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Abstract

Humans have a privileged, embodied way to explore the world of sounds,
through vocal imitation. The Quantum Vocal Theory of Sounds (QVTS) starts
from the assumption that any sound can be expressed and described as the evolution
of a superposition of vocal states, i.e., phonation, turbulence, and supraglottal
myoelastic vibrations. The postulates of quantum mechanics, with the notions of
observable, measurement, and time evolution of state, provide a model that can
be used for sound processing, in both directions of analysis and synthesis. QVTS
can give a quantum-theoretic explanation to some auditory streaming phenomena,
eventually leading to practical solutions of relevant sound-processing problems,
or it can be creatively exploited to manipulate superpositions of sonic elements.
Perhapsmore importantly, QVTSmay be a fertile ground to host a dialogue between
physicists, computer scientists, musicians, and sound designers, possibly giving us
unheard manifestations of human creativity.
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1 Soundvoice↔ Quanta
Sometimes, when kids imitate sounds around them, they are blamed for producing
weird noises. However, they are unknowingly using their own voice as a probe
to investigate the world of sounds, and thus they are probably performing some
experiments. Some of the these kids will become sound designers, other ones
composers, other sound engineers and physicists; some other ones, will blame
future kids, and the cycle repeats.
What is a vocal imitation? It is the attempt to reproduce some essential features

of a sound, thought of or actually heard, with the human voice. The imitation can
refer to characteristics of the sound, or to its hypothetical sources [22].
The human brain catches some salient sound features, and the voice attempts to

reproduce them. Sometimes, even poets (some of the kids above became poets as
well) coined newwords as to include auditory dimensions in their poetry, producing
examples of onomatopoeia. This happened for example at the beginning of 20th
Century, with the poems by the futurist Filippo Tommaso Marinetti, where the
words Zang Tumb Tumb imitate motor and war noises [35], and with La fontana
malata (The sick fountain) by Aldo Palazzeschi, where the words Clof, clop,
cloch [41] mimic the intermittent flow of water and the noise of falling drops.
Onomatopoeia gives poetical dignity to vocal imitations. Vocal imitations

raised the interest of science as well. In the framework of a recent European project,
the voice has been shown to be a powerful means to produce sound sketches, which
can be transformed into refined sound designs through interactive voice-driven
sound manipulations. In this sense, the machine extracts sound from the embodied
imagination of the sound designer [17]. Tools of this kind, taking the form of an
augmentedmicrophone, have been prototyped [49] and, with the purpose of turning
the microphone into a music controller, even developed into products [58].
A few scholars may argue that there are precise tools to investigate sounds,

such as the Fourier formalism, which uses decompositions based on sinusoidal
functions, and all formalisms inspired by Fourier’s approach [25, 28]. However,
this formalism is not immediately understandable in everyday communications, and
it is less directly manipulable than vocal imitations. While the Fourier formalism
is powerful at the level of persons with some education in sound and music, it is
not the way laypersons communicate and reason about sonic realities.
A powerful support to both qualitative and quantitative communication and

reasoning on sound is given by sound visualizations. Spectrograms display the
spectrum of frequencies through time of a sound. With spectrograms, we can
easily compare sounds and investigate how their properties change through time.
However, the vocal imitations of a natural or an artificial sound, which appears as
completely intuitive to humans (again, think about the kid giving voice to a toy
car), might be hard to find by comparison of the spectrogram of the vocal imitation
with the spectrogram of the original sound. It can be possible to investigate some
emerging properties of both sounds, but it can be really hard while dealing, for
example, with a vocal imitation of a motor, or some other mechanical noise, that
has a really different spectral profile than human voice. Thus, Fourier-driven sound
visualization has some limitations in revealing the embodied perceptual features of
sounds.
Which are the characteristics of human voice? The utterances of humans

and many mammals can be decomposed into overlapping chunks that fall within
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three primitive classes: phonation, turbulence, and supraglottal myoelastic vibra-
tions [20]. In phonation, the source is in the vocal folds. In turbulence, the source
is in chaotic motion of inhaled or exhaled air. Supraglottal myoelastic vibrations
include several kinds of low-frequency oscillations or pulse trains generated with
different parts of the vocal apparatus, such as lips or tongue. We can build up a
new formalism to describe the sound based on these components.
And what are the characteristics of sound as it is produced out of our body?

Sound is made of waves of rarefaction and compression, produced by vibrating
strings, air-filled pipes, vibrating membranes or plates, and so on. Consider the
simplest of these systems, which is probably the flexible string fastened to a rigid
support at both ends. This is one of the most important models in physics, which
has been used to demonstrate fundamental phenomena, in acoustics as well as in
other areas of physical sciences. In fact, whilst vibrating strings have often been
used as a paradigm for quantum mechanics, the vice versa, that is, using quantum
mechanics as a paradigm to understand sound, was proposed in the nineteen-forties
by Dennis Gabor [21], who imagined how sound analysis and synthesis could be
based on acoustical quanta, or wavelets.1 His seminal work has been extensively
carried on and expanded both by scientists and musicians, and is certainly at the
root of granular approaches to sound and music [44].
A variety of ideas and methods of quantum mechanics have been applied to de-

scribe forms and phenomena pertaining to that form of art whose medium is sound,
that is music. For example, tonal attractions have been modeled as metaphorical
forces [3], quantum parallelism has been proposed to model music cognition [15],
the quantum formalism has been proposed as a notational tool for music-visual
“atomic” elements [32], the non-Markovianity of open quantum systems has been
proposed as a measure of musical memory within a score [34]. Quantum comput-
ing, that is computation based on actual physical quantum processes [39], starts
being used to control sound synthesizers and computer-generated music [36, 37].
The opposite practice, that is using sonification as a means to make the actions
of quantum algorithms perceivable as musical lines and recognizable as patterns,
has appeared with the flourishing of quantum computing as an area of theoretical
computer science [61].
This chapter is part of a book on quantum-theoretical and -computational ap-

proaches to art and humanites, and its first chapter provides an excellent introduction
to quantum theory and quantum computing. Nevertheless, we give a few basic no-
tions, essentially the postulates of quantum mechanics, in Section 1.1. For now, we
can say that quantum mechanics is a branch of physics, where, in a nutshell:

• Matter and energy, seen at the level of subatomic particles, are described as
discrete;

• We describe particles as points or as probability waves to find them in some
places;

• If we know the momentum of a particle, we don’t know its position, and vice
versa;

• The measurement influences the state of what is measured: the observer
(subject) influences the observed (object).

In 1935, Albert Einstein tried to resist to quantummechanics, postulating hidden
variables to justify such a bizarre behavior [18]. Some further studies showed

1A wavelet is a wave-like oscillation under a finite temporal envelope.
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that, if Einstein was right, some inequalities should be satisfied [4], but quantum-
mechanical systems can be conceived and implemented that actually violate such
inequalities [2]. This means that a local realistic view of the world does not apply
to quantum phenomena. According to another Nobel prize, Richard Feynman,
nobody really understood quantum mechanics [19].
One might ask: if quantum mechanics is so difficult to be interpreted and

understood, why is it so often invoked to explain mundane affairs that have nothing
to do with particle physics? As a possible explanation, the formalism is based on a
few postulates, it assumes linearity and unitary (energy-preserving) time evolution,
and it gives a probabilistic framework capable to explain concurrent and interfering
phenomena.
Let us go back to sound and voice. If quantum mechanics can be joined with

the sound, and the sound with the voice, thus quantum mechanics can be joined
with the voice, and this is our idea: a Quantum Vocal Theory of Sound [48].
This approach is not opposed to the richness and complexity of Fourier formal-

ism, spectrograms, and so on. It presents a different paradigm, a different starting
point, using the primitive components of human voice. The novelty is that these
components appear as useful not only to investigate the voice itself, but also to face
the complexity of the world of general sound. It is a strong statement, but it actually
follows the intuition: each kid knows well how to imitate the vroom vroom of a car,
a long time before learning how to read an equation and how to interpret a graph.
The QVTS approach can be exploited to investigate sound, decomposing it into

its essential features through the analysis step. But QVTS can also help do the
opposite, that is, create new sounds, in the synthesis step. Sound synthesis can lead
to creative applications; some possible applications are described later on in this
chapter.
The structure of the chapter is the following. In Section 1.1, we remind of

some basics of quantum mechanics. In Section 2, we present the fundamental
ideas of QVTS. In Section 3, examples of sound processing based on the QVTS,
with audible and interpretable outcomes, are given. In Section 4, we describe our
vision on the future of QVTS keeping an eye on interdisciplinary collaborations and
creative applications. As an example of possible creative applications, we sketch
the structure of a piece based on vocal states.

1.1 Some postulates to live by
An observable is a physical quantity, that can be described as a mathematical
(Hermitian, linear) operator. Each operator acts on a complex vector space, the
state space. The space where quantum observables live is the separable Hilbert
space. It’s separable, because we can distinguish the components along different
axes. In the case of QVTS, the space is related with the vocal primitives, and it is
separable as well, as we will see in the next section.
A quantum state, that is a unit-length vector in the state space, can be seen as a

superposition of values with some probabilities. An eigeinstate is a characteristic
state of some operator. After the measurement process, the probability wave
collapses to a certain value: it is the eigenvalue of a certain operator, and the
system is in an eigenstate of that operator.
Probability is a key concept in quantum mechanics. According to the principle

of uncertainty, we cannot know, let’s say, the position and the momentum of a
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particle with the same precision. The more is the information we have on position,
the less we know about momentum, and vice versa.
Let us say more on the idea of quantum measurement. Consider a Cartesian

framework with axes x, y, and z—a tridimensional space with three mutually
orthogonal axes. We can perform measurements along each of the axes. Quantum
measure implies a change in the measured entity. If the measurement along the
direction x can give a positive result, in all subsequent measurements along the
same direction we will have a positive value. A measure along x would zero out
the y and z components, while leaving only the x component with value 1. If,
before measurement, there is a given probability to get a specific outcome, after
the effective measurement of that outcome, the probability to get the same value
in each subsequent measurement along the same direction is 100%. In fact, in
quantum mechanics, the measurement of a state implies the destruction of part
of the initial information, and thus the process is called destructive measure. A
quantum state is a superposition of eigenstates, which are reduced to a single
state after the measurement. Such state collapse happens in the context including
both the system and the measuring entity, through the interaction of the two [50].
Intuitively, it’s like observing and taking a picture of a person, and blocking him or
her as the represented image along that specific shooting direction. (Be careful the
next time you’ll take pictures).
Dennis Gabor first exploited the paradigm of quantum theory to investigate

sound [21], instead of doing the usual vice versa, with sound and strings used as
metaphors to understand quantum waves. Gabor proposed the concept of quantum
of sound, as a unit-area cell in the time-frequency plane, which could be called
phon, from the Greek φωνή. On the other hand, we start from a vocal description
of sound, to define the phon as the set of vocal primitive operators.

2 The quantum vocal theory of sound
In a recent article [48], we have proposed the basics for a Quantum Vocal Theory
of Sound (QVTS). Here, we summarize its main ideas, and then we propose some
hints for future developments.
First of all, let us define the phon formalism, where the word phon indicates the

quantum of sound, expressed in the state space of vocal primitives. With the phon
formalism, we can define vocal states, and extend the quantum bit (qubit) language
to the human voice. Some quantum-mechanical concepts, such as state preparation
and measurement, can be extended to the domain of the voice as well.
Consider a space with three independent directions: x, y, and z. In the QVTS,

the three axes of this “phonetic space” have a vocal meaning:
• z is the phonation, giving waveforms of different pitches;
• x is the turbulence, giving noises of different brightnesses;
• y is the myoelasticity, giving pulsations at different tempos (thought of as
slow pulse trains).

Such three-dimensional space is sketched in figure 1 where, at the intersections
between each of the axes and the unit (called Bloch) sphere, we can find two
mutually orthogonal vectors, each depicted as a tiny sketchy spectrogram.
Given a sound recording of human voice, if we measure phonation using a

specific computational tool (such as SMS-tools [7]), it is possible to separate such
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Figure 1: The Bloch sphere adapted to QVTS, to represent the phon space. Hand-
drawing by D. Rocchesso.

component from the rest, and all subsequent measurements of phonation will be
giving the same result. If we measure a primitive component first, and then another
one, the result is generally dependent on the order of the two operations: A fact that
is known as non-commutativity. Figure 5 shows a couple of example spectrograms
illustrating the difference.
A vocal state can be described as a superposition of phonation, turbulence, and

myoelasticity with certain probabilities. We can thus define a phon operator σ as a
3-vector operator, providing information on the x, y, and z components through its
specific directions in the 3d phonetic space. Each component of σ is represented
by a linear operator, so we have σx, σy , and σz .

2.1 Preparation and measurement along axes
According to the postulates of quantum mechanics, it is possible to perform mea-
surements along one arbitrary axis of the 3d phonetic space and, as a result, we
will have prepared the phon along that specific axis.
A quantummeasurement is represented by an operator, called a projector, acting

on the state, and provoking its collapse onto one of its eigenvectors. If the system
is in a state |ψ〉 and then we make a measurement, the probability to get the result
j is given by:

pj B pmj|ψ = 〈ψ|Mj |ψ〉 = 〈ψ|M†
jMj |ψ〉 , (1)

where the set {Mj} is a projector system in the Hilbert space of states. {Mj} is
a complete set of Hermitian and idempotent matrices. An Hermitian matrix is a
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complex matrix, that is equal to its transposed conjugate (indicated by the † symbol
in equation 1). It has real eigenvalues. Idempotent means that, if we apply multiple
times an operator, the result is the same as if we applied the operator just once.
With an orthonormal basis of measurement vectors |aj〉, the elementary projectors
areMj = |aj〉〈aj |, and the system collapses into |aj〉.

2.1.1 Measurement along z
A measurement along the z axis is performed through the operator σz . The
eigenvectors (or eigenstates) of σz are |u〉 and |d〉, corresponding to pitch-up
phonation and pitch-down phonation, with eigenvalues λu = 1 and λd = −1,
respectively:

σz |u〉 = |u〉 , σz |d〉 = − |d〉 .
The eigenstates |u〉 and |d〉 are orthogonal, i.e., 〈u|d〉 = 0, and they can be
represented as column vectors

|u〉 =
[

1
0

]
, |d〉 =

[
0
1

]
. (2)

The operator σz can also be represented in matrix form as

σz =

[
1 0
0 −1

]
. (3)

Applying a measurement along the z direction to a generic phon state |ψ〉
corresponds to pre-multiply it by one of the measurement operators (or projectors)

Mu = |u〉 〈u| =
[

1 0
0 0

]
or

Md = |d〉 〈d| =
[

0 0
0 1

]
,

and to normalize the resulting vector to have length one. Such operators satisfy the
completeness relationMu Md = I , summing up to the unit operator.
A generic phon state |ψ〉 can be expressed as

|ψ〉 = αu |u〉 αd |d〉 , (4)

where the coefficients are complex numbers, αu = 〈u|ψ〉, and αd = 〈d|ψ〉. Being
the system in state |ψ〉, the probability to measure pitch-up is

pu = 〈ψ|M†
uMu |ψ〉 = 〈ψ|u〉 〈u|u〉 〈u|ψ〉 = 〈ψ|u〉 〈u|ψ〉 = α∗

uαu (5)

and, similarly, the probability to measure pitch-down is pd = 〈ψ|d〉 〈d|ψ〉 = α∗
dαd,

where ∗ denotes complex conjugation. The completeness relation ensures that pu

and pd sum up to one.
If we repeatedly prepare a state ψ and measure it along the z direction, we get

the average value

〈σz〉 B
m={u,d}

λmpm = 〈ψ|
(

m={u,d}
λmM

†
mMm

)
|ψ〉 = 〈ψ|σz |ψ〉 , (6)
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where the sum within brackets is called the observable of the measurement.
In quantum computing terminology, the vectors2 (2) give the computational

basis of a qubit vector space. The operator (3) corresponds to a Z gate, which acts
as a phase flip on the second state of the computational basis.

2.1.2 Measurement along x
The eigenstates of the operator σx are |r〉 and |l〉, corresponding to turbulent
primitive sounds having different spectral distributions, one with the rightmost
(or highest-frequency) centroid and the other with the lowest-frequency centroid.
Their respective eigenvalues are λr = 1 and λl = −1, such that

σx |r〉 = |r〉 , σx |l〉 = − |l〉 .

If the phon is prepared |r〉 (turbulent) and then the measurement apparatus is set
to measure σz , there will be equal probabilities of getting pitch-up or pitch-down
phonation as an outcome. This measurement property is satisfied if |r〉 is defined
as

|r〉 = 1√
2

|u〉 1√
2

|d〉 . (7)

A similar definition is given for |l〉, such that the two eigenstates of turbulence are
orthogonal (〈r|l〉 = 0):

|l〉 = 1√
2

|u〉 − 1√
2

|d〉 . (8)

In matrix form, the turbulence operator is expressed as

σx =

[
0 1
1 0

]
, (9)

and its eigenvectors are

|r〉 =

[ 1√
2

1√
2

]
, |l〉 =

[ 1√
2

− 1√
2

]
. (10)

Applying a measurement along the x direction to a generic phon state |ψ〉
corresponds to pre-multiply it by one of the measurement operators

Mr = |r〉 〈r| = 1
2

[
1 1
1 1

]
or

Ml = |l〉 〈l| = 1
2

[
1 −1

−1 1

]
,

and to normalize the resulting vector to have length one. Such operators satisfy the
completeness relationMr Ml = I .
In quantum computing, the operator (9) corresponds to a X gate, which is

the equivalent of the NOT gate in classical logic circuits, as it flips the states of
the computational basis. The vectors (7) and (8) form the Hadamard basis, often
denoted with the symbols {|〉 , |−〉}.
Preparation in one of the states of the Hadamard basis {|r〉 , |l〉}, followed by

measurement along the z axis, results in an operation that is equivalent to coin
flipping, 1 or −1 being obtained with equal probability.

2In quantum computing, the vectors of the computational basis are normally called |0〉 and |1〉.
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2.1.3 Measurement along y
The eigenstates of the operator σy are |f〉 and |s〉, corresponding to slowmyoelastic
pulsations, one faster and one slower,3 with eigenvalues λu = 1 and λd = −1, such
that

σy |f〉 = |f〉 σy |s〉 = − |s〉 .
If the phon is prepared |f〉 (pulsating) and then the measurement apparatus is set
to measure σz , there will be equal probabilities for |u〉 or |d〉 phonation as an
outcome. This measurement property is satisfied if

|f〉 = 1√
2

|u〉 i√
2

|d〉 , (11)

where i is the imaginary unit.
Likewise, the |s〉 state can be defined in such a way that the two eigenstates of

pulsation are orthogonal (〈f |s〉 = 0):

|s〉 = 1√
2

|u〉 − i√
2

|d〉 . (12)

In matrix form, the pulsation operator is expressed as

σy =

[
0 −i
i 0

]
, (13)

and its eigenvectors are

|f〉 =

[ 1√
2

i√
2

]
, |s〉 =

[ 1√
2

− i√
2

]
.

Applying a measurement along the y direction to a generic phon state |ψ〉
corresponds to pre-multiply it by one of the measurement operators

Mf = |f〉 〈f | = 1
2

[
1 −i
i 1

]
or

Ms = |s〉 〈s| = 1
2

[
1 i

−i 1

]
,

and to normalize the resulting vector to have length one. Such operators satisfy the
completeness relationMf Ms = I .
The matrices (3), (9), and (13) are called the Pauli matrices. In quantum

computing, these are all useful one-qubit gates.

2.2 Measurement along an arbitrary direction
Orienting the measurement apparatus in the phonetic space along an arbitrary
direction n =

[
nx, ny, nz

]′ means taking a weighted mixture of Pauli matrices:

σn = σ · n = σxnx σyny σznz =

[
nz nx − iny

nx iny −nz

]
. (14)

3In describing the spin eigenstates, the symbols |i〉 and |o〉 are often used, to denote the in–out direction.
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2.2.1 Sines+ models and the phon space
The Harmonic plus Noise model [7] is well suited to describe measurement and
preparation in the phonation-turbulance planar section of the 3d phonetic space.
An arbitrary direction in such plane is described by the operator

σn =

[
cos θ sin θ
sin θ − cos θ

]
, (15)

where θ is the angular direction, pointing to a superposition of phonation and
turbulence (see figure 1). The eigenstate for eigenvalue 1 is

|λ1〉 =
[
cos θ2, sin θ2

]′
, (16)

the eigenstate for eigenvalue −1 is

|λ−1〉 =
[
− sin θ2, cos θ2

]′
, (17)

and the two are orthogonal. Suppose we prepare the phon to pitch-up |u〉. If we
rotate the measurement system along n, the probability to measure 1 is

p1 = 〈u|λ1〉 〈λ1|u〉 = |〈u|λ1〉|2 = cos2 θ2, (18)

and the probability to measure −1 is

p−1 = |〈u|λ−1〉|2 = sin2 θ2. (19)

The expectation (or average) value of measurement is therefore

〈σn〉 =
j
λjpλj = 1 cos2 θ2 −1 sin2 θ2 = cos θ. (20)

Symmetrically, if we prepare the phon in state |λ1〉 and we measure along the z
axis, we get a pitch-up with probability cos2 θ2 and a pitch-down with probability
sin2 θ2.
More generally, the Sines plus Noise plus Transients model [57] may be suitable

to describe measurement and preparation in the whole 3d phonetic space, where
supraglottal myoelastic vibrations are made to correspond to transient pulse trains.
For example, consider the vocal fragment4 whose spectrogram is represented in
figure 2. An extractor of pitch salience and an extractor of onsets5 have been applied
to highlight respectively the phonation (horizontal dotted line) and myoelastic
(vertical dotted lines) components in the spectrogram. In the z − y plane, there
would be a measurement orientation and a measurement operator that admit such
sound as an eigenstate.

2.3 Purity and Mixing
In quantum mechanics, the density operator is a mathematical object that describes
the statistical (pure ormixed) state of a quantum system, and it is usually represented
as a matrix. A pure state is not referred to a moral condition, but to a separability
of states. A mixed state indicates an inseparability of states from the viewpoint of

4It is one of the example vocal sounds considered in [45], and taken from [38].
5The feature extractors are found in the Essentia library [6].
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Figure 2: Spectrogram of a vocal sound which is a superposition of phonation and
supgraglottal myoelastic vibration. A salient pitch (horizontal dotted line) as well as
quasi-regular train of pulses (vertical dotted lines) are automatically extracted.
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the observer, who has some degree of epistemic uncertainty. Thus, the concept of
density matrix generalizes the concept of state superposition. The density operator
is defined as

ρ =
j
pj |ψj〉 〈ψj | , (21)

where pj indicates the probability for the j-state. The density operator for a pure
state is ρ = |ψ〉〈ψ|, and the trace of the associated density matrix is trρ2 = 1.
For a mixed state, trρ2 < 1. It can be shown that the density matrix (21) can be
expressed as a composition of Pauli matrices as in (14), with the addition of the
identity matrix. From such representation, pure states can be shown to lay on the
surface of the Bloch sphere, while mixed states stay inside the sphere, with the
completely chaotic state being found at the origin [12]. A pure state can contain a
superposition, but such a composition is defined with certainty. A mixed state is a
probabilistic mixing. Themixed state is inseparable. The generalization introduced
by mixed states can represent the audio concept of mixing, thus coming useful in
composition of auditory scenes.

2.4 Not too sure? Uncertainty can be measured
In the wonderland of quantum mechanics, it can happen that, the better we know
something, the lesser we know something else. In QVTS, the more precise our
knowledge of phonation, the less precise our measurement of turbulence. In
quantum mechanics, if we measure two observables L andM simultaneously in a
single experiment, the system is left in a simultaneous eigenvector of the observables
only if L and M commute, i.e., if their commutator

[
L,M

]
= LM − ML

vanishes. When the commutator is different from zero, we say that the two operators
do not commute. This happens with measurement operators along different axes.
It is the case of

[
σx, σy

]
= 2iσz . As a consequence for QVTS, phonation and

turbulence cannot be simultaneously measured with certainty.
The uncertainty principle is one of the key ideas of quantum mechanics. It is

based on Cauchy-Schwarz inequality in complex vector spaces. According to the
uncertainty principle, the product of the two uncertainties is at least as large as half
the magnitude of the commutator:

ΔLΔM ≥ 1
2

∣∣〈ψ|
[
L,M

]
|ψ〉

∣∣ (22)

Let L = T = t be the time operator, and M = W = −i d
dt be the frequency

operator. Applying them to the complex oscillatorAeiωt, we get a time-frequency
uncertainty, where the uncertainty is minimized by the Gabor function (a sinusoid
windowed by a Gaussian) [24].

2.4.1 The order matters
Kids learn that multiplying a times b, with a, b natural numbers, is the same as
multiplying b times a—and, since early age, they think that commutativity is always
verified. Reading a book and then going for a walk might be the same stuff as going
for a walk and then reading a book (maybe). Quantummechanics does not work that
way, and the same for QVTS. If we record a singer, we take away vowels, and then
we take again away vowels, the result is the same—the recording is in an autostate

12



of no-vowels. If we take away vowels, and then we take away the noise, the result
is different from what we could hear if we do the opposite, that is, taking away the
noise and then the vowels. More precisely, the measurement operators oriented
along different axes do not commute. For example, letA be an audio segment. The
measurement (by extraction) of turbulence by themeasurement operator turbulence-
rightMr = |r〉〈r| leads toMrA = A′. A successive measurement of phonation
by the measurement operator pitch-up Mu = |u〉〈u| gives MuA

′ = A′′, thus
MuA

′ = MuMrA = A′′. If we perform the measurements in the opposite order,
with phonation first and turbulence later, we obtain MrMuA = MrA

∗ = A∗∗.
We expect thatMr,Mu ≠ 0, and thus, that A∗∗ ≠ A′′. The diagram in figure 3
shows non-commutativity in the style of category theory.
In bra-ket notation, this fact can be expressed as

MrMu |A〉 = |r〉 〈r|u〉 〈u|A〉 = 〈r|u〉 |r〉 〈u|A〉 ≠
MuMr |A〉 = |u〉 〈u|r〉 〈r|A〉 = 〈u|r〉 |u〉 〈r|A〉 .

(23)

Given that 〈r|u〉 is a scalar and 〈u|r〉 is its complex conjugate, and that |u〉 〈r| is
generally non-Hermitian, we get

Mr,Mu = |r〉 〈r|u〉 〈u| − |u〉 〈u|r〉 〈r| =
= 〈r|u〉 |r〉 〈u| − 〈u|r〉 |u〉 〈r| ≠ 0,

(24)

or, in terms of matrices

Mr,Mu =
1
2

(
1 1
1 1

) (
1 0
0 0

)
− 1

2

(
1 0
0 0

) (
1 1
1 1

)
=

=
1
2

(
1 0
1 0

)
− 1

2

(
1 1
0 0

)
=

1
2

(
0 −1
1 0

)
=
i

2σy ≠ 0.
(25)

On audio signals, measurements of phonation and turbulence can be performed
using the sines + noise model [7], as described in figure 4. The measurement of
phonation is performed through the extraction of the sinusoidal component, while
the measurement of turbulence is performed through the extraction of the noise
component with the same model. The spectrograms for A′′ and A∗∗ in figure 5
show the results of such two sequences of analyses on a segment of female speech,
confirming that the commutator

[
Mr,Mu

]
is non-zero.

Consider again figure 1, which shows a representation of the phon space using
the Bloch sphere. There are small spectrograms at the extremities, in correspon-
dence of |s〉, |f〉, |u〉, |d〉, |r〉, and |l〉. Applying σzσx to a state, we get the
flipped state we would obtain if we had applied σxσz . If we apply a pitch operator
and then a turbulence operator (or vice versa) to a slow impulse train (|s〉 or |f〉),
we get another impulse train.

2.5 Time flies
The variation of quantum states in time can be obtained through the application of
time evolution operators on them. Similarly, suitable time operators can make the
density matrix vary in time as well. Given a density operator ρt0 at time t0, its
time variation is obtained applying a unitary operator Ut0, t:

ρt = U†t0, tρt0Ut0, t. (26)
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Figure 3: A non-commutative diagram representing the non-commutativity of mea-
surements of phonation (Mu) and turbulence (Mr) on audio A.

Figure 4: On the left, an audio segment is analyzed via the sines+noise model. Then,
the noise part is submitted to a new analysis. In this way, a measurement of phonation
follows a measurement of turbulence. On the right, the measurement of turbulence
follows a measurement of phonation. This can be described via projectors through
equation (23), and diagrammatically in figure 3.
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Figure 5: Top: spectrogram corresponding to a measurement of phonationMu follow-
ing a measurement of turbulenceMr, leading toMuMrA = A′′; bottom: spectrogram
corresponding to a measurement of turbulenceMr following a measurement of phona-
tionMu, leading toMrMuA = A∗∗.

This is the most general definition: There are no assumptions on states (mixed
or pure), and the only assumptions on the operator U are that it is unitary, i.e.,
U†U = I, with I the identity matrix, and that it depends only on t and t0.
But actually there is more. The unitary operator U, evaluated at a tiny time

increment ε, is related to the HamiltonianH, describing the energy of the system:

Uε = I − iεH. (27)

For a closed and isolated system, H is time-independent, and the unitary operator
becomesUt = eiHt−t0 . However, nature is more complex, things are not isolated,
and usually H is time-dependent, and the time evolution is given by an integral.
To complicate things even more, with a non-commutative Hamiltonian, an explicit
solution cannot be found. The problem can be circumvented by considering local
time segments where the Hamiltonian is locally commutative.
An evolving state can, at a certain time, be subject to measurement. The

quantummeasurement operator (or projector) acts on the state and make it collapse
onto one of its eigenvectors. If we have a mixed state, the system collapses into an
ensemble of states.
In the QVTS, the phon state evolution is subject to restoring forces, and the

Hamiltonian depends on the state orientation in the phon space. Such evolution is
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alike that of a spin in a magnetic field. The Hamiltonian can be expressed as

H =
ω

2 σ · n =
ω

2

[
nz nx − iny

nx iny −nz

]
, (28)

whose energy eigenvalues are Ej = ± ω
2 , with energy eigenvectors |Ej〉. An

initial phon |ψ0〉 can be expanded in the energy eigenvectors as

|ψ0〉 =
j
αj0 |Ej〉 , (29)

where αj0 = 〈Ej |ψ0〉, and the time evolution of the state is

|ψt〉 =
j
αjt |Ej〉 =

j
αj0e−iEjt |Ej〉 . (30)

Where do the restoring forces come from, in the sound domain? Broadly speaking,
they come from the local temporal sound production context. Similarly to the con-
cept of coarticulation in phonetics, the locally-defined Hamiltonian is determined
by neighboring sounds, extending their effects in the short-term future or past [16].
In practice, we can rely on an audio analysis system, such as the Short-Time Fourier
Transform (STFT), to extract and manipulate slowly-varying features such as pitch
salience or spectral energy to determine the components of the Hamiltonian (28).
Considered a slice of time and an audio signal, the initial phon state can be made
to evolve subject to a time-dependent yet commutative Hamiltonian expressed as

Ht = e−ktS, (31)

where S is a time-independent Hermitian matrix and k governs the spreading of
coarticulating features. SuchHamiltonian evolution has been inspired by a quantum
approach to image segmentation [63], or figure-ground segregation. For evolution
in the phon space, the matrix S can be set to assume the structure (28), where the
components of potential energy can be extracted as audio features through time-
frequency analysis. For example, the nz component can be made to correspond to
the extracted pitch salience, and the nx component can be made to correspond to
the extracted noisiness. In the time slice under examination, an initial |u〉 state will
evolve to a final state

|ψt〉 = e−i t
0 Hτdτ |u〉 = U0, t |u〉 , (32)

which in general will be a superposition (4) in the phon space. A measurement in
the computational (phonation) basis will make it collapse to |u〉 or |d〉 according
to the probabilities α∗

uαu or α∗
dαd, respectively. If there are two competing and

concurrent pitch lines, the Hamiltonian evolution followed by measurement may
thus make a pitch following process stay on one line or jump to the other one. In
this way, auditory streaming processes [8] and figure-ground segregation can be
mimicked.

3 Quantum vocal sound processing
In this section, we present some examples that show how the quantum formalism,
as assimilated by the QVTS, can be used together with classical signal processing,
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for creative yet controllable analysis/synthesis tasks. Given the time-frequency
representation of an audio signal, as provided by the STFT, the elements of the S
matrix of the Hamiltonian (31) can be computed from decimated audio features.
For example, pitch salience can be extracted from time-frequency analysis [51], and
used as thenz component. The exponential factor can be set to gm = e−km, where
m is the frame number within a segment ofM frames. The time evolution (32) can
be computed by approximating the integral with a cumulative sum. Starting from
an initial state (e.g., |u〉), the phon goes through repeated cycles of Hamiltonian
evolution, measurement, and collapse. The decision to measure phonation or
turbulence can be based on the degree of pitchiness that the evolution within a
certain audio segment has reached. Since the observable σz has eigenvalues ±1
for eigenvectors |u〉 and |d〉, a measure of the degree of pitchiness can be given by
the distance of ‖σz |ψ〉‖ from ‖|ψ〉‖. The degrees of noisiness and transientness
can be similarly determined using the observables σx and σy , respectively.
When doing actual audio signal processing based on the QVTS, several degrees

of freedom are available to experiment with: The decimation factor or number
M of frames in a segment; The exponential damping factor k; The thresholds
for switching to a certain measurement direction in phon space; The decision to
collapse or not – this is a freedom we have if we are using a classical computer!

3.1 Playing with pure states
3.1.1 Fugue following
Consider the beginning of the Fugue from the Toccata and Fugue in DMinor, BWV
565, by Johann Sebastian Bach (figure 6). In this fragment, there is only one voice,
played by the left hand. However, the design of this sequence actually creates the
illusion of two voices, with an upper line with an ostinato A, and a lower line with
notes G, F, E, D, C], D, E, F, and so on.
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Figure 6: Toccata and Fugue in D minor BWV 565 by J. S. Bach: beginning of the
Fugue.

The score fragment of figure 6 was automatically rendered with piano samples
at 100bpm and analyzed via the STFT,6 with pitch salience and noise energy
extracted via the SMS-tools [7]. Setting the parameters frame decimationM = 10,
exponential damping k = 0.1, threshold of pitchiness 0.9, collapse decimation 5,
we obtain a phon evolution from pitch-up phonation represented by the green dots
of figure 7. The red and yellow lines represent the two most salient pitches, as
features extracted from the STFT. In the first part of the evolution, the green dots
mainly correspond to the ostinato of note A, while, in the second part, they mainly
follow the ascending scale fragment (A B C] D...). Even without any noise added,
transient and noise components are inherent in piano samples (e.g., key noise) and,
therefore, the phon is subject to non-negligible forces and actually moves from
the initial |u〉 state. Different runs will give different evolutions, as the collapse is
governed by probability amplitudes, but in general we observe that the Hamiltonian
listener follows the upper or the lower melodic line for some fractions of time.
Interestingly, the melodic line following is stable, or even more stable, if we add
a strong white noise to the signal, with an amplitude that is about one tenth of
the signal. An example evolution is depicted in figure 8, where the effect of the
added noise is only apparent after second 5, when effectively there is no signal.
Figure 9 shows the phon evolution when the fugue is drowned into noise. In
this case the melodic contour following is more easily disrupted. The zero-pitch
green dots represent points where measurement and collapse have been oriented
to the x direction, for the effect of thresholding in pitchiness. In a resynthesis,
these dots correspond to noise bursts, while the other dots come from z-oriented
measurements and produce pitched notes.
In repeated runs of Hamiltonian fugue following, we can see multiple melodic

lines emerging as the time evolution of some initial sound/vocal state. The collapse
of the phon to a state or another can be interpreted as the attention shift from figure
to ground, or vice versa [5, 8].
The proposed example can be the starting point for a wider investigation in

the field of auditory bistability. Bistability is an intriguing topic in cognition. As
a reference for quantum effects in cognition, especially regarding superposition
and non-classical probability, we may refer to [62] for a theoretical quantum-based
approach to explain cognitive acts. The idea of bistability is also faced in an
article on mathematics and image/music [32]. It exploits the Dirac formalism used
in quantum mechanics to represent images as superpositions of essential visual
forms. There is a minimum number of forms which allows the recognizability
of the form. With a little abuse of terminology, we can consider this limiting,
minimum value of simple forms as the limit of a Gestalt neighborhood, as the
discrete version of a topological neighborhood, having in the center the initial,
complete, not-approximated visual form. When an image is bistable, we can

6Sample rate 44100Hz, window size 2048, transform size 4096, hop size 1024.
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evolutionUpTrace_noise000_new

Figure 7: The synthetic recording of the excerpt in figure 6 through Hamiltonian
evolution. The upper line with the repeated A is evident in the first part of the graph,
while the second part contains a fragment of the melody of the lower line.

evolutionUpTrace_noise010_new

Figure 8: The synthetic recording of the excerpt in figure 6 through Hamiltonian
evolution, with the noise added (amplitude 0.1). The upper line with the repeated A is
evident in the first part of the graph, while the second part contains a fragment of the
melody of the lower line.

imagine to have two neighborhoods as the two faces of a thin cylinder. We can see
one face or the other one; but we cannot see the two faces together. This is the core
idea of bistability. While classic examples of bistability are visual, also auditory
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illusions can be constructed, e.g., with different auditory streamings [10]. These
cases might be analyzed with the help of QVTS, as we did with the beginning of
the Fugue from the Toccata and Fugue BWV 565.

evolutionUpTrace_noise100_new

Figure 9: The same fragment of figure 6 completely drowned into noise (amplitude
1.0).

3.1.2 Glides tunneling
Continuity effects have been very important to derive a perceptual organization of
sound for auditory scene analysis [8]. Gestalt principles such as proximity or good
continuation are often used to describe how listeners follow concurrent pitch lines
and extract temporal patterns from a scene. A simple yet significant case is that of
two gliding and crossing tones interrupted, at the crossing point, by a short burst
of noise [13].
Figure 10 (top) shows the spectrogram of two gliding and crossing tones, in-

terrupted by a 200ms-band of white noise, intervening at time 1.5s. The red and
yellow lines are the traces of the two most salient pitches, as extracted using the
Essentia library [6]. With stimuli such as this, listeners most often report per-
ceiving a single frequency-varying auditory object tunneling [60] the interruption.
Depending on the temporal extension and intensity of the noise burst, a perceivedV-
shaped trajectory may be predominant over a rectilinear continuation, thus making
proximity prevail over good continuation.
It is interesting to use the case of crossing glides interrupted by noise as a test

for Hamiltonian evolution, with the matrix S of the Hamiltonian (31) computed
from decimated audio features such as pitch salience and noise energy. As a result
of such feature extraction from a time-frequency representation, we obtain two
potentials, for phonation and turbulence, which drive the Hamiltonian evolution.
Figure 10 also displays (middle) the computed salience for the two most salient
pitches and (bottom) the energy traces for two bands of noise (1kHz – 2kHz and
2kHz – 6kHz). It is clear how the pitch extractor becomes uncertain when the two
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Figure 10: Tracing the two most salient pitches and noise energy for two crossing glides
interrupted by noise

tones get close in frequency and start beating, and it wiggles around during the
noisy interruption.
Figure 11 shows an example evolution of the phon state, starting from |u〉. In this

specific run of the evolution, the phon sticks to phonation (one of the two pitches)
until well inside the noise band, even though pitch has very little salience within the
interruption (see figure 10, middle), with only occasional switches to turbulence
(the zero-pitch green dots in figure 11). Right after the noise interruption, the
phon evolution is still uncertain, until it steadily takes a |u〉 state, thus giving an
overall V-shaped bouncing trajectory. In this instance, proximity is shown to prevail
over good continuation. Due to the statistical nature of quantum measurement,
another run of the evolution may well produce a downward-crossing trajectory,
and turbulence bursts may be found at different times. Such uncertainty on noise
location is consistent with the known perceptual fact that bursts of noise overlapped
to a noise transition are not precisely located, with errors that can be up a few
hundred milliseconds [59].
With this example, we have given a demonstration of how quantum evolution of

the phon state can be set to reproduce relevant phenomena in auditory perception,
with possible applications in computational auditory scene analysis.
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evolutionUpTrace2_new

Figure 11: Tracking the phon state under Hamiltonian evolution from pitch-up.

3.2 Playing with mixed states
The quantum concept of mixing, briefly described in section 2.3, can be related
to the familiar audio concept of mixing. At the start of a Hamiltonian evolution,
the initial state may be mixed, i.e., known only as a probabilistic mixture. For
example, at time zero we may start from a mixture having 1

3 probability of |u〉
and 2

3 probability of |d〉. The density matrix would evolve in time according to
equation (26).
When a pitch measurement is taken, the outcome is up or down according to

Pm = i|ρ = TrρMi, (33)

and the density matrix that results from collapsing upon measurement is given by

ρi
=
MiρMi

TrρMi
. (34)

The density matrix can be made audible in various ways, thus sonifying the
Hamiltonian evolution. For example, the completely chaotic mixed state, corre-
sponding to the half-identity matrix ρ = 1

2 I, can be made to sound as noise, and
the pure states can be made to represent distinct components of an audio mix.
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Figure 12: Amplitudes of components |u〉, |d〉, and noise resulting from a Hamiltonian
evolution from a mixed state.
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Figure 13: Sound synthesis obtained from the density matrix evolution from a mixed
state, using the component amplitudes depicted in figure 12.
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3.2.1 Glides tunneling
Given the same audio scene of the two crossing glides interrupted by noise (fig-
ure 10), we may follow the Hamiltonian evolution from an initial mixed state. We
can choose to make the pure states to sound like the upper or the lower of the most
salient pitches, and the completely mixed state to sound like noise. These three
components can be mixed for states with intermediate degrees of purity. If pu and
pd are the respective probabilities of |u〉 and |d〉 as encoded in the mixed state, the
resulting mixed sound can be composed by a noise having amplitude min pu, pd,
by the upper pitch weighted by pu − min pu, pd, and by the lower pitch weighted
by pd −min pu, pd. Figure 12 shows an example of evolution from the mixed state
having probabilities 1

3 and
2
3 , with periodic measurements and collapses ruled by

equation (34).
The analyzed audio scene and the model parameters, including the computed

Hamiltonian, are the same as used in the evolution of pure states described in
section 3.1.2. The amplitudes of the three components can be used as automated
knobs to control two oscillators and a noise generator, producing the sound of spec-
trogram 13, characterized by a prevailing upward tone with a downward bifurcation
and a noisy tail.

3.2.2 Vocal superposition
As another example of mixed state evolution, we consider again the vocal sound
whose spectrogram is depicted in figure 2. It was chosen as an example of actual
superposition of phonation and slow myoelastic vibration. Despite the presence
of only one definite pitch, we can prepare the phon in an initial mixed state, hav-
ing 1

3 probability of |u〉 and 2
3 probability of |d〉, and compute a Hamiltonian

evolution based on potentials deduced from the time-frequency analysis, namely
pitch salience, noise component, and detected onsets. As in the example of sec-
tion 3.2.1, we chose to assign phonation amplitudes equal to pu − min pu, pd and
pd − min pu, pd to the components |u〉 and |d〉, respectively, and turbulence am-
plitudemin pu, pd to the noise component. In addition, here we extract a pulsating
component as well, corresponding to slow myoelastic vibration, whose amplitude
is derived from the probabilities pf and ps of fast or slow pulsation. For example,
pf is derived from Trρ |f〉 〈f |, which is similar to equation (33).
Figure 14 shows the amplitude profiles that are extracted from the Hamilto-

nian evolution, where we chose to measure phonation when min pu, pd > 0.5,
otherwise measuring along the slow myoelastic vibration axis. With non-physical
freedom, we collapsed the mixed state, along |u〉, |d〉, |f〉, or |s〉, using an equation
similar to (34), once every five measurements. The resulting sound, which can
be considered as a quantum-inspired audio effect, has the spectrogram depicted in
figure 15, where the most salient pitch and the onsets have been extracted again
and superimposed.

3.3 From signal processing to quantum computing, and
back
In digital audio, talking about quantization does not mean referring to quantum
theory. Instead, quantization is meant to be the reduction of a continuous range
of signal amplitude values to a finite set of discrete values, with a cardinality that
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Figure 14: Amplitudes of components |u〉, |d〉, turbulence, and slow myoelastic vibra-
tion, resulting from a Hamiltonian evolution from a mixed state, run on the vocalization
of figure 2.

depends on the number of bits dedicated to represent each discrete-time sample.
Signal quantization introduces a kind of noise, which tends to have a spectrotempo-
ral structure that somehow follows the signal, thus becoming audible as a distortion
for low-amplitude signals. A cure for quantization noise is dithering, i.e., adding
some tiny broadband noise to the audio signal itself, before quantization, thus
making quantization noise more spectrally uniform and perceptually tolerable [42].
That injecting dither noise to signals and systems can make human and machine
processing more robust is a fact that has been known for a long time, and widely
applied in a variety of fields, including audio and image processing. In quantum-
inspired sound processing, as illustrated in the example of section 3.1, dithering can
be used to control how erratic leading-pitch attribution can be, in auditory scenes
of competing sources.
As opposed to low-amplitude noise, that may actually make the pitch evolution

of a phon more stable, when a high-amplitude noise burst is encountered, it actually
acts as a bounce on the phon state, making it rotate by an angle θ. A sequence
of bursts, such as that of the example in section 3.2, is much like a sequence of
bounces between billiard balls of highly different weights. Recently, the classically
mechanic behavior of balls, whose weights are in ratios of powers of 100, has been
shown to be perfectly analogous to the kernel of the Grover algorithm for quantum
search [9], which is based on unitary reflections in the state space.
In the examples of sections 3.1 and 3.2, the quantum evolution is driven by

potentials that are derived from the same audio that is being processed. To turn these
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Figure 15: Sound synthesis obtained from the density matrix evolution from a mixed
state, using the component amplitudes depicted in figure 14, and all three components
of phonation, turbulence, and slow myoelastic vibration. The most salient pitch and
onsets, as extracted from the synthetic sound, are displayed as red dashed lines.

evolutions into quantum algorithms we should freeze a reference audio segment,
extract the feature-based potentials from the time-frequency representation, and
convert the elementary unitary transformations into quantum gates, arranged along
left-to-right wires. Each stage of the quantum algorithm would represent a bounce
or a measurement in the phon space, as long as the operators are consistent with
the postulates of quantum mechanics. It should be noted that we have only been
considering single-qubit (or single-phon) operators. The universe of multiple and
entangled phons remains to be explored.
In both quantum mechanics and sound signal processing, unitary operators and

unitary transformations have a central role. In fact, in physically-inspired sound
synthesis and digital audio effects, unitary matrix transformations are often found,
as scattering elements in feedback delay networks for artificial reverberation [43].
In these structures, if the feedback matrixA is chosen to be unitary, an initial pulse
bounces indefinitely, at each bounce scattering into a multiplicity of other pulses.
In the ball-within-the-box (BaBo) model [46], the matrix A can be interpreted
as a scattering ball that redistributes the energy from incoming wavefronts into
different directions, each corresponding to a planar wave loop, which produces
a harmonic series. Indeed, the matrix A does not have to be unitary for the
feedback structure to be lossless [52]. However, even staying within the class of
unitary matrices, A can be chosen for its scattering properties, ranging from the
identity matrix (no scattering at all) to maximally-diffusive structures [47, 53]. A
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promising perspective for future quantum sound processing, is to find realizable
quantum operators for such matrices. In particular, the Hadamard operator and
the Householder reflection are extensively used in quantum algorithms, and these
were proposed as reference matrices for feedback delay networks with maximally-
diffusive properties [26]. In the context of QVTS, a Hadamard gate H converts
a phon from |r〉 to |u〉, and from |l〉 to |d〉. If followed by a measurement in
the computational basis, it can be used to discriminate between the two turbulent
states. If inserted in a phon manipulation sequence, it determines a switch in the
vocal state of sound. Loops are not allowed in quantum computing [39], but by
spatially unfolding feedback, a reverberator based on feedback delay networks may
be converted to a quantum algorithmwith several stages of unitary operators, acting
as scattering elements on a multiplicity of phons. As a non-negligible detail, banks
of delay lines of different lengths, in the order of tens of milliseconds, should be
interposed between consecutive scattering sections.
Shor’s algorithm for factorization of a large integer N relies on an efficient

way of finding the periodicity (modulo N ) of the function ax, constructed from a
randomly chosen integer a that is smaller thanN and coprime with it. To compute
the periodicity of a function, the Quantum Fourier Transform (QFT) operator is
used, which transforms a superposition ofN = 2n computational basis states on n
qubits, with coefficients x =

[
x0, x1, . . . , xN−1

]
, into another superposition with

coefficients X =
[
X0, X1, . . . , XN−1

]
= DFTx), that is the Discrete Fourier

Transform of x. Using quantum parallelism, such DFT is implemented with On2

quantum gates, while classically that would take On2n steps. Recently, a direct
transposition of the Fast Fourier Transform (FFT) into the form of a quantum
circuit has been proposed and called the Quantum FFT (QFFT) [1]. Instead of
the amplitude encoding used for the QFT, a basis encoding is used, where a data
sequence x is expressed as a tensor product of vector spacesN−1

j=0 |xj〉. A potential
impact on audio signal processing would be that quantum parallelism would allow
to perform all frames of a N -bins STFT simultaneously, with ON log2 N gates.
The aggregate features of an audio segment would then be encoded in the resulting
vector of qubits.

4 Quantum evolution of the state (of the art)
A respectable scientific theory helps find new results, confirms expectations, ex-
tends the validity of known laws bringing them toward the realm of the unknown
and (formerly) inexplicable, and so on.
An exciting scientific theory leaves room for imagination and artistic creativity.

New ideas can arise from the interdisciplinary dialogue between people of different
fields. QVTS is intrinsically interdisciplinary, and we think it can enhance the
dialogue between worlds.
Interchanges between music and quantum mechanics constitute a relatively

new and flourishing research area. Our contribution to this field is the addition
of the human voice, and the use of vocal primitives as a probe to more generally
investigate the world of sounds. In section 3 we have proposed some examples of
a creative use of QVTS, where the Hamiltonian evolution is the starting point for
sound synthesis. In this section, we suggest some further creative applications.
The density matrix can be exploited to improve source separation techniques.

In fact, the operation of partial trace on density matrix allows us to separate a
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system from the environment, the reservoir. Choosing on which part of the whole
system we are making the operation of partial trace, we can interchangeably choose
which part we are neglecting. For example, given a polyphonic vocal recording, we
can establish that singer 1 is the system and singers 2, 3, and 4 are the environment
(thus, we can perform the partial trace on singers 2-3-4), or that singer 2 is the
system and singers 1, 3, and 4 are the environment, and so on. In fact, as a practical
interest in the domain of QVTS, we can think of a general recording, with multiple
voices, and interpret it as a statistic mixture of states. Voices might be organized
as a solo singing voice against a a background of several other voices of a choir—a
quantum choir. Therefore, QVTS may help analyze choral music. In addition,
it can give us hints also on how to create music. Creativity can precisely take off
from mixtures of states and vocal polyphony.
Because QVTS constitutes a bridge between sounds and quantum formalism,

we can play with the symmetries of particle processes and transform them to
musical symmetries, thus giving voice to quantum processes. We can create
correspondences between certain quantum properties of particles and the sounds,
their transformations and musical transformations. For example, an inversion of
the spin could be musically rendered with an inversion of the pitch interval; a
quantum superposition can be rendered with the simultaneous playing of different
orchestral sections to create a “cloud of sound.” A quantum measurement, with
the subsequent collapse of the sound wave, could be rendered with the sudden
silence of other orchestral sections, and with the remaining sound of a section,
or even only one instrument sound. Musical structures can be thought of as
transformations over time of “states” (short musical sequences or essential musical
ideas for example). According to this metaphor, we might describe the time
evolution of quantum states, including density matrices describing inseparable
state superpositions through generated musical structures. These hints should be
confronted with perceptual criteria, to create an idea of the processes in the mind
of the listener.
Finally, we may imagine an interface where the user can modify states on

the Bloch sphere, modifying the synthesis in real time. Such an interface might
allow a “Quantum Synthesis,” maybe the Gabor’s dream. A quantum synthesizer
with potential for development has indeed been recently proposed [14], where the
quantum circuits such as the one for Grover’s search can be run on a simulator or
a quantum computer, and probability distributions and computation steps can be
heard, with auditory exploitation of quantum noise.
We end this section with a fun, original musical fragment, or, better, a set of

instructions to make music directly out of the QVTS-Bloch’s sphere. A suitable
synthesizer as the one hypothesized above could make this attempt a concrete
tool for creative purposes. Let us imagine a short musical composition with two
vocal (not instrumental) lines, created out of moving states on the Bloch’s sphere.
As another homage to Bach, we can be inspired by the structure of the Two-
Part Inventions, with the parts imitating each other, as in a simple counterpoint.
Thus, we can provocatively call our attempt Two-Part Quantum Invention No.
1. Figure 16 shows a tentative notation, with a schematic sphere derived from
figure 1, and the sequence of state variations. Generalization of the proposed
idea to more voices and intricate counterpoints is up the reader. This structure
could be used as a set of instructions for vocal improvisation, similarly to the
“quantum improvisations” Pauline Oliveros used to conduct [40]. Conceptually,
the two voices can be instances of the same evolving phon, from which we can, in
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principle, extract infinite counterpoint lines. If the parallel motion of parts causes
troubles in classical counterpoint because of the feeling of sameness, intrinsic
parallelism is the real advantage of quantum computation, eventually leading to
quantum supremacy for some computational problems. Music counterpoint may
actually give voice to quantum parallel computations.

Sketch for a Two-Part Quantum Invention No. 1

1st voice

2nd voice
silence

turb-f.

turb-f

pitch-down-p, 
turb-f

pitch-up-f 
turb-p

pitch-up-f 
turb-p

myo-f

myo-f

pitch-down-p 
turb-f

pitch-down-f pitch-up-f

pitch-down-f 
turb-p

pitch-down-p 
turb-f

p

t
m

pitch-down-p, 
turb-f.

turb-p 
myo-f

pitch-down-f 
turb-p1st voice

2nd voice

Figure 16: Sketch for a music composition based on Bloch’s sphere for QVTS (by
M.M.).

4.1 Concluding remarks
Starting from kids’ playing and moving toward futuristic scenarios of quantum
choirs and Quantum Inventions, in this chapter we presented the fundamental ideas
of the Quantum Vocal Theory of Sound (QVTS), along with some proposal of
future developments.
We aimed to discuss a supplemental formalism to describe sound (with the

vocal probe), rather than proving any “wrongness” or obsolescence of the classical
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formalism, such as Fourier analysis, for sound. Our supplemental formalism is an
alternative one, it gives a new perspective, and it has the advantage of providing
more information, especially regarding Gestalt-related phenomena, as in the case
of bistable states.
QVTS is interdisciplinary in nature, as it provides a bridge between sound

sources, sound production, human perception, and the intuitive identification of
sounds and sound sources. In addition, the uncertainty (or fuzziness) that is proper
to quantum thinking might be compared with the approximation of human intuitive
assessments about sounds, sound sources, and sound identification.
Beyond the theoretical foundation, our aim is to foster the creation of machines

that measure sounds in terms of vocal primitives and express sonic processes as
evolving superpositions of vocal primitives. We hope that our presentation of
QVTS may lead to further questions, research, developments, as well as to artistic
contributions.
May it be a simple metaphor, or a quantitative tool, the core of quantum

mechanics is more and more inspiring for musicians, performers, and scientists,
shedding light on new and unexplored collaborations and insights.
All of that, can lead to the sound of quanta.
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