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Abstract 23 

This preliminary study was aimed at evaluating the feasibility to produce biopolymers (BP) from 24 

citrus wastewater by mixed microbial culture in an anaerobic/aerobic membrane bioreactor (A/O-25 

MBR). The activated sludge of the A/O-MBR was successfully enriched in microorganisms having 26 

a good capacity in producing intracellular biopolymers. The production of BP was found to be about 27 

0.55 mgCOD mgCOD-1 using pure acetate at a concentration of 1000 mgCOD L-1. When using 28 

fermented wastewater, the conversion of acetate into BP product was 0.56 mgCOD mgCOD-1 in the 29 

test performed with C/N equal to 1000:1, whereas it was only 0.12 mgCOD mgCOD-1 in the test with 30 

C/N of 100:5. The results achieved suggested the feasibility to use citrus wastewater as a feedstock 31 

for biopolymers production although the low biomass storage capacity (0.26 mgCOD mgCODbiomass
-32 

1) suggested the need for optimizing the operating conditions in future studies.  33 

 34 
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1. Introduction 38 

Resource recovery from wastewater (WW) has been recognized as a key factor to develop sustainable 39 

treatment processes [1]. In this light, the biopolymers (BP) production from wastewater treatment 40 

processes using mixed microbial culture (MMC) and low-value substrates as carbon source [2] was 41 

widely investigated in several studies.  42 

For effective biopolymers production, the medium used as carbon source must have specific 43 

characteristics. First, a high availability of organic biodegradable substrate as volatile fatty acids 44 

(VFA), a high carbon to nitrogen (C/N) ratio and must not contain any substances that might affect 45 

the bacterial activity. In this context, a wide variety of effluents from the agro-food industries has 46 

been investigated in the past [3]. Because of the presence of recalcitrant organic compounds in these 47 

wastewaters, like phenols, essential oils, etc., their use as low-cost feedstock should be carefully 48 

evaluated by means of preliminary studies. Among the agro-food WW, the ones from citrus 49 

processing are very promising for biopolymers production, because the high content of organic 50 

substrates (chemical oxygen demand – COD > 5000 mg L-1) and the high C/N ratio (> 1000) [4]. The 51 

characteristics of citrus process wastewater (CPWW), although similar to other agro-food WW (high 52 

organic load, high C/N ratio), are different in terms of chemical composition. For instance, if 53 

compared to oil-mill or cheese-way wastewaters, in CPWW the protein/carbohydrate ratio is much 54 

lower because of the greater abundance of carbohydrates. Consequently, the productivity and the 55 

characteristics of the biopolymers will be certainly different according to the peculiarities of the 56 

wastewater used as secondary feedstock. Nevertheless, to the of best authors’ knowledge, no studies 57 

are reported in the literature showing the potential of citrus wastewater in producing biopolymers. 58 

Moreover, no experiences are referring the application of membrane bioreactor (MBR) in continuous 59 

flow plant as an alternative to conventional activated sludge system operating in discontinuous mode. 60 

With this aim, this preliminary study evaluated the potential production of biopolymers in a MBR 61 

simultaneously with the treatment of citrus wastewater.  62 
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2. Material and Methods 63 

2.1 CPWW characterization 64 

The CPWW was withdrawn from an industry that processes citrus fruits located in Palermo (Italy). 65 

The CPWW was fermented within a reactor operating in batch mode. The fermentation process was 66 

carried out with the aim to maximize the acetate production. For further details the reader is referred 67 

to the literature [5].  68 

The average values of the main qualitative parameters of the raw CPWW are reported in Table 1: 69 

Table 1: Characteristics of the CPWW. 70 

Parameter Unit Value 

Total COD [mg L-1] 4189 ± 436 

Total nitrogen (TN) [mg L-1] 40.9 ± 10.9 

Total phosphorus (TP) [mg L-1] 5.8 ± 4.5 

pH [-] 7.41 ± 0.38 

Acetate* [mg L-1] 1486 ± 354 

Carbohydrates [mg L-1] 1540 ± 181 

Proteins [mg L-1] 161 ± 51 

Conductivity [mS / cm] 1.42 ± 0.18 
*after fermentation   

 71 

2.2 MBR plant layout and operating conditions 72 

The experimental campaign was carried out in a laboratory-scale MBR reactor realized according to 73 

an anaerobic-aerobic (A/O) scheme. The plant layout is shown in Figure 1. 74 
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 75 

Figure 1: Layout of the A/O-MBR plant 76 

The A/O-MBR plant was fed with a real CPWW with a flow rate of 12 L d-1. The citrus wastewater 77 

was stored in a continuously stirred tank having a working volume of 48 L and a hydraulic retention 78 

time (HRT) of 4 days. The anaerobic reactor (volume of 2.5 L) and the aerobic reactor (volume of 79 

7.5 L) were hydraulically connected by an internal recirculation circuit with a flow rate of 1 L h-1. An 80 

ultrafiltration (UF) hollow fiber (HF) membrane module (Zee-Weed®01, courtesy of GE; specific 81 

area: 0.1m2; nominal porosity: 0.04 μm) placed within the aerobic reactor in submerged configuration 82 

provided for the permeate extraction with flux was kept to approximately 11 L m-2 h-1. 83 

The MBR plant was seeded with activated sludge with a total suspended solid (TSS) concentration 84 

of 8 g TSS L-1. Nitrogen (NH4Cl) and phosphorous (KH2PO4) were added in the feeding tank to 85 

maintain a nutrient ratio of COD: N: P = 100: 5: 1 by weight, to avoid heterotrophic growth limitation. 86 

The pH of the wastewater was adjusted to 7 by adding NaOH in the wastewater storage tank. The 87 

sludge retention time (SRT) was set at 10 days by daily withdrawing a fixed volume of activated 88 

sludge (1 L) from the system. The enriched biomass was used to perform the respirometric batch 89 

tests.  90 

 91 
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2.3 Accumulation batch test experiments 92 

Specific respirometric batch tests were performed to evaluate the ability of the enriched biomass from 93 

the A/O-MBR plant to produce biopolymers. Accumulation batch tests were performed in a 1.5 L 94 

batch reactor operating under alternative anaerobic/aerobic conditions, using pure sodium and the 95 

fermented citrus wastewater as feedstock. In the tests performed with pure acetate, five different 96 

dosages corresponding to a COD of 100 mg L-1, 200 mg L-1, 300 mg L-1, 500 mg L-1, 1000 mg L-1, 97 

were performed. This test was aimed to evaluate the maximum conversion rate of acetate into 98 

biopolymers without any possible interference due to the real wastewater composition. In the test 99 

performed with the real wastewater, a known volume of fermented wastewater was added in the batch 100 

reactor to achieve an acetate concentration (as COD) equal to the test with pure acetate. The batch 101 

tests with citrus wastewater were replicated twice, by adding or not nitrogen, to evaluate the effect of 102 

high C/N (1000:1), or low C/N (100:5). Specifically, the C/N tested were representative of the raw 103 

CPWW (high C/N) and the one in which nitrogen and phosphorus were added to avoid growth 104 

limitation for the accumulating biomass (low C/N). 105 

The biomass was maintained under anaerobic conditions until the whole COD added was completely 106 

depleted. Hereafter, air was supplied in batch mode by turning an air compressor on and off, keeping 107 

the DO concentration between 4.0 - 3.0 mg L-1. The oxygen uptake rate (OUR) was calculated as the 108 

slope of the best fitting line OD/time. The trend of OUR points (respirogram) showed a concave 109 

profile, which was representative of the oxidation of the biopolymers produced by bacteria during the 110 

anaerobic phase (Fig. 2).  111 
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 112 

Figure 2: Typical profile of the OUR values in the batch test performed with pure acetate and 113 

fermented citrus wastewater 114 

 115 

The biopolymers (as COD) produced was calculated through the following equation 1 derived from 116 

the literature [6]: 117 

𝐵𝑃 =
∆𝑂2

1 − 𝑌𝑠𝑡𝑜
                [𝑒𝑞. 1] 118 

being, ΔO2 the area under the respirogram excluding the contribution of the endogenous respiration 119 

and Ysto the storage yield equal to 0.85 mgCOD mgCOD-1 according to the literature [6]. The 120 

concentration of biopolymer was than divided for the concentration of COD dosed at the beginning 121 

of the batch test, to evaluate the conversion of the organic substrate to biopolymers (mgCOD mgCOD-122 

1). The biopolymers content within the biomass (gCOD gCODbiomass
-1) was calculated by dividing the 123 

concentration of biopolymers obtained from equation 1 for the biomass concentration expressed in 124 

terms of COD through the stoichiometric coefficient equal to 1.42 gCOD gVSS determined by direct 125 

measurements. 126 

ΔO2
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2.4 Analytical methods 127 

All physical-chemical analysis including the TSS in the mixed liquor, the COD, total nitrogen (TN) 128 

and total phosphorous (TP) were performed according to the Standard Methods [7].  129 

The acetate concentration in the fermented wastewater was measured by assessing the anions 130 

composition by means of an ion chromatograph (DX-120 – Dionex), using a pure acetate solution as 131 

the standard. The Gram and Neisser staining methods was used to detect the biopolymers inside the 132 

bacterial cells according to literature [8]. Biopolymers were observed as black granules inside cells 133 

by optical microscopic observation (100x and 1000x of magnification). 134 

 135 

3. Results and discussion 136 

3.1 Potential production of biopolymers using pure acetate 137 

Figure 3 depicts the results achieved in the batch tests performed with pure acetate. The concentration 138 

of biopolymers produced increased linearly with the dosage of acetate (Fig. 3a). The maximum 139 

conversion rate of the acetate to biopolymers was found  0.55 mgCOD mgCOD-1, which was 140 

comparable with results reported in previous studies carried out with agro-based wastewater [2,9].  141 
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 142 

Figure 3: Concentration of intracellular biopolymers (a) and conversion rate of acetate into 143 

intracellular biopolymers (b) as a function of the acetate concentration  144 

The relationship between the acetate concentration and its conversion to biopolymers is shown in Fig. 145 

3b. The relationship showed an asymptotic trend suggesting the achievement of a maximum storage-146 

capacity by bacteria as the acetate supplied was increased. Indeed, the conversion rate of acetate into 147 

biopolymers increased linearly with the acetate until a concentration of approximately 300 mgCOD 148 

L-1, whereas for further increase of acetate its incremental rate decreased. This indicated that under 149 
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high availability of organic substrate the production of biopolymers decreased. Overall, the maximum 150 

conversion rate of acetate to biopolymers (0.55 mgCOD mgCOD-1) was obtained at a concentration 151 

equal to 1000 mgCOD L-1. This was likely due to the achievement of the maximum capacity of 152 

biopolymer accumulation by the biomass that in turns depended on the amount of bacteria with 153 

intracellular storage capacity in the activated sludge.  154 

The above results confirmed that under high substrate availability, the production of biopolymers by 155 

bacteria decreased according to what reported in a previous study [10]. Moreover, the supply of 156 

organic substrate at high concentration in a single pulse likely reduced the production of biopolymers 157 

by bacteria likely because of substrate inhibition as suggested by the literature [11]. 158 

 159 

3.2 Production of biopolymers using fermented real citrus wastewater: effect of C/N 160 

The results achieved in the tests performed with the fermented wastewater are shown in Figure 4. 161 

 162 

Figure 4: Utilization of the acetate in the fermented wastewater in the test with high C/N (a) and low 163 

C/N (b) 164 

The concentration of biopolymers was higher in the test performed under high C/N, resulting close 165 

to 0.56 mgCOD mgCOD-1, whereas that in the test performed under low C/N was only 0.12 mgCOD 166 

mgCOD-1. Therefore, in the latter case bacteria likely used the most of acetate for cellular growth 167 

instead of biopolymers production.  168 
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The above results confirmed that high C/N is favorable to achieve the conversion of organic substrate 169 

into intracellular biopolymers as also reported in other studies [12,13]. Therefore, the limitation of 170 

synthesis phenomena driven by the low availability of nutrients represents a key factor to achieve a 171 

high conversion rate of acetate into biopolymers by bacteria. This is of meaning since citrus 172 

wastewaters are characterized by lack of nutrients, thus not requiring any pre-treatment for the 173 

increase of the C/N ratio.  174 

Moreover, it should be stressed that the results obtained in the test with high C/N were comparable 175 

with those achieved in the test performed with pure acetate, thus suggesting the absence of process 176 

inhibiting factors in the citrus wastewater.  177 

The maximum storage capacity by bacteria, observed in the test performed under high C/N, resulted 178 

close to 0.26 gCOD gCOD-1 that was lower than that achieved in previous literature [14]. In previous 179 

literature, higher biopolymer accumulation capacity by bacteria was achieved when the biomass was 180 

cultivated in sequencing batch reactors (SBR) with intermittent substrate availability [15]. Indeed, 181 

the alternation of feast and famine phases, creates a competitive advantage for bacteria that quickly 182 

store substrate inside their cell during the feast phase and use this to grow during the famine phase. 183 

In the A/O MBR, the continuous supply of substrate, likely limited the selection of bacteria with 184 

intracellular storage capacity. This can explain why in this study the maximum storage capacity of 185 

biopolymers by bacteria was lower compared with that obtained in other studies.   186 

Nevertheless, by comparing the results achieved in MBR and CAS systems both under continuous 187 

feeding mode, it was noted that MBR enabled a higher conversion rate of acetate into intracellular 188 

biopolymers [16]. Indeed, in MBR system, the selection of bacteria is strictly based on metabolic or 189 

kinetic factors rather than the ability of bacteria to aggregate in dense and settling flocs. From this 190 

point of view, MBR are characterized by a greater variety of the microbial community compared to 191 

a CAS system [17], thus resulting in a better enrichment of the accumulating biomass. Based on the 192 

above considerations, the selective enrichment of MMC in MBR system remain a promising solution 193 
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to improve the overall production of biopolymers, although the operating conditions should be 194 

optimized to maximize the production yield.   195 

 196 

3.3 Microscopic observation 197 

Neisser and Gram staining were carried out on the sludge from the MBR plant and during batch tests 198 

(Fig.5). Both analyses highlighted the presence of typical clusters of biopolymer-accumulating 199 

organisms, indicating that the alternation of anaerobic and aerobic conditions in the MBR plant 200 

enabled the selection of bacteria with intracellular storage capacity (Fig. 5a, b). This result was in 201 

good agreement with previous literature, in which is reported that biopolymer-accumulating 202 

organisms were observed in enhanced biological phosphorus removal systems, involving the 203 

alternation of anaerobic and aerobic environments [18]. Intracellular biopolymers were identified as 204 

the black granules within the cells of accumulating bacteria (Fig. 5c, d). 205 

 206 

Figure 5: Microscopic images of the Gram (a) and Neisser (b) staining in the samples of the A/O- 207 

MBR plant (1000x of magnification); Neisser staining in the batch tests samples: evidence of poly-P 208 

granules within the bacterial cells at the end of anaerobic phase (c, d). 209 
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As previously discussed, the maximum storage capacity by bacteria was observed in the test 210 

performed under unbalanced nutrient condition, in which the amount of intracellular biopolymers 211 

accounted for approximately 26% of VSS. This result suggested that the enrichment of biopolymer-212 

accumulating bacteria in the MBR plant would require proper adjustments aimed at maximizing the 213 

selection of these bacteria. It is reasonable to assess that aside the metabolic selection imposed by the 214 

alternation of anaerobic and aerobic conditions, a kinetic one, providing the alternation of feast and 215 

famine conditions, needs to be properly applied. 216 

 217 

3.4 General consideration and future perspectives 218 

The above results highlighted the potentiality of citrus wastewaters as secondary feedstock for 219 

biopolymers production by MMC. Nevertheless, the results obtained in this study suggested that the 220 

biopolymers productivity would be significantly increased, since it resulted substantially lower than 221 

that obtained in other studies carried out with agro-based wastewaters [19]. First, since the 222 

biopolymers production is strictly related to the acetate concentration in the influent wastewater, the 223 

fermentation process needs to be optimized, focusing on the best operating parameters that allow 224 

achieving the maximum conversion rate of the organic substance into acetate. In this study, the 225 

amount of acetate in the fermented wastewater accounted for approximately 35% the COD, whereas 226 

the same value in other study is generally higher than 65-70% [20], thus suggesting that the 227 

fermentation process should be optimized. Alternatively, it should be considered to use other waste 228 

streams produced from citrus processing characterized by higher COD in order to increase the 229 

availability of acetate to supply in the accumulation reactor. 230 

Second, a more efficient enrichment of MMC is of crucial importance to maximize the production of 231 

biopolymers. The results above discussed suggested that using MBR system is a promising approach 232 

although it should be optimized by coupling with metabolic (alternation of anaerobic/aerobic 233 

conditions) or kinetic (alternation of high/low substrate availability under aerobic conditions) 234 

selectors to achieve the enrichment of biopolymers accumulation biomass.The innovation introduced 235 
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by the bacterial selection through the MBR system could insure greater microbial diversity than 236 

conventional activated sludge systems and therefore potentially greater productivity of biopolymers. 237 

Furthermore, MBRs allow tolerating severe operating conditions, which would allow to operate in 238 

process conditions more suitable for the selection of biomass and with which conventional systems 239 

would not be able to guarantee adequate purification performances. 240 

Lastly, the feeding strategies of the batch side-stream reactor should be better investigated, evaluating 241 

the chance to implement a step-feed strategy or one based on the oxygen consumption rate.  242 

 243 

4. Conclusions 244 

The potential use of a citrus processing effluent to produce intracellular biopolymers was evaluated. 245 

The biomass enriched in bacteria with accumulation capacity of biopolymer was successfully 246 

cultivated in an A/O MBR. Biopolymer accumulating bacteria were found in the activated sludge 247 

although in moderate quantity. The conversion rate of pure acetate into intracellular biopolymers 248 

increased with the acetate concentration, reaching a maximum value of 55%. When the fermented 249 

citrus wastewater was used as organic substrate, the productivity of biopolymers was like that 250 

achieved using pure acetate (56%), indicating the suitability of citrus wastewater as low-cost substrate 251 

for biopolymers production. However, the amount of the biopolymers accounted only for 26% of the 252 

volatile suspended solids, suggesting that both the selection of the biomass and the fermentation of 253 

wastewater should be better optimized in future studies.  254 
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