al., 1992; 116 

Heck et al., 2003). Thus, studying how invasive seaweeds affects the molluscan assemblage in the 117 

invaded habitats can contribute to understanding the possible consequence of changing habitats and 118 

their potential trigger bottom-up effects in rocky shores habitats. 119 

In this study, we investigated the effects of the invasive Asparagopsis taxiformis in shaping the 120 

diversity of their associated molluscan assemblage compared to the native E. brachycarpa 121 

(J.Agardth) Molinari & Guiry. In particular, we characterized the diversity (in terms of 122 

composition, structure and trophic guilds) of the phytal molluscs associated with the fronds of E. 123 

brachycarpa and A. taxiformis. Moreover, we explored if the variation of the molluscan assemblage 124 

diversity was related to the substrate attributes of the algae (biomass, thallus volume, canopy 125 

volume, and interstitial volume). 126 

 127 

2. Materials and Methods 128 

2.1. Study area and species 129 
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The study was carried out at the southwest shallow rocky shore of the Favignana island (Egadi 130 

Islands MPA, Sicily, Italy) in June 2011 (Fig. 1). The area consists of gently sloping (5°-10°) 131 

carbonate rock platforms and scattered boulders (Pepe et al., 2018) that provide substrates for well-132 

developed macroalgal vegetation. Previous surveys in the area allowed us to identify two sites with 133 

distinctive habitats. The site Scoglio Corrente (37° 55' 2.0778" N, 12° 17' 6.0432" E) is 134 

characterized by the presence of stands of E. brachycarpa (100 % coverage), while the site Scoglio 135 

Palumbo (37° 55' 10.4226" N, 12° 18' 41.097" E) hosts stands of A. taxiformis (100 % coverage) 136 

(Fig. 1).  137 

Ericaria brachycarpa is a brown seaweed (Fucales) characterized by thalli high up 20-25 cm, 138 

with multiple perennial axes (caespitose) up to 2-6 cm in height, attached to the substratum by a 139 

more or less compact discoid base formed by haptera. Apices of the axes are not very prominent, 140 

flattened and smoothed, from which primary branches branch off. Branches are cylindrical with 141 

smooth bases or covered by small spinose appendages that are usually fertile in spring-summer 142 

(Gómez-Garreta et al., 2002; Mannino and Mancuso, 2009; Cormaci et al., 2012). Like other 143 

Cystoseira species sensu lato, E. brachycarpa exhibits seasonal variations in the vegetative growth 144 

(Gómez-Garreta et al., 2002). At the study sites, new branches of E. brachycarpa grow from the 145 

perennial axes in spring (May-June) providing new substratum and shelter for colonizing fauna, 146 

while in autumn (September-October) E. brachycarpa starts to become quiescent losing almost the 147 

totality of their branches leaving perennial axes that persists during the cold winter season. 148 

Asparagopsis taxiformis is a red alga (Bonnemaisoniales) widespread in the tropics and the 149 

subtropics around the globe. The species exhibits a heteromorphic life cycle, where the erect 150 

gametophyte alternates with a filamentous sporophyte referred to Falkenbergia hillebrandii 151 

(Bornet) Falkenberg (Andreakis et al., 2004; Ní Chualáin et al., 2004). The gametophytes are 152 

characterized by sparsely branched, creeping stolons and erect shoots from which numerous side 153 

branches develop in all directions. The latter ramify over and over again giving the thallus a 154 

plumose appearance. At the study area, thalli of A. taxiformis grow in the upper sublittoral zone on 155 
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the rocky substrate or as epiphyte of other algal species. The gametophytes are present during all 156 

seasons with a maximum occurrence in spring (Barone et al., 2013). 157 

 158 

 159 
Fig. 1. Location of the two study sites (red dots) at the rocky-shore of the Favignana island (MPA), 160 

Trapani, Sicily, Italy. SC = Scoglio Corrente, SP = Scoglio Palumbo. 161 

 162 

2.2. Sampling and molluscan analysis 163 

Samples were collected by scuba diving at a depth of 5-7 m. For each habitat, two areas (5 x 5 164 

m) were haphazardly selected. Then, 10 thalli of E. brachycarpa and 10 gametophytes of A. 165 

taxiformis were collected (n = 20 per habitat). Underwater, each thallus and associated fauna were 166 

enveloped with a 500 µm nylon mesh bag, to prevent the escape of mobile fauna, then the alga was 167 

carefully scraped off the substratum using a hammer and chisel. At the surface, each sample was 168 

drained from seawater and stored at -20°C until laboratory analysis. In the laboratory, each thallus 169 

of E. brachycarpa and A. taxiformis were rinsed under tap water and the associated fauna was 170 

sieved through a 1 mm mesh. Molluscs were separated from the other fauna and stored in a solution 171 

of 70% ethanol and seawater. Molluscs were sorted out under a stereomicroscope and determined to 172 
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the lowest possible taxonomic level. They were subsequently counted, listed according to the 173 

updated taxonomy and nomenclature of the World Register of Marine Species database (see 174 

http://www. marinespecies.org, accessed November 2020).  175 

Each species was classified into trophic guilds. A trophic guild can be defined as a group of 176 

species with similar size, mobility, and structure of their feeding apparatus able to use the same type 177 

of resource (Steneck and Watling, 1982; Chemello et al., 1997; Arruda et al., 2003; Rueda et al., 178 

2009). Analysis of the trophic structure provides information about the dominant energy pathways 179 

in a habitat. Moreover, the trophic structure can be related, to some degree, to the physical 180 

characteristics of the alga, because algae with high structural complexity can provide a high number 181 

of micro-habitats increasing the availability of food for different molluscs (Chemello et al., 1997). 182 

The following trophic guilds were assigned according to Rueda et al. (2009): carnivores (C), 183 

feeding on other mobile organisms; scavengers (SC), feeding on remains of dead organisms; 184 

ectoparasites or carnivores on sessile prey (E), feeding on much larger organisms on which they 185 

live during their adult stage; filter feeders (F), capturing the seston particles with their gills and/or 186 

with mucous strings; microalgal grazers (MG), feeding on microalgae (e.g. diatoms) that cover the 187 

branches of E. brachycarpa; macroalgae grazers (AG), feeding on macroalgae; deposit feeders 188 

(D), feeding on organic particles contained in the sediment trapped by seaweeds. 189 

 190 

2.3. Algal substrate attributes  191 

For each thallus of E. brachycarpa and A. taxiformis collected, we measured four substrate 192 

attributes (thallus volume, canopy volume, interstitial volume, and biomass), to explore their 193 

relationships with the diversity of the molluscan assemblage. Thallus volume (TV) was measured as 194 

the variation of volume, in ml, after the immersion of a thallus into a graduate cylinder filled with 195 

seawater. Canopy volume (CV: the volume, in ml, created by the overall dimension of a 196 

thallus submerged in seawater) and the interstitial volume (IV: the volume, in ml, of water among 197 

the fronds of the alga) were estimated according to Hacker and Steneck (1990). The Canopy 198 
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volume was defined as the volume of a theoretical cylinder (�� =  � × ��  ×  ℎ), where π = 3.14, 199 

h is the length of thallus from the base to the apical portion of the frond, including epiphytes, and r 200 

is the radius calculated as the average of the radius of the thallus measured with a ruler (+/- 1 mm) 201 

at the apical, median and basal parts.  202 

The interstitial volume (IV) was obtained by subtracting the thallus volume (TV), and the axis 203 

volume (caV, estimate as the volume of cylinder obtained measuring the height and the radius of the 204 

perennial axis) to the canopy volume CV (�� =  (�� − �� − ����.  205 

Finally, the biomass of macroalgae was calculated as dry weight (DW, gr) drying them at 60 °C 206 

for 48 h (Stein-Taylor et al., 1985). Biomass was also used as a proxy of the primary production of 207 

each habitat.  208 

 209 

2.4. Data analysis 210 

The total abundance (N), the Frequency (F%; the percentage of samples in which a particular 211 

species occurred) and the Dominance index (D%; the percentage of the rate between the percentage 212 

of individuals of a particular species and the total number of individuals within the sample) was 213 

calculated for each molluscan species identified (Magurran, 1988). The molluscan assemblage was 214 

characterized according to the total abundance of individuals (N), the total number of species (S), 215 

Shannon-Wiener diversity (H’) and Pielou's Evenness (J). The hierarchical structure of the 216 

taxonomic classifications of the molluscan assemblage of both E. brachycarpa and A. taxiformis 217 

was visualized using the “heat_tree” function in the “Metacoder” R- package (Foster et al., 2017).  218 

A two-way analysis of variance (ANOVA) was used to test differences in the malacofauna 219 

indexes (N, S, H’, J) between habitats (fixed and orthogonal with 2 levels: E. brachycarpa and A. 220 

taxiformis) and area (random and nested within habitat with 2 levels: area 1 and area 2). Cochran’s 221 

test was used to check for the homogeneity of variances (Underwood 1997). Tukey’s HSD 222 

procedure was used to separate means (at α = 0.05) following significant effects in the ANOVAs 223 

(Underwood, 1996). Moreover, we used the non-parametric Chao1 and Chao2 methods (Chao, 224 
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1987; Cowdell and Coddington, 1994) to estimate the true species richness in the two habitats and 225 

compared them with the accumulation curve of the number of taxa observed. Chao1 is an 226 

abundance-based estimator whereas Chao2 is based on species presence/absence. The Chao2 227 

method avoids possible confounding effects of larger abundances of species in certain samples. It 228 

rests on the hypothesis that non-observed taxa are rare species, and considers that a species is rare 229 

when the taxon occurs at only 2 samples. The advantage of Chao1 and Chao2 indexes is that the 230 

estimated diversity of samples can be compared, even when the true diversity of the whole 231 

population is not known.  232 

SIMPER analysis (Clarke, 1993) was performed to identify those taxa that contributed to the 233 

dissimilarity of the molluscan assemblage between habitats (δi%). The ratio δi/SD(δi) was used to 234 

quantify the consistency of the contribution of a particular taxon to the average dissimilarity in the 235 

comparison between habitats.  A cut-off value of 70% was used to exclude low contributions. 236 

Differences on malacofauna community structure (which takes into account species identity and 237 

relative abundance) and composition (presence/absence, which only takes into account species 238 

identity) between habitats and areas were assessed by performing a multivariate Permutational 239 

Analyses of Variance (PERMANOVA). The analyses were based on a zero-adjusted Bray-Curtis 240 

distance matrix of square-root transformed relative abundances (structure) or on Jaccard distances 241 

(species presence/absence data) with 9999 permutations. Non-metric Multidimensional Scaling 242 

(nMDS) plots was generated to visualize the variation of malacofauna community structure (based 243 

on a Bray-Curtis distance matrix) and composition (based on the Jaccard distance matrix).  244 

For each trophic guild identified we calculated abundance and tested differences between 245 

habitats and areas by two-way ANOVAs according to the design described before. 246 

Differences in each of the substrate attributes (CV, IV, TV, DW) between habitats and area 247 

were analysed by ANOVAs according to the two-way design described before. Cochran’s test was 248 

used to check for the homogeneity of variances (Underwood, 1996). 249 
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Linear regression (LM) analysis was used to test which substrate attributes explained better the 250 

variation of the abundance (N), species richness (S), Shannon-Wiener diversity (H’) and Pielou's 251 

Evenness (J) of the molluscan assemblage. Moreover, the distance-based redundancy analysis 252 

(dbRDA, Legendre and Anderson, 1999) was used to explore the relationship between substrate 253 

attributes and the multivariate structure of molluscan assemblage. Because dbRDA is sensitive to 254 

multicollinearity (i.e. a high correlation between environmental variables), draftsman plots were 255 

done to check skewness or detect strong correlations between substrate attributes. A log(x + 1) 256 

transformation was applied to thallus volume (TV) and biomass (DW) to correct right-skewness. 257 

Due to the high correlation between canopy volume (CV) and interstitial volume (IV) we removed 258 

CV from the subsequent analyses. Then, substrate attributes were normalized using a z-score 259 

transformation because of their different measurement scales. Finally, performed forward selection 260 

was used to retain the substrate attributes that significantly explained the variation of the 261 

multivariate structure of the molluscan assemblage.  262 

Statistical analyses were performed in R software 3.5.1 (R Core Team, 2018). See the “Data 263 

availability and reproducible research” section for further details.  264 

 265 

3 Results 266 

3.1 Molluscs 267 

A total of 790 individuals belonging to 55 taxa made up the molluscan assemblage. Of 268 

these, 34 taxa were unique of the native E. brachycarpa and 6 of the invasive A. taxiformis, while 269 

15 taxa were shared between habitats (Fig. 2, Table S1-S2). Gastropods were the most represented 270 

class (92.7%), followed by Bivalvia (3.6%) and Polyplacophora (3.6%). The molluscs belonged to 271 

35 different families, of which Rissoidae displayed the highest number of species (35%) followed 272 

by Buccinidae, Pyramidellidae and Trochidae at 7% (Fig. S1, Table S1-S2). At the species level, 273 

Eatonina cossurae (Calcara, 1841) was the most dominant taxa on both E. brachycarpa and A. 274 

taxiformis with 25% and 28% respectively (Table S1-S2).  275 

Jo
urn

al 
Pre-

pro
of



 276 

 277 

 278 

Fig. 2. Differences in the molluscan assemblage between native (a) and invasive (b) seaweeds. 279 

Heat trees showing the total abundances of taxa classified at the lower taxonomic level on E. 280 
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brachycarpa (a) and A. taxiformis (b). Node sizes and colors are related to the total abundance 281 

(number of individuals) of taxa. 282 

 283 

Abundance (N), species richness (S), Shannon-Wiener diversity (H’) and Pielou’s evenness 284 

(J) differed significantly between habitats with values that were higher in E. brachycarpa compared 285 

to A. taxiformis (Fig. 3, Table S3).  286 

 287 

 288 

Fig. 3. Comparison of alpha diversity indexes between native and invasive seaweeds. 289 

Abundance (a), species richness (b), Shannon-Wiener diversity (c), and Pielou’s evenness index (d) 290 

of the molluscan assemblage associated with E. brachycarpa and A. taxiformis. Bar plots show 291 

mean +/- 1 standard error (n = 20). See Table S3 material for more details.  292 

 293 

Species accumulation curves estimated by the non-parametric Chao1 and Chao2 indexes 294 

showed a similar pattern but with higher values compared to the observed richness on both E. 295 

brachycarpa and A. taxiformis. Chao1 index reached a maximum value of 70 species for the native 296 
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seaweed and 73.5 species for the invasive (Fig. 4). However, Chao2 (that minimizes the effects of 297 

larger abundances of species in certain samples) showed a lower maximum value compared to 298 

Chao1 with 66 species for the native seaweed and 56.6 species for the invasive (Fig. 4). These 299 

values were respectively 35% and 170% higher compared to the observed richness. 300 

 301 

 302 

Fig. 4. Observed and estimated species richness. Species accumulation curves based on the 303 

Chao1 (long dashed lines) and Chao2 (dot-dashed lines) estimators and for the observed taxonomic 304 

richness (solid lines) for E. brachycarpa and A. taxiformis. 305 

 306 

The number of feeding guilds differed between native and invasive seaweeds (Fig. 5).  307 

Molluscs on E. brachycarpa were classified into 6 trophic guilds (MG, C, FF, D, E and AG), while 308 

on A. taxiformis only 3 trophic guilds (MG, C and FF) were identified. Microalgal grazers (mainly 309 

Rissoidae) was the most represented group on both native (27 spp.)  and invasive (18 spp.) 310 
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seaweeds (Fig. 5, Table S1). Carnivores and filter feeders were also present of both E. brachycarpa 311 

(C = 12 spp., FF = 2 spp.) and A. taxiformis (C = 2 spp., FF = 1 spp.) (Fig. 5, Table S1). Moreover, 312 

on E. brachycarpa we found six taxa of ectoparasites or carnivores on sessile prey (E; Marshallora 313 

adversa (Montagu, 1803), Parthenina sp. (Bucquoy, Dautzenberg & Dollfus, 1883), Vitreolina 314 

incurva (Bucquoy, Dautzenberg & Dollfus, 1883), Parthenina interstincta (J. Adams, 1797), 315 

Odostomella doliolum (Philippi, 1844)  and Cerithiopsis minima  (Brusina, 1865)), one deposit 316 

feeders (D; Sinezona cingulata (O.G. Costa, 1861)) and one macroalgae grazers (AG; Aplysia sp.) 317 

(Fig. 5, Table S1). 318 

 319 

Fig. 5. Variation of the trophic guilds between native and invasive seaweeds. Bar plots show 320 

relative percentage (mean +/- 1 standard error, n = 20) based on total abundance (a) and number of 321 

species (b) of each trophic group on both E. brachycarpa and A. taxiformis. MG = microalgal 322 
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grazers, C = carnivores, SC = scavengers, E = ectoparasites or carnivores on sessile prey, F = filter 323 

feeders, AG = macroalgae grazers, D = deposit feeders. 324 

 325 

PERMANOVA analysis showed that the structure and composition of the molluscan 326 

assemblage differed significantly between the two habitats (Fig. 6, Table S4). PERMDISP analysis 327 

was not significant (structure: F = 0.187, p = 0.67, composition: F = 0.349, p = 0.56), indicating that 328 

the dispersion of samples did not provide a significant contribution to the differences detected by 329 

PERMANOVA (Fig. 6). 330 

 331 

 332 

Fig. 6. Structure (a) and composition (b) of the molluscan assemblage associated with E. 333 

brachycarpa and A. taxiformis. Non-metric Multidimensional Scaling (nMDS) based on zero-334 

adjusted Bray–Curtis measure of square-root transformed molluscan abundances (structure) or 335 

Jaccard measure (composition). Circles show the 90 % confidence of interval for each seaweed. 336 

 337 

When we looked at the taxa that contributed to the differences between native and invasive 338 

seaweeds, SIMPER analysis revealed that 6 taxa (Eatonina cossurae (Calcara, 1841), Rissoella 339 

inflata (Alder, 1848), Rissoella diaphana (Monterosato, 1880), Lamellaria perspicua (Linnaeus, 340 
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1758), Sinezona cingulata (O.G. Costa, 1861) and Setia ambigua (Brugnone, 1873)) contributed to 341 

70% of the dissimilarity between E. brachycarpa and A. taxiformis (average dissimilarity 96%), 342 

with their average abundance was larger in E. brachycarpa compared to A. taxiformis. E. cossurae 343 

contributed alone to the 23% of the differences between native and invasive habitats, while R. 344 

inflata was the species that contributed consistently (higher δi/SD(δi) value) to that differences 345 

(Table 1).  346 

 347 

Table 1. Taxa contributing to 70% of the dissimilarity between native and invasive 348 

seaweeds. Results of SIMPER analysis showing the average abundances, consistency (δi/SD(δi)) 349 

and cumulative contributions (cum_δi%). 350 

Average abundance 

Species  E. brachycarpa  A. taxiformis  δi/SD(δi)  cum.δi%  

Eatonina cossurae  9.30  0.60  1.89  23  

Rissoella inflata  6.70  0.10  2.08  41  

Rissoella diaphana  6.15  0.05  0.82  55  

Lamellaria perspicua  2.95  0.00  0.99  63  

Sinezona cingulata  1.40  0.00  0.78  67  

Setia ambigua  0.90  0.20  0.67  71  

 351 

 352 

3.2 Seaweeds substrate attributes and relationships with the molluscan assemblage 353 

Canopy volume (CV) and interstitial volume (IV) were significantly higher in the invasive A. 354 

taxiformis compared to the native E. brachycarpa (Fig. 7 a-b, Table S5). However, biomass (DW) 355 

and thallus volume (TV) were significantly higher in the native habitat compared to the invasive 356 

(Fig. 7 c-d, Table S5). 357 

Linear regression analysis revealed that the biomass (DW) was the substrate attribute that better 358 

explained (R-squared > 0.5) the variation of the abundance and species richness of the molluscan 359 

assemblage (Table 2). Otherwise, canopy volume (CV) interstitial volume (IV) and thallus volume 360 
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(TV) explained less variation of the molluscan assemblage (R-squared < 0.5), although highly 361 

significant (p < 0.001, Table 2). 362 

Biomass (DW) was also the substrate attribute selected for constrained db-RDA, explaining 363 

24.7% of the variation of the structure of the molluscan assemblage (Table S6). The first two axes 364 

of the dbRDA plot explained the 32.2% of the total variance of the multivariate structure of the 365 

molluscan assemblage, with 29.2% for axis 1 and 3% for axis 2 (Fig. 8). 366 

 367 

 368 

Fig. 7. Differences in the substrate attributes between native and invasive seaweeds. Canopy 369 

volume (CV), Interstitial volume (IV), thallus volume (TV) and biomass (expressed as dry weight, 370 

DW) of the molluscan assemblage associated with E. brachycarpa and A. taxiformis. Boxplots 371 

show extreme and lower whisker (vertical black line), lower and upper quartile (box), and median 372 

(horizontal black line). Grey dots are raw data (n = 20). For more details see Table S5.   373 
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 377 

 378 

 379 

 380 

 381 

Table 2. Relationship between substrate attributes and molluscan diversity. Results of the 382 

linear regression analysis (LM) between each substrate attributes and the abundance (N), species 383 

richness (S), Shannon-Wiener diversity (H) and Pielou's Evenness (J) of the molluscs associated 384 

with E. brachycarpa and A. taxiformis. R-squared values major than 50% are in bold. 385 

 
 N S H' J 

Structural features  

CV  0.38 ***  0.33 ***  0.34 ***  0.08 ns  

IV  0.4 ***  0.35 ***  0.35 ***  0.08 ns  

TV  0.37 ***  0.44 ***  0.4 ***  0.1 ns  

DW  0.66 ***  0.56 ***  0.46 ***  0.1 ns  

Note:  
        

CV = Canopy volume, IV = Interstitial volume, TV = Thallus volume, DW = Biomass 
Signif. codes: *** p < 0.001, ns p > 0.5 

 386 

 387 
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 389 

Fig. 8. Relationship between substrate attributes and the multivariate structure of native and 390 

invasive seaweeds. Distance-based redundancy (dbRDA) plot illustrating the substrate attribute 391 

better explained the multivariate structure of the E. brachycarpa and A. taxiformis. DW.log = 392 

seaweeds biomass (log + 1). 393 

 394 

4 Discussion 395 

Invasive seaweeds threaten the biodiversity and socio-economics values of marine ecosystems 396 

around the world. Currently, sea warming caused by climate change as well as human activities are 397 

increasingly facilitating the introduction and of new invasive species increasing concerns about this 398 

phenomenon. The Mediterranean basin provides a good example of biological invasion hosting 399 

some of the worst invasive seaweeds able to modify normal ecosystem functioning. Although the 400 

majority of studies have focused on the interactions (e.g. space competition) between invasive and 401 

native species, the effects of invasive seaweeds on native fauna still deserve more attention. 402 

Knowing how invasive seaweeds change the biodiversity of the recipient habitats can allow us to 403 

predict bottom-up impacts of non-native macroalgae on higher trophic levels. 404 
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In this study, we investigated the effects of the invasive A. taxiformis by comparing the 405 

abundance, diversity and multivariate structure of its molluscs assemblages with those associated 406 

with the native canopy-forming E. brachycarpa. Our results pointed out that the invasive A. 407 

taxiformis hosted a lower diverse and less trophic structured molluscan assemblage compared to the 408 

native E. brachycarpa. This result is in accordance with other studies which found that invasive 409 

seaweeds exhibit a lower diverse associated fauna compared to native seaweeds (Navarro-Barranco 410 

et al., 2018; Veiga et al., 2018). In particular, we found that A. taxiformis hosted almost six times 411 

lower diverse molluscan assemblage compared to E. brachycarpa, with Gastropoda representing the 412 

dominant class and Rissoidae the main family. It is important to note, however, that although A. 413 

taxiformis hosted a less diverse molluscan assemblage, the dominant species (Eatonina 414 

cossurae) was the same as that in the native seaweed. Species of the genus Eatonina, where present, 415 

are largely distributed between shallow seaweeds (Rubio and Rodriguez Babio, 1995). This, led us 416 

to hypothesize that E. cossurae does not perceived differences (e.g. substrate) between native and 417 

invasive seaweeds, but that probably the uniform distribution of this mollusc on the two algae 418 

depends on other factors (e.g. environmental conditions).   419 

Contrary to A. taxiformis, the native E. brachycarpa hosted a diverse molluscan assemblage. 420 

Gastropoda was the dominant class, followed by Bivalvia and Polyplacophora, being represented at 421 

the family level mainly by Rissoidae. These results are consistent with what observed in other 422 

studies, where Cystoseira sensu lato supported rich and diverse molluscan assemblage (Milazzo et 423 

al., 2000; Chemello and Milazzo, 2002; Pitacco et al., 2014; Chiarore et al., 2017, 2019; Lolas et 424 

al., 2018; Piazzi et al., 2018; Bitlis, 2019; Mancuso et al., 2021). At the species level, most of the 425 

taxa were equal to those found in other species of Cystoseira sensu lato  (Chemello and Milazzo, 426 

2002; Pitacco et al., 2014; Chiarore et al., 2017, 2019; Lolas et al., 2018; Piazzi et al., 2018; Bitlis, 427 

2019; Mancuso et al., 2021), confirming the key role of these seaweeds in supporting rich and 428 

diverse molluscan assemblage. 429 
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Moreover, A. taxiformis showed a less-structured molluscan community compared to E. 430 

brachycarpa, as evidenced by the lack of some trophic guilds. The trophic guilds of A. taxiformis 431 

were represented by microalgae grazers, carnivores, and only one species of filter feeders. 432 

Conversely, consistent with other studies (Pitacco et al., 2014; Chiarore et al., 2017, 2019; Lolas et 433 

al., 2018; Mancuso et al., 2021) the molluscan assemblage inhabiting E. brachycarpa was well-434 

structured being represented by six trophic guilds (microalgal grazers, carnivores, filter feeders, 435 

ectoparasites or carnivores on sessile prey, deposit feeders, and macroalgae grazers). Microalgal 436 

grazers was the main group on both native and invasive species. Taxa belonging to this group feed 437 

mainly on diatom film, small microalgae, crustose algae, articulated calcareous algae and 438 

filamentous algae that grow on the surface of seaweeds (Steneck and Watling, 1982). The 439 

differences in trophic structure between E. brachycarpa and A. taxiformis could be related to 440 

variation in the micro-habitats provided by native and invasive algae, which are in some extent 441 

related to the structural complexity of the algae. Thalli of E. brachycarpa are more strength and 442 

complex compared to A. taxiformis, providing a larger number of micro-habitats able to retain 443 

sediment with organic matter and promote the growth of a large number of epiphytes, sponges and 444 

sessile invertebrates (Chemello et al., 1997; Fraschetti et al., 2002; Mačić and Svirčev, 2014), 445 

increasing food supply for grazers and carnivores (e.g. Lamellaria perspicua, Granulina marginata 446 

and  Cerithiopsis minima that were exclusive of E. brachycarpa). Other studies have suggested a 447 

main role of epiphytes in shaping the fauna associated with native and invasive seaweeds (Viejo, 448 

1999; Wikström and Kautsky, 2004). For example, authors have been suggested that the amount of 449 

epiphytes could explain the higher species richness found in the invasive S. muticum compared to 450 

native seaweeds (Viejo, 1999; Cacabelos et al., 2010). In our study, we observed that A. taxiformis 451 

had null or fewer epiphytes compared to E. brachycarpa (data not formalized). Since most of the 452 

epifauna species were microalgal grazers (that rely on microalgae for obtaining their food) we think 453 

that differences in epiphytes abundances between A. taxiformis and E. brachycarpa can be another 454 

factor that can explain the variation of the epifauna observed. We hypothesize that A. taxiformis can 455 
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provide less habitat complexity supporting less amount of epiphytes, and reducing suitable 456 

resources for many free-living epifauna species, finally generating a less structured associated 457 

molluscan assemblage compared to the native E. brachycarpa. 458 

Differences in the molluscan assemblage diversity and multivariate structure were related to the 459 

variation of substrate attributes of the algae. According to other studies, biomass was the variable 460 

that better explained the variation of the abundance, the number of species and the multivariate 461 

structure of the molluscan assemblage (Janiak and Whitlatch, 2012; Veiga et al., 2018). The role of 462 

the algal substrate attributes in shaping their associated biota has been highlighted in many studies 463 

(Chemello and Milazzo, 2002; Pitacco et al., 2014; Veiga et al., 2014, 2018; Lolas et al., 2018; 464 

Bitlis, 2019; Chiarore et al., 2019; Poursanidis et al., 2019; Mancuso et al., 2021). Previous studies 465 

highlighted that invasive seaweeds host either low (Guerra-García et al., 2012; Navarro-Barranco et 466 

al., 2018; Rubal et al., 2018; Veiga et al., 2018) or high (Veiga et al., 2014) abundance, species 467 

richness and diversity compared to native macroalgae, with this depending on their structural 468 

complexity being respectively low or higher with respect to native seaweeds. For example, 469 

Navarro-Barranco et al. (2018) showed that A. taxiformis had low fractal complexity and hosted an 470 

impoverished faunal assemblage compared to the native seaweeds. Other authors found that the 471 

congeneric A. armata had low algal volume and showed lower abundance, species richness and 472 

diversity of its associated fauna compared to the native Corallina elongata (Guerra-García et al., 473 

2012). Moreover, dry weight and fractal dimension were lower in the invasive Sargassum 474 

muticum (Yendo) Fesholt compared to native seaweeds, and have shown to play a main role in 475 

shaping the faunal assemblage associated with macroalgae (Veiga et al., 2014, 2018). According to 476 

other studies (Janiak and Whitlatch, 2012; Veiga et al., 2014; Rubal et al., 2018), our results 477 

indicated that habitat size (as biomass) was the best predictor explaining variation in abundance and 478 

richness as well as the multivariate structure of molluscs. 479 

Apart from structural complexity, other indirect factors such as the presence of chemical 480 

defences can potentially explain the differences of molluscan assemblage between invasive and 481 
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native seaweeds. Secondary metabolites released by algae have been related to the ability of habitat-482 

forming seaweeds to shape their associated fauna (Hay et al., 1987; Viejo, 1999; Paul et al., 2006; 483 

Cacabelos et al., 2010; Máximo et al., 2018; Gache et al., 2019). For example, secondary 484 

metabolites released by A. taxiformis have been responsible for the survival of fish in the post-larval 485 

stages, eventually lead to an alteration of the grazing pressure on coral reefs (Gache et al., 2019). 486 

Although our study lacks information about metabolites released by A. taxiformis and their possible 487 

consequences on the molluscan assemblage. We think that further studies could focus on the effects 488 

of metabolites released by A. taxiformis in shaping its associated molluscs, especially on the 489 

molluscan juvenile stages which may results more vulnerable. This would allow to better clarify 490 

how invasive seaweeds shape their associated molluscs.  491 

In summary, our study provides evidence that the invasive A. taxiformis threaten the biodiversity 492 

in coastal areas, reducing the diversity of the molluscan assemblage in native stands of the habitat-493 

forming E. brachycarpa. This suggests that a habitat shift from native towards invasive seaweeds 494 

could have strong negative effects decreasing local biodiversity, which may have negative impacts 495 

on the higher trophic levels (Martin et al., 1992; Heck et al., 2003), potentially triggering bottom-up 496 

effects in rocky shores habitats. Moreover, the low biomass provided from the invasive species also 497 

suggests that a large habitat shift towards invasive A. taxiformis would reduce the overall primary 498 

productivity of coastal areas.  499 

The process of biological invasion in the marine environment is difficult to contrast because of 500 

the high environmental connectivity and dispersion capacity of species. Possible solutions have 501 

been proposed, including the eradication of small invasive populations where feasible (Secord, 502 

2003).  503 

However, since the impacts of invasive species on resident diversity are highly invader- and 504 

species-specific, due the complex pathways through which bottom-up effects can take place (Maggi 505 

et al., 2015), we think that assessing the effects caused by invasive seaweeds should be posed as the 506 

first step before taking any action (Olenin et al., 2011).  507 
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Data availability and reproducible research  509 

The repository with all the data and the scripts used to reproduce the research in this paper is 510 

available at http://dx.doi.org/ 10.17632/xs4t3ddgsz.1 (Mancuso, 2021) 511 
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Highlights: 

• A. taxiformis hosted lower diverse molluscan assemblage compared to E. brachycarpa 

• Molluscan abundance and diversity changed with variation in algal biomass 

• A. taxiformis undermine the biodiversity and the services provided by E. brachycarpa 
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