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Uncertainty and sensitivity analysis for reducing

greenhouse gas emissions from wastewater treatment

plants

Giorgio Mannina , Alida Cosenza and Taise Ferreira Rebouças
ABSTRACT
This paper presents the sensitivity and uncertainty analysis of a plant-wide mathematical model for

wastewater treatment plants (WWTPs). The mathematical model assesses direct and indirect (due to

the energy consumption) greenhouse gases (GHG) emissions from a WWTP employing a whole-plant

approach. The model includes: (i) the kinetic/mass-balance based model regarding nitrogen; (ii) two-

step nitrification process; (iii) N2O formation both during nitrification and denitrification (as dissolved

and off-gas concentration). Important model factors have been selected by using the Extended-

Fourier Amplitude Sensitivity Testing (FAST) global sensitivity analysis method. A scenario analysis

has been performed in order to evaluate the uncertainty related to all selected important model

factors (scenario 1), important model factors related to the influent features (scenario 2) and

important model factors related to the operational conditions (scenario 3). The main objective of this

paper was to analyse the key factors and sources of uncertainty at a plant-wide scale influencing the

most relevant model outputs: direct and indirect (DIR,CO2eq and IND,CO2eq, respectively), effluent

quality index (EQI), chemical oxygen demand (COD) and total nitrogen (TN) effluent concentration

(CODOUT and TNOUT, respectively). Sensitivity analysis shows that model factors related to the influent

wastewater and primary effluent COD fractionation exhibit a significant impact on direct, indirect and

EQI model factors. Uncertainty analysis reveals that outflow TNOUT has the highest uncertainty in

terms of relative uncertainty band for scenario 1 and scenario 2. Therefore, uncertainty of influential

model factors and influent fractionation factors has a relevant role on total nitrogen prediction.

Results of the uncertainty analysis show that the uncertainty of model prediction decreases after

fixing stoichiometric/kinetic model factors.

Key words | energy demand, greenhouse gas emission, modelling, plant-wide assessment,

uncertainty
HIGHLIGHTS

• A plant-wide model for wastewater treatment plants has been applied.

• Direct and indirect greenhouse gases emissions have been investigated.

• Sensitivity and uncertainty analysis have been performed.

• Influent wastewater features strongly influence the greenhouse gases emissions.

• Uncertainty of influential model factors has a relevant role on total nitrogen

prediction.
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GRAPHICAL ABSTRACT
INTRODUCTION
The interest towards greenhouse gas (GHG) emissions from
wastewater treatment plants (WWTPs) has considerably
increased during the last decade (Kampschreur et al. ;
Corominas et al. ; Mannina et al. a). WWTPs can
be a source of GHGs emissions as: direct (due to the biologi-
cal processes), indirect internal (due to electric or thermal
energy consumption) and indirect external (due to sludge

disposal or chemicals production) emission (IPCC ).
The waste and wastewater sector accounts for about 3% of
the global GHG emissions (IPCC ). In order to reduce

GHG emissions from WWTPs, researchers and pro-
fessionals have three main aims: (i) mitigate pollutants
emissions (both liquid and gaseous) (including GHGs); (ii)

maintain the required quality of the treated wastewater;
(iii) limit as much as possible the operational cost (Flores-
Alsina et al. ; Mannina et al. a).

In view of achieving these aims, several efforts have been
provided in literature for establishing mathematical tools
able to predict WWTP behaviour (in terms of GHG and
liquid pollutants) (Kyung et al. ; Mannina et al. a,
b, c). Several modelling methods have been proposed
to include GHG assessment (e.g. empirical models, process-
basedmodels often related tomass balance, dynamicmechan-

isticmodels often associatedwith life cycle assessment at plant
wide-scale) (among others, Flores-Alsina et al. ; Bisinella
de Faria et al. ; Mannina et al. , a). For each of

the aforementionedmodelling methods, plant-wide modelling
approach can offer a straightway and effective solution for
assisting in developing strategies aimed at reducing GHG
emissions and improving environmental protection. Plant-

wide mathematical models adopting dynamic mechanistic
approaches are characterized by providing accurate predic-
tions; however, they are more time demanding than simple

comprehensive process-based models (Corominas et al. ).
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Therefore, despite the advantages of dynamic mechanistic
models in terms of accurateness of the predictions, for a
rapid GHG estimation, the simple comprehensive process-

based models are suggested (Mannina et al. a). However,
it has to be mentioned that simple comprehensive process-
based models are often based on a great number of assump-
tions and their response can be highly uncertain. Therefore,

uncertainty analysis may help in obtaining model confidence
and improve the model predictions. However, sensitivity and
uncertainty analysis have rarely been performed in the GHG

WWTP modelling studies with the aim to identify the key
source of uncertainty (Behera et al. ). The existing studies
mainly consider only the water line treatment (such as Man-

nina et al. ). Sweetapple et al. () have performed an
uncertainty analysis of a GHG plant-wide model, however
they adopted a dynamic mechanistic modelling approach.

Further, Mannina et al. (b, c) have performed an
uncertainty analysis of a GHGplant-wide comprehensive pro-
cess-basedmodel but without considering all the possibleN2O
emissions pathways.

Bearing in mind the above introduction, in this study,
sensitivity and uncertainty analysis of a new simple pro-
cesses-based model have been performed in view of

identifying the key sources of uncertainty.
MATERIALS AND METHODS

Mathematical model and case study

The model adopted here is based on chemical oxygen
demand (COD), total suspended solids (TSS) mass-balance

and nitrogen kinetic/mass-balance. The model consists of
29 model factors (divided into kinetic, stoichiometric,



Table 1 | Symbol, description, unit, value at T¼ 20 �C, variation range and reference for each model factor

Symbol Description Unit
Value
T¼ 20 �C Min Max Reference

SRTASP Sludge retention time of the activated sludge
process section

day 10 6 18 Metcalf & Eddy
()

rNO Internal recycle rate from aerobic to anoxic
reactor

– 4 2 5 Metcalf & Eddy
()

OTE Oxygen transfer efficiency % 15 0.09 0.18 Metcalf & Eddy
()

μ Maximum growth rate of heterotrophic
biomass

d�1 5.985 4 8 Hauduc et al. ()

ks Half saturation parameter for heterotrophic
biomass

gCOD m�3 15 14 21 Hauduc et al. ()

kd Decay rate for heterotrophic biomass d� 1 0.825 0.5 1.5 Hauduc et al. ()

YH Yield for heterotrophic biomass growth gVSS gCOD� 1 0.565 0.38 0.75 Hauduc et al. ()

iNVSSPS N content of biomass in the primary sludge kgN kgVSS� 1 0.085785 0.0665 0.13 Brun et al. (),
Gori et al. ()

iNVSSSS N content of biomass in the secondary sludge kgN kgVSS�1 0.1197 0.0665 0.13 Brun et al. (),
Gori et al. ()

μN,AOB Maximum growth rate of autotrophic biomass d�1 0.078 0.0546 0.1014 Hauduc et al. ()

KN,AOB Half saturation parameter for autotrophic
biomass

gNH4-N m�3 1 0.7 1.3 Hauduc et al. ()

kdN,AOB Decay rate for autotrophic biomass d�1 0.096 0.0672 0.1248 Hauduc et al. ()

YN,AOB Yield of autotrophic biomass growth gVSS gNH4-N 0.18 0.126 0.234 Brun et al. ()

μN,NOB Maximum growth rate for autotrophic NOB
biomass

gVSS gVSS�1day�1 0.78 0.546 1.014 Pocquet et al. ()

KN,NOB Half-saturation parameter for autotrophic
NOB biomass

gNH4-N m�3 1 0.7 1.3 Pocquet et al. ()

kdN,NOB Decay rate of autotrophic NOB biomass gVSS gVSS�1day�1 0.096 0.0672 0.1248 Pocquet et al. ()

YN,NOB Yield for autotrophic NOB biomass growth gVSS gNH4-N
�1 0.06 0.042 0.078 Pocquet et al. ()

pCOD/
VSS

Ratio between particulate COD and volatile
suspended solids

– 1.466325 1.07 1.87 Gori et al. ()

nbsCODIN Fraction of soluble nonbiodegradable COD in
influent wastewater

– 0.033915 0.034 0.12 Mannina et al. (),
Gori et al. ()

pbCODIN Fraction of particulate biodegradable COD in
influent wastewater

– 0.4478775 0.1 0.45 Mannina et al. (),
Gori et al. ()

npbCODIN Fraction of particulate nonbiodegradable
COD in influent wastewater

– 0.245385 0.05 0.25 Mannina et al. (),
Gori et al. ()

nbsCODPI Fraction of soluble nonbiodegradable COD in
the primary effluent

– 0.069825 0.034 0.12 Mannina et al. (),
Gori et al. ()

pbCODPI Fraction of particulate biodegradable COD in
the primary effluent

– 0.3082275 0.1 0.45 Mannina et al. (),
Gori et al. ()

npbCODPI Fraction of particulate nonbiodegradable
COD in the primary effluent

– 0.13566 0.05 0.25 Mannina et al. (),
Gori et al. ()

SRTDIG Sludge retention time of the anaerobic
digestion

day 20 16 28 Metcalf & Eddy
()

Kd,dig Decay rate for biomass during digestion d�1 0.06 0.02 0.08 Cakir and Stenstrom
()

YH,dig Yield for heterotrophic biomass growth during
digestion

gVSS gCOD 0.0225 0.01 0.03 Cakir and Stenstrom
()

EFCO2 CO2 emission factor due to the headworks gCO2 L
�1 0.00448875 0.00405 0.00495 Czeplel et al. ()

EFCH4 CH4 emission factor due to the headworks gCO2eq L
�1 0.00013965 0.000126 0.000154 Czeplel et al. ()
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Table 2 | Summary of the model state variables; the state variables in bold have been here introduced

Symbol Unit Description

mCO2,HD kgCO2eq/day Emission of CO2 at the headworks (HD)

mCO2eq,CH4,HD kgCO2eq/day Equivalent CO2 emission of CH4 at the HD

mCO2,ASP kgCO2eq/day Emission of CO2 due to biomass respiration at the activated sludge process (ASP)

mCO2eq,CH4,ASP kgCO2eq/day Equivalent CO2 emission of CH4 at the ASP

mCO2eq,N2O,ASP,AOB kgCO2eq/day Equivalent CO2 emission of N2O due to AOB biomass respiration

mCO2eq,N2O,ASP,DEN kgCO2eq/day Equivalent CO2 emission of N2O due to heterotrophic biomass respiration

mCO2,AD kgCO2eq/day Emission of CO2 during anaerobic digestion (AD)

mCO2,CH4,comb,BG kgCO2eq/day Emission of CO2 due to biogas (BG) combustion (comb)

mCO2eq,CH4,AD kgCO2eq/day Equivalent CO2 due to CH4 emissions during sludge digestion at the AD

mCO2eq,CH4fugitive,AD kgCO2eq/day Equivalent CO2 due to CH4 fugitive emissions during AD

mCO2eq,CH4,D kgCO2eq/day Equivalent CO2 due to CH4 emissions during dewatering (D)

mCO2eq,TB kgCO2eq/day Equivalent CO2 emitted due to biosolid discharge (TB)

mCO2eq,N2O,EFF kgCO2eq/day Equivalent CO2 emitted due to effluent discharge (EFF)

mCO2eq,offset kgCO2eq/day Equivalent CO2 credit due to energy recovery (eR)

eD,HD kWh/day Energy demand in HD units

eD,PS kWh/day Energy demand in PS unit

eD,ASP kWh/day Energy demand in ASP units

eD,SS kWh/day Energy demand in SS unit

eD,AD kWh/day Energy demand in AD unit

eD,D kWh/day Energy demand in dewatering unit

eR kWh/day Energy recovery
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influent fractionation and operational factors) and 21 state
variables. Tables 1 and 2 summarize the detailed description

of model factors and state variables, respectively. The model
allows to assess the total equivalent CO2 (CO2eq) emissions
(kgCO2,eq/day or kgCO2,eq/treated volume) from a WWTP

as the sum between direct (DIR,CO2eq) and indirect
(IND,CO2eq) emissions. The model considers uniform
and constant influent features over time. Further, non-

biodegradable compounds are considered conservative.
The model adopted here introduces the following

main innovative aspects related to up-to-date available lit-

erature plant-wide models: (i) kinetic/mass-balance based
model regarding nitrogen; (ii) includes the nitrification as
a two-step process; (iii) includes the N2O formation
during nitrification and denitrification both in dissolved

and off-gas forms. More specifically, the autotrophic bio-
mass is divided into autotrophic ammonia oxidizing
bacteria (AOB) and nitrite oxidizing biomass (NOB) in

view of modelling the N2O formation processes during
nitrification. The secondary effluent ammonia and nitrite
om http://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf
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concentration are calculated according to the mass bal-
ance analysis of a well-mixed activated sludge reactor

(Metcalf & Eddy ). Thus, the effluent ammonia con-
centration depends on the AOB kinetics parameters and
on the sludge retention time. The dissolved N2O concen-

tration inside the aerobic reactor is modelled according
to the relationship proposed by Wu et al. (), while
the dissolved and gaseous N2O concentration inside and

from the anoxic reactor is modelled according to the
relationships proposed by and Yan et al. (). According
to Yan et al. () the gaseous N2O emitted from the

anoxic reactor depends on the carbon to nitrogen ratio.
The model allows to assess DIR,CO2eq and IND,CO2eq

emissions at a plant-wide scale, considering the contri-
bution due to the water line (headworks (HD), primary

settler (PS), activated sludge process (ASP), secondary set-
tler (SS), treated effluent discharge (EFF)) and to the
sludge line (anaerobic digestion (AD), dewatering (D), bio-

solids disposal (TB) and energy recovery (ER) due to the
biogas combustion) (Figure 1).



Figure 1 | Layout of the plant under study: HD¼ headworks; PS¼ primary settler; ASP¼ activated sludge process; SS¼ secondary settler; AD¼ anaerobic digester; D¼ sludge dewatering;

TB¼ biosolids disposal; EFF¼ treated effluent; ER¼ energy recovery; the meaning of symbols is detailed in Tables 1 and 2.
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The DIR,CO2eq and IND,CO2eq have been calculated
according to Equations (1) and (2), respectively (the mean-
ing of symbols is reported in Table 2).

DIR, CO2eq ¼ mCO2eq,HD þ mCO2eq,ASP þ mCO2eq,AD

þmCO2,CH4comb,BG þmCO2eq,CH4,D þmCO2eq,TB

þmCO2eq,N2O,EFF �mCO2eq,offset (1)

The termmCO2eq,ASP includes all the direct and equivalent
CO2 emissions from the activated sludge process: due to bio-

mass respiration (mCO2,ASP), due to CH4 (mCO2eq,CH4,ASP) and
due to AOB (mCO2eq,N2O,ASP,AOB) and NOB (mCO2eq,N2O,

ASP,NOB) respiration.

IND, CO2eq ¼ (eD,HD þ eD,PS þ eD,ASP þ eD,SS þ eD,AD

þ eD,D � eR) � sEnCO2,eq (2)

In this study, the value of the specific CO2 equivalent
emission for energy consumption (SEnCO2,eq) suggested
by EIA () has been adopted; the sum in brackets of

Equation (3) represents the total energy demand of the
plant (eD).
://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf
Energy recovery (eR, kW/day) is calculated as presented
in Equation (3) by multiplying the biogas production
(mBG, kg/day) by the efficiency of the energy recovery

(ηeR) and by methane specific energy (hBG, kW/kgBG).

eR ¼ mBGηeRhBG (3)

The model has been applied to a conventional activated
sludge (CAS) WWTP having the Ludzack-Ettinger (anoxic

and aerobic biological reactors) configuration for nitrogen
removal (Figure 1). The plant treats 60,000 m3 d�1 of real
wastewater and consists of a water line (headworks, primary

settler, CAS units according to Ludzack-Ettinger configur-
ation, secondary settler and disinfection unit) and a sludge
line (anaerobic sludge digester with energy recovery,

sludge dewatering unit) (Mannina et al. b, c)
(Figure 1). A detailed description of the model can be
found in Mannina et al. (, ).

Sensitivity analysis method

Sensitivity analysis has been performed by using the

Extended-FAST method (Saltelli et al. ). This method
belongs to the global sensitivity analysis methods and is
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based on the variance decomposition theorem. Two sensi-

tivity indices for each i-th model factor have been
calculated: the first-order effect index (Si) and the total-
effect index (STi). Si quantifies the contribution of the i-th

model factor to the variance of the model output [Var(Y)]
without considering the interaction among the model fac-
tors; it is expressed as:

Si ¼ Varxi(Ex�i (Y jXi))
Var(Y)

(4)

where E is the expectancy operator and Var is the variance.

The subscripts indicate that the operation is either applied
‘over the i-th factor’ xi, or ‘over all model factors except
the i-th model factor’ x-i (Saltelli et al. ).

STi is expressed as:

STi ¼ 1� Varx�i(Exi (Y jX�i))
Var(Y)

(5)

The difference between STi and Si represents the inter-
action among the model factors. The Extended-FAST

method requires nxNR simulations, where n is the number
of factors and NR is the number of runs per model factor
(NR¼ 500–1,000 according to Saltelli et al. ).

Uncertainty analysis and scenario analysis

The uncertainty analysis has been performed by running
Monte Carlo simulations varying the model factors
selected as important through the GSA. More specifically,

three uncertainty scenarios have been investigated by
Monte Carlo simulations changing the following
factors: scenario 1 – all model important factors;

scenario 2 – model factors related to the influent features;
scenario 3 – model factors related to the operational
conditions.

For each scenario, results of the Monte Carlo simu-
lations have been interpreted by analysing the cumulative
distribution function (CDF). Specifically, for each model

output, the CDF of the normalized value has been con-
sidered; the normalized value has been obtained by
dividing each simulated value by the maximum one. More-
over, the comparison of the uncertainty analysis results

among the model outputs taken into account for each scen-
ario has been performed by comparing the value of the
relative uncertainty bandwidth. This latter has been com-

puted by dividing the width between the 5th and 95th
percentiles for the 50th percentile.
om http://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf
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Simulation conditions and numerical settings

Sensitivity analysis has been performed by considering
all model factors (influent fractionation factors, kinetic fac-

tors, conversion factors and emission factors) and five
model outputs (see Table 2). Specifically, the following
model outputs have been considered: DIR, CO2eq, IND,
CO2eq, the total effluent COD and nitrogen concentration

(CODOUT and TNOUT) and the effluent quality index
(EQI). The EQI, expressed in kg pollution unit per
day [kgPU day�1], has been calculated according to

Equation (6).

EQI ¼ 1
T � 1000

ðt1

t0

(βCOD � CODOUT þ βTN � TN,OUT )

�QOUTdt (6)

where βCOD and βTN are, respectively, the weighted factors
of the effluent COD (CODOUT) and TN (TNOUT), QOUT is

the flow rate of treated wastewater and T represents the
reference time.

TNOUT includes non-oxidized ammonia, nitrite, nitrate

and dissolved nitrous oxide while organic nitrogen is neg-
lected. βCOD and βTN have been considered equal to 1 and
20, respectively, according to literature (Maere et al. ).

For a detailed description of the symbol and variation
range of each factor the reader is referred to Table 1. Due
to the lack of knowledge about the distribution of the
model factors, a uniform prior distribution was considered

for each factor. The Extended-FAST method was applied
using the sensitivity package developed by Pujol () in
the R environment (Development Core Team, ). For

the Extended-FAST application, 1,000 NR have been con-
sidered, consequently 29,000 simulations have been run.

To classify important, non-influential and interacting

factors, thresholds of the sensitivity measures were selected.
Specifically, factors with Si value greater than 0.01, at least
for one model output, were classified as important. Interact-

ing model factors were selected using the normalised index
value (SNi), which corresponds to the ratio between the
interaction of the i-th model factor related to one model
output and the maximum value among the interactions for

that model output. Factors with SNi greater than 0.5 for at
least one model output were considered to be interacting.
Model factors with SNi and Si values lower than 0.5 and

0.01, respectively, were considered to be non-influential.
The uncertainty analysis was performed by all the model
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factors classified as important or interacting. For each ana-

lysed scenario, 1,000 Monte Carlo simulations (by adopting
a Latin Hypercube Sampling) have been performed.
RESULTS AND DISCUSSION

Sensitivity analysis

In Figure 2, the Extended-FAST results for each analysed
model output are reported. For sake of shortness, the

values of Si, STi, STi-Si and SNi are summarized in Table 3.
The sum of Si explains more than 94% of the total var-

iance for all model outputs suggesting that the model is
highly linear and additive. This statement is also confirmed

by the value of the sum of STi, which is always close to
1. This latter result suggests that a very low interaction
among factors takes place. By applying the Extended-FAST
Figure 2 | Sensitivity (Si), interaction (STi – Si) and threshold values of all model factors, with t

://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf
method, 17 model factors resulted to be important (Si>
0.01 and/or SNi> 0.5) for at least one model output.

By analyzing data reported in Figure 2, one can obser-
ve that six factors have significant impact on DIR,CO2,eq.

Specifically, npbCODIN, pCOD/VSS, nbsCODIN,
pbCODIN, pbCODPI and npbCODPI (Si equal to 0.78,
0.064, 0.051, 0.081, 0.011 and 0.011, respectively) have
an Si value higher than 0.01 for DIR,CO2,eq. Among these

factors, three (npbCODIN, nbsCODIN, and pbCODIN) are
related to the influent wastewater fractionation, two
(pbCODPI and npbCODPI) are related to the primary

effluent fractionation and one (pCOD/VSS) refers to par-
ticulate COD and volatile suspended solids.

Influent fractionation factors are also strongly interact-

ing; indeed, the SNi value for npbCODIN and pbCODIN is
equal to 1 and 0.67, respectively (Figure 2, Table 3). The influ-
ent fractionation factors influence the bCOD availability to
heterotrophic biomass growth and, consequently, the direct

CO2 produced during the biomass respiration value.
he five model output taken into account.
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For example, the higher the nbsCODIN fraction and the

lower the availability of substrate to be degraded during the
biomass metabolism (both during aerobic and anoxic con-
ditions). Hence, CO2 produced during the biomass

respiration is reduced as a result of the conservative
nature of nbsCODIN. Further, even the physical processes
occurring inside the primary settler (as demonstrated by
the importance of pbCODPI and npbCODPI) can influence

the COD availability for the biomass respiration and conse-
quently the DIR,CO2,eq.

The indirect emissions (IND,CO2,eq) are mostly influ-

enced by three main factors: the oxygen transfer efficiency
(OTE) (Si equal to 0.679), fractionation factors (nbsCODIN,
pbCODIN and npbCODIN with Si equal to 0.024, 0.132 and

0.167, respectively) and the yield coefficient for hetero-
trophic biomass growth (YH) (Si equal to 0.015 (Figure 2,
Table 3). Such results are consistent with literature which
shows that energy consumption is mostly due to the activate

sludge process (ASP): More specifically, ASP consumes are
in the range of 60–70% (Mamais et al. ; Mannina et al.
b; Massara et al. ).

OTE is an important factor for the indirect emissions
since regulates the air flow rate required to maintain the
aerobic conditions inside the aerobic reactor. Similarly,

nbsCODIN, pbCODIN and npbCODIN are important factors
for indirect emissions since they regulate the availability of
soluble COD required for the biological processes. For

example, as the fraction of sCOD decreases the oxygen
required for the aerobic processes decreases, thus influen-
cing the power requirements of the aeration process and
of the entire WWTP. Finally, the yield coefficient (YH) influ-

ences the amount of the air flow to be inserted in the aerobic
reactor and consequently the power requirements.

The CODOUT is mostly influenced by the maximum

growth rate of heterotrophic biomass (μ), the half-saturation
factor for heterotrophic biomass (ks, Si equal to 0.067) and
the decay rate of heterotrophic biomass (kd, Si equal to

0.532). Among these factors μ and kd also resulted to be
interacting having an SNi value of 1 and 0.98, respectively.
All model factors resulted to be important for CODOUT

have a key role on regulating the heterotrophic active bio-
mass inside the aerobic reactor, thus influencing the COD
consumption and consequently the COD concentration in
the effluent wastewater.

Eleven model factors mostly related to the influent frac-
tionation, heterotrophic, AOB and NOB resulted to be
important for the total nitrogen at the effluent (TNOUT)

(Figure 2, Table 3). Among these factors, it is important to
observe that YH (Si equal to 0.289), which is directly related
om http://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf
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to the heterotrophic biomass, is the most important factor

for TNOUT (with an Si value equal to 0.29). This result is
related to the anoxic activity of heterotrophic biomass
which strongly influences the amount of nitrogen removed

from the system and consequently the TNOUT. Conversely,
the model interacting factor for TNOUT is the sludge reten-
tion time of the conventional activated process (SRTASP)
(Si and SNi value equal to 0.01 and 1, respectively).

Indeed, SRTASP is a key factor for different processes occur-
ring inside the system. Among these processes, SRTASP also
regulates the autotrophic biomass growth within the aerobic

reactor (nitrification). The nitrification process is respon-
sible for the nitrate availability to be denitrified and
consequently removed from the system.

Finally, the EQI is influenced by 13 model factors.
Among these factors, five are related to the influent
COD fractionation (nbsCODIN, pbCODIN, npbCODIN,
pbCODPI and npbCODPI), five to the biomass activity

(kd, YH, kdN,AOB, YN,AOB and μN,NOB), one to the nitrogen
content in the secondary sludge (iNVSSSS) and two to the
operational conditions (SRTDIG, SRTASP) (Figure 2,

Table 3). Among these factors, YH has the highest Si

value (0.28), indicating that the role of heterotrophic bac-
teria is relevant in terms of pollutants discharge (both

nitrogen and COD) (Figure 2, Table 3), while the influence
of SRTASP is only due to the interaction contribution.
Indeed, despite the value of Si for SRTASP (related to

EQI) being lower than 0.01, this factor proved to be impor-
tant due its high interaction. Indeed, the STI-Si and SNi

value resulted to be equal to 0.03 and 1, respectively.
The high interaction of SRTASP is mainly due to the com-

plexity of the model in terms of biological processes
which are strongly regulated by SRTASP.

Uncertainty analysis

The uncertainty analysis was performed by considering the

three scenarios described earlier. For each scenario,
Monte Carlo simulations have been performed by varying
important model factors grouped according to the scenarios.

In Figure 3, the cumulative distribution functions (CDFs)
of DIR,CO2,eq, IND,CO2,eq, EQI, CODOUT and TNOUT of
each scenario is reported.

In Figure 3, x-axes report the normalized value of each

model output. The normalized value has been obtained by
dividing each Monte Carlo output model value by the maxi-
mum one. From a visual inspection of Figure 3, one may

observe that the width of the uncertainty bands, (calculated
as difference between the 95th and 5th percentiles of the



Table 3 | Symbol, Si, STi, STi-Si and SNi values for each model factors and model output

EQI DIR,CO2eq IND,CO2eq CODOUT TNOUT

Factors Si STi STi-Si SNi Si STi STi-Si SNi Si STi STi-Si SNi Si STi STi-Si SNi Si STi STi-Si SNi

SRTASP 0.010 0.039 0.029 1.000 0.001 0.002 0.001 0.103 0.006 0.008 0.002 0.109 0.006 0.007 0.001 0.019 0.010 0.040 0.030 1.000

rNO 0.000 0.002 0.002 0.084 0.000 0.000 0.000 0.040 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.003 0.000 0.002 0.002 0.083

OTE 0.000 0.002 0.002 0.084 0.005 0.006 0.001 0.120 0.679 0.694 0.015 1.000 0.000 0.000 0.000 0.003 0.000 0.002 0.002 0.083

SRTDIG 0.036 0.040 0.003 0.110 0.000 0.001 0.000 0.059 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.037 0.041 0.003 0.110

μ 0.001 0.003 0.002 0.085 0.000 0.001 0.001 0.065 0.000 0.000 0.000 0.014 0.336 0.394 0.058 1.000 0.000 0.003 0.002 0.083

nbsCODIN 0.015 0.020 0.004 0.149 0.051 0.052 0.000 0.054 0.024 0.025 0.001 0.076 0.000 0.000 0.000 0.002 0.015 0.020 0.004 0.147

pbCODIN 0.168 0.192 0.024 0.813 0.080 0.085 0.005 0.674 0.132 0.139 0.007 0.480 0.000 0.000 0.000 0.002 0.171 0.195 0.024 0.811

npbCODIN 0.050 0.060 0.010 0.343 0.780 0.787 0.008 1.000 0.167 0.173 0.006 0.422 0.000 0.000 0.000 0.002 0.051 0.061 0.010 0.343

nbsCODPI 0.000 0.003 0.003 0.090 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.090

pbCODPI 0.020 0.023 0.003 0.107 0.011 0.012 0.001 0.137 0.001 0.001 0.000 0.008 0.000 0.000 0.000 0.002 0.020 0.023 0.003 0.107

npbCODPI 0.022 0.025 0.003 0.105 0.011 0.012 0.001 0.119 0.001 0.001 0.000 0.007 0.000 0.000 0.000 0.002 0.022 0.026 0.003 0.105

ks 0.000 0.003 0.002 0.086 0.000 0.001 0.000 0.058 0.000 0.000 0.000 0.012 0.067 0.079 0.012 0.210 0.000 0.003 0.002 0.084

kd 0.120 0.141 0.021 0.723 0.000 0.001 0.001 0.082 0.002 0.003 0.001 0.052 0.532 0.589 0.057 0.979 0.107 0.128 0.020 0.690

YH 0.287 0.313 0.026 0.896 0.000 0.001 0.001 0.104 0.015 0.017 0.002 0.131 0.000 0.000 0.000 0.002 0.289 0.315 0.026 0.885

iNVSSPS 0.000 0.003 0.003 0.118 0.000 0.000 0.000 0.062 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.117

iNVSSSS 0.129 0.146 0.017 0.593 0.001 0.001 0.001 0.084 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.002 0.131 0.148 0.017 0.588

μN,AOB 0.000 0.002 0.002 0.083 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.002 0.002 0.082

KN,AOB 0.000 0.002 0.002 0.063 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.002 0.000 0.002 0.002 0.062

kdN,AOB 0.017 0.020 0.003 0.106 0.001 0.001 0.000 0.044 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.002 0.017 0.020 0.003 0.105

YN,AOB 0.065 0.071 0.005 0.187 0.004 0.005 0.001 0.077 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.002 0.066 0.071 0.005 0.185

μN,NOB 0.016 0.022 0.005 0.189 0.001 0.002 0.000 0.060 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.017 0.022 0.006 0.186

KN,NOB 0.000 0.001 0.001 0.040 0.000 0.000 0.000 0.017 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.002 0.000 0.001 0.001 0.040

kdN,NOB 0.000 0.004 0.004 0.147 0.000 0.000 0.000 0.046 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.004 0.004 0.145

YN,NOB 0.000 0.003 0.003 0.105 0.000 0.000 0.000 0.030 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.103

pCOD/VSS 0.000 0.003 0.003 0.105 0.064 0.070 0.007 0.888 0.002 0.003 0.000 0.026 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.103

Kd,dig 0.000 0.003 0.003 0.087 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.087

YH,dig 0.000 0.003 0.003 0.087 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.087

EFCO2 0.000 0.003 0.003 0.087 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.087

EFCH4 0.000 0.003 0.003 0.087 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002 0.000 0.003 0.003 0.087

∑S 0.96 1.15 – – 1.01 1.04 – – 1.03 1.07 – – 0.94 1.07 – – 0.96 1.15 – –

Factors selected as important on the basis of Si and SNi are in bold.
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Figure 3 | Cumulative distribution function (CDF) of DIR,CO2,eq, IND,CO2,eq, EQI, CODOUT and TNOUT for scenario 1 (a), scenario 2 (b) and scenario 3 (c).
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normalized values), changes with the model output and the

analysed scenarios. This is mainly due to the fact that some
of the model outputs entail a different level of complexity in
terms of involved phenomena.

For scenario 1, where all important model factors have

been varied, the uncertainty bands’ widths of EQI (0.51),
TNOUT (0.51) and IND,CO2,eq (0.38) is higher than that of
CODOUT (0.16) and DIR,CO2,eq (0.32) (Figure 3(a)). This

result is due to the fact that a greater number of processes
influences EQI, TN and IND,CO2,eq than the other model
output. Therefore, the uncertainty of model factors varied

during Monte Carlo simulations (operational, influent frac-
tionation and kinetic/stoichimetric factors) strongly
influence the EQI, TN and IND,CO2,eq predictions. Conver-

sely for scenario 2, the uncertainty band widths of TNOUT

(0.36), EQI (0.35), and CODOUT (0.33) are higher than
that of DIR,CO2,eq (0.32) and IND,CO2,eq (0.28)
(Figure 3(b)). This result is mainly due to the fact that influ-

ent fractionation factors, as reported above, strongly
influence TNOUT, EQI and CODOUT. Finally, for scenario
3, where only the influential factors related to the oper-

ational conditions were varied, the uncertainty bands’
widths of IND,CO2,eq (0.36) and DIR,CO2,eq (0.24) are
om http://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf

1

higher than that of EQI (0.18), TNOUT (0.18), and

CODOUT (0.09) (Figure 3(c)). This result has relevant inter-
est since underlines that the operational conditions may
have an important role influencing both direct and indirect
emissions predictions.

The results of Figure 3 show that the uncertainty band
width decrease from scenario 1 to scenario 3, underlying
that the reduction of the number of model factors varied

from scenario 1 to scenario 3 reduce the uncertainty of
model predictions. However, it is interesting to observe
that from scenario 1 to scenario 2 the uncertainty bands

width related to CODOUT increases. This result is mainly
due to the fact that the uncertainty of the influent fraction-
ation factors, varied during in scenario 2, strongly

influence the uncertainty of CODOUT. Further, from scen-
ario 2 to scenario 3, the uncertainty bands’ width related
to IND,CO2,eq increases. Such a fact underlines the key
role of operational conditions in influencing the IND,CO2,

eq predictions.
In order to provide a quantitative assessment of the

model uncertainty and to make comparable the results

among the model outputs, the relative uncertainty band
width for each model output and scenario has been



Figure 4 | Relative uncertainty bandwidth for each model output.
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computed by dividing the width between the 5th and 95th

percentiles to the 50th percentile. In Figure 4, the relative
uncertainty band widths for each model output and scenario
are reported.

By analysing Figure 4, one may observe that for scenarios
1 and 2, the highest uncertainty is related to TN due to the
treated effluent (the relative uncertainty bandwidth is equal

to 0.79 for scenario 1 and 0.48 for scenario 2), while for scen-
ario 3 the highest uncertainty is related to IND,CO2eq (0.47),
thus, corroborating again that operational conditions mostly
influence indirect emissions (scenario 3). The highest uncer-

tainty of TN for scenarios 1 and 2 is mainly due to the
uncertainty of kinetic, stoichiometric and fractionation factors
which influence the biological processes and consequently

the amount of nitrogen removed.
Data in Figure 4 also show a reduction of the total rela-

tive uncertainty from scenario 1 to scenario 3, therefore the

uncertainty of model prediction decreases after fixing stoi-
chimetric/kinetic model factors. This result suggest that an
accurate estimation of stoichimetric/kinetic model factors

has to be performed before applying the model.
CONCLUSIONS

The key findings of this study are summarised as follows:

• The sensitivity analysis reveals that model factors related

to the influent wastewater and primary effluent COD frac-
tionation exhibit a significant impact on direct, indirect
and EQI model factors.

• The effluent concentration of COD and total nitrogen is

mainly influenced by the heterotrophic stoichiometric/
kinetic factors; revealing that for TN the role of denitrifica-
tion (anoxic growth of heterotrophic bacteria) is relevant.

• The uncertainty analysis reveals that TNOUT has the high-
est uncertainty in terms of relative uncertainty band for
://iwaponline.com/wst/article-pdf/82/2/339/740854/wst082020339.pdf
scenario 1 and scenario 2, thus revealing that uncertainty

of all influential model factors and of influent fraction-
ation factors has a relevant role on the total nitrogen
prediction.

• Results of the uncertainty analysis show that the uncer-
tainty of model prediction decreases after fixing
stoichimetric/kinetic model factors.
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