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Abstract: The Allen Brain Atlas (ABA) provides a similar gene expression dataset by genome-scale mapping of the C57BL/6J
mouse brain. In this paper, we describe a method to extract the spatial information of gene expression patterns across a set of 1047
genes. The genes were chosen from among the 4104 genes having the lowest Pearson correlation coefficient used to compare
the expression patterns across voxels in a single hemisphere for available coronal and sagittal volumes. The set of genes analysed
in this paper is the one discarded in the article by Bohland et al., which was considered to be of a lower consistency, not a reliable
dataset. Following a normalisation task with a global and local approach, voxels were clustered using hierarchical and partition-
ing clustering techniques. Cluster analysis and a validation method based on entropy and purity were performed. We analyse the
resulting clusters of the mouse brain for different numbers of groups and compare them with a classically-defined anatomical refer-
ence atlas. The high degree of correspondence between clusters and anatomical regions highlight how gene expression patterns
with a low Pearson correlation coefficient between sagittal and coronal sections can accurately identify different neuroanatomical
regions.

1 Introduction

In the last two decades, the evolution of technology has allowed
answers to be given to some queries arising from biological stud-
ies. Some of them have been restricted to the own field of science
involving biological researchers, some others have been supported
by a multidisciplinary approach in which data analysis plays a for-
mal and substantial role [1–3]. Without prejudice to the generality,
only a few principle technologies need to be cited so as to under-
stand the quality of the evolution in gene expression. Microarrays
with its two-colour fluorescence hybridisation allow the monitoring
of the expression of many genes [4]. Starting from the method-
ologies proposed by F. Sanger et all in [5] a new approach named
Next Generation Sequencing was developed during the last decade.
Shendure and Ji in [6] dissert on this methodology, highlighting the
positive performances concerning the Sanger model, and during the
year 2010, McKenna et al. in [7] discuss their GATK framework
in which it is easy to develop efficient and robust tools to analyse
next-generation DNA sequencers.

New research topics in science and technology aimed at improv-
ing the ability to store large amounts of data. Their analysis, interpre-
tation and their integration have characterised the recent challenges
of to researchers.

Over the last decades, methods and techniques, acquired from
scientific disciplines related to biology, reformulated adequately
to extracting correlations between heterogeneous data, have con-
tributed to the interpretation of complex data allowing the identi-
fication of innovative solutions otherwise unattainable with classical
methods. Therefore, to investigate data with information poverty
and apparently without significant correlations, methodologies ori-
entated to the analysis of data in their entirety will be taken into
account by extracting a substantial amount of information. Notably,
it was decided to investigate and describe new empirical approaches
adaptable to the multidimensional biomedical data currently present
on the Allen Brain Atlas (ABA) [8].

Bohland et al. in [9] introduce a study to identify distinct
neuroanatomical areas based on gene expression patterns. Spatial
correlation has detected distributions of genes or patterns among
gene expression profiles in the brain. They observed patterns in a
multivariate exploration technique and data analysis was adopted
on a broad set of spatially co-registered gene expression volumes
derived from the Allen Brain Atlas (ABA). Coronal and sagittal
volumes were registered, and the maximum correlation coefficients
were evaluated. The analysis was focused on 75% of best correla-
tion, and no analysis was performed on the lowest correlation (25%
of cases); thus they present their result on 75% of higher correla-
tion values. Following the Bohland approach, our proposed method
intends to investigate 25% of lower cases. Thus a reformulation of
the method was imposed to manage the lower gene correlation which
can highlight distinctive neuroanatomical sites. This point of view
allows work to be carried out on a small number of genes and to
obtain some unique neuroanatomical sites.

The interpretation of the spatial distributions of gene expressions,
present in those partitions of data that are poor in information and
therefore neglected by current literary approaches, has been taken
into consideration. We aim to find significant distributions when
highlighting specific pathologies are hosted in the area with 25%
of correlations.

The empirical methodologies are based on the identification of
physiological and physical correlations of biological data into the
brain regions of the adult mouse and consist of well-known methods
in the area of machine learning, data sampling methods, clustering
and validation methods, according to a new approach to identify new
correlations in neglected areas.

The correlations among genomic distributions in the brain are of
fundamental importance for the deepening of brain functions. In-
depth, data analysis will be addressed on the central nervous system
of the adult mouse in which it is possible to highlight thousands of
genes [10]. Lein et all in [1] assert that genomic sequence informa-
tion and high-throughput has allowed an expansion in the field of
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global analysis. Such methodologies give a framework for analysing
the relationship between brain structure and their functionality. How-
ever, in many cases, these techniques have been adopted for large
brain components, thus given their significant amount of data their
interpretation is not naive.

Furthermore, for more in-depth functional knowledge, it is appro-
priate to highlight the genomic distribution correlations in a 3D
space. A set of databases are involved in literature, some of them
include heterogeneous data, some other homogeneous and all of
them have the aim of allowing a more robust knowledge of gene pat-
terns and their distribution of different neuro-anatomic regions [11–
18]. The Allen Brain Atlas (ABA) offers a gene expression dataset
integrated by a database that allows the extraction of quantitative
information and selection of genes based on spatial or anatomical
localisation.

AGEA (Anatomic Gene Expression Atlas), free integrated tool in
ABA discussed in [19], enables new possibilities for understanding
the brain organisation in terms of genomics distributions or patterns
in 2D or 3D shape, and allow the understanding of spatial correla-
tions across expressions data for thousands of genes. In the same
paper the author’s argument about the tools to examine anatomi-
cal relationships: 3d dimensional visualisation, gene retrieval, and
hierarchical transcription.

Fürth et all in [20] introduce an integrated framework to auto-
matically annotate, analyse, visualise and easily share whole-brain
data at cellular resolution, based on a scale-invariant, interactive
mouse brain atlas. The primary aim of this framework regards the
capability to provide a brain map which integrates heterogeneous
data coming from neuron identity, their connectivity and function-
ality. In [21], Hawrylycz et al. disserted on the gene expression,
and gene co-expression relationships also demonstrate that the dis-
tributions of significant neuron cells strongly reflect the functional
brain variation. Thus the anatomical division along the edges are in
many cases linked with the genes interlocked with synaptic trans-
mission. Therefore, molecular distribution and its spatial neocortex
have linearly dependent topographic distribution. Recent dissemina-
tion of morphological items allows the assertion that new metrics
based on the shape of patterns can give a new approach to discov-
ering cluster association [22]. Morphometric similarity introduced
by Seidlitz et al. in [23] presented a robust method to understand
how human cortical networks reinforce the different individual fea-
tures and not only pathologies. A set of free resources for analysis
of genome sequencing are available on the shelf, but they require a
lot of computational time and memory for their run. BWA, GATK,
and snpEff are only some of the standard tools that can be used to
align and detect variants from a single genome. However, simultane-
ous analysis of many genomes is significantly accelerated by the use
of supercomputers which is welcomed by the geneticist’s commu-
nity. Many contributions for genomic analysis are orientated to the
study of the entire genome and require the alignment and comparison
of raw sequence data. Thus some of these cases require sequencing
methods with a parallel approach for simultaneous analysis of mul-
tiple genomes. Puckelwartz et al. in [24] engaged the problem of
sequencing with the adoption of a supercomputer to improve both
the speed-up and results for an increased proper sequence. Our pro-
posed method does not use a parallel or distributed system, and
it needs only standard elaboration systems to find genetic distri-
butions for evaluating the morphological shape. This is due to the
use of the classified genes that are hosted in heterogeneous dataset
inside the ABA. The Human Genome Project is an example of the
heterogeneous dataset to identify all nucleotides in human chro-
mosomes. These include wide-ranging data domains, accessibility
through many levels of abstraction. In [25] the authors support and
explore a discussion on the advantages for defining a database for
the Human Genome Project designed in a heterogeneous way. Its
main features are the high-level data model, the representation of
notions as objects of a relational model, the metadata as an expres-
sion of a working database, the tables to populate the database; and
its implementation based on a conventional relational database.

Artificial Neural Network (ANN), in the last decade, has had a
significant consideration both in the different area of image analysis

and computer vision and in the field of classification of high-
dimensional data and feature selection extraction. Despite seeming
to be a panacea for many problems present on these items, Aziz et
al. in [26] study the performance of Independent Component Analy-
sis as an alternative optimisation technique, they show experimental
results in which the proposed methodologies gives more accurate
classification rate for ANN classifier.

Representation, visualisation and imaging are only a few words
to identify the possibility to highlight the depiction of heterogeneous
and multiple information concisely. A number of exhaustive studies
have been carried out, during the last few years, allowing the vices
and virtues of the use of concise visualisation of a large quantity
of data to be focused on. In the last decade, some members of an
image processing group have orientated their attention on the bioim-
age informatics in which novel image processing methods twisted
to data mining and visualisation approaches, and search and man-
agement data increase the focus on the application rather than the
theoretical aspect. The underlying methodologies are hosted inside
the classical field of image analysis and computer vision: feature
extraction, segmentation, registration. Peng in [27] summarises with
a brief overview of the available bioimage databases, analysis tools
and other resources.

In visual analytic tools, emerging topics and new developments
allow defining techniques to synthesise information and to mine
features from extensive often-contradictory data. Therefore, visual
representations and the technologies to understand visually com-
plex information allow to navigate into and then they offer the best
interaction user-data [28].

The Allen Brain Atlas (ABA) was designed and implemented by
Allen Institute for Brain Science, and in 2006 at great demand, it
was included on web distribution [29]. A set of materials can be
extracted from its databases. However, the DB for human and mouse
represent the most relevant heterogeneous DBs that allows integrat-
ing data coming from different sources [30]. During the last years,
ABA has collected growing resources, integrating a wide range
of neuroanatomical data, such as two-dimensional data structures
(MRI, cytology, ...) and 3-D representations with appropriate recon-
structions and gene expression data, too. Moreover, search tools and
data viewers are only two, of the tools hosted in the ABA, that can
be highlighted from the set of services in the open website ABA
[2, 31]. The section 2 introduces the dataset and preprocessing task
in which algorithms will be applied, data analysis will be argued in
the section 3, section 4 reports the description of the method, and
finally evaluation metrics and experiments with conclusions will be
shown in 5 and 6 respectively.

2 Materials

We performed a rigorous analysis of the distribution of genome in
the mouse brain. We first mapped every distribution on the different
mouse areas and analysed their different variants. The method then
encoded the variants into the list of elements and created feature
vectors for each case and control sample.

Bohland et al. [9] have analysed the ABA data in which a high
Pearson correlation rate was identified(75%) between sagittal and
coronal sections. The proposed method intends to investigate the
genomes in which a low Pearson correlation is present (25%), the
total of 4104, genes to distinguish physiological areas of the mouse
brain. The set of data was discarded in [9], thus in fig. 1 the distribu-
tion of the correlation values for coronal-sagittal sections is shown.
The study focuses on the search for physiological relations between
the coronal and sagittal sections of the genes and possible interac-
tions with the brain regions.
In detail, figure 2 depicts the gene’s distribution in every district
with a 25% correlation between sagittal and coronal sections.

The data used in this work are gene expressions resulting from the
digitisation of the result of the in situ hybridisation process (ISH) and
were collected by the ABA dataset (http://mouse.brain-map.org).
Given the high quality of the AGEA interface (http://mouse.brain-
map.org/agea), a user navigates on a genomic map, based on the
gene transcriptions of the brain and interprets these results in the
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Fig. 1: 25% Histogram of the Pearson correlation coefficients, the
values represent the correlation between coronal and sagittal sections
of the same gene.

Fig. 2: Dataset at 25% correlation.

context of a reference atlas generated from histological stains of the
Nissl type, called the Allen Reference Atlas (ARA).

The brain of the adult mouse has been partitioned into 49742 vir-
tual voxels with 200µm size. In correspondence to each voxel, the
values of gene expressions have been associated for all the genes
[32, 33], and the gene expressions are shown in a voxel array for
genes. For each voxelv, the expressionE(v, g) of the geneg ∈ G
is the weighted average of the intensityI in scale grays evaluated on
eachp pixel present on theV voxel.

E(v, g) =

∑

p∈V M(p)I(p)
∑

p∈V 1
,

whereM(p) =

{

1 if the geneg has an expression on the voxelp,

0 otherwise.
(1)

The matrix voxelE(v, g), has size 49742× 4104 and is stored in
the ExpEnergy.mat data, such file has been included in the toolbox
’Brain Gene Expression Analysis to Matlab toolbox for the analysis
of the brain-wide gene-expression data [34].The Brain Gene Expres-
sion Analysis toolbox [29] has been adopted for the visualisation of
data. It is a Matlab toolbox that includes computational techniques
for quantitative analysis of gene expression data hosted in the section
adult mouse brain of the Allen atlas. Therefore, to extract informa-
tion from the low correlation genes and to manage multidimensional
data, a Matlab library has been designed and developed for the best
integration of the whole system. Such modules include data visu-
alisation functions, with a spatial resolution of200µm. They are
useful both for the comparison of gene expressions and classical neu-
roanatomy and for a statistical study of the co-expression networks
of gene groups and grouping of voxel genes.

Preprocessing

In many cases, the pre-processing phase is fundamental for a correct
analysis of data; therefore it is suitable to identify the most appropri-
ate methods to improve data that will be processed in the following
phases. To this end, some methodologies were evaluated and, after
careful analysis, two of them gave the best results. Hence they are
adopted (Z-score normalisation, Principal Component Analysis).

2.0.1 Normalization: Mean, and standard deviation are two
useful parameters in different areas of data analysis. Due to the
dimensionality or resolution of data, some cases highlight false pos-
itive results. Therefore, a normalisation phase, as a preprocessing
activity, is undoubtedly necessary to produce homogeneous data.
The normalisation process was performed with the Z-score method.
Given a datasetM and for eachgm ∈ M its meanµ and standard
deviationσ, the set of values contained inM may be normalised
with the following normalisation ratioZm:

Zm =
gm − µ

σ

It may be shown that a series of values normalised with the Z-
score has an average equal to zero and a standard deviation similar to
one. Therefore, such normalised data represent an independent unit
of measurement that can be used to compare values with different
units of measurement.

2.0.2 Principal Component Analysis: The Principal Compo-
nent Analysis (PCA) is a useful methodology to identify represen-
tative models in the data and express the data in such a way as
to highlight the similarities and the differences between the ele-
ments [35, 36]. Given the datasetD with sizen×m, in which n
measurements havem−dimension, the method may be formalized:

1. calculate the average of eachm−dimensional vector;
2. evaluate the covariance matrix of the whole data series;
3. find the corresponding eigenvectors and eigenvalues;
4. sort the eigenvectors in descending order with respect to the cor-
responding eigenvalues and choose the firstk eigenvectors related to
the data of maximum variance. This is done to form a new matrixW
whose size isn× k composed by chosen eigenvectors and inserted
in the ordered column.
5. apply the matrixW to the dataset elements, in order to transform
the elements into a newk−dimensional subspace

y = W
T × x ∀ x
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wherex is a vectorm× 1 representing an element, andy a vector
k × 1 in the new space obtained by applying the transformW on the
x genes.

3 Data Analysis

Clustering techniques or supervised and non-supervised methods are
commonly used as tools for information extraction, and they are
used in studies on genomic expressions and microarray. The goal
is to reduce data by grouping similar data into the same subset or
cluster [37]. In this way, the objects belonging to the same cluster
have similar characteristics [10, 35]. Clustering is a process which
allows a partitioning of a set of data into a small number of subsets.
Formally, given a positive valuek and a dataset ofn elements with
m−dimension in which each element is namedxij i = 1, . . . , n e
j = 1, . . . ,m, clustering methods partitionn elements ink cluster
or subset in a supervised way or not. Clustering methods need two
fundamental elements: a metric or degree of similarity, subdivided
into metrics or semi-metrics, and the mode of its use on clusters
[38, 39].

Hierarchical Clustering

Agglomerative and divisive approaches are introduced in the hier-
archical cluster literature. The methodology proposed in this paper
considers the first method in which a bottom-up analysis is envis-
aged. Following the standard formalisation of agglomerative clus-
ters, the method considers as an initial step many clusters equal to
the number of elements, and also a succession of iterative steps. The
task of sequential steps aggregates, depending on a static criterion,
the various clusters that satisfy it, so after a finite number of steps,
a single cluster containing all the elements will be detected. Given a
set ofn vectors, they can be clustered with the support of distance
or similarity matrixn× n, using the following steps:

1. clusters have when initially assigning each element to one
cluster;
2. calculate the coupled similarity for all clusters;
3. consider the two most similar clusters to merge them to
reduce the number of clusters by one;
4. calculate the distances between the new cluster and the old
clusters, updating the distance matrix;
5. repeat steps 2 and three until getting a single cluster withn

vectors.

In the proposed methodology the distance adopted is the
Euclidean metric among the vectors; furthermore, step 3 can be iden-
tified with three cluster strategies:single-linkage, complete-linkage
andaverage-linkage.

The aggregation of two clusters withsingle-linkage approach is
obtained by calculating the minimum distances between an ele-
ment of a cluster and each element of all the other clusters. The
complete-linkage method considers the maximum distance between
all elements of the pair of clusters. The last approach,average-
linkage, to aggregate clusters, consider the average distance between
all the pairs of vectors of two distinct clusters.

Partitional Clustering

The method based on partitional clustering requires two constraints:
to define a priori the number of clusters in which the initial set has to
be subdivided and the relative distance. The method establishes the
belonging of an element to a sub-set according to the distance that
such an element has with the representative element of the cluster,
named centroid. The K-means is a partition clustering algorithm that
has the purpose of associating each element to a cluster by deter-
mining the positions of centroidsµi, i = 1 . . . k for eachCi cluster.
Moreover, it minimises the distance between the element and the
centroids (cluster representatives) and also maximises the distance

between the clusters [40].

k
⋃

i=1

Ci = X Ci ∩ Cj = ∅ ∀i 6= j ∅ ⊂ Ci ⊂ X ∀i

The K-means, to assign an element to the cluster, solves the follow-
ing expression:

argmin
c

k
∑

i=1

∑

x∈Ci

d(x, µi) = argmin
c

k
∑

i=1

∑

x∈Ci

‖x− µi‖
2

whereCi is the set of points that belong to the clusteri, andc is
the partition at theith iteraction.

Given the adaptability of the K-means method to heterogeneous
datasets, there are numerous metrics proposed in the literature.
Minkowski metrics, correlation coefficients and Hamming distance
are just some of the possible adoptable metrics in the clustering pro-
cess involved in K-means. The identification of the right metric, to
obtain a convergent process at the global minimum, can be extremely
burdensome and in many cases, with non-trivial distributions, the
method can be classified asNP − hard.

4 Description of the method

LetE be the matrix with dimension49742× 4104 that contains the
elements of the dataset. The 2-dimensional matrix has rows to iden-
tify a voxel and columns for a gene. Thus the intersection between a
voxel and a gene represents the gene expression hosted in each voxel
of the mouse brain.

The goal is to find similarities between physiological and physical
links of theE75 ⊂ E dataset of (the most correlated genes between
sagittal and coronal sections) and the complementary counterpart
E25 ⊂ E which has less-correlated gene expressions.

The gene expression data-set has two representations. The first is
represented by the matrixE, it is named ’fine’ and includes all gene
expressions. The second one is more synthetic, it is called ’big12’
and is referred to a matrixF with a size of25155× 4104, it includes
voxels and an equal number of genes. The subset taken in consider-
ation in this article will be ’big12’, with theF75 ⊂ F dataset which
include more gene expression correlation than theF25 ⊂ F .

All the voxels of the ’big12’ dataset belong, neuroanatomi-
cally and disjointly, to the 13 regions of the brain: Cells, Cerebral
Cortex, Olfactory areas, Hippocampus region, Retrohippocampal
region, Striatum, Pallidum, Thalamus, Hypothalamus, Midbrain,
Pons, Medulla, Cerebellum (see Figure 3).

Fig. 3: Regions of the brain of an adult mouse ABA atlas (Kcnab3-
RP_050927_01_A02-sagittal: gene=Kcnab3, ProbeType=RNA,
ProbeOrient.=Antisense, Plane=sagittal, Treatments=ISH).

After a meticulous study of the dataset, a preprocessing phase on
the datasetF has been necessary. Thus a normalisation task and a
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5× 5 Gaussian filter with a global and local approach were included
in the proposed methodology.

The local approach performs the normalisation process for each
gene expression (column in theE matrix), and for each subset of the
13 regions (see figure 4). The Z-score normalisation was applied,
and then a task eliminated all the data residing on the Gaussian distri-
bution queues[µ− 3σ, µ3σ]. The other approach applies the z-score
normalisation and the Gaussian filter on a whole column (see figure
5).

Fig. 4: Local Zscore.

Fig. 5: Global Zscore.

Following the preprocessing phase, two matrix were extracted
that represent both the region and the genes expression. LetG be
the array of characteristics of size1047× 26 defined as:

G = [Gmax, Gdens] ∈ M(1047, 13, 2)

with η
j
i ∈ Gmax, δ

j
i ∈ Gdens,

wherei = 1, . . . , 1047 , j = 1, . . . , 13, ηji is maximum normalized
value of the genei-th in thej-th region andδji is the density, given
by the ratio between the not-null values of the voxel number of the
i-th gene and the voxel number of thej-th region.

η
j
i =

ij |Ri|
max
k=ij

gi (k) δ
j
i =

|gi (k) 6= 0|
∣

∣Rj

∣

∣

wherek = ij , . . . , ij
∣

∣Rj

∣

∣

The creation of this matrix binds the genes and the regions accord-
ing to the maximum gene expressions and their densities. Figure 6
shows the G characteristics matrix in which PCA will extract the
right selection of features. The next phase should consist of hierar-
chical and partitioning clustering techniques, but a resizing action
was assumed to select the minimum number of information needed
for the cluster analysis. PCA method was applied to the matrix
G which underwent a re-sizedPR2 matrix (see figure 7) before
proceeding with cluster analysis.

Fig. 6: The G characteristics matrix.

This paper introduces a hierarchical clustering technique with
Euclidean metric and complete-linkage as aggregation criterion.
Dendrogram shape can represent the results. Whereas, the partition
method was executed both with the K-means algorithm and with the
c-mean fuzzy cluster.

In all of the different modalities, establishing the number of clus-
tersK a priori is essential. In our case,K ∈ [13, 60] and the regions
of the brain areR = 13. In all two cases (hierarchical, K-means)
a set of 1047 genes was partitioned inK clusters. Therefore, the
genes contained in each cluster can be considered as generators of
the respective regions.

Among the different analyses implemented to evaluate data, only
the two methods that best highlighted the results obtained would be
described.

MAX2 Method

Let PR2 ∈ M(1047, 2) be the projection matrix after the PCA
transforms the matrixG with only two selected columns (the first
two eigenvectors of the new space). Thei-th row vector ofPR2 is
defined as:(xGi, yGi), wherei indexes thei-th gene expression.

Therefore, by fixing the number of clustersK and the clustering
algorithm, the matrixPR2 will have the following partition:
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Fig. 7: Application of PCA at the G matrix.

PPR2
= {C1, C2, . . . , CK}

Ci includes all of the row-vectors ofPR2 related to thei-th
cluster. In the next step, we intend to compare the obtained clus-
ters with the neuroanatomic regions of mouse brain. LetGmax ∈
M(1047, 13) be the matrix which contains only the maximum val-
ues(ηji ).

The method focuses on the rows of the matrixGmax correspond-
ing to the genes included in theCi cluster. LetÃ́cÂĂÂŹs consider
the i-th row in Gmax for each gene extracted fromCi, and store
the position of the maximum value in the range[1, 13]. Such posi-
tion indexes the region where the gene has the maximum gene
expression, thus a region will be associated with each gene.

However, we can associate to each cluster the region with the
highest occurrence among all the positions associated with the
elements of the cluster itself. To summarise, starting from the par-
titioning of the genes in disjointed clusters, we can say that it will be
possible to associate a more common region to each cluster.

NearGene Method

The main difference with the MAX2 Method is the rule of compari-
son between clusters found and neuroanatomical regions. To have a
correct comparison the NearGene method and Max2 we are forced
to borrow the same matrix adopted by MAX2.
Let PR2 ∈ M(1047, 2) be the projection matrix,PPR2

=
{C1, C2, . . . , CK} the partial cluster of thePR2 matrix and
Gmax ∈ M(1047, 13) the matrix in which maximum values are
stored.

For each row of the matrixGmax, a [0, 1] normalization phase
was applied and then their percentage was calculated. More-
over, for each element(xigh , y

i
gh) of the clusterCi with h ∈

{c1, c2, . . . , |Ci|}, the centroidcentroid(Ci) = (x̄i, ȳi) of the
cluster will be evaluated. Finally, the rowh ∈ PR2 with the fol-
lowing feature:

argmin
h

‖(xigh , y
i
gh), (x̄

i
, ȳ

i)‖

is identified.
The index of theh-th gene allows the region of the maximum value
in theh-th row of the matrixGmax to be associated to the cluster
Ci; thus, as in the MAX2 method, to theCi cluster will be assigned
the index of the maximum region.
Starting from the previously selected elements, the following steps
of the method tune its actions on the rows of theGmax matrix atten-
dant to the genes included in theCi cluster. Therefore, for each
gene found inCi, the method looks for thei-th row inGmax, and
then the index (position) of the maximum value will be taken into
account because it indicates the region in which the gene assumes
its maximum expression. It is clear that each gene of every cluster
will be assigned a neuroanatomical region, and in the same way, it is
possible to assign to each clusterCi the region with the maximum
occurrence chosen from among all components (genes) of the clus-
ter.
Therefore, it is simple to affirm that starting from a genes partition
into disjointed clusters; a region with high occurrence value will be
assigned to every cluster.

5 Metrics for data evaluation

To assess the correct assignment of gene expressions to clusters
with the use of the less correlated data setF25 two indicators are
described which globally represent the degree of information and
their goodness: Entropy and purity.

Therefore, we intend to evaluate the degree of similarity [41]
between gene expression present in the regions and in the clusters
starting from aCM (confusion matrix) in which rows give informa-
tion on the clusters, otherwise the columns the real neuroanatomic
region.

Let r be the number of the regions (13), and letCM ∈ M(r, r)

be the confusion matrix. The components ofCM are (mc
j
i ) and

represent the number of elements (genes) that are assigned to thei-
th cluster but they belong to the real regionj with i, j = 1, . . . , r.
Two metrics have been included in the methodology:entropy and
purity which indicates how different regions are distributed inside
the same cluster [42].

Given a particular clusterci of sizegi, the entropy of this cluster
will be defined as follows:

E (ci) = −
1

log |R|

|R|
∑

h=1

mchi
mci

log
mchi
mci

Where|R| is the number of regions in the dataset, andmchi is
the number of elements of theh-th region that was assigned to the
i-th cluster. The entropy of the solution is obtained as a sum of the
individual cluster entropies in accordance to the cluster size:

E =
K
∑

i=1

mci
mc

E (ci)

The values of entropy range between0 and1, thus the value0
will be obtained for a perfect match, namely the elements of the
class coincide with the elements of the region; while the value1 will
be representative of lousy clustering.

The other validation index has been taken into consideration:
purity or goodness of the clusterCi, and its value is evaluated by:

P (Ci) =
1

mci
max

i
mc

j
i

It indicates the ratio between the maximum number of elements
in a cluster associated with a region and the cardinality of the cluster.
Therefore, to evaluate the goodness of the whole clustering process a
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weightedsum on the cardinalities of every cluster has been included
in the methodology:

P =
k
∑

i=1

mci
mc

P (Ci)

wherek is the number of clusters.
Like for the entropy, the[0, 1] interval is also the range for the good-
ness, but for the best distribution of cluster the value of goodness
needs to be near the1 value.

6 Results and Conclusions

Concerning the definition of the methodology described in 4 and
the brief description of the algorithms used for clustering in 3, an
exhaustive analysis will be reported. All of the possible combina-
tions will be tested, and a selection of plots will be reported to
highlight the quality of methodology. We note that the methodol-
ogy was applied in both datasetF25 andF75 and this to evaluate the
results among DBs. Global or local normalisation and hierarchical
or partitional clustering can be combined in four different analysis
as follow:

1. global normalization and hierarchical clustering;
2. global normalization and partitional clustering;
3. local normalization and hierarchical clustering;
4. local normalization and partitional clustering.

The images in Figures 8 and 9 show the clustering results for
13 regions, in which, for theF25 dataset, is applied to the array
Gdens ∈ M(1047, 13) where the components are given by the den-
sities (δji ), i = 1, . . . , 1047 and j = 1, . . . , 13. We recall that the
densityδji is the ratio between the number of voxels of non-null val-
ues of thei-th gene and the voxel number of thej-th region in the
respective dataset. The circles, representing the clusters, have their
centre on the cluster’s centre of gravity and as a radius the maximum
distance between the centre and all the other elements of the cluster.

Fig. 8: The clustering results for 13 regions on theF25 andF75

dataset where a global normalization and hierarchical clustering a-
b), and local normalization and hierarchical clustering c-d) approach
were applied to the matrixGdens. x-axis andy-axis represent the
densityδji of thei-th gene and of thej-th cluster respectively.

Fig. 9: The clustering results for 13 regions on theF25 andF75

dataset where a global normalization and partitional clustering e-
f), and local normalization and partitional clustering g-h) approach
were applied to the matrixGdens. x-axis andy-axis represent the
densityδji of thei-th gene and of thej-th cluster respectively.

Fig. 10: Plots of gene expression distribution after the cluster
analysis on the matrixGdens: a) dataset 25%, b) dataset 75%.

On the other hand, Figure 10 depicts the different distributions
of the genes partitioning in the 13 clusters concerning the genes of
the different datasets:F25(a) andF75(b), in accordance to the four
proposed approaches.

In the plots highlighted in Figures 11), 12) and 13) the same
analysis, as the previous ones, is performed but applied to the char-
acteristics matrixGmax given by the values of maximum gene
expressionηji of genes compared to brain regions.

The results shown in the figures 14, 15 and 16 were obtained using
the array of characteristicsG which contains both the maximum
values and the densities.

All the previously clustering representations highlight a substan-
tial overlap of the data represented in the two-dimensional space. On
the other hand, if before clustering steps theG matrix is transformed,
namelyG is projected on the two-dimensional space of maximum
variance with the use of PCA. Thus, there is a slight overlap of
the data as shown by the plots of figures 17, 18 and 19 that depict
the effect of PCA on the datasets. Such plots put on the axis of the
abscissa and of the ordinate the main components associated to the
i-th gene and thej-th cluster.

All the above results dictate decisions on which path to undertake.
It is easy to note that the use of PCA on the characteristic matrixG

7



Fig. 11: The clustering results for 13 regions on theF25 andF75

dataset where a global normalization and hierarchical clustering a-
b), and local normalization and hierarchical clustering c-d) approach
were applied to the matrixGmax. x-axis andy-axis represent the
densityηji of thei-th gene and of thej-th cluster respectively.

Fig. 12: The clustering results for 13 regions on theF25 andF75

dataset where a global normalization and partitional clustering e-
f), and local normalization and partitional clustering g-h) approach
were applied to the matrixGmax. x-axis andy-axis represent the
densityηji of thei-th gene and of thej-th cluster respectively.

shows a correct classification, but a unique methodology path has
to be considered to extracting the best results. Therefore, the four
methods were approached with MAX2 and NearGene algorithms to
assess the best results. In the following, a set of plots are reported
to consider the behaviour of the different approaches to varying the
number of clusters between 13 and 60. The coordinates of the points
show the number of clusters used by the clustering on the abscissa,
and on the ordinate the number of distinct regions identified by the
clusters.

From the plots in figure 20 and 23 it is possible to highlight that
theNearGene method is quite superior to theMAX2 method because

Fig. 13: Plots of gene expression distribution after the cluster
analysis on the matrixGmax: a) dataset 25%, b) dataset 75%.

Fig. 14: The clustering results for 13 regions on theF25 andF75

dataset where a global normalization and hierarchical clustering a-
b), and local normalization and hierarchical clustering c-d) approach
were applied to the whole matrixG in whichGmax andGdens were
considered.

Fig. 15: The clustering results for 13 regions on theF25 andF75

dataset where a global normalization and partitional clustering e-
f), and local normalization and partitional clustering g-h) approach
were applied to the whole matrixG in whichGmax andGdens were
considered.

it can identify all 13 brain regions with a relatively small number of
clusters. Regarding the results of theNearGene, it has to be noted
that on the datasetF25 (see figure 22) the 13 regions are identified
with a fewer number of clusters, compared to the analysis performed
on theF75 dataset.
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Fig. 16: Plots of gene expression distribution after the cluster anal-
ysis on the whole matrixG in which Gmax and Gdens were
considered: a) dataset 25%, b) dataset 75%.

Fig. 17: The results for 13 regions on theF25 and F75 dataset
where a global normalization and hierarchical clustering a-b), and
local normalization and hierarchical clustering c-d) approach were
applied to the whole matrixG after the PCA method was imposed.

Fig. 18: The results for 13 regions on theF25 andF75 dataset where
a global normalization and partitional clustering e-f), and local nor-
malization and partitional clustering g-h) approach were applied to
the whole matrixG after the PCA method was imposed.

The mean of entropy values and also the average of purity
depicted in figure 24 show better performance for the global

Fig. 19: Plots of gene expression distribution after the cluster anal-
ysis on the whole matrixG after a PCA method was considered: a)
dataset 25%, b) dataset 75%.

Fig. 20: The MAX2 plot reports the number of unique regions
versus the number of clusters on theF25 dataset.

Fig. 21: The MAX2 plot reports the number of unique regions
versus the number of clusters on theF75 dataset.

approach and moreover, for both types of clustering, the desired
physiological finding is reached first.

The figure 25 contains two Heatmaps, representing the intersec-
tion of the cluster voxels with those of the regions 25.(A) and vice
versa 25.(B). Highlighted in figure 25, cluster 5 physically locates
the retro-hippocampal region; this is evident from the fact that the
pixel is highlighted in white; therefore, the cluster/region correla-
tion is very high. Knowing the genes that represent cluster 5, which
have been identified only as a function of gene expression and not
the spatial position, can be physiologically representative concerning
the retro-hippocampal region.
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Fig. 22: The NearGene plot reports the number of unique regions
versus the number of clusters on theF25 dataset.

Fig. 23: The NearGene plot reports the number of unique regions
versus the number of clusters on theF75 dataset.

Fig. 24: Average of Purity and Entropy index for datasetF25

Therefore, to the best of our knowledge, we can reasonably state
that the obtained results support the purpose of this study. Since by
analysing theF25 dataset of genes, which are considered the least
significant, it is possible to extract equivalent information to the
obtained results from the analyses performed on theF75 dataset.
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